2015-2016学年九年级上数学知识应用竞赛试题
- 格式:doc
- 大小:215.50 KB
- 文档页数:5
九年级数学(上)竞赛试题一. 选择题(每小题3分,共36分)1.一元二次方程的解是A .B .1203x x ==,C .1210,3x x == D . 2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形 B .菱形 C .矩形D .正方形3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是A .球B .圆柱C .圆锥D .棱锥4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m ,则旗杆高为 A 、22m B 、20m C 、18m D 、16m5. 下列说法不正确的是A .对角线互相垂直的矩形是正方形B .对角线相等的菱形是正方形C .有一个角是直角的平行四边形是正方形D .一组邻边相等的矩形是正方形 6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .107. 若点(3,4)是反比例函数221m m y x+-=图像上一点 ,则此函数图像必经过点A .(3,-4)B .(2,-6)C .(4,-3)D .(2,6)8. 二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +- 9.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )第9题图A .3√102B .3√105 C .√105 D .3√5510. 函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动 A .变短 B .变长 C .不变 D .无法确定12.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为A .47B .5C .27D .22二:填空题.(每小题3分,共12分)13.如图,△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。
人教版九年级数学2016年全国初中数学联合竞赛试题第一试(3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.用x 表示不超过x 的最大整数,把xx 称为x 的小数部分.已知123t ,a 是t 的小数部分,b 是t 的小数部分,则112b a ().A 12.B 32.C 1.D 32.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有().A 9种.B 10种.C 11种.D 12种3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为().A 6858.B 6860.C 9260.D 92623(B ).已知二次函数21(0)y ax bx a 的图象的顶点在第二象限,且过点(1,0).当a b 为整数时,ab().A 0.B 14.C 34.D 24.已知O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O 于点E ,若8,AB 2CD ,则BCE的面积为().A 12.B 15.C 16.D 185.如图,在四边形ABCD 中,090BAC BDC ,5AB AC ,1CD ,对角线的交点为M ,则DM( ) .A 32.B 53.C 22.D 126.设实数,,x y z 满足1,x y z 则23M xy yz xz 的最大值为 ( )。
2015年下期九年级上册数学基础知识竞赛试卷一、选择题(每小题3分,共24分)1.用配方法解一元二次方程2430x x -+=时可配方得( )A.2(2)7x -=B.2(2)1x -=C.2(2)1x +=D.2(2)2x += 2.在△ABC 中,a=2 ,b=6 ,c=22 ,则最长边上的中线长为( ) A.2 B.3 C.2 D.以上都不对3.若20 10a b b c ==,,则a bb c ++的值为( ).(A )1121 (B )2111 (C )11021 (D )210114.如图,是一块三角形草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边 的距离相等,凉亭的位置应选在( )A.三角形的三条中线的交点B.三角形三边的垂直平分线的交点C.三角形三条角平分线的交点D.三角形三条高所在直线的交点 3y x=5.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线(0x >)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( )A.逐渐增大B. 逐渐减小C.不变D.先增大后减小6.如图,在等腰梯形ABCD 中,AB ∥CD ,对角线AC ⊥BC ,∠B=60°,BC=2cm , 则梯形ABCD 的面积为( )A .33cm 2 B. 6cm 2 C. 63cm 2 D.12cm 27.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ).A .221216y x x =--+ B .221216y x x =-+-C .221219y x x =-+-D .221220y x x =-+-8.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ).(A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4二、填空题(每小题3分,共21分)9.“等腰三角形两腰上的高相等”,这个命题的逆命题是 . 10.方程x(x-1)=2(x-1)的解为 .11.如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点D,交边 AC 于点E ,△BCE 的周长等于18 cm ,则AC 的长等于 cm .12.在正方形ABCD 中有一点E ,△EAB 是等边三角形,则∠CED 为 .13一个函数的图像关于y 轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数24y x bx =+-是“偶函数”,该函数的图像与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是 14.如图,在△ABC 中,AB =AC =1,点D 、E 在直线BC 上运 动,设BD =x ,CE =y.如果∠BAC =30°,∠DAE =105°, 则y 与x 之间的函数关系式为 .15.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .三、解答题(共55分) 16.计算:00203tan 60|3sin 30|cos 45+-- (6分)17.在国家的宏观调控下,某市的商品房成交价由今年3月份的14000元/平方米下降到5 月份的12600元/平方米.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)(2)如果房价继续回落,按照此前降价的百分率,你预测到7月份该市的商品房成交价是 否会跌破10000元/平方米?请说明理由。
九年级(上)竞赛数学试卷一、选择题(每小题3分,共15分)1.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=92.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.23.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.84.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定5.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16二、填空题(每小题3分,共15分)6.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=.7.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m.8.菱形两条对角线长度比为1:,则菱形较小的内角的度数为度.9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.10.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为.三、解答题(共10分)11.(10分)关于x的方程mx2+(m+2)x+=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.九年级(上)竞赛数学试卷一、选择题(每小题3分,共15分)1.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.2.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.2【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.【点评】此题考查了菱形的性质与勾股定理.此题难度不大,注意掌握数形结合思想的应用.3.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【分析】阴影部分的面积等于矩形面积减去四个直角三角形的面积.【解答】解:矩形的面积=2×4=8;S△AEF=×1×2=1;∴阴影部分的面积=8﹣1×4=4.故选B.【点评】本题另外的解法是:利用菱形的面积公式计算.4.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【分析】将已知的方程x2﹣10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A【点评】此题考查了利用因式分解法求一元二次方程的解,以及三角形的边角关系,利用因式分解法解方程时,首先将方程右边化为0,左边分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化两个一次方程来求解.5.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】根据平行线的性质和折叠的性质易证得△EFB′是等边三角形,继而可得△A′B′E 中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.二、填空题(每小题3分,共15分)6.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=2016.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2016=0得:a+b﹣2016=0,即a+b=2016.故答案是:2016.【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.7.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m≥且m≠0.【分析】根据一元二次方程的定义和△的意义得到m≠0且△≥0,即32﹣4×m×(﹣4)≥0,求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程mx2+3x﹣4=0有实数根,∴m≠0且△≥0,即32﹣4×m×(﹣4)≥0,解得m≥﹣,∴m的取值范围为m≥﹣且m≠0.故答案为:≥﹣且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.菱形两条对角线长度比为1:,则菱形较小的内角的度数为60度.【分析】根据已知可得到菱形的较小的内角的一半的度数,从而就不难求得较小内角的度数.【解答】解:因菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得菱形较小的内角的一半的正切值为1:,则菱形较小的内角的一半为30°,则菱形较小的内角的度数为60°.【点评】此题主要考查菱形的对角线的性质和直角三角形的函数值.9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.【解答】解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.【点评】本题注意到应分两种情况讨论,并且注意两种情况都存在关系AP⊥BD,这是解决本题的关键.10.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.【分析】运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.故答案为:28.【点评】本题考查了平移的性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三、解答题(共10分)11.(10分)关于x的方程mx2+(m+2)x+=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.【分析】(1)由二次项系数非零及根的判别式△>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围;(2)假设存在,设方程的两根分别为x1、x2,根据根与系数的关系结合+=0,即可得出关于m的方程,解之即可得出m的值,再根据(1)的结论即可得出不存在实数m,使方程的两个实数根的倒数和等于0.【解答】解:(1)∵关于x的方程mx2+(m+2)x+=0有两个不相等的实数根,∴,解得:m>﹣1且m≠0.(2)假设存在,设方程的两根分别为x1、x2,则x1+x2=﹣,x1x2=.∵+==﹣=0,∴m=﹣2.∵m>﹣1且m≠0,∴m=﹣2不符合题意,舍去.∴假设不成立,即不存在实数m,使方程的两个实数根的倒数和等于0.【点评】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)根据二次项系数非零结合根的判别式△>0,找出关于m的一元一次不等式组;(2)根据根与系数的关系结合+=0,列出关于m的方程.。
第六届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷(本卷满分150分,考试时间120分钟)温馨提示:认真审题,缜密思考、细心演算,交一份满意的答卷.(注:可使用计算器.)一、选择题(每小题6分,共30分)1.如图1,在圆环路上均匀分布着四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存,现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1∶2∶3∶5.若运费与路程、运的产品数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是()(A)甲(B)乙(C)丙(D)丁2.王村和元村之间有一座小山,县里计划修建一条通过此小山的公路,以方便两村村民的来往,如图2,经测量,从坡底B到坡顶A的坡角为30°,斜坡AB长为100米,根据地形,要求修好后的公路路面BD的坡度是1∶5(假设A,D两点处于同一铅垂线上).为减少工程量,若AD≤20米,则直接开挖,若AD>20米,就要重新设计,根据你所学过的知识,你认为()(A)不用重新设计,因为AD<20米(B)不用重新设计,因为AD=20米(C)需要重新设计,因为AD>20米(D)应用所给数据无法计算AD的长,因此,不能判断是否需要重新设计3.由于矩形和菱形特殊的对称美和矩形的四个角都是直角,从而为密铺提供了方便,因此墙砖一般设计为矩形,而且图案以菱形居多,如图3所示,是长为30cm,宽为20cm的一块矩形瓷砖,E、F、G、H分别是矩形四边的中点,阴影部分为黄色,其它部分为淡蓝色,现有一面长为6m,高为3m的墙面准备贴这种瓷砖,那么:这面墙要贴的瓷砖数及全部贴满后这面墙上最多出现的与图3中面积相等的菱形个数分别为()(A)288、561 (B)300、561(C)288、566 (D)300、5664.一位警察奉命追击一名正在向南偏西30°方向逃蹿的罪犯,如图4,警察的位置在点(),,图中的阴影部分表示一条东西B--12030A,,罪犯的位置在点(180走向宽20米的河道,如果警察追击的速度是8米/秒,罪犯逃跑的速度是7.5米/秒,且警察经过河道时正好有一座垂直于河道两岸的桥,要想在最短的时间内追上罪犯,警察至少要追击的时间为()(A)19分钟(B)20分钟(C)21分钟(D)22分钟5.如果我们把地球赤道看成一个圆,并且在地球赤道上空同样高度的位置有等距离的三颗地球同步通讯卫星,使卫星发射的信号能够覆盖全部赤道,那么卫星高度至少为()(地球半径为R≈6370km)(A)6370km (B)9555km (C)955.5km (D)9007km二、填空题(每小题6分,共30分)6.育英中学举行秋季运动会,王建同学参加铅球比赛,铅球出手时距地面1.6m,当铅球达到最大高度1.96m时水平方向距王建3m,若前一位选手成绩为9.9m,那么王建________(“能”或“不能”)超过他,成绩为________m.(设铅球在空中飞行路线呈抛物线)7.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过25米/秒,如图5,一辆汽车在一条城市街路上沿东西方向行驶,某一时刻刚好行驶到距车速检测仪A点距离为40米的C(位于A点北偏东30°处)处,过了3秒钟,到达B点,(位于A 点北偏西45°)此时小汽车距车速检测仪间的距离为60米,那么这辆汽车是否超速?________.(“超速”或“不超速”)8.新学期开学,光明中学开展了一项名为“提倡节约,回收利用,从我做起”的活动.九年级(2)班李琼同学利用废旧的易拉罐制作了一个笔筒(罐与罐之间已用双面胶封紧),如图6所示.为了美观,现欲将笔筒的侧面包上礼品纸,已知易拉罐的半径为r,高为h,则需礼品纸的面积为________.9.如图7,有位农场主有一大片田地,其形状恰好是一个平行四边形,并且在对角线BD上有一口水井E.农场主临死前留下遗嘱,把两块三角形的田地(即图7中阴影部分)给小儿子,剩下的全部给大儿子,至于水井E,正好两儿子共用,由于平行四边形两边长不同,所以遗嘱公布之后,亲友们七嘴八舌,议论纷纷,认为这个分配不公平,那么你认为________.(填“公平”或“不公平”)理由是______________.10.某种消费品每件60元,不收附加税时,每年大约销售80万件,若政府收附加税时,每销售100元要征税x元(叫做税率x%),则每年销售量将减少203x万件,要使每年在此项经营中收取的税金不少于128万元,问税率x%的范围是________,当税率x%=________时,所收取的税金最多,为________万元.三、解答题(本大题共90分)11.(本题16分)实践应用:如图8,某居民住宅阳台的宽AB米,在朝向阳光的方向有一玻璃窗CD与地面垂直,该玻璃窗的下端C与地面距离AC=1.5米,上端D与地面距离AD=3.5米,紧靠墙壁的花架上有一盆花(花盆及花的大小忽略不计),记为点P,与地面距离PB=0.5米.如果太阳光线的角度合适,就可以照射到花盆上.(1)求清晨第一缕照射到花上的太阳光线CP与地面的夹角α的度数;(2)已知太阳光线与地面的夹角在正午前大约每小时增大15°,在正午后大约每小时减小15°,而这盆花每天需阳光照射3小时才能正常生长.问:如果不移动这盆花的位置,它能否正常生长,请说明理由.12.(本题18分)猜想归纳:如图9,已知正方形ABCD的边长为2kπ+(k是正整数),半径为1的⊙O分别与AD,AB相切.沿AB→BC→CD→DA的方向使⊙O在正方形ABCD 的边上滚动.当⊙O第一次回到起始位置时停止运动.(1)当k=1时,⊙O从开始滚动到停止,共滚动了________圈;当k=2时,⊙O从开始滚动到停止,共滚动了________;当k=n时,⊙O从开始滚动到停止,共滚动了________.(2)当k=n时,⊙O从开始滚动到停止,滚过的面积是多少?13.(本题18分)实验探究:为发挥广大读者艺术特长,我报《数学专页》于2006年1月份举办了一次栏标设计大赛,截至4月份大赛已圆满结束.本次比赛收到了近千幅设计作品,其中一幅参赛作品如图10.同学们,你注意到栏标中的三个圆了吗?现依据三个圆的大小,剪了三张圆形纸片,它们的面积分别记为123S S S ,,,借助课桌,不给你任何工具,你能比较出12S S 与3S 的大小关系吗?写出你的方法步骤,并说明理由.14.(本题18分)信息处理:假日里,小红和爸爸、妈妈想到风景如画的天波山去游玩,他们经过了解得到如下信息:如果他们从本市汽车站出发到天波山去,那么只有一条道路可走.但顺着这条路,他们既可以乘坐公共汽车,也可以骑自行车,也可以将两者结合进行.综合起来,有以下四种不同的方案可以采用.方案1:他们可以全程乘坐汽车.但汽车要在中途荷花湖站停留30分钟.方案2:他们也可以全程骑自行车.如果他们在汽车驶离汽车站的同时开始骑自行车也从汽车站出发,那么当汽车到达天波山的时候,他们还有1km 的路程.方案3:他们可以先骑自行车到达荷花湖站,然后再乘坐汽车.如果他与汽车同时离开汽车站,那么当他们骑自行车行驶4km 的路程时,汽车已经到达荷花湖站.但是因为汽车要停留30分钟,所以当汽车正要离开荷花湖站时他刚好赶上,于是他就可以坐上汽车,前往天波山.方案4:他们可以先乘坐汽车,到达荷花湖站之后,其余的路程再骑自行车.这是最快的方案,他们可以比汽车提前一刻钟到达天波山.根据以上信息,请你求出汽车站到天波山的距离是多少千米?15.(本题20分)方案设计:儿童公园有一块半圆形空地,如图11所示,根据需要欲在此半圆内划出一个三角形区域作为健身场地,其中内接于此三角形的矩形区域为儿童游乐场,已知半圆的直径AB =100米,若使三角形的顶点C 在半圆上,且AC =80米.那么请你帮设计人员计算一下:△ABC 中,C 到AB 的距离是多少米?如果使矩形游乐场DEFN 面积最大,此矩形的高DN 应为何值?在实际施工时,发现在AB 上距B 点18.5米处有一棵古树,那么这棵树是否位于最大游乐场的边上?若在,为保护古树,请你设计出另外的方案以避开古树.第六届“学用杯”全国数学知识应用竞赛九年级初赛试题(A )卷参考答案一、选择题(每小题6分,共30分)1.D 2.C 3.D 4.C 5.A 二、填空题(每小题6分,共30分)6.能,10 7.不超速 8.()26rh π+9.公平,△AED 和△CEB 的面积之和等于A B C D 的面积的一半; 10.4%≤x %≤8%,6%,144 三、解答题(本大题共90分) 11.(本题16分)解:不能. ······················································································· 2分 理由:过P 作PE ⊥AC 于E .∵PB =0.5米,∴CE =CA -EA =CA -PB =1.5-0.5=1(米). ····································································· 3分又AB =PE =························································································ 4分在Rt △CEP 中,CE =1,PE =∴2P C =,30α∴=∠. ·············································································· 7分 如右图,假设PD 为能照到花盆上的最后一缕阳光, 则DE =AD -AE =3.5-0.5=3(米), ·················································· 8分又PE =,∴PD = ············································································································ 9分 ∴∠DPE =60°,∠DPC =30°. ················································································· 13分 由题意知,不移动这盆花能照射2小时,所以不能正常生长. ·····································16分 12.(本题18分)略解:(1)3,5,21n +; ······························································· 9分 (2)如图,A B C D A B C D S S ''''-四边形四边形()()222n n =π+-π-2()()()()n n n n =π+2+π-2π+2-π-2⎡⎤⎡⎤⎣⎦⎣⎦ 24n =π⨯8n =π. ······················································································································14分88S n n π⎛⎫=π-41-=π+π-4 ⎪4⎝⎭阴影部分. ··································································17分∴⊙O 滚过的面积为8n π+π-4. ··············································································18分 13.(本题18分)能.第一步:先将三张圆形纸片对折,得三张半圆纸片如图1,折痕为三个圆的直径,第二步:把两张小的半圆形纸片分别放在课桌的一个角的两边上,如图2,直径的端点分别落在A ,C ,B 三处.第三步:把大的半圆形纸片的直径的一个端点与A 重合,看另一端点能否与B 重合,如图3.如重合,则123S S S +=;如不重合,则123S S S +≠. 下面说明当大半圆纸片的直径的另一端点与B 重合时,123S S S +=. 如图3,因为桌角是直角,所以∠ACB =90°. 在Rt △ACB 中,根据勾股定理222AC BC AB +=. 所以222A CB CA B πππ+=444.所以222222AC BC AB ⎛⎫⎛⎫⎛⎫π+π=π ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即123S S S +=.(本题说明方法可得10分,说明相等或不相等的理由可得满分,其他情况可酌情给分) 14.(本题18分) 解:设汽车站到荷花湖站的距离为x km ,则当汽车在中途停留30分钟时,他们走了(x -4)km ,从而可知他们骑自行车每小时走(2x -8)km ,因为汽车走了x km ,他们走了4km ,所以汽车每小时走()42x x -km . ····················································································· 2分设荷花湖站到天波山的距离为y km ,那么依据题意可得: ()()116428221110428422x y x y x x x y y x x x +-+⎧=+⎪--⎪⎪⎨⎪+=+⎪--⎪⎩ ①…………分 ②…………分由①化简得:4xy x y -= ③ ·················································································12分 由②化简得:2284xy y x x =+- ④ ······································································14分 ③×2与④相减,整理得260x x -=,解之得:10x =,26x =.··························································································17分 所以,汽车站到荷花湖站的距离为6km ,荷花湖站到天波山的距离为3km ,所以汽车站到天波山的距离是9km . ····································································································18分15.(本题20分)解:(1)如图4,∵AB 是直径,且AB =100,AC =80,∴60BC ==,························································································ 2分 ∴1122A B C S A C B C A B h ==△, ··············································································· 4分 即60×80=100h ,∴h =48.∴C 到AB 距离为48米.····························································································· 6分(2)设DN 为x 米,则∵△CNF ∽△CAB , ∴h D N N F hA B-=.∴()1004848x NF -=, ······························································································· 9分∴()210048251004812DEFN x S x x x -==-+ 矩形,························································· 11分 当x =24时,游乐场面积最大. ····················································································12分(3)当游乐场面积最大时,DN =EF =24米,84tan 63E F A C A B C B E B C =∠===, 63tan 84D N B C B A C A DA C=∠===.易得BE =18米,AD =32米. ························································································15分 则BD =68米,又BM =18.5米, ∴BE <BM <BD ,∴大树位于欲修建的游乐场边上,应重新设计方案. ···················································17分 由圆的对称性,可把△ABC 划分到半圆的左边.··························································20分。
全国数学知识应用竞赛九年级初赛(校拟)试题卷(本卷满分150分,考试时间120分钟)一、填空题(每小题6分,共36分) 1.如图1的A 和B 是抗日战争时期敌人要塞阵地的两个“母子碉堡”,被称为“母碉堡”A 的半径是6米,“子碉堡”B 的半径是3米,两个碉堡中心的距离80AB =米.我侦察兵在安全地带P 的视线恰好与敌人的“母子碉堡”都相切,为了打击敌人,必须准确地计算出点P 到敌人两座碉堡中心的距离PA 和PB 的大小,请你利用圆的知识计算出____PA =,____PB =.2.小丽将一个边长为2a 的正方形纸片ABCD 折叠,顶点A 落到CD 边上的点M 的位置,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G (如图2).在折叠过程中,小丽发现当点M 在CD 边上的任意位置时,(点C D ,除外),CMG △的周长总是相等的,那么CMG △的周长为.3.国际蔬菜科技博览会开幕,学校将组织360名师生乘车参观.某客车出租公司有两种客车可供选择:甲种客车每辆40个座位,租金400元;乙种客车每辆50个座位,租金480元,则租用该公司客车最小需付租金 元. 4.光明路新华书店为了提倡人们“多读书,读好书”,每年都要开展分年级免费赠书活动,今年获得免费赠书的前提是:顺利通过书店前的A B C ,,三个房间(在每个房间内都有一道题,若能在规定的时间内顺利答对这三道题,就可免费得到赠书),同学们你们想参加吗?快快行动吧!(请把答案写在每间房所提供的答题卡上A图1ABCD E F GM图2B 房间答题卡: ;C 房间答题卡: .5.某校数学课外活动探究小组,在教师的引导下,对“函数(00)ky x x k x=+>>,的性质”作了如下探究:因为222k y x x =+=-+=+,所以当0x >,0k >时,函数ky x x=+有最小值=x =借助上述性质:我们可以解决下面的问题:某工厂要建造一个长方体无盖污水处理池,其容积为34800m ,深为3m ,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,问怎样设计水池能使总造价最低,最低总造价为 元. 6.某公司员工分别住在A B C ,,三个住宅区,A 区有30人,B 区有15人,C 区有10人,三个区在一条直线上,位置如图3所示.公司的接送车打算在A 区,B 区,C 区中只设一个停靠点,要使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应在 .7.如图是一个圆形的街心花园,A B C ,,是圆周上的三个娱乐点,且A B C ,,三等分圆周,街心花园内除了沿圆周的一条主要道路外还有经过圆心的沿 AOB , BOC ,AOC 三条道路,一天早晨,有甲、乙两位晨练者同时从A 点出发,其中甲沿着圆走回原处A ,乙沿着 AOB , BOC , COA也走回原处,假设他们行走的速度相同,则下列结论正确的是( ) A.甲先回到A B.乙先回到A C.同时回到A D.无法确定8.小明很喜欢打篮球,他是班里篮球队的主力队员,恰好这个星期他所在的九年级十个班要进行篮球比赛,比赛是每五个队进行单循环比赛,得分规则如下表,小组赛后总积分最高的两个队可以参加半决赛,若总积分相同还要按下一步的规则排序.现在小明若想直接进入半决赛,问小明所在的队至少要积( ) A.9分 B.10分 C.11分 D.12分A 区 区图3ABCOm图49.如图5,A B C ,,是固定在桌子上的三根立柱,其中A 柱上穿有三个大小不同的圆片,下面的直径总比上面的大,现想将这三个圆片移动到B 柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A B C ,,三个柱之一,且较大的圆片不能叠在小圆片的上面,那么完成这件事至少要移动圆片的次数是( )A.6 B.7 C.8 D.910.有红、黄、绿三块面积均为220cm 的正方形纸片,放在一个底面是正方形的盒子内,它们之间互相叠合(如图6),已知露在外面的部分中,红色纸片面积是220cm ,黄色纸片面积是214cm ,绿色纸片面积是210cm ,那么正方形盒子的底面积是( ) A.2256cm 5B.254cmC.248cmD.2246cm 511.小明玩套圈游戏,套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分,小明共套10次,每次都套中了,每个小玩具都至少套中一次,小明套10次得61分,则小鸡被套中( ) A.2次 B.3次 C.4次 D.5次12.如图7,在边长是20m 的正方形池塘周围是草地,池塘边A B C D ,,,处各有一棵树,且4AB BC CD ===m ,现用长5m 的绳子将一头牛拴在一棵树上,为了使牛在草地上活动区域的面积最大,应将绳子拴在( )B 处或D 处D.D 处三、解答题(本大题共3个小题,满分38分) 13.(本题12分)阳光中学全体学生都办理了一种“学生团体住院医疗保险”,保险公司按(注:在被保险期间,被保险人按上述标准累计自付金额超过6 000元的部分,保险公司按A B 图5 图6图7100%的标准给付)现在,该中学的学生李明因病住院,除去保险公司给付的“住院医疗保险金”外,李明的家人又支付了医疗费用3 000元.请问保险公司为李明支付了多少保险金?14.(本题12分)轻纺城服装批发市场经营季节性服装,当季节即将来临时,服装价格呈上升趋势.设某种服装开始时预定价为每件10元,从第一周上市开始每周(7天)涨价2元,从第5周开始保持20元的价格平稳销售;在季节即将过去时,从第11周开始,服装批发市场开始削价,平均每周削价2元,直到16周周末后,该服装已不再销售.(1)试建立价格y与周次x之间的函数关系;(2)若此服装每件进价Q与周次x之间的关系为:2=--+且是整数≤≤,,试问该服装第几周每件销售利润M最Q x x x0.125(8)12(016)大?∠的内部有一15.(本题14分)如图8,某房地产开发公司购得一块三角形地块,在靠近B千年的古樟树要加以保护,市政府规定要过P点划一三角形的保护区,你怎样划这条线才△的面积最小?为什么?能使被划去的BDEC图8四、开放题(本大题满分40分) 16.(本题20分)在生活中不难发现这样的例子:三个量a b ,和c 之间存在着数量关系a bc =.例如:长方形面积=长×宽,匀速运动的路程=速度×时间. (1)如果三个量ab ,和c 之间有着数量关系a bc =,那么: ①当0a =时,必须且只须 ;②当b (或c )为非零定值时,a 与c (或b )之间成 函数关系;③当(0)a a ≠为定值时,b 与c 之间成 函数关系.(2)请你编一道有实际意义的应用性问题,解题所列的方程符合数量关系:ab x x c=-,(其中x 为未知数,a b c ,,为已知数,不必解方程). 17.(本题20分)金字塔是古代世界著名的奇迹之一,矗立在尼罗河西岸的70多座金字塔,每年都吸引着来自世界各地的游客,流连在金字塔下,抬眼望去,几十层楼高的塔像柄巨剑直刺云天,显得气势非凡.此刻,游人心里很自然地会想:金字塔究竟有多高呢?假设你是一位游人,如何测量金字塔的高度呢?写出你的测量方案,并说明理由(注意:至少提供两种测量方案,并且,你的方案一定要切实可行).九年级初赛试题卷参考答案一、填空题(每小题6分,共36分)1.160米,80米 2.4a 3.3 520元 4.A :105︒或15︒;B :C :15︒或75︒ 5.297 600 6.A 区二、选择题(每小题6分,共36分) 7~12.CBBAD B三、解答题(13题12分,14题12分,15题14分,满分38分) 13.解:当住院医疗费为7 000元时,被保险人应支付:1000(155)3000(160)3000(170)2550⨯-+⨯-+⨯-= % % % (元).由于李明家支付费用30002550>元元 ,所以李明住院的医疗费用在7 000元至10 000元之间(即第4级别). ···················· 5分 所以超过7 000元部分的医疗费为:(30002550)(180)2250-÷-= % 元. 所以保险公司为李明给付的保险费应为:7000225030006250+-= 元. ···· 11分 答:保险公司要再为李明给付保险金6 250元(付给医院). ···································· 12分 14.解:(1)根据价格的“上升”、“平稳”、“削价”,建立分段函数.102(05)120(510)3402(1016)5x x x y x x x x x +⎧⎪=⎨⎪-⎩且是整数且是整数且是整数分分分≤≤,…………≤≤,………≤≤,………(2)每件利润=每件售价-每件进价,即M y Q =-,所以当05x ≤≤时,221020.125(8)120.1256M x x x ⎡⎤=+---+=+⎣⎦. 所以当5x =时,M 取最大值9.125元. ···································································· 7分 当510x ≤≤时,20.125216M x x =-+.所以当5x =时,M 取最大值9.125元. ···································································· 9分 当1016x ≤≤时,20.125436M x x =-+.所以当10x =时,M 取最大值8.5元. ······································································ 11分以上x 的取值均为整数,因此,该服装第5周每件销售利润M 最大. ···················· 12分 15.过P 作直线DE AB ∥,交BC 于D ,交AC 于E ,在BC 上取点F ,使DF BD =,延长FP 交AB 于点G ,则BFG △的面积最小.······················································ 6分 证明:若过P 任作一直线,交BC 于M ,交AB 于N , 过G 作GK BC ∥,交MN 于K . ············································································· 8分 由DP AB ∥,BD DF =知:DP 是BFG △的中位线,得PG PF =. 进而可得MPF KPG △△≌. ···················································································· 12分NPG MPF S S >△△,所以BMN BFG S S >△△. ··································································· 14分四、开放题(每小题20分,共40分) 16.(1)①b 或c 中有一个为零;②正比例;③反比例.(每空2分,共6分) (2)答案不惟一. 评分标准:(满分共计14分) ①编写题目符合实际(5分);②解题所列方程符合所要求的数量关系(7分);C③题目新颖、有创新意义(2分). 17.方案一:应用相似三角形知识如图1所示:在距离金字塔一定距离的D F ,两点,分别竖立两个竿CD 和EF (长度都为h ),当人分别站在M N ,两点时能保证A C A E ,,,分别在一条直线上测出MN F N MD ,,的距离,则塔高即可得到(其中人的高度忽略不计). 理由如下: ····················································································································· 6分从图中易知:MCD MAB △△Rt ∽Rt ,NEF NAB △△Rt ∽Rt . ······················ 7分 可得AB MBCD MD =,即AB MD MB CD = .①···························································· 8分 AB NBEF FN=,即AB FN NB EF = .② ····································································· 9分 ②-①得()()AB FN MD NB MB CD -=- . 又知MN NB MB =-,可得MN CDAB FN MD=- .因为CD 已知,MN FN MD ,,均可测出,所以AB 的高度可以计算得出. ········································································ 10分方案二:应用解直角三角形知识 如图2所示,在平面内取C D ,两点,使B C D ,,三点在同一条直线上,用测角器在C D ,两点分别测得塔顶A 的仰角为αβ,,再测量出CD 间的距离,则塔高可求得(测角器的高度忽略不计). ··············································································································· 6分 理由如下:在ACB △Rt 和ADB △Rt 中,cot CB AB α= ,cot DB AB β= . ········································································· 7分 因为CB DB CD -=,所以cot cot AB AB CD αβ-= . ············································································· 8分 所以cot cot CDAB αβ=-.因为CD ,αβ,都可以测出,所以塔高AB 可求得. ·············································· 10分 (方案设计合理,正确可酌情给分)ABC D EM 图1AD 图2αβ。
全国数学知识应用竞赛九年级决赛(校拟)试题一、(本题20分)判断与决赛利群商店积压了100件某种商品,为使这批商品尽快脱手,该商店采用了如下的销售方案:先将价格提高到原来售价的2.5倍,再作三次降价处理,第一次降价30%,标出“亏本价”;第二次又降价30%,标出“破产价”;第三次再降价30%,标出“跳楼价”.三次降价销售结果如下表所示:(1)如果一名消费者以促销的三种价格各买了一件该商品,请你通过计算说明相对于原售价,该消费者在促销活动中是否得到了实惠?(2)按新销售方案全部售完该商品,与按原价全部售完该商品相比,哪一种方案商场更赢利?(3)请结合(1),(2)的计算结果谈谈你对本销售方式的看法. 二、(本题20分)操作与探究九年级(1)班为即将到来的“五·一”国际劳动节排练节目时需要3个底面圆半径为10厘米,母线长为20厘米的圆锥形小红帽(不计接缝损失).(1)试确定这种圆锥形小红帽侧面展开图(扇形)的圆心角的度数; (2)现有宽为40厘米的矩形布料可供选用,按照题目要求在图1中画出使布料能充分利用(最省料)的示意图,并求出矩形布料的长至少为多少厘米. 三、(本题20分)图象与信息在对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以5.8万元的优惠价转让给了尚有5万元无息贷款还没有偿还的小型残疾人企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计利息).从企业甲提供的相关资料中可知这种消费品的进价是每件14元;月销售量Q (百件)与销售单价P (元)的关系如图2所示;维持企业的正常运转每月需最低生活费外的各种开支2000元. (1)试确定月销售量Q (百件)与销售单价P (元)之间的函数关系式.(2)当商品的销售单价为多少元时,扣除职工最低生活费后的月利润余额最大? (3)企业乙依靠该店,最早可望在几年内脱贫?四、(本题20分)综合实践应用图3是王老师休假钓鱼时的一张照片,鱼杆前部分近似呈抛物线的形状,后部分呈直线形.已知抛物线上关于对称轴对称的两点B C ,之间的距离为2米,顶点O 离水面的高度为图1)图2223米,人握的鱼杆底端D 离水面113米,离拐点C 的水平距离1米,且仰角为45︒,建立如图4所示的平面直角坐标系.(1)试根据上述信息确定抛物线BOC 和CD 所在直线的函数表达式;(2)当继续向上拉鱼使其刚好露出水面时,钓杆的倾斜角增大了15︒,直线部分的长度变成了1米(即ED 长为1米),顶点向上增高23米,且右移12米(即顶点变为F ),假设钓鱼线与人手(点D )的水平距离为124米,那么钓鱼线的长度为多少米?五、(本题30分)材料作文材料一:亲爱的同学们,你一定见过娱乐明星漫画吧!你能看出右边的歌星是谁吗?张学友!不错!尽管画得很夸张,但我们仍然一眼就能看出.这是因为虽然画像是夸张的、变形的,但画中人物的“特征不变量”在漫画中明显地表现出来了.我们在解决某些数学问题时,也应学会抓不变量,利用不变量解决问题.比如:将9个数字1,2,3,4,5,6,7,8,9任意排列,组成的所有九位数中,质数的个数是多少?显然我们不可能将所有九位数一一列举,再一一验证.如果注意到这九个数字的和是45,能被3整除,因而所有的九位数都是3的倍数,问题就迎刃而解了:所有这些九位数中,质数个数为0.材料一:一年一度的春节联欢晚会不仅仅是老百姓不可缺少的“年夜饭”,也成了企业展示自己的大舞台———前仆后继,只为争得在“春晚”上露个脸.据了解,直接在春节联欢晚会前后播出的套装广告时间为10分钟,加上晚会上两次报时广告,时长各十秒.这样算来“春晚”广告时长总共为620秒.620秒的广告费价值多少呢?请看下面提供的资料:春晚广告四种主要形式报时广告:966万央视春晚在20时和零时分别有时段报时.20点与零点两个报时广告的起价分别为539万元与966万元.贺电广告:1000万 在春晚进行当中,主持人会以刚刚收到贺电的形式告诉观众××单位给观众拜年,祝愿新年快乐.贺电是央视赠送给投放额度在1000万元以上的企业的. 字幕广告:500万图3图4春晚结束之际,电视上会出现一些央视的鸣谢单位,而这些单位就是投放央视广告额超过500万元或购得晚会片尾鸣谢字幕的企业. 冠名广告:4508万“2006年我最喜爱的春节晚会节目评选”独家冠名,被杭州民生药业以4508万元夺取. 阅读以上材料,你有什么体会?是否觉得生活与数学有很强的互融性?请结合你的学习、生活实际,写一篇数学小短文,字数控制在600字以内. 六、(本题40分)数学作文从下列题目中任选其一,联系相关知识及现实生活,写一篇数学作文,字数控制在1000字左右.1.一堂有趣的数学活动课 2.我说统计 3.游戏与数学4.我在生活中用数学 5.我与学用杯竞赛6.数字0是数学中的一个极为重要的角色,它活泼、机灵、神通广大,但又“调皮”、“桀骜不训”.如果能充分理解、把握它的脾气和秉性,它能帮你排忧解难,否则,它也会使你误入歧途,吃尽苦头,甚至碰得“头破血流”.我国著名数学家、数学教育家傅种孙先生说过,要想学好数学,就要“问道于零”.请自拟题目,谈谈你对这段话的理解.九年级决赛试题参考答案一、解:(1)设原价为x 元,则在促销活动中该消费者各买一件商品共花费32.50.7 2.50.70.7 2.50.7 3.8325x x x x ⨯+⨯⨯+⨯=(元). ············································ 3分而按原价购买三件该商品需3x 元. ······················································································ 6分 所以该消费者在此次促销活动中没有得到实惠. ································································· 8分 (2)按原价出售时,销售金额为100x . ·········································································· 10分 按促销价出售时,销售金额为:32.50.710 2.50.70.740 2.50.750109.375x x x x ⨯⨯+⨯⨯⨯+⨯⨯=. ··························· 13分因为109.375100x x >,所以新销售方案商场更赢利. ···················································· 15分 (3)视解答情况给0~5分.二、解:(1)设圆心角的度数为n,则20210180n π⨯=π⨯. ··············································································································· 3分 所以180n =.所以此圆锥形小红帽侧面展开图的圆心角度数为180. ··························· 5分(2)因为扇形的圆心角为180,圆锥母线长为20厘米,所以这个扇形的半径为20厘米的半圆.如图1所示,当三个半圆所在圆两两外切,且半圆的直径与长方形的边垂直时,能使布料得以充分利用. ············································································································· 10分如图2,连接12O O ,23O O ,31O O .因为1O ,2O ,3O 两两外切,12320AO BO CO ===, 所以1223311340OO O O O O O A CO ===+=. 过点3O 作312O E O O ⊥,垂足为E . 因为2313O O O O =, 所以12121202O E O E O O ===. 在13O EO △中,1390O EO = ∠,根据勾股定理3EO === ········································ 15分因为四边形ABCD 是矩形,所以AD BC ∥,AD BC =,90A D ==∠∠. 因为12AO BO =,12AO BO ∥, 所以四边形21ABO O 是矩形.所以1290AOO =∠.所以13O E DO ∥. 又因为13O E DO =,所以四边形13O EO D 是平行四边形. 所以31EO O D =.所以1120AD AO O D =+=+ ··············································································· 20分图1图223因此矩形布料的长至少应为(20+厘米.三、(1)由图象可知,月销售量Q (百件)与销售单价P (元)是一次函数关系, 设Q Px b =+, ······················································································································ 2分 则有1020P b =+,530P b =+. ······················································································ 4分解得1202P b =-=.所以1202Q x =-+. ······································································· 6分 (2)设月利润为W ,则有100(14)(20003600)W Q x =--+ ··················································································· 10分110020(14)(20003600)2x x ⎛⎫=-+--+ ⎪⎝⎭250270033600x x =-+-250(54729)2850x x =--++ 250(27)2850x =--+.所以当销售单价为27元时,月利润最大为2850元. ······················································· 12分 (3)设x 年内可脱贫,由(2)知最大月利润为2850元.·············································· 14分 2850125000058000x ⨯+≥. ························································································· 16分 3.2x ≥年. ························································································································· 18分 所以,企业乙最早在4年内脱贫. ······················································································ 20分 四、解:(1)由已知,得113C ⎛⎫- ⎪⎝⎭,. 设抛物线BOC 的函数表达式为2y ax =. 则13a =-,所以213y x =-. 设直线CD 的函数表达式为y kx b =+,由C D ,点的坐标分别为113⎛⎫- ⎪⎝⎭,,1213⎛⎫- ⎪⎝⎭,得1342.3k b k b ⎧+=-⎪⎪⎨⎪+=-⎪⎩,解得1k =-,23b =. 所以23y x =-+. ················································································································ 10分(2)由已知,得3423E ⎛⎫- ⎪ ⎪⎝⎭,1223F ⎛⎫⎪⎝⎭,. ······························································· 14分 设这时抛物线的函数表达式为21223y m x ⎛⎫=-+ ⎪⎝⎭.则2312422323m ⎛⎫-+=- ⎪⎝⎭.所以2m =-.所以212223y x ⎫⎛⎫=--+⎪ ⎪⎪⎝⎭⎝⎭. ····················································································· 18分又由已知A 点的横坐标为14-,得14A ⎛- ⎝⎭.所以钓鱼线的最小长度为21296米.。
九年级(上)竞赛数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,一元二次方程是()A.x2+=0 B.ax2+bx=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=02.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上4.一元二次方x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根5.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.6.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.﹣8 B.8 C.±8 D.67.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%8.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2 B.y=(x﹣3)2+2 C.y=(x﹣3)2﹣2 D.y=(x+3)2+29.已知a、b满足(a2﹣b2)(a2﹣b2+4)+4=0,则代数式a2﹣b2的值为()A.﹣2 B.4 C.﹣2或4 D.210.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分给出下列命题:①a+b+c=0;②b>2a;③3a+c=0;④a﹣b<m(ma+b)(m≠﹣1的实数);其中正确的命题是()A.①②③B.①②④C.②③④D.①③④二、填空题(每小题3分,共24分)11.当m=时,关于x的方程(m﹣3)﹣x=5是一元二次方程.12.抛物线y=ax2经过点(3,5),则a=.13.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于.14.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程,能否求出x的值:(能或不能).15.把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.16.如果抛物线y=x2﹣8x+c的顶点在x轴上,则c=.17.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是.18.如图,函数y=﹣(x﹣h)2+k的图象,则其解析式为.三、解答题(本大题共66分)19.解下列方程(1)x2﹣5x+1=0(2)(x+3)2=5(x+3)(3)(x﹣2)2﹣4=0.20.已知关于x的一元二次方程(2m﹣1)x2+3mx+5=0有一根是x=﹣1,求m的值.21.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.22.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地,怎样围才能使矩形场地的面积为750m2?23.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?24.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.25.行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:0102030405060刹车时车速/km•h﹣1刹车距离/m00.3 1.0 2.1 3.6 5.57.8(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?九年级(上)竞赛数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,一元二次方程是()A.x2+=0 B.ax2+bx=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【考点】A1:一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是分式方程,故A错误;B、a=0时是一元一次方程,故B错误;C、是元二次方程,故C正确;D、是二元二次方程,故D错误;故选:C.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】A6:解一元二次方程﹣配方法.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B3.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上【考点】H3:二次函数的性质.【分析】已知抛物线解析式为顶点式,根据顶点坐标的特点,直接写出顶点坐标,再判断顶点位置.【解答】解:由y=2x2﹣3得:抛物线的顶点坐标为(0,﹣3),∴抛物线y=2x2﹣3的顶点在y轴上,故选D.4.一元二次方x2﹣3x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个相等的实数根D.没有实数根【考点】AA:根的判别式.【分析】求出一元二次方程根的判别式;根据根的判别式即可判断根的情况.【解答】解:∵△=b2﹣4ac=(﹣3)2﹣4×1×3=﹣3<0,∴方程没有实数根,故选:D.5.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.【考点】H2:二次函数的图象.【分析】利用排除法解决:首先由a=﹣1<0,可以判定抛物线开口向下,去掉A、C;再进一步由对称轴x=﹣=1,可知B正确,D错误;由此解决问题.【解答】解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是x=0,∴只有B符合要求.故选:B.6.二次函数y=2x2+mx+8的图象如图所示,则m的值是()A.﹣8 B.8 C.±8 D.6【考点】HA:抛物线与x轴的交点.【分析】根据抛物线与x轴只有一个交点,△=0,列式求出m的值,再根据对称轴在y轴的左边求出m的取值范围,从而得解.【解答】解:由图可知,抛物线与x轴只有一个交点,所以,△=m2﹣4×2×8=0,解得m=±8,∵对称轴为直线x=﹣<0,∴m>0,∴m的值为8.故选B.7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%【考点】AD:一元二次方程的应用.【分析】设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【解答】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(1+x)2=1.44,x1=0.2=20%,x2=﹣2.2(舍去),答:平均每月的增长率为20%.故选C.8.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是()A.y=(x+3)2﹣2 B.y=(x﹣3)2+2 C.y=(x﹣3)2﹣2 D.y=(x+3)2+2【考点】H6:二次函数图象与几何变换.【分析】变化规律:左加右减,上加下减.【解答】解:按照“左加右减,上加下减”的规律,y=x2向左平移3个单位,再向下平移2个单位得y=(x+3)2﹣2.故选A.9.已知a、b满足(a2﹣b2)(a2﹣b2+4)+4=0,则代数式a2﹣b2的值为()A.﹣2 B.4 C.﹣2或4 D.2【考点】A9:换元法解一元二次方程.【分析】设x=a2+b2,方程化为关于x的一元二次方程,求出方程的解即可得到a2+b2的值.【解答】解:设x=a2﹣b2,方程化为x2+4x+4=0,∴(x+2)2=0,解得:x=﹣2,∴a2﹣b2=﹣2,故选:A.10.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分给出下列命题:①a+b+c=0;②b>2a;③3a+c=0;④a﹣b<m(ma+b)(m≠﹣1的实数);其中正确的命题是()A.①②③B.①②④C.②③④D.①③④【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线经过(1,0),确定a+b+c的符号;根据对称轴方程确定b与2a的关系;由①②的结论判断③;根据a>0,(m+1)2>0,确定a(m+1)2>0,经过整理即可得出a﹣b<m(ma+b).【解答】解:∵x=1时,y=0,∴a+b+c=0,①正确;∵﹣=﹣1,∴b=2a,②错误;由a+b+c=0和b=2a得,3a+c=0,③正确;∵m≠﹣1,∴(m+1)2>0,∵a>0,∴a(m+1)2>0,∴am2+2am+a>0,∵b=2a,∴a﹣b=﹣a∴am2+bm>a﹣b,∴a﹣b<m(am+b),④正确,故选:D.二、填空题(每小题3分,共24分)11.当m=﹣3时,关于x的方程(m﹣3)﹣x=5是一元二次方程.【考点】A1:一元二次方程的定义.【分析】根据一元二次方程的定义进行解答.【解答】解:依题意得:m2﹣7=2,且m﹣3≠0,解得m=﹣3,故答案是:﹣3.12.抛物线y=ax2经过点(3,5),则a=.【考点】H5:二次函数图象上点的坐标特征.【分析】此题考查了待定系数法,把点代入即可求得.【解答】解:把点(3,5)代入y=ax2中,得:9a=5,解得a=.13.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于4.【考点】A9:换元法解一元二次方程;A8:解一元二次方程﹣因式分解法.【分析】首先把x2+y2当作一个整体,设x2+y2=k,方程即可变形为关于k的一元二次方程,解方程即可求得k即x2+y2的值.【解答】解:设x2+y2=k∴(k+1)(k﹣3)=5∴k2﹣2k﹣3=5,即k2﹣2k﹣8=0∴k=4,或k=﹣2又∵x2+y2的值一定是非负数∴x2+y2的值是4.故答案为:4.14.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程(x+100)=20000,能否求出x的值:能(能或不能).【考点】AC:由实际问题抽象出一元二次方程.【分析】如果把游泳池的长增加xm,那么游乐场的长和宽分别为和,然后矩形根据面积公式可列出方程.【解答】解:由于游泳池的长增加xm,那么游乐场的长和宽分别为和,即(x+100)=20000,解得x=100.故填空答案:(x+100)=20000,能.15.把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.【考点】A2:一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.16.如果抛物线y=x2﹣8x+c的顶点在x轴上,则c=16.【考点】H3:二次函数的性质.【分析】顶点在x轴上,所以顶点的纵坐标是0.据此作答.【解答】解:根据题意,得=0,解得c=16.故答案为:16.17.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是(2,﹣1).【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【分析】已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【解答】解:设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x﹣1)(x﹣3)把点C(0,3),代入得a=1.则y=(x﹣1)(x﹣3)=x2﹣4x+3.所以图象的顶点坐标是(2,﹣1).18.如图,函数y=﹣(x﹣h)2+k的图象,则其解析式为y=﹣(x+1)2+5.【考点】H8:待定系数法求二次函数解析式.【分析】根据图象得出顶点的坐标,即可求得解析式.【解答】解:由图象可知抛物线的顶点坐标为(﹣1,5)所以函数的解析式为y=﹣(x+1)2+5.故答案为y=﹣(x+1)2+5.三、解答题(本大题共66分)19.解下列方程(1)x2﹣5x+1=0(2)(x+3)2=5(x+3)(3)(x﹣2)2﹣4=0.【考点】A8:解一元二次方程﹣因式分解法;A5:解一元二次方程﹣直接开平方法;A7:解一元二次方程﹣公式法.【分析】(1)利用求根公式法解方程;(2)先移项得到(x+3)2﹣5(x+3)=0,然后利用因式分解法解方程;(3)利用因式分解法解方程.【解答】解:(1)△=52﹣4×1=21,x=所以x1=,x2=;(2)(x+3)2﹣5(x+3)=0,(x+3)(x+3﹣5)=0,x+3=0或x+3﹣5=0,所以x1=﹣3,x2=2;(3)(x﹣2+2)(x﹣2﹣2)=0,x﹣2+2=0或x﹣2﹣2=0,所以x1=0,x2=4.20.已知关于x的一元二次方程(2m﹣1)x2+3mx+5=0有一根是x=﹣1,求m的值.【考点】A3:一元二次方程的解;A1:一元二次方程的定义.【分析】把方程的根代入方程,可以求出字母系数m值.【解答】解:把x=﹣1代入方程有:2m﹣1﹣3m+5=0,∴m=4.即m的值是4.21.已知开口向上的抛物线y=ax2﹣2x+|a|﹣4经过点(0,﹣3).(1)确定此抛物线的解析式;(2)当x取何值时,y有最小值,并求出这个最小值.【考点】H8:待定系数法求二次函数解析式;H7:二次函数的最值.【分析】(1)把已知点的坐标代入抛物线解析式求出a的值,确定出解析式即可;(2)利用二次函数性质求出y的最小值,以及此时x的值即可.【解答】解:(1)把(0,﹣3)代入抛物线解析式得:9a+6+|a|﹣4=0,当a>0时,方程化简得:10a=﹣2,解得:a=﹣0.2;当a<0时,方程化简得:8a=﹣2,解得:a=﹣0.25,则抛物线解析式为y=﹣0.2x2﹣2x﹣3.8或y=﹣0.25x2﹣2x﹣3.75;(2)抛物线解析式为y=﹣0.2x2﹣2x﹣3.8,当x=5时,y取得最小值,最小值为﹣18.8;抛物线解析式为y=﹣0.25x2﹣2x﹣3.75,当x=4时,y取得最小值,最小值为15.75.22.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地,怎样围才能使矩形场地的面积为750m2?【考点】AD:一元二次方程的应用.【分析】根据题意可以设平行于墙的一边长为xm,从而可以列出相应的方程,从而可以解答本题.【解答】解:平行于墙的一边长为xm,则x()=750,解得x1=30,x2=50,∵墙的长度不超过45m,∴x=50不符合题意,舍去,∴x=30,∴=25,即矩形的平行于墙的一边长为30m,垂直于墙的一边长为25m时,矩形场地的面积为750m2.23.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【考点】HE:二次函数的应用;H7:二次函数的最值.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解:(1)设每千克应涨价x元,则(10+x)=6 000解得x=5或x=10,为了使顾客得到实惠,所以x=5.(2)设涨价z元时总利润为y,则y=(10+z)=﹣20z2+300z+5 000=﹣20(z2﹣15z)+5000=﹣20(z2﹣15z+﹣)+5000=﹣20(z﹣7.5)2+6125当z=7.5时,y取得最大值,最大值为6 125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.24.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】2C:实数的运算.【分析】(1)根据题意可得代数式42﹣32,再计算即可;(2)根据题意可得方程:(x+2)2﹣25=0,再利用直接开平方法解方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得:(x+2)2﹣25=0,(x+2)2=25,x+2=±5,x+2=5或x+2=﹣5,解得:x1=3,x2=﹣7.25.行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:0102030405060刹车时车速/km•h﹣1刹车距离/m00.3 1.0 2.1 3.6 5.57.8(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?【考点】HE:二次函数的应用.【分析】(1)依题意描点连线即可.(2)设抛物线为y=ax2+bx+c,再根据表格中所给数据可得方程,解出a,b,c即可.(3)当y=46.5时,代入函数关系式解出x的值,根据题意进行取舍即可.【解答】解:(1)如图所示:(2)根据图象可估计为抛物线.∴设y=ax2+bx+c.把表内前三对数代入函数,可得,解得:,∴y=0.002x2+0.01x.经检验,其他各数均满足函数(或均在函数图象上);(3)当y=46.5时,46.5=0.002x2+0.01x.整理可得x2+5x﹣23250=0.解之得x1=150,x2=﹣155(不合题意,舍去).所以可以推测刹车时的速度为150千米/时.∵150>140,∴汽车发生事故时超速行驶.。
者相中学2016年秋季九年级(上)数学竞赛试卷(考试时间:120分钟满分120分)班级得分一、选择题(每小题4分,共32分)1.下列车标图案中,是中心对称图形的是()A.B.C.D.2.对于二次函数y=(x﹣1)2+2的图象,下列说确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点3.某商品经过两次连续降价,每件售价由原来的100元降到了64元.设平均每次降价的百分率为x,则下列方程中正确的是()A.100(1+x)2=64 B.64(1+x)2=100C.64(1﹣x)2=100 D.100(1﹣x)2=644.将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1 D.y=x2﹣15.已知抛物线y=x2﹣x﹣2与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.20186.半径为R的圆接正六边形的面积是()A.R2B. R2C. R2D. R27.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm8.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35° B.40° C.45° D.50°二、填空题(每小题4分,共20分)9.二次函数y=(x﹣1)2﹣2的顶点与x轴的交点所围成图形的的面积是______.10.如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD于M,且CM=2,则AB的长为______.11.已知二次函数y=x2+bx+c的图象如图所示,则关于x的方程x2+bx+c=0的解为x1=______,x2= .12.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是______.(结果保留π)13.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是______.三、解答题(共6小题,共68分)14.(10分)如图,将四边形ABCD绕原点O旋转180°得四边形A′B′C′D′.(1)画出旋转后的四边形A′B′C′D′;(2)写出A′、B′、C′、D′的坐标;(3)若每个小正方形的边长是1,请直接写出四边形ABCD的面积.15.(10分)如图是二次函数y=a(x+1)2+2的图象的一部分,根据图象回答下列问题.(1)抛物线与x轴的一个交点的坐标是______,则抛物线与x轴的另一个交点B的坐标是______;(2)确定a的值;(3)设抛物线的顶点是P,试求△PAB的面积.16.(10分)如图所示,在梯形ABCD中,AB∥CD,⊙O为切圆,E、F为切点.(1)试猜DO与AO的位置关系,并说明理由.(2)若AO=4cm,DO=3cm,求⊙O的面积.17.(12分)兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场,要求长与宽的比为2:1,在养鸡场,沿前侧墙保留3m宽的走道,其他三侧墙各保留1m宽的走道,当矩形养鸡场长和宽各为多少时,鸡笼区域面积是288m2?18.(12分)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB 的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.19.(14分)如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=﹣x2+bx+c交x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.者相中学九年级(上)数学竞赛试题试卷参考答案与试题解析一、选择题1.下列车标图案中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选C.2.对于二次函数y=(x﹣1)2+2的图象,下列说确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.3.某商品经过两次连续降价,每件售价由原来的100元降到了64元.设平均每次降价的百分率为x,则下列方程中正确的是()A.100(1+x)2=64 B.64(1+x)2=100 C.64(1﹣x)2=100 D.100(1﹣x)2=64【考点】由实际问题抽象出一元二次方程.【分析】设平均每次降价的百分率为x,则等量关系为:原价×(1﹣x)2=现价,据此列方程.【解答】解:设平均每次降价的百分率为x,由题意得,100×(1﹣x)2=64故选D.4.将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1 D.y=x2﹣1【考点】二次函数图象与几何变换.【分析】直接根据平移规律作答即可.【解答】解:将抛物线y=x2沿y轴向上平移一个单位后得到的新抛物线的解析式为y=x2+1,故选C.5.已知抛物线y=x2﹣x﹣2与x轴的一个交点为(m,0),则代数式m2﹣m+2016的值为()A.2015 B.2016 C.2017 D.2018【考点】抛物线与x轴的交点.【分析】直接利用抛物线上点的坐标性质进而得出m2﹣m=2,即可得出答案.【解答】解:∵抛物线y=x2﹣x﹣2与x轴的一个交点为(m,0),∴m2﹣m﹣2=0,∴m2﹣m=2,∴m2﹣m+2016=2+2016=2018.故选:D.6.半径为R的圆接正六边形的面积是()A.R2B. R2C. R2D. R2【考点】正多边形和圆.【分析】利用正六边形的特点,它被半径分成六个全等的等边三角形.【解答】解:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是R,因而面积是=,因而正六边形的面积是6×=R2.故选:C.7.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()A.6cm B.7cm C.8cm D.9cm【考点】弧长的计算.【分析】根据弧长公式L=,将n=75,L=2.5π,代入即可求得半径长.【解答】解:∵75°的圆心角所对的弧长是2.5πcm,由L=,∴2.5π=,解得:r=6,故选:A.8.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35° B.40° C.45° D.50°【考点】旋转的性质.【分析】首先在△ABB'中根据等边对等角,以及三角形角和定理求得∠ABB'的度数,然后在直角△BB'C中利用三角形角和定理求解.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选A.二、填空题9.二次函数y=(x﹣1)2﹣2的顶点与x轴的交点所围成图形的面积是坐 4 .10.如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD于M,且CM=2,则AB的长为8 .【考点】垂径定理;勾股定理.【分析】连接OA,求得OA和OM的长,在直角△OAM中利用勾股定理求得AM的长,然后根据AB=2AM即可求解.【解答】解:连接OA.则OA=OC=CD=5.则OM=OC﹣CM=5﹣3=3.在直角△OAM中,AM===4.∵AB⊥CD于M,∴AB=2AM=8.故答案是:8.11.已知二次函数y=x2+bx+c的图象如图所示,则关于x的方程x2+bx+c=0的解为x1= ﹣1 ,x2= 3 .【考点】抛物线与x轴的交点.【分析】抛物线与x轴的交点的横坐标就是x的值.【解答】解:关于x的方程x2+bx+c=0的解为x1=﹣1,x2=3.故答案是:﹣1.12.如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是16π.(结果保留π)【考点】切线的性质;勾股定理;垂径定理.【分析】设AB与小圆切于点C,连结OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2),以及勾股定理即可求解.【解答】解:设AB与小圆切于点C,连结OC,OB.∵AB与小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4.∵圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2﹣π•OC2=π(OB2﹣OC2)=π•BC2=16π.故答案为:16π.13.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是.【考点】正方形的性质;旋转的性质;解直角三角形.【分析】连接CH,可知△CFH≌△CDH(HL),故可求∠DCH的度数;根据三角函数定义求解.【解答】解:连接CH.∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,∴∠F=∠D=90°,∴△CFH与△CDH都是直角三角形,在Rt△CFH与Rt△CDH中,∵,∴△CFH≌△CDH(HL).∴∠DCH=∠DCF=(90°﹣30°)=30°.在Rt△CDH中,CD=3,∴DH=tan∠DCH×CD=.故答案为:.三、解答题14.如图,将四边形ABCD绕原点O旋转180°得四边形A′B′C′D′.(1)画出旋转后的四边形A′B′C′D′;(2)写出A′、B′、C′、D′的坐标;(3)若每个小正方形的边长是1,请直接写出四边形ABCD的面积.【考点】作图-旋转变换.【分析】(1)根据网格结构找出点A、B、C、D关于原点对称的点A′、B′、C′、D′的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用四边形所在的矩形的面积减去四周四个小直角三角形和一个小正方形的面积,列式计算即可得解.【解答】解:(1)四边形A′B′C′D′如图所示;(2)A′(2,1)、B′(﹣2,2)、C′(﹣1,﹣2)、D′(1,﹣1);(3)S四边形ABCD=4×4﹣×1×4﹣×1×4﹣×1×2﹣×1×2﹣1×1,=16﹣2﹣2﹣1﹣1﹣1,=16﹣7,=9.15.如图是二次函数y=a(x+1)2+2的图象的一部分,根据图象回答下列问题.(1)抛物线与x轴的一个交点的坐标是(﹣3,0),则抛物线与x轴的另一个交点B的坐标是(1,0);(2)确定a的值;(3)设抛物线的顶点是P,试求△PAB的面积.【考点】抛物线与x轴的交点.【分析】(1)由图象可求得A点的坐标,由解析式可求得抛物线的对称轴方程,利用图象的对称性可求得B点坐标;(2)把B点坐标代入抛物线解析式可求得a的值;(3)由抛物线解析式可求得P点坐标,再结合A、B坐标可求得AB的值,则可求得△PAB的面积.【解答】解:(1)由图象可知A点坐标为(﹣3,0),∵y=a(x+1)2+2,∴抛物线对称轴方程为x=﹣1,∵A、B两点关于对称轴对称,∴B的坐标为(1,0),故答案为:(﹣3,0);(1,0);(2)将(1,0)代入y=a(x+1)2+2,可得0=4a+2,解得a=﹣;(3)∵y=a(x+1)2+2,∴抛物线的顶点坐标是(﹣1,2),∵A(﹣3,0),B(1,0),∴AB=X B﹣X A=1﹣(﹣3)=4,∴S△PAB=×4×2=4.16.如图所示,在梯形ABCD中,AB∥CD,⊙O为切圆,E、F为切点.(1)试猜DO与AO的位置关系,并说明理由.(2)若AO=4cm,DO=3cm,求⊙O的面积.【考点】切线的性质;梯形.【分析】(1)由⊙O是梯形ABCD的切圆,易得DE和DF是⊙O的两条切线,即可得∠ADO+∠DAO=(∠ADC+∠DAB),又由AB∥CD,可得∠ADO+∠DAO=90°,继而证得结论;(2)由AO=4cm,DO=3cm,可求得AD的长,继而求得EO的长,则可求得答案.【解答】解:(1)AO⊥DO.理由:∵⊙O是梯形ABCD的切圆,∴DE和DF是⊙O的两条切线,∴∠ADO=∠CDO=∠ADC.同理可得:∠DAO=∠DAB.∴∠ADO+∠DAO=(∠ADC+∠DAB),∵AB∥CD,∴∠ADC+∠DAB=180°,∴∠ADO+∠DAO=×180°=90°,∵∠AOD=180°﹣(∠ADO+∠DAO)=90°,∴AO⊥DO;(2)∵DO=3cm AO=4cm,∠AOD=90°∴AD==5 cm,在Rt△AOD中,EO⊥AD,∴AD•EO=DO•AO,即5 EO=3×4,解得EO=cm,∴S⊙O=πEO2=π ()2=π.17.兴隆镇某养鸡专业户准备建造如图所示的矩形养鸡场,要求长与宽的比为2:1,在养鸡场,沿前侧墙保留3m宽的走道,其他三侧墙各保留1m宽的走道,当矩形养鸡场长和宽各为多少时,鸡笼区域面积是288m2?【考点】一元二次方程的应用.【分析】等量关系为:(鸡场的长﹣4)(鸡场的宽﹣2)=288,把相关数值代入求得合适的解即可.【解答】解:设鸡场的宽为xm,则长为2xm.(2x﹣4)(x﹣2)=288,(x﹣14)(x+10)=0,解得x=14,或x=﹣10(不合题意,舍去).∴2x=28.答:鸡场的长为28m,宽为14m.18.如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.【考点】切线的判定;垂径定理的应用;扇形面积的计算.【分析】(1)连接OC,OC交BD于E,由∠CDB=∠OBD可知,CD∥AB,又AC∥BD,四边形ABDC为平行四边形,则∠A=∠D=30°,由圆周角定理可知∠COB=2∠D=60°,由角和定理可求∠OCA=90°,证明切线;(2)利用(1)中的切线的性质和垂径定理以及解直角三角形来求BD的长度;(3)证明△OEB≌△CED,将阴影部分面积问题转化为求扇形OBC的面积.【解答】(1)证明:连接OC,OC交BD于E,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∵∠CDB=∠OBD,∴CD∥AB,又∵AC∥BD,∴四边形ABDC为平行四边形,∴∠A=∠D=30°,∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC又∵OC是⊙O的半径,∴AC是⊙O的切线;(2)解:由(1)知,OC⊥AC.∵AC∥BD,∴OC⊥BD,∴BE=DE,∵在直角△BEO中,∠OBD=30°,OB=6,∴BE=OBcos30°=3,∴BD=2BE=6;(3)解:易证△OEB≌△CED,∴S阴影=S扇形BOC∴S阴影==6π.答:阴影部分的面积是6π.19.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=﹣x2+bx+c交x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求出抛物线解析式;(2)利用△ACF的面积等于5直接建立方程求出F点的纵坐标,代入抛物线解析式解方程即可;(3)先求出CM=3,再分点P在x轴和y轴上,用CM=CP求出点P的坐标.【解答】(1)∵B(3,5),∴OA=3,AB=5,∵AB=AC,∴OC=AC﹣OA=5﹣3=2,即点C的坐标是(﹣2,0),∵点C(﹣2,0)和点B(3,5)在抛物线y=﹣x2+bx+c上∴将其代入得,∴,∴抛物线的表达式是y=﹣x2+x+5,(2)假设抛物线上存在点F使得S△ACF=5,则设点F的坐标是(a,b)∵AC|b|=5,∴×5|b|=5,解得b=±2,将F(a,2)和F(a,﹣2)分别代入y=﹣x2+x+5中得﹣a2+a+5=2,﹣a2+a+5=﹣2解得a1= a2= a3= a4=所以符合条件的点F有四个,它们分别是F1(,2),F2(,2),F3(,﹣2)F4(,﹣2),(3)点M(4,k)在抛物线y=﹣x2+x+5的图象上,∴k=3,∴M(4,3),∵C(﹣2,0),∴CM=3①当点P在x轴上时,设P(p,0),∴CP=|p+2|,∵△PCM是以∠PCM为顶角以CM为腰的等腰三角形.∴CM=CP,∴|p+2|=3,∴p=﹣2±3,∴P1(﹣3﹣2,0)P2(3﹣2,0),②当点P在y轴上时,设P(0,h),∴PC==3,∴h=±,∴P3(0,) P4(0,﹣).符合条件的P点有四个,它们分别是P1(﹣3﹣2,0)P2(3﹣2,0),P3(0,) P4(0,﹣).2016年9月19日。
2015学年第一学期九年级数学竞赛试卷(满分120分,时间120分钟)一、选择题:(每小题5分,共30分)1.已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( C )A .10个B .12个C .13个D .14个4,4,4; 4,4,3; 4,4,2; 4,4,1; 4,3,3; 4,3,2; 3,3,3; 3,3,2; 3,3,1; 3,2,2; 2,2,2; 2,2,1; 1,1,1 2.已知,511b a b a +=+则ba ab +的值是( C ) A .5 B .7 C .3 D .31222221155()533b a a b ab a b a b ab a ba b ab b a b a a b ab++=→=→+=++→+=+∴+== 3.如图,在Rt ABC 中,AC=4,BC=3,∠ACB=90°.四边形DEFG 、四边形GHIJ 均为正方形,点E 在AC 上、点I 在BC 上,J 为边DG 的中点.则GH 的长为( C ) A .1921 B .1 C .6077 D .1802594.在ABC 中,已知AB=AC ,D 为边BC 的中点,BE ⊥AC 于点E ,BE 与AD 交于点P .若BP=3,PE=1,则AE 等于( B )A .62B .2C .3D .6第3题图EPD CBA 第4题图5. 已知123,,y y y 分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A (1-,2-)、B (2,1)和C (32,3),规定M ={123,,y y y 中最小的函数值} 则下列结论错误的是( B )A .当1-<x 时,M =1yB .当0≤x ≤2时,M 的最大值是1,无最小值C .当01<<-x 时,231y y y <<D .当x ≥2时,M 最大值是1,无最小值A 、由图象可知,当x <-1时,对于每一个x 的值,二次函数的图象都落在反比例函数和一次函数图象的下方,所以此时M=Y1,本选项正确,不符合题意;B 、由图象可知,当0≤x≤2时,M=Y3,最大值是1,最小值是-1,本选项错误,符合题意C 、由图象可知,当-1<x <0时,Y2<Y3<Y1,本选项正确,不符合题意;D 、由图象可知,当x≥2时,M=Y1,最大值是1,无最小值,本选项正确,不符合题意; 6.如图,⊙O 的直径AB 与弦CD 交于点P ,交角为45°.若22PC PD +=8, 则⊙O 的半径为( B )A .2B .2C .22D .4 作OH 垂直于CD,垂足为H 则OH=HP ,CH=DH , PC²+PD²=8 (CH+HP)²+(DH-HP)²=8 CH²+HP²=4, CH²+OH²=4, R²=4, R=2二、填空题:(每小题5分,共40分) 7.已知:12015,12015,22015a x b x c x =+=-=+,则多项式222a b c ab bc ca ++++-的值为 72222221()()()21(491)72a b c ab bc ca a b b c c a ⎡⎤++++-=++++-⎣⎦=++=第5题图第6题图8. 直角三角形斜边AB上的高CD=3,延长DC到P使得CP=2,过B作BF⊥AP交CD 于E,交AP于F,则DE =9/59. 以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m > 0时,y = –mx+1与myx=两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(13)则D点坐标为(1,3-.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18.其中正确的命题有①(只需填正确命题的序号)①每一条对角线都平分一组对角的平行四边形是菱形,故①正确.②当m>0时,-m<0,y=-mx+1是y随着x的增大而减小myx=,是在同一象限内y随着x的增大而减小,故②错误.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,3,则D点坐标为(3,1)-,故③错误.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为3 16,故④错误,DEFPC BA第8题图10.在一次剪纸活动中,小聪依次剪出6张正方形纸片 拼成如图所示的图形,若小聪所拼得的图形中正方形 ① 的面积为1,且正方形⑥与正方形③面积相等, 那么正方形⑤的面积为 36 设正方形②的边长是x .结合图形,得x+1+1+1=x+1+x-1,解得x=3.则正方形⑤的边长是6,其面积是36. 11.已知A 为反比例函数4y x=图象上一点,点A 的横坐标为1,将一块三角板的直角顶点放在A 处旋转,保持两直角边始终与x轴交于D 、E 两点,(0,3)F -为y 轴上一点,连接DF 、EF ,则四边形ADFE 面积的最小值为 28要使四边形的面积最小,即DE 最小,DE 为直角三角形的斜边,其中点在x 轴上,由直角三角形斜边上的中线为斜边的一半,所以,中线等于4时,DE=8最小,此时S=2812.如图,已知PAB 、PCD 为圆O 的两条割线,PA=8,AB=10,CD=7,∠P=60°,则圆O 的半径为 73连接AC ,BC ,BD9PAC PDB PA PB PC PD PC ⇒=→=∵PB=2PC ,∠P=60°, ∴∠BCP=90°, ∴∠BCD=90°, ∵∠BCD=90°,∴BD 为直径,(第10题图)第11题图 ODCB A P 第12题图2224924329227373BD CD BC BD r ∴=+=+=→=→=13.如图,点G 是ABC 的重心(即三角形三条中线的交点),GA GB ⊥,AB=5, 则22AC BC +的值为 125延长AG 、BG 分别交BC 、AC 于F 、E2222222222222224()4()114()5()445125AC BC AE BF AG GE BG GF AG BG BG AG AG BG AB +=+=+++=+++=+==14.观察下图的三角形数阵,则第100行的最后一个数是 4951GCBA第13题图第14题图 FE三、解答题:(第15、16、17题各12分,第18题14分,共50分) 15.设,,a b c 均为实数,2212,24a b a b bc c +==-+,求,,a b c 的所有可取之值 解:由题意可得:22212242a b a b bc c +=⎧⎪⎨=-+⎪⎩ 于是,a 和2是关于方程22212402x bx b bc c -+-+=的两个根,-----------5分 222214(24)0(4)02b b bc c b c ∴=--+≥→--≥4b c ∴=---------------------------------------------------------------------------------8分 由222222242(42)88412242(1)012,4a c c c c c ab bc c c c a b +=⎧⎪⇒-=-+⎨=-+⎪⎩→-=→=∴==------------------10分--------------------------------------12分16.如图,已知ABCD 是圆O 的内接四边形,AB=BD ,BM ⊥AC 于M ,求证:AM=DC+CMB在AC 上取一点H ,使CM=HM ,连接BH-----2分BM AC BH BC BHC BCH⊥∴=∴∠=∠---------4分又∠BHC=∠BAH+∠ABH ∠BCH=∠BDA ∵BA=BD∴∠BAD=∠BDA=∠BAH+∠DAC ∴∠ABH=∠DAC =∠DBC∴△BA H ≌△BDC-----------------------------------10分 ∴AH=CD∴AM=AH+HM=CD+CM------------------------12分17.已知二次函数2y x bx c =++的图象与x 轴的两个交点的横坐标分别为12,x x ,一元二次方程22200x b x ++=的两实根为34,x x ,且23143x x x x -=-=,求二次函数的解析式,并写出顶点坐标 解:14123423363x x x x x x x x =+⎧⇒+=++⎨=+⎩-----------2分22126603,2b b b b b b ∴-=-+→--=→==-------------6分当2b =-时,2222004200x b x x x ++=→++=→无解--------8分当3b =时,2223420092004,5x b x x x x x ++=→++=→=-=-14233231x x x x =+=-⎧⎨=+=-⎩ 122x x c ∴==-----------10分二次函数的解析式为232y x x =++,顶点坐标为35(,)24----------12分H18.一个二次函数的图象上任一点的坐标(,)x y 满足方程298y =+(1)求此二次函数的解析式;(2)若此二次函数与x 轴的交点分别为A ,B (A 在B 的左边),与y 轴的交点为C ,在此二次函数的图象上与x 轴上分别找一点D 、E (点D 不同于点C ),使得以A 、D 、E 为顶点的三角形与ABC 相似,求出所有满足条件的点D 的坐标解:(1所以二次函数为2222y x x =------------------------5分(2)令21203401,4y x x x x =→--=→=-=即得(1,0),(4,0)A B -又令02(0,2)x y C =→=-→-2OC OA OB =∴ABC 是以∠ACB 为直角的直角三角形 DAE ∠不可能为直角由题意可得,DAE BAC ∠=∠或DAE ABC ∠=∠作DE x ⊥轴,E 为垂足,设00(,)D x y ,则00,1DE y AE x ==+ 若AE DEDAE BAC ACBAOC DEA OC OA∠=∠→→=00000001114211,3x y x x x x x +→=→+=++≠-∴=或5(3,2)(5,3)D D ∴-或--------------------------------------------11分同理,当DAE ABC ∠=∠时可得D (8,18)综上,D 点坐标为(3,2)(5,3)D D -或或(8,18)--------------14分。
第7图 2015年九年级上册数学竞赛试题年级 姓名一、填空题:1如图,CD AB ⊥于E ,若60B ∠= ,则A ∠= .2、如图,在中,,cm ,分别以为圆心的两个等圆外切,则图中阴影部分的面积为.3、已知三角形的两边长分别是3和5,第三边长是方程3x 2-10x=8的根,则 这个三角形的形状是_______三角形;4、如果圆柱的母线长为3厘米,侧面积为12л平方厘米,那么圆柱的底面半径是 。
5、用长为8米的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么窗户的最大透光面积是 。
6、如图在圆内接四边形ABCD中,∠A=60o∠B=900AB=2,CD=1则BC=7.某工件的形状如图所示,圆弧BC⌒的度数为60°,AB =6cm ,点B 与点C 的距离等于AB ,∠BAC =30°,则此工件的面积为.8.把方程x 2-6x+1=0化为(x+a)2=b 的形式:_________________;三、解答题:9.如图,ABC △内接于⊙O ,点D 在半径OB 的延长线上,30BCD A ∠=∠=°.(1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径长为1,求由弧BC 、线段CD 和BD 所围成的阴影部分面积(结果保留π和根号).ABC △90A ∠= 4BC =B C ,2cm (第1题) 2题图 A OC B D10.图案设计:正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称或中心对称图案.下面是三种不同设计方案中的一部分,请把图①、图②补成既是..轴对称图形,又是..中心对称图形,并画出..一条对称轴;把图③补成只是..中心对称图形,并把中心标上..字母P .(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉.)11、(10分)如图,□ABCD 中,AB =4,点D 的坐标是(0,8),以点C 为顶点的抛物线y =ax 2+bx +c 经过x 轴上的点A 、B .(1)求点A 、B 、C 的坐标.(2)若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.(第4题)图图。
2015—2016学年度第一学期第15周学科竞赛九年级数学一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的) 1、下列方程中是一元二次方程的是( )A 、20ax bx c ++=B 、2(2)(3)(1)x x x +-=-C 、012=+x D 、0122=++x x2、若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A 、对角线相等的四边形 B 、等腰梯形C 、矩形D 、对角线互相垂直的四边形3、一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头 看信号灯时,是绿灯的概率是( )A 、112B 、13C 、512D 、124、如果两个相似三角形的相似比是1:2,那么它们的面积比是() A 、1 : 2 B 、1 :4 C 、 D 、2 :15、在黑夜里,在距离路灯一定的范围内,一个人走过路灯,则他的影子( ) A 、越来越短 B 、越来越长 C 、先变长后变短 D 、先变短后变长6、已知点123-123y y (,y ),(,),(,)在反比例函数21k y x--=的图象上,下列结论中正确的是( )A 、123yy y >>B 、132yy y >>C 、213y y y >> D 、231y y y >> 7、在△ABC 中,若COSA=2则这个三角形一定是() A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰三角形8、三角形的两边长分别为3和6,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长是( )A .9B .11C .13D .11 或 139、如图是一个正方体被截去一角后得到的几何体,它的俯视图是( ).A B C D10、在△ABC 中,∠A=60°,AC=1,B 为( ) A 、60° B 、60°或120° C 、30°或150° D 、30°二、耐心填一填(本大题共5小题,每小题3分, 共15分,请你把答案填在横线的上方)11、一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于12、反比例函数ky x=的图像经过点(tan45°,cos60°),则k=13、一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么每次降价的百分率是 . 14、从-2, 1.这三个数中任取两个不同的数相乘,积是无理数的概率是 .15、已知,a b a c b ck c b a+++===则k 的值是 .三、细心做一做 (本大题共3小题,每小题7分,共21分)16、计算:000212sin 60(cos452012)()2---++-17、如图是某几何体的展开图。
九年级年级数学知识应用竞赛决赛考题(带答案)一、(本题20分)在一次象棋比赛中,由于不慎把一个棋子○车掉在地上.如图1,已知○马所在位置的坐标是,○炮所在位置的坐标是,○车所在位置的坐标是,请在图中标出○车所在位置.二、(本题20分)现代社会对保密要求越来越高,许多情况下都要采用密码,下面是一则密码:L dp d vwxghqw请联想英语字母表中字母的顺序,找到一把破译它的“钥匙”,叙述你找到的“钥匙”,并用这把“钥匙”将它解密成一句和同学们身份相关的英语句子.三、(本题20分)在一次趣味运动会上,小明发现:他用绳子捆紧的四根接力棒,用手按压其中的一根,四根接力棒还是可以松动,请你跟小明一起探究原因:首先,作四根接力棒的横截面,得到四个等圆(设每个圆的半径为).然后分别计算下述三种情形下接力棒绳子的长.1.如图2,当其中三个圆两两相切,第四个圆和其中两个也相切时.2.如图3,当组成正方形时.3.如图4,当组成一般的菱形(不存在三个圆两两相切)时.比较上述三种计算结果,你会得出什么结论?并据此结论说明为什么捆紧的接力棒还是会松动的.四、(本题20分)在市政府实施容貌工程期间,启新中学在教学楼前铺设小广场地面.其图案设计如图5(1),正方形小广场地面的边长是40cm,中心建一直径为20m的圆形花坛,四角各留一个边长为10m的小正方形花坛,种植高大树木.图中其余部分铺设广场砖.1.请同学们帮助计算铺设广场砖部分的面积(取3);2.某施工队承包铺设广场砖的任务,计划在一定时间内完成,按计划工作一天后,由于改进了铺设工艺,每天比原计划多铺结果提前3天完成了任务,原计划每天铺设多少?3.如图5(2)表示广场中心花坛的平面图,准备在圆形花坛内种植6种不同颜色的花卉,为了美观要使同色花卉集中在一起,并且各花卉的种植面积相等.请你帮助设计至少一种方案,作在图5(2)上.(不必说明方案,不写作法,保留作图痕迹)五、(本题30分)材料作文在建筑学上有一个“横梁极限”的原理,说的是对于一根横梁,假设它的长度为,宽度为,密度均匀.根据力学上的原理可以证明,这根横梁的负重会受到比值:(其中)的限制.如果比值超过这个限制值,横梁就要断裂.动物的躯体是由骨骼、肌肉和韧带等组成的一种复杂系统,与上面所讲的横梁是有许多相似之处的,比如我们看到最多的四足动物,它的身体的长度也是有一定限制的.因此,动物学家们通常借用“横梁极限”原理,来粗略地表示四足动物在长度上所受到的限制.瑞士苏黎世动物园曾经运用“横梁极限”原理对一组动物进行过测算,并从大量的数据得到一个结果:一般四足动物的这项比值小于,这样它们的躯体被重力压垮的危险就极小.说明:在计算时,规定使用的长度单位都是厘米.如果长度单位不同,比如取米所得的数据是不同的.横梁和四足动物似乎是风马牛不相及的,然而动物学家却发现了他们之中的某种相似的性质.聪明的同学们,通过上面的阅读你能得到什么启示吗?请写一篇500字左右的数学短文(题目自拟).六、(本题40分)从下列题目中任选其一,联系相关知识及现实生活,写一篇数学作文,字数控制在1000字以内.1.生活中的“一元二次方程”;2.好一个美丽的抛物线;3.无处不在的“圆”;4.感受数学之美;5.“对称王国”游记;6.我与“学用杯”竞赛.九年级决赛试题参考答案一、解:根据马和炮的坐标建立直角坐标系,如下图,由此可确定○车的位置如图.二、钥匙:.若用文字叙述意思正确也可. 10分I am a student 20分三、1.. 5分2.. 10分3.设,则有.绳子的长度:. 15分三种情况下绳子的长度都相等.由于是四边形,而四边形具有不稳定性,所以,捆紧的接力棒还是会松动的. 20分四、解:(1)根据题意可知:5分(2)设原计划每天铺设广场砖,由题意可列方程:解此方程得:(舍去)经检验符合题意,所以原计划每天铺设. 15分(3)设计方案如下.(参考)注意:二四题必须给出必要的演算过程或推理过程,若给出其它答案,只要正确、合理,酌情给分.。
装订线 考场: 考号: 学校: 班级: 姓名:关桥中学2015—2016学年度第一学期九年级竞赛试卷数 学命题人:冯玺注意事项:1、考试时间100分钟,全卷总分100分;2、答题前将密封线内的项目填写清楚; 题号 一 二 三合分人 得分一、选择题(每小题5分,共30分1、下列方程是关于x 的一元二次方程的是( ) A ax 2+bx+c=0 B |a |x 2+bx+c=0 Ca x 2+bx+c=0 D (a 2+1)x 2+bx+c=02、 如图,E 、F 、G 、H 分别是正方形ABCD 各边的中点,要使图中阴影部分小 正方形的面积为5,则大正方形的边长应该是( )3、如图,在等边∆ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=600,BD=3,CE=2,则∆ABC 的边长为( )A 9B 12C 15D 184、有四张完全相同的卡片上分别印有等边三角形,平行四边形,矩形,圆形的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为( )5 、已知m 、n 是方程x 2-2x-1=0的两个根,且(7m 2-14m+a )(3n 2-6n-7)=8,则a 的值等于( )A -5B 5C -9D 96、如图1,把一个长为m ,宽为n 的长方形(m>n )沿虚线剪开,拼接成图形2,成为一个去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) |A m-n BC D二、填空题(每小题5分,共30分)7、 若一元二次方程x 2-(a+2)x+2a=0的两个实数根分别是3、b, 则a+b= . 8、在平行四边形ABCD 中,对角线AC 、BD 相交于点O.如果AC=14,BD=8,AB=x, 那么x 的取值范围是 .9、一个质地均匀的正方体骰子的六个面上分别刻有1到6的点数. 将骰子抛掷两次,掷第一次,将朝上的点数记为x ;掷第二次,将朝上的点数记为y ,则点(x , y )落在直线y= -x+5上 的概率为 .10、在∆ABC 中,AB=9,AC=6. 点M 在边AB 上,且AM=3, 点N 在AC 边上.当AN= 时,∆AMN 与原三角形相似.11、已知实数a 、b 、c ,()()()ba c ac b cb a +=+=+,满足则k= .12、科学家研究表明,当人的下肢长与身高之比为0.618米时,看起来最美. 某成年女士身高为135cm ,下肢长为92cm ,该女士穿的高跟鞋鞋跟的最佳高约为 cm(精确到0.1cm).三、解答题(共40分)13、(10分)阅读题例,解答下题: 例:解方程x 2-|x-1|-1=0解:(1)当x-1≥0时,即x ≥1; (2)当x-1<0时,即x<1 x 2-(x-1)-1=0 x 2+(x-1)-1=0x 2-x=0 x 2+x-2=0 解得x 1=1 x 2=0(不合题意,舍去). 解得x 1=-2 x 2=1(不合题意,舍去).综上所述,原方程的解是x=1或x=-2. 依照上例解法,解方程x 2+2|x+2|-4=014、(10分)如图,将正方形沿图中虚线(其中x<y )剪成①②③④四块图形,用这四块图形,恰好拼成一个矩形(非正方形). (1)画出拼成的矩形简图;(2)求y x的值.15. (10分)在Rt ∆ABC 中,∠C=900,AC=6,BC=8, 点E 在直角边AC 上(点E 与A 、C 两点均不重合).(1)若EF 平分Rt ∆ABC 的周长,设AE 的长为x ,试用含x 的代数式表示∆AEF 的面积; (2)是否存在线段EF 将Rt ∆ABC 的周长和面积同时平分?若存在,求出此时AE 的长;若不存在,请说明理由.16、(10分) 在直角坐标系中,O 为坐标原点,已知A (3 , 4),在x 轴上确定一点P ,使∆OAP 为等腰三角形,求符合条件的点P的坐标.。
2015-2016学年湖南省衡阳市衡南县九年级(上)竞赛数学试卷一、选择题(共10小题,每小题5分,共50分).1.(5分)在实数﹣3.14,0,﹣π,中,最小的数是()A.0 B.﹣πC.D.﹣3.142.(5分)若关于x的分式方程无解,则a的值为()A.﹣2 B.0 C.1 D.1或﹣23.(5分)已知a=2﹣2,b=3°,c=(﹣1)3,则a、b、c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a4.(5分)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,此时一只蚂蚁正好位于折断处并朝着树尖的方向爬行,爬行速度是每分钟0.5米,经测量AB长2米,则蚂蚁爬到B处需要多久()A.分钟 B.分钟C.(+1)分钟D.分钟5.(5分)对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=()A.B.C.D.﹣6.(5分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°7.(5分)数学课上,老师在黑板上画直线l平行于射线AN(如图),两平行线之间的距离d=,现在让同学们在直线l和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形且面积为3.这样的三角形最多能画()A.0个 B.1个 C.2个 D.3个8.(5分)如图,点P为▱ABCD的边CD上一点,若△PAB、△PCD和△PBC的面积分别为s1、s2和s3,则它们之间的大小关系是()A.S3=S1+S2 B.2S3=S1+S2C.S3>S1+S2D.S3<S1+S29.(5分)在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A.4个 B.5个 C.6个 D.7个10.(5分)已知abc≠0,而且,那么直线y=px+p一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限二、填空题(共6小题,每小题5分,共30分)11.(5分)如图,从边长为(2a+3)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积是.12.(5分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=.13.(5分)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论正确的有.(填序号)=S四边形DHGE;④图中有7个等腰三角形.①GD=GH;②EC=2DG;③S△CDG14.(5分)一次函数y=kx+2的图象与x轴的交点到原点的距离为2,那么k的值为.15.(5分)在正方形ABCD中,E在BC上,BE=1,CE=3,P是BD上的动点,则PE和PC的长度之和最小是.16.(5分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标,B n的坐标.三、解答题(共7个小题,共70分,要写出解题过程)17.(8分)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.18.(8分)某中学八(1)班共50名同学开展了“我为灾区献爱心”捐款活动.小明将捐款情况进行了统计,并绘制成如图的条形统计图.(1)填空:该班同学捐款数额的众数是元,中位数是元;解释:众数的概念:数据中出现次数最多的数.中位数的概念:就是把数据从小到大排列好了以后中间的那个数字.比如有13个数,中间第7个的数就是中位数:如果有偶数个数据,那么就是中间两个数字的平均数,比如说18个数据,就应该是第9位和第10位相加除以2.(2)该班平均每人捐款多少元?19.(10分)已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=2,BC=.(1)求平行四边形ABCD的面积S▱ABCD;(2)求对角线BD的长.20.(10分)某超市在苏州发现一种应季衬衫,预料能畅销市场,就用了80 000元购进所有衬衫,还急需2倍这种衬衫,经人介绍又在上海用了176 000元购进所需衬衫,只是单价比苏州贵4元,超市按每件58元销售,销路很好,最后剩下的150件按八折销售,很快售完,问该超市这笔生意赢利多少元.21.(10分)如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PE⊥AC,E、F分别是垂足,求PE+PF的长.22.(12分)已知点P(m,n)是反比例函数y=(x>0)图象上的动点,PA∥x轴,PB∥y轴,分别交反比例函数y=(x>0)的图象于点A、B,点C是直线y=2x上的一动点.(1)请用含m的代数式分别表示P、A、B三点的坐标;(2)在点P运动过程中,连接AB,△PAB的面积是否变化?若不变,请求出△PAB的面积;若改变,请说明理由;(3)在点P运动过程中,以点P、A、C、B为顶点的四边形能否为平行四边形?若能,请求出此时的m值;若不能,请说明理由.23.(12分)在综合实践活动课中,王老师出了这样一道题:如图1,在矩形ABCD中,M是BC的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.求证:四边形OEMF是菱形.做完题后,同学们按照老师的要求进行变式或拓展,提出新的问题让其它同学解答.(1)小明同学说:“我把条件中的‘矩形ABCD’改为‘菱形ABCD’,如图2所示,发现四边形OEMF是矩形.”请给予证明;(2)小芳同学说:“我把条件中的‘点M是BC的中点’改为‘点M是BC延长线上的一个动点’,发现点F落在AC的延长线上,如图3所示,此时OB、ME、MF 三条线段之间存在某种数量关系.”请你写出这个结论,并说明理由.2015-2016学年湖南省衡阳市衡南县九年级(上)竞赛数学试卷参考答案与试题解析一、选择题(共10小题,每小题5分,共50分).1.(5分)在实数﹣3.14,0,﹣π,中,最小的数是()A.0 B.﹣πC.D.﹣3.14【解答】解:∵π>3.14,=1.732,∴﹣π<﹣3.14<﹣<0.故选:B.2.(5分)若关于x的分式方程无解,则a的值为()A.﹣2 B.0 C.1 D.1或﹣2【解答】解:去分母得:x(x﹣a)﹣3(x﹣1)=x(x﹣1),去括号得:x2﹣ax﹣3x+3=x2﹣x,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x无解即a=﹣2时,整式方程无解.综上所述,当a=1或a=﹣2时,原方程无解.故选:D.3.(5分)已知a=2﹣2,b=3°,c=(﹣1)3,则a、b、c的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【解答】解:∵a=2﹣2=,b=3°=1,c=(﹣1)3=﹣1,∴c<a<b,故选:C.4.(5分)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,此时一只蚂蚁正好位于折断处并朝着树尖的方向爬行,爬行速度是每分钟0.5米,经测量AB长2米,则蚂蚁爬到B处需要多久()A.分钟 B.分钟C.(+1)分钟D.分钟【解答】解:由题意可得:BC==,∵蚂蚁爬行速度是每分钟0.5米,∴蚂蚁爬到B处需要:=2(分钟).故选:D.5.(5分)对于非零的实数a、b,规定a⊕b=﹣.若2⊕(2x﹣1)=1,则x=()A.B.C.D.﹣【解答】解:∵2⊕(2x﹣1)=1,∴﹣=1,去分母得2﹣(2x﹣1)=2(2x﹣1),解得x=,检验:当x=时,2(2x﹣1)≠0,故分式方程的解为x=.故选:A.6.(5分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.7.(5分)数学课上,老师在黑板上画直线l平行于射线AN(如图),两平行线之间的距离d=,现在让同学们在直线l和射线AN上各找一点B和C,使得以A、B、C为顶点的三角形是等腰直角三角形且面积为3.这样的三角形最多能画()A.0个 B.1个 C.2个 D.3个【解答】解:如图所示,AC=2,d=,∴△ABC的面积=×2×=3,即AC为斜边时,符合等腰直角三角形的有1个.故选:B.8.(5分)如图,点P为▱ABCD的边CD上一点,若△PAB、△PCD和△PBC的面积分别为s1、s2和s3,则它们之间的大小关系是()A.S3=S1+S2 B.2S3=S1+S2C.S3>S1+S2D.S3<S1+S2【解答】解:设平行四边形的高为h,则S1=×AP×h,S2=PD×h,S3=BC×h,又平心四边形的对边相等,∴AP+PD=AD=BC,∴S3=S1+S2.故选:A.9.(5分)在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A.4个 B.5个 C.6个 D.7个【解答】解:①当k=0时,y=kx+k=0,即为x轴,则直线y=x﹣2和x轴的交点为(2,0)满足题意,∴k=0②当k≠0时,,∴x﹣2=kx+k,∴(k﹣1)x=﹣(k+2),∵k,x都是整数,k≠1,k≠0,∴x==﹣1﹣是整数,∴k﹣1=±1或±3,∴k=2或k=4或k=﹣2;综上,k=0或k=2或k=4或k=﹣2.故k共有四种取值.故选:A.10.(5分)已知abc≠0,而且,那么直线y=px+p一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限【解答】解:由条件得:①a+b=pc,②b+c=pa,③a+c=pb,三式相加得2(a+b+c)=p(a+b+c).∴有p=2或a+b+c=0.当p=2时,y=2x+2.则直线通过第一、二、三象限.当a+b+c=0时,不妨取a+b=﹣c,于是p==﹣1,(c≠0),∴y=﹣x﹣1,∴直线通过第二、三、四象限.综合上述两种情况,直线一定通过第二、三象限.故选:B.二、填空题(共6小题,每小题5分,共30分)11.(5分)如图,从边长为(2a+3)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积是3a2+10a+8.【解答】解:矩形的面积是(2a+3)2﹣(a+1)2=3a2+10a+8,故答案为:3a2+10a+8.12.(5分)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=.【解答】解:过B点作BF⊥CD,与DC的延长线交于F点,∵∠FBC+∠CBE=90°,∠ABE+∠EBC=90°,∴∠FBC=∠ABE,在△BCF和△BEA中∴△BCF≌△BEA(AAS),则BE=BF,S=S正方形BEDF=8,四边形ABCD∴BE==2.故答案为2.13.(5分)如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论正确的有①③.(填序号)①GD=GH;②EC=2DG;③S=S四边形DHGE;④图中有7个等腰三角形.△CDG【解答】解:①∵DF=BD,∴∠F=∠DBF;∵∠DEC=∠DBC,∴∠DBC﹣∠DBF=∠DEC﹣∠F.又∵∠CGB=∠EGF,∴∠CGB=∠CBG,∴CG=BC=DE;∵DE=DC,∴∠DEG=∠DCE,∵∠CHG=90°+22.5°=112.5°,∠EGD=180°﹣(180°﹣45°)÷2=112.5°,∴∠CHG=∠EGD,在△CHG和△EGD中,,∴△CHG≌△EGD,∴GD=GH,本选项正确;②∵正方形ABCD,DE=AD,∴AD∥BC,DE=BC,∠EDC=90°,∴四边形DECB是平行四边形,∴BD=CE,BD∥CE,∵DE=BC=AD,∴∠DCE=∠DEC=45°,要使CE=2DG,只要G为CE的中点即可,但DE=DC,DF=BD,∴EF≠BC,即△EFG和△BCG不全等,∴G不是CE中点,本选项错误;③∵△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF∴∠GDH=∠GHD∴S=S▭DHGE△CDG本选项正确;④等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△CDG,△DGF共9个,本选项错误,故答案为:①③.14.(5分)一次函数y=kx+2的图象与x轴的交点到原点的距离为2,那么k的值为±1.【解答】解:令y=0,得:x=﹣,∴||=2,解得:k=±1.故答案是:±1.15.(5分)在正方形ABCD中,E在BC上,BE=1,CE=3,P是BD上的动点,则PE和PC的长度之和最小是.【解答】解:如图所示:∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PE+PC的最小值,∵BE=1,CE=3,∴BC=AB=3+1=4,在Rt△ABE中,∵AE==,∴PE与PC的和的最小值为.故答案为:.16.(5分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标(15,8),B n的坐标(2n﹣1,2n﹣1).【解答】解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,的横坐标,纵坐标为An的纵坐标∴Bn的横坐标为A n+1又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).所以B4的坐标是(24﹣1,23),即(15,8).故答案为:(15,8),(2n﹣1,2n﹣1).三、解答题(共7个小题,共70分,要写出解题过程)17.(8分)先观察下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.【解答】解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.18.(8分)某中学八(1)班共50名同学开展了“我为灾区献爱心”捐款活动.小明将捐款情况进行了统计,并绘制成如图的条形统计图.(1)填空:该班同学捐款数额的众数是50元,中位数是40元;解释:众数的概念:数据中出现次数最多的数.中位数的概念:就是把数据从小到大排列好了以后中间的那个数字.比如有13个数,中间第7个的数就是中位数:如果有偶数个数据,那么就是中间两个数字的平均数,比如说18个数据,就应该是第9位和第10位相加除以2.(2)该班平均每人捐款多少元?【解答】解:(1)由条形图可知50出现次数最多,故众数为50,一共50个数据,其中位数是第25、26个数的平均数,故其中位数是=40,故答案为:50,40;(2)=42.8,答:该班平均每人捐款42.8元.19.(10分)已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=2,BC=.(1)求平行四边形ABCD的面积S▱ABCD;(2)求对角线BD的长.【解答】解:(1)∵AB⊥AC,AB=2,BC=,∴AC===,∴S▱ABCD=2S△ABC=2××2×=2;(2)∵AC=,∴OA=AC=,∴OB===,∴BD=2OB=.20.(10分)某超市在苏州发现一种应季衬衫,预料能畅销市场,就用了80 000元购进所有衬衫,还急需2倍这种衬衫,经人介绍又在上海用了176 000元购进所需衬衫,只是单价比苏州贵4元,超市按每件58元销售,销路很好,最后剩下的150件按八折销售,很快售完,问该超市这笔生意赢利多少元.【解答】解:设从苏州购进x件衬衫.根据题意,得:﹣=4.解得:x=2000.经检验:x=2000是原方程的解.(2000+4000﹣150)×58+150×58×0.8﹣(80000+176000)=90260(元).答:这笔生意赢利90260元.21.(10分)如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PE⊥AC,E、F分别是垂足,求PE+PF的长.【解答】解:连结OP.由矩形ABCD,AD=12,AB=5.∴AC=BD=2OA=2OB=13.∴OA=OD=6.5.而S矩形=12×5=60.∴S△AOD=×60=15.∴S△AOP +S△DOP=15.即×OA×PF+×OD×PE=15.∴×6.5×(PE+PF)=15.∴PE+PF=.22.(12分)已知点P(m,n)是反比例函数y=(x>0)图象上的动点,PA∥x轴,PB∥y轴,分别交反比例函数y=(x>0)的图象于点A、B,点C是直线y=2x上的一动点.(1)请用含m的代数式分别表示P、A、B三点的坐标;(2)在点P运动过程中,连接AB,△PAB的面积是否变化?若不变,请求出△PAB的面积;若改变,请说明理由;(3)在点P运动过程中,以点P、A、C、B为顶点的四边形能否为平行四边形?若能,请求出此时的m值;若不能,请说明理由.【解答】解:(1)∵点P(m,n)是反比例函数y=(x>0)图象上的动点,∴n=,∴点P(m,);∵PA∥x轴,∴A点的纵坐标为,将点A的纵坐标带人反比例函数的解析式y=(x>0)得:x=,∴A(,),同理可得:B(m,);(2)∵PA=m﹣=m,PB==,=PA•PB=×=;∴S△PAB(3)①若四边形PBAC为平行四边形,则有AC∥y轴,∴C点横坐标为,代入y=2x得C(,m),此时AC=m﹣,PB=,由AC=PB,得:m﹣=,解得:m=3或m=﹣3(舍去),∴m=3时,四边形PBAC为平行四边形.②若四边形PABC为平行四边形,则有BC∥x轴,∴C点纵坐标为,把y=代入y=2x得C(,),此时BC=﹣m,由BC=PA,得﹣m=m,解得:m=1或m=﹣1(舍去);③若PBAC为平行四边形,则有AC∥PB∥y轴,AP∥BC∥y轴,∴点C(,),代入y=2x,得=2×,解得m=或m=﹣(舍去).23.(12分)在综合实践活动课中,王老师出了这样一道题:如图1,在矩形ABCD中,M是BC的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.求证:四边形OEMF是菱形.做完题后,同学们按照老师的要求进行变式或拓展,提出新的问题让其它同学解答.(1)小明同学说:“我把条件中的‘矩形ABCD’改为‘菱形ABCD’,如图2所示,发现四边形OEMF是矩形.”请给予证明;(2)小芳同学说:“我把条件中的‘点M是BC的中点’改为‘点M是BC延长线上的一个动点’,发现点F落在AC的延长线上,如图3所示,此时OB、ME、MF 三条线段之间存在某种数量关系.”请你写出这个结论,并说明理由.【解答】(1)证明:∵ME∥AC,MF∥BD,∴四边形OEMF是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD,即∠EOF=90°,∴四边形OEMF是矩形.(2)结论:OB=ME﹣MF.理由如下:∵ME∥AC,MF∥BD,∴四边形OEMF 是平行四边形,∴OE=MF,又∵四边形ABCD是矩形,∴OB=BD,OC=AD,且AC=BD,∴OB=OC,∴∠OBC=∠OCB,由ME∥AC可知,∠OCB=∠EMB,∴BE=ME,∴OB=BE﹣OE=ME﹣MF.。
2015-2016学年九年级上数学知识应用竞赛试题
亲爱的同学们,愿你放松心情,认真审题,缜密思考,细心演算,争取交一份满意的答卷。
一.选择题(每小题4分,共32分) 1.方程中,是关于x 的一元二次方程的是 ( ) A.()()12132+=+x x B.02112=-+x x C.02=++c bx ax D. 1222-=+x x x 2.若反比例函数的图象经过(2,-2),(m ,1),则m= ( ) A .1 B .-1 C .4 D .-4 3.有一实物如图,那么它的主视图 ( ) 4.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是 ( ) A .11 B.13 C.11或13 D.11和13 5.小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是 ( ) A 矩形 B 正方形 C 等腰梯形 D 无法确定 6.既是轴对称,又是中心对称图形的是 ( ) A .矩形 B .平行四边形 C .正三角形 D .等腰梯形 7.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是 ( ) A.①②③④ B.④①③② C.④②③① D.④③②①
A B C
D 学校:_______________;班级:______________;姓名:______________;考号:____________
8.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标的背面是一张哭脸,若翻到哭脸就不得奖金,参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻) .某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 ( ) A.41 B.51 C.61 D.
203 二.填空题(每题4分,共24分)
9、若关于x 的方程0632=-++m mx x 有一根是0,则_____=m ;
10、双曲线x k y =经过点(2 ,―3),则k = ; 11、菱形的两条对角线的长的比是2 : 3 ,面积是12cm 2,则它的两条对角线
的长分别为_____ 、_____。
12、如图,△ABC 中,∠C=900,AD 平分∠BAC 交BC 于点D ,BD ∶DC=2∶1,BC=7.8cm , 则D 到AB 的距离为 cm.
13、如图,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB =3,则反比例函数解析式为______ 。
第13题
14.等腰△ABC 一腰上的高为3,这条高与底边的夹角为60°,则△ABC 的面积是 ;
三.解答题:(共44分)
15、(8分)解方程:x 2
+4x-12=0;
第12题
16、(10分)2013年,丰顺人均国内生产总值约为2000元RMB,如果为了实
现县委、县政府提出的“两个翻番,两个率先”的宏伟目标,计划2015年人均国内生产总值要达到2880元RMB,那么这两年的平均增长率应为多少?
17、(12分)已知:如图,在
中,E是DC的中点,延长BE交AD的延长
线于点F,请你猜想线段DA与DF的大小关系,并证明你的结论.C
18、(14分)如图,Rt ABC ∆的锐角顶点A 是直线m x y +=与双曲线x
m y =
在第一象限的交点,且3=∆AOB S .
(1)求m 的值; (2)求ABC S ∆的值。
九年级上数学知识应用竞赛试题 参考答案:
一.选择题:1.A ;2.D ;3.B ;4.C ;5.D ;6.A ;7.B ;8.C .
二.填空题:9.6;10.-6; 11.4cm ,6cm ; 12.2.6;13.y =6x
;
三.解答题:
15.x = 2, x = - 6;
16. 20%
17.略
18.解:(1)设A 点坐标为(a ,b )(a >0,b >0)
则O B a =,AB b = ∴==S ab AOB ∆123,∴=ab 6
又 A 在双曲线
y m
x =上 ∴=b m a ,即ab m =,∴=m 6
(2) 点A 是直线与双曲线的交点 ∴==+⎧⎨⎪⎩⎪⇒=-+=+⎧⎨⎪⎩⎪b a b a a b 6631531511或a b 22315315=--=-⎧⎨⎪⎩⎪
a b >>00,
∴A (-++315315,)
由直线知C (-6,0)
∴=OC 6,OB =-+315,AB =+315 ∴=+⨯S OB OC AB ABC ∆12() =
-+++=+12
315631512315()()。