用热敏电阻测量温度1
- 格式:doc
- 大小:81.50 KB
- 文档页数:3
使用热敏电阻测量温度的步骤在我们的日常生活和工作中,测量温度是非常常见的一项任务。
为了准确测量温度,热敏电阻是一种常用且有效的测量工具。
热敏电阻利用材料在温度变化下电阻值的变化来测量温度。
接下来,本文将为您介绍使用热敏电阻测量温度的步骤。
第一步:准备工作使用热敏电阻测量温度之前,我们需要准备相关的工具和材料。
首先,我们需要一根热敏电阻,确保其质量可靠且测量范围适宜。
其次,我们需要一台数字万用表或其他适用的测量仪器。
此外,还需要一台恒温器或其他稳定的温度控制设备,用来提供不同温度环境。
第二步:连接电路将热敏电阻与测量仪器连接起来是测量温度的关键步骤。
首先,将热敏电阻的两个引脚分别连接到万用表的两个测试插孔上。
确保连接稳固而且接触良好。
然后,将万用表调整为电阻测量模式,并选择适当的量程。
确保仪器设置正确,以获得准确的测量结果。
第三步:设置温度在开始测量之前,我们需要确定测试的温度范围。
使用恒温器或稳定的温度控制设备,将温度控制在适当的范围内。
此时,热敏电阻的电阻值将与环境温度相对应。
请注意,温度的变化应该是逐渐的,以免影响测量的准确性。
第四步:记录数据在进行实际测量之前,我们需要记录一些基础数据。
首先,测量起始温度时的热敏电阻的电阻值。
然后,在温度变化时,定期测量电阻值并记录下来。
请注意,测量的时间间隔应适当,以确保准确性与实时性的平衡。
第五步:绘制曲线根据记录的数据,我们可以绘制出热敏电阻与温度之间的关系曲线。
使用适当的软件或绘图工具,将温度表示在横轴上,将电阻值表示在纵轴上。
通过曲线的走势,我们可以推导出电阻值与温度之间的数学关系,从而可以准确地测量未知温度下的电阻值。
第六步:验证与校准在使用热敏电阻测量温度之后,我们需要进行验证和校准工作。
通过与其他可靠的温度测量仪器进行对比,可以验证我们的测量结果的准确性。
如果有需要,我们可以对热敏电阻进行校准,以提高测量的准确性和可靠性。
总结使用热敏电阻测量温度是一项简单且有效的测量方法。
热敏电阻温度计的设计实验简介热敏电阻温度计是一种测量温度的传感器,它利用材料的电阻随温度变化的特性来实现温度的测量。
本文将详细介绍热敏电阻温度计的设计实验方法和步骤。
实验目的通过设计热敏电阻温度计的实验,掌握以下知识和技能: 1. 了解热敏电阻的基本原理和特点; 2. 掌握热敏电阻的测量方法和电路连接; 3. 学会使用热敏电阻测量温度。
实验器材和材料下面是进行热敏电阻温度计设计实验所需的器材和材料: 1. 热敏电阻 2. 连接线3. 变阻器 4. 示波器 5. 温度源 6. 温度计(参考)实验步骤步骤一:热敏电阻的特性测试1.连接热敏电阻和示波器:将热敏电阻的两端分别连接到示波器的输入端口。
2.设置示波器的垂直和水平方向的刻度,使得能够清晰地观察到热敏电阻的电阻变化。
3.通过改变温度源的温度,观察示波器上显示的电阻变化情况。
4.记录不同温度下的热敏电阻的电阻值,并绘制温度和电阻之间的关系曲线。
步骤二:热敏电阻的电路连接1.根据热敏电阻的数据手册,确定热敏电阻的额定电阻值和温度系数。
2.选择合适的电阻和电路连接方式,以便实现温度测量的精度和稳定性。
3.进行电路连接,并使用万用表测量电路的电阻值,确保电路连接正确无误。
步骤三:热敏电阻温度计的标定1.使用温度计准确测量一个已知温度,例如室温。
2.将已知温度下热敏电阻的电阻值测量结果和温度计的测量结果进行比较,得到电阻值和温度的对应关系。
3.根据已知温度和热敏电阻的电阻值,得到热敏电阻的标定曲线。
步骤四:热敏电阻温度计的实际温度测量1.使用标定曲线,根据热敏电阻的电阻值计算出实际温度。
2.将热敏电阻的电阻值连接到电路中,通过电路输出的电压或电流来测量实际温度。
结论通过实验设计和实施,我们成功地制作了一个热敏电阻温度计,并了解了热敏电阻的基本原理和特点。
我们还学会了热敏电阻的测量方法和电路连接,并掌握了使用热敏电阻进行温度测量的技能。
这些知识和技能将在实际应用中发挥重要作用,为温度测量和控制提供了有力支持。
热敏电阻测室温实验报告
实验目的:了解热敏电阻的特性及测量室温的方法。
实验原理:热敏电阻是一种随着温度变化而改变电阻值的电阻。
在本实验中,我们将使用PTC热敏电阻。
当热敏电阻受到外部温度的影响时,电阻值随之改变。
PTC热敏电阻的电阻随温度升高而升高,因此可以通过测量电阻值来确定温度。
实验步骤:
1. 准备实验材料:PTC热敏电阻、电解电容器、万用表。
2. 将PTC热敏电阻和电解电容器依次连接,并在万用表上选择电阻量程。
4. 测量PTC热敏电阻的电阻值,并记录下来。
5. 根据电阻值计算室温。
实验结果:
1. 测量结果如下表所示:
PTC热敏电阻电阻值(Ω)室温(℃)
220 24
205 25
190 26
175 27
160 28
2. 通过实验数据计算,PTC热敏电阻的温度系数为0.143℃/Ω。
结论:本实验使用PTC热敏电阻测量室温,得出了准确的测量结果,并计算出了PTC 热敏电阻的温度系数。
通过本实验,我们了解了热敏电阻的特性及测量室温的方法,这对于温度测量有重要的意义。
NTC热敏电阻检测方法NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感元件,可以将温度转化为电阻值的变化。
利用NTC热敏电阻进行温度检测的方法有很多种,下面将介绍几种常用的方法。
1.恒流法恒流法是一种常用的NTC热敏电阻检测方法。
该方法利用恒定电流通过NTC热敏电阻,测量电阻两端的电压来推算温度。
具体步骤如下:(1)将NTC热敏电阻与一个已知电阻串联连接,形成一个电阻分压网络。
(2)通过搭建一个恒流源,将电流引入电阻分压网络。
(3)通过测量电阻两端的电压,利用欧姆定律和分压原理推算出NTC热敏电阻的电阻值。
(4)根据NTC热敏电阻的电阻-温度关系曲线,将电阻值转换为温度值。
2.恒压法恒压法是另一种常用的NTC热敏电阻检测方法,原理与恒流法类似,只是测量的参数不同,利用电阻两端的电流来推算温度。
具体步骤如下:(1)将NTC热敏电阻与一个已知电阻并联连接,形成一个电流分流网络。
(2)通过搭建一个恒定电压源,将电压施加在电流分流网络上。
(3)通过测量电阻两端的电流,利用欧姆定律和分流原理推算出NTC热敏电阻的电阻值。
(4)根据NTC热敏电阻的电阻-温度关系曲线,将电阻值转换为温度值。
3.桥式检测法桥式检测法是一种利用电桥平衡原理的NTC热敏电阻检测方法。
具体步骤如下:(1)搭建一个包含NTC热敏电阻和已知电阻的电桥电路。
(2)调节电桥电路中的电阻或电容,使得电桥平衡。
(3)通过测量电桥电路的输出信号,可以推算出NTC热敏电阻的电阻值。
(4)根据NTC热敏电阻的电阻-温度关系曲线,将电阻值转换为温度值。
4.趋势法趋势法是一种简便的NTC热敏电阻检测方法,适用于实时监测温度的场合。
该方法利用NTC热敏电阻的电阻值随温度的变化呈现一定的趋势,通过监测电阻值的变化来推算温度。
具体步骤如下:(1)进行一组标定实验,得到NTC热敏电阻的电阻-温度关系曲线。
实验题目:用热敏电阻测量温度实验目的:了解热敏电阻的电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法,学习坐标、曲线改直的技巧和用异号法消除零点误差等方法。
实验原理:1.半导体热敏电阻的电阻-温度特性某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足:TB T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻 值,B 是热敏电阻的材料常数,T 为热力学温度。
金属的电阻与温度的关系满足:2121[1()]t t R R t t α=+-(2)式中α是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、 t 2时的电阻值。
根据定义,电阻的温度系数有:dtdR R a tt 1=(3)R t 是在温度为t 时的电阻值。
两种情况的电阻温度曲线如图(1)和图(2)所示。
热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1)热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。
(2)热敏电阻的阻值随温度的增加而减小,因此温度系数是负的(2T B a ∝)。
金属的温度系数 是正的 (dt dR a /∝)。
(3)半导体电阻对温度变化的反应比金属电阻灵敏得多。
这些差异的产生是因为当温度升高时,原子运动加剧,对金属中自由电子的运动有阻碍作用,故金属的电阻随温度的升高而呈线性缓慢增加;而在半导体中是靠空穴导电,当温度升高时,电子运动更频繁,产生更多的空穴,从而促进导电。
2.惠斯通电桥的工作原理原理图如右图所示:若G 中检流为0,则B 和D 等势,故此时021R R R R x =,在检流计的灵敏度范围内得到R x 的值。
当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必有021R R R R x =,R 1/R 2和R 0都已知,R x 即可求出。
体温计专用热敏电阻0.05℃
体温计专用热敏电阻是一种用于测量温度的传感器元件,其灵敏度通常为0.05℃。
热敏电阻的工作原理是利用材料在温度变化下电阻值发生变化的特性。
当温度发生变化时,热敏电阻的电阻值会相应地发生变化,通过测量电阻值的变化可以推算出温度的变化。
从技术角度来看,热敏电阻的灵敏度是指在温度变化下单位电阻值的变化情况,0.05℃的灵敏度意味着在温度变化每0.05℃时,热敏电阻的电阻值会发生变化。
这种高灵敏度使得热敏电阻在体温计等需要精确测量温度的设备中得到广泛应用。
此外,热敏电阻在体温计中的应用还包括了稳定性和响应速度等方面的考量。
稳定性是指热敏电阻在长时间使用过程中能否保持稳定的灵敏度和准确度,而响应速度则是指热敏电阻对温度变化的快速响应能力。
这些因素都是体温计设计中需要考虑的重要因素。
总的来说,体温计专用热敏电阻的0.05℃灵敏度使其成为一种精确测量温度的理想传感器元件,其稳定性和响应速度也使其在体温计等医疗设备中得到广泛应用。
热敏电阻的测温原理
热敏电阻的测温原理是通过测温元件本身的热容,将测量温度转变为电信号,并放大后再将信号传递给显示仪表。
该测温原理实际上是一种热传感技术。
热传感技术的基本原理是利用材料对温度敏感的特性,采用物理、化学或生物学方法对温度进行检测,并将检测结果转换为电信号,再通过显示仪表将信号显示出来。
热敏电阻测温元件主要由感温片、绝缘膜和基片三部分组成。
感温片是一种中间为金属丝的管状电阻器,它的两端分别接在被测温度下的金属丝上,并在金属丝上涂有一层绝缘膜。
当金属丝的温度变化时,热敏电阻内部产生感应电流,这种电流的大小与温度成正比。
在感温片两端加上一定电压时,就可以将感应电流转变成与温度成正比的电势,该电势称为该感温片的热容。
当感温片受到外界温度变化影响时,内部产生感应电流的大小与温度有关,即热敏电阻内阻随温度升高而减小。
因此,当热敏电阻被测温度升高时,其内部感应电流发生变化,从而使该电阻两端的电压发生变化。
—— 1 —1 —。
实验一、热敏电阻应用——温度传感实验一、实验目的(1)了解热敏电阻的工作原理。
(2)了解热敏电阻电路的工作特点及原理。
(3)了解温度传感模块的原理并掌握其测量方法。
二、实验内容利用转换元件电参量随温度变化的特征,对温度和与温度有关的参量进行检测。
三、实验原理1. NEWLab温度传感模块认识(1)温度传感模块的电路板认识1)温度/光照传感模块电路板认识温度/光照传感模块电路板结构图:①温敏或光敏电阻传感器②基准电压调节电位器③比较器电路④基准电压测试接口J10,测试温度感应的阀值电压,即比较器1负端(3脚)电压⑤模拟量输出接口J6,测试热敏电阻两端的电压,即比较器1正端(2脚)电压;⑥数字量输出接口J7,测试比较器1输出电平电压⑦接地GND接口J22)继电器模块电路(电路图如下)继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化,使被控制的输出电路导通或断开的自动控制器件。
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
继电器模块电路图:3)指示灯模块和风扇模块电路板认识指示灯模块接到继电器的常开开关上,风扇接入继电器的常闭开关上,当温度传感模块输出低电平时,风扇模块工作,指示灯模块停止工作;当温度传感模块输出高电平时,继电器工作,常开和常闭开关工作状态发生变化,指示灯模块开始工作,风扇模块停止工作。
(2)温度传感模块场景模拟界面认识四、实验步骤1. 启动温度传感模块温度传感模块工作时需要有四个模块,分别是温度/光照传感模块、继电器模块、指示灯模块、风扇模块。
(1)将NEWLab实验硬件平台通电并与电脑连接。
(2)将温度/光照传感模块、继电器模块分别放置在NEWLab实验平台一个实验模块插槽上,指示灯、风扇模块放置好,并将四个模块连接好。
实验题目:用热敏电阻测量温度实验目的:了解热敏电阻的电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法,学习坐标、曲线改直的技巧和用异号法消除零点误差等方法。
实验原理:1、半导体热敏电阻的电阻-温度特性某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与 温度关系满足式(1):TBT e R R ∞= (1) 金属的电阻与温度的关系满足(2):)](1[1212t t a R R t t -+= (2)根据定义,电阻的温度系数可由式(3)来决定:dtdR R a tt 1=(3)两种情况的电阻温度曲线如又图(1)图(2)所示。
热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有 三个特点:(1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。
(2) 热敏电阻的阻值随温度的增加而减小,因此温度系数是负的(2TB a ∝)。
金属的温度系数是正的(dt dR a /∝)。
(3) 半导体电阻对温度变化的反应比金属电阻灵敏得多。
这些差异的产生是因为当温度升高时,原子运动加剧,对金属中自由电子的运动有阻碍作用,故金属的电阻随温度的升高而呈线性缓慢增加;而在半导体中是靠空穴导电,当温度升高时,电子运动更频繁,产生更多的空穴,从而促进导电。
2、惠斯通电桥的工作原理原理图如右图所示:若G 中检流为0,则B 和D 等势,故此时021R R R R x =,在检流计的灵敏度范围内得到R x 的值。
当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。
平衡时必有021R R R R x =,R 1/R 2和R 0都已知,R x 即可求出。
R 1/R 2称电桥的比例臂。
021R R R R x =是在电桥平衡的条件下推导出来的。
电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。
引入电桥灵敏度S ,定义为:xx R R nS /∆∆=(4)式中ΔR x 指的是在电桥平衡后R x 的微小改变量(实际上待测电阻R x 若不能改变,可通过改变标准电阻R 0来测电桥灵敏度),Δn 越大,说明电桥灵敏度越高,带来的测量误差就越小。
热敏电阻温度传感器工作原理
热敏电阻温度传感器是一种利用热敏电阻材料的电阻随温度变化的特性来测量温度的装置。
其工作原理如下:
热敏电阻材料是一种电阻值随温度变化的半导体材料,其电阻值随温度的升高而降低,反之亦然。
这是因为在材料内部,随着温度的升高,电子和空穴的浓度也随之升高,导致电流通过材料时的阻力降低。
因此,热敏电阻的电阻值可以通过测量电流经过它时的电压得到。
根据欧姆定律,电阻值可以通过测量电流和电压之间的关系得到。
因此热敏电阻温度传感器会将电流通过热敏电阻,然后测量电阻两端的电压,再根据欧姆定律计算出电阻值。
为了准确测量温度,通常会使用一个补偿电路来消除电线电阻的影响,这样可以提高测量的精度。
补偿电路通常会根据热敏电阻温度特性的知识,调节所加的电压或电流来抵消电线电阻对温度测量的影响。
总之,热敏电阻温度传感器通过测量热敏电阻材料电阻值随温度变化的特性,来间接地测量温度。
实验十二 热敏电阻温度特性的测量[实验目的]1。
测量热敏电阻的温度特性2.掌握箱式电桥的使用3。
学习用曲线改直的方法处理数据[教学方法]采用讨论式,提案式教学方法[实验原理]半导体热敏电阻与热电阻相比具有灵敏度高、体积小、反应快等优点。
大多数热敏电阻具有负的温度特性,称为NTC 型热敏电阻,其阻值与温度的关系可表示为 ⎪⎪⎭⎫ ⎝⎛-=0011T T B T T eR R (1) 式中,0T R 和T R 分别是温度)(0K T 和)(K T 时的阻值;T 和0T 是开尔文温标;B 是材料常数,单位是K 。
也有些热敏电阻具有正的温度特性,称为PTC 型热敏电阻,其阻值与温度的关系可表示为)(00T T B T T e R R -=,热敏电阻的主要性能指标是:(1)标称值H R 是指25℃时的阻值.(2)温度系数T α.定义为温度变化一度时阻值的变化量与该温度下阻值之比dTdR R T T ⋅=1α (3) 将式(2)代入式(3),得2TB T -=α (4) T α不仅与材料常数有关,还与温度有关,低温段比高温段更灵敏。
如果不作特殊说明,是指K T 293=时的T α。
材质不同,T α也有很大差别,大约为(-3~-6)×10—2/K ,它比热电阻的T α高出10倍左右。
图1是CU 电阻和某一负温度系数热敏电阻的温度特性曲线。
热敏电阻的缺点是非线性严重,元件的稳定性较差。
(3)材料常数B 是与材质有关的常数,对NTC 型热敏电阻来说,B 值约为1500—6000K.(2)式两边取对数,得⎪⎪⎭⎫⎝⎛-+=011ln ln 0T T B R R T T (5) 令x T A T B R y R T T ==-=1,ln ,ln 00则(5)式变为Bx A y +=(6)[实验任务]1。
测绘NTC 热敏电阻的温度特性曲线2.绘制T R T 1ln -图,由图求出材料常数B3。
计算温度系数T α[数据处理]中值点(094.7,1097.23-⨯))000.6,1069.2(31-⨯M)333.8,1027.3(32-⨯M)(1002.410)69.227.3(000.6333.8331212K x x y y B ⨯=⨯--=--=-由于不作特殊说明,T α指293K 时的温度系数 所以)(1069.42931002.412232--⨯-=⨯-=-=K T B T α[预习思考题]1。
热敏电阻温度计实验报告热敏电阻温度计实验报告引言:热敏电阻温度计是一种常见的温度测量设备,它利用材料在温度变化下电阻值的变化来反映温度的变化。
本实验旨在通过实际操作,探究热敏电阻温度计的原理、特点以及应用。
一、实验原理热敏电阻温度计是利用材料的电阻随温度的变化而变化的特性来测量温度的一种设备。
其原理基于热敏效应,即材料在温度变化下电阻值的变化。
热敏电阻的电阻值与温度呈反比关系,温度升高时,电阻值减小,反之亦然。
二、实验步骤1. 实验器材准备:热敏电阻温度计、恒流源、数字电压表、温控水槽等。
2. 连接电路:将恒流源连接到热敏电阻上,再将数字电压表连接到热敏电阻两端,确保电路连接正确。
3. 温度控制:将温控水槽加热并设定目标温度,等待水槽温度稳定。
4. 测量电压:记录数字电压表上的电压数值,作为温度计的输出值。
5. 温度变化:逐步调整温控水槽的温度,记录相应的电压数值。
三、实验结果与分析通过实验测量得到的电压数值与温度的关系曲线可以反映热敏电阻温度计的特性。
在实验过程中,我们发现电压与温度之间存在一定的线性关系,但并非完全线性。
这是因为热敏电阻的电阻-温度特性通常是非线性的,即电阻值与温度之间的关系不是简单的比例关系。
四、实验误差与改进在实验过程中,可能会遇到一些误差,如温度控制不准确、电路接触不良等。
为了减小误差,可以采取以下改进措施:1. 提高温度控制的精度,使用更为准确的温控设备。
2. 仔细检查电路连接,确保接触良好,避免电阻值的测量误差。
3. 多次重复实验,取平均值,以减小随机误差的影响。
五、应用与展望热敏电阻温度计在实际应用中具有广泛的用途。
例如,在家电中,热敏电阻温度计常用于空调、冰箱等设备的温度控制,保证设备在适宜的温度范围内工作。
在工业领域,热敏电阻温度计也被广泛应用于各种生产过程的温度监测与控制中。
未来,随着科技的不断进步,热敏电阻温度计的精度和稳定性将进一步提高。
同时,热敏电阻温度计的应用范围也将扩大,涉及更多领域。
热敏电阻测温注意事项
热敏电阻是一种广泛应用于温度测量的传感器,但在使用过程中需要注意以下事项:
1. 电源电压:热敏电阻的电源电压需要根据具体型号进行选择,过高或过低的电源电压会影响测量精度。
2. 测量环境:在温度测量前需要考虑测量环境的温度范围和波动情况,避免因环境变化导致测量误差。
3. 热敏电阻安装:热敏电阻的安装位置需要与测量位置相同,避免因位置不当导致测量误差。
4. 连接线路:连接线路需要正确接线,防止接触不良或接线错误导致测量误差。
5. 热敏电阻的使用寿命:热敏电阻有一定的使用寿命,需要注意定期更换以保证测量精度。
总之,热敏电阻在使用时需要注意电源电压、测量环境、安装位置、连接线路以及使用寿命等因素,以保证测量精度和使用寿命。
- 1 -。
物理实验中使用热敏电阻测量温度的注意事项在物理实验中,准确测量物体的温度是非常重要的。
热敏电阻是一种常用的温度传感器,通过利用物质的温度对其电阻值产生的变化进行测量。
然而,由于热敏电阻在测量温度过程中存在一些特殊性质,我们在使用它时需要注意以下几个方面。
首先,我们必须保证热敏电阻的接触表面与被测物体之间有良好的热接触。
任何阻碍热量传输的因素,例如气体或污垢等,都会导致测量结果的不准确。
因此,在使用热敏电阻测量温度之前,要确保被测物体表面干净,无污垢或薄膜覆盖,并且将热敏电阻牢固地放置在物体表面上,以确保最佳的热接触。
其次,我们需要了解热敏电阻的响应时间。
热敏电阻的响应时间是温度变化到达其表面和变化导致电阻值变化之间的时间间隔。
在进行实验时,如果我们需要频繁地测量温度变化,则需要选择响应时间较短的热敏电阻。
然而,响应时间较短的热敏电阻通常比较昂贵,因此在选择时需要根据实验要求进行权衡。
另外,热敏电阻的电阻-温度特性也需要注意。
不同类型的热敏电阻在不同温度范围内有不同的电阻变化规律。
在实验中,我们需要明确热敏电阻在我们所需测量温度范围内的电阻-温度特性。
对于一些非线性变化的热敏电阻,我们可能需要使用特定的转换器或校准曲线来将电阻值转化为准确的温度值。
此外,热敏电阻的电阻值与其自身的温度有关。
由于电阻值与温度成正相关,我们必须考虑热敏电阻自身的温度对测量结果的影响。
为了准确测量被测物体的温度,我们可以在实验中添加一个补偿电路,用于测量和补偿热敏电阻自身的温度。
此外,在测量温度时,环境温度的变化也会对热敏电阻的测量结果产生影响。
因此,在进行实验之前,我们需要记录并控制环境温度,并根据需要进行相应的补偿。
这可以通过使用温控器或保温箱等设备来实现。
最后,我们需要注意热敏电阻的可靠性和耐久性。
热敏电阻是一种非常脆弱的元件,在使用时需要小心操作,以防止损坏。
此外,长期使用可能会导致电阻值的漂移,从而影响测量结果的准确性。
热敏电阻的温度特性实验报告热敏电阻的温度特性实验报告引言:热敏电阻是一种能够根据温度变化而改变电阻值的电子元件。
它在各种电子设备中广泛应用,如温度控制系统、温度补偿电路等。
本实验旨在通过测量热敏电阻在不同温度下的电阻值,研究其温度特性。
实验装置:本实验采用了以下装置:热敏电阻、恒温水槽、电源、数字万用表、温度计等。
实验步骤:1. 将热敏电阻连接到电路中,确保电路连接正确。
2. 将恒温水槽中的水加热至不同温度,如20℃、30℃、40℃等。
3. 使用温度计测量水槽中的水温,并记录下来。
4. 使用数字万用表测量热敏电阻在不同温度下的电阻值,并记录下来。
5. 重复步骤2-4,直到得到足够的数据。
实验结果:根据实验数据,我们可以绘制出热敏电阻的温度特性曲线。
在实验中,我们发现热敏电阻的电阻值随温度的升高而减小。
这是因为热敏电阻的电阻值与温度呈负相关关系。
随着温度的升高,热敏电阻中的电子活动增加,电阻值减小。
讨论:热敏电阻的温度特性是其应用的基础。
通过实验数据的分析,我们可以得出以下结论:1. 热敏电阻的温度特性曲线呈非线性关系。
在低温区域,电阻值随温度的升高呈指数增长;在高温区域,电阻值随温度的升高呈线性增长。
2. 热敏电阻的温度特性与其材料的选择有关。
不同材料的热敏电阻在不同温度范围内表现出不同的特性曲线。
3. 热敏电阻的温度特性可以通过控制电流来实现温度的测量和控制。
通过测量热敏电阻的电阻值,我们可以推算出环境的温度。
结论:本实验通过测量热敏电阻在不同温度下的电阻值,研究了其温度特性。
实验结果表明,热敏电阻的电阻值随温度的升高而减小,呈现出非线性关系。
热敏电阻的温度特性与其材料的选择有关,可以通过控制电流来实现温度的测量和控制。
这些研究结果对于热敏电阻的应用具有重要的指导意义。
附录:以下是实验中测得的一组数据:温度(℃) 电阻值(Ω)20 10030 8040 6050 4060 20根据这组数据,我们可以绘制出热敏电阻的温度特性曲线。
实验二十二热敏电阻温度传感器测温实验一、实验目的:掌握热敏电阻的工作原理及其测温特性。
二、实验原理:用半导体材料制成的热敏电阻具有灵敏度高,可以应用于各领域的优点,热电偶一般测高温时线性较好,热敏电阻则用于200℃以下温度较为方便,本实验中所用热敏电阻为负温度系数。
温度变化时热敏电阻阻值的变化导致运放组成的压/阻变换电路的输出电压发生相应变化。
三、实验所需部件:热敏电阻、温度变换器、电压表、温度计(可用仪器中的P-N结温度传感器或热电偶作测温参考)。
四、实验步骤:1.观察装于悬臂梁上封套内的热敏电阻,将热敏电阻接入温度变换器Rt端口,调节“增益”旋钮,使加热前电压输出Vo端电压值尽可能大但不饱和。
由数字温度计读出环境温度并记录。
将热电偶两端子极性正确地插入数字温度计插孔内。
2. 打开加热器,观察数字温度计的读数变化。
经过足够上的时间后,数字温度计的读数不再升高(或者,电压表示数不再变化),达到一个稳定值,说明此时加热器的加热功率与热量耗散功率达到平衡,从而温度不再变化。
关闭加热器。
3. 观察数字温度计的读数变化,每降温1℃记录一个电压表的输出电压值,并填入以下数据表中。
根据表中数据作出V-T曲线,求出灵敏度S。
S=△V/△T4.再次打开加热器,重复步骤3.5.观察数字温度计的读数变化,每降温1℃,用万用表测出热敏电阻的电阻值,并填入以下数据表中。
6.负温度系数热敏电阻的电阻温度特性可表示为:Rt =Rto exp Bn (1/T –1/To)式中Rt、Rto分别为温度T、To时的阻值,Bn为电阻常数,它与材料激活能有关,一般情况下,Bn=2000~6000K,在高温时使用,Bn值将增大。
由以上实验结果,求出电阻常数Bn的值。
ntc测温电路原理
NTC(Negative Temperature Coefficient)测温电路是利用负温
度系数(NTC)热敏电阻来测量温度的一种电路设计。
NTC热敏电阻是一种电阻,在不同温度下其电阻值会发生变化。
具体来说,随着温度的升高,NTC电阻的电阻值会逐渐
减小。
这种特性使得NTC热敏电阻可以用作温度传感器,通
过测量其电阻值的变化来确定环境的温度。
在NTC测温电路中,NTC热敏电阻一端连接到电流源,另一
端连接到一个参考电阻。
这个参考电阻的电阻值是已知的且稳定的,用来建立一个基准电压。
NTC热敏电阻与参考电阻串
联连接,形成一个电压分压器。
通过测量NTC热敏电阻与参考电阻之间的电压分压,可以推
导出NTC热敏电阻的电阻值。
由于NTC热敏电阻的电阻值与温度呈负相关,因此可以根据电阻值的变化来得知温度的变化。
为了实现温度测量,NTC测温电路通常还要包括一个模拟电路,用来将NTC热敏电阻的电阻值转换为与温度呈线性关系
的电压信号。
这个模拟电路通常使用运放以及其他元件来实现。
总结起来,NTC测温电路利用NTC热敏电阻的负温度系数特性,通过测量其电阻值的变化来确定温度的一种电路设计方法。
用热敏电阻测量温度热敏电阻是一种电阻器件,其电阻值随着温度的变化而发生变化。
热敏电阻可以被广泛地应用于温度测量和控制领域中。
本文将介绍如何使用热敏电阻进行温度测量。
一、热敏电阻的基本原理热敏电阻是一种半导体器件。
当温度升高时,其电阻值会下降;反之,当温度降低时,其电阻值会上升。
这种变化是由于温度会影响半导体材料中的载流子浓度和电子迁移率等物理性质引起的。
二、热敏电阻的种类热敏电阻可以分为两种类型:正温度系数热敏电阻和负温度系数热敏电阻。
正温度系数热敏电阻的电阻值随着温度的升高而上升,常用的材料有铂和镍铬合金等。
三、热敏电阻的测量电路根据热敏电阻的变化规律,可以使用一个简单的电路来测量温度。
该电路如下图所示。
电路由一个电池和一个热敏电阻组成。
当热敏电阻的温度升高时,其电阻值下降,电路中的电流随之增大。
电路中电流的变化可以通过连接在电路中的电流表读取。
为了准确地测量温度,我们需要使用一个标准温度源和一个多用电表。
具体方法如下:1.使用标准温度源将热敏电阻的温度调整到一个已知的温度,例如20℃。
2.将电流表连接到电路中,并将多用电表调整到电压测量模式。
3.记录电路中的电压值,并使用欧姆定律计算出热敏电阻的电阻值。
4.调整标准温度源的温度,并重复步骤3,直到记录下多个热敏电阻的电阻值和对应的温度值。
5.使用这些数据来制作一张热敏电阻的电阻-温度关系图。
6.使用该关系图来测量未知温度下的热敏电阻的温度。
1.使用标准温度源时应注意其温度与待测温度的差距不宜过大。
2.多用电表的精度应该足够高。
3.热敏电阻应该被放置在一个恒定的温度环境中,以避免环境温度的影响。
4.热敏电阻的金属引线不能被折弯,以便保持其形状和性能。
总之,热敏电阻是一种简单而可靠的用于温度测量的器件。
通过掌握热敏电阻测量温度的基本原理、种类和测量方法,我们可以更好地应用它来满足我们的需要。
热敏电阻温度传感器的原理热敏电阻温度传感器是一种常见的温度测量设备,它利用材料的电阻随温度的变化来实现温度测量。
其工作原理是基于热敏效应,即材料的电阻会随温度的升高或降低而发生变化。
热敏电阻温度传感器由热敏电阻元件和测量电路组成。
热敏电阻元件是一种特殊材料制成的电阻器,其电阻值随温度的变化而变化。
测量电路通过测量热敏电阻元件的电阻值来获取温度信息。
热敏电阻材料的电阻温度特性可以分为两类:正温度系数材料和负温度系数材料。
正温度系数材料的电阻值随温度的升高而增加,负温度系数材料的电阻值随温度的升高而减小。
常见的热敏电阻材料有铂、铜、镍等。
热敏电阻温度传感器的测量原理是通过测量热敏电阻元件的电阻值来间接获取温度信息。
当热敏电阻元件处于稳定的温度环境中时,测量电路会通过传感器的引脚施加一定的电压,使电流通过热敏电阻元件。
由于热敏电阻材料的电阻温度特性,电阻值会随温度的变化而发生变化。
测量电路通过测量电流和电压,计算出热敏电阻元件的电阻值。
然后,根据事先标定的电阻-温度关系曲线,可以得到当前温度值。
热敏电阻温度传感器具有灵敏度高、响应速度快、稳定性好等优点。
它在工业控制、家电、医疗设备等领域得到广泛应用。
然而,热敏电阻温度传感器也存在一些局限性。
首先,由于热敏电阻材料的电阻温度特性通常是非线性的,因此在测量过程中需要进行校准和补偿,以提高测量的准确性。
其次,热敏电阻材料的响应速度相对较慢,对于快速变化的温度场景可能不太适用。
此外,热敏电阻材料的精度和稳定性也会受到环境条件的影响。
热敏电阻温度传感器是一种基于热敏效应的温度测量设备。
通过测量热敏电阻元件的电阻值来间接获取温度信息。
它具有灵敏度高、响应速度快、稳定性好等优点,广泛应用于工业控制、家电、医疗设备等领域。
然而,它也存在一些局限性,需要进行校准和补偿,对于快速变化的温度场景可能不太适用。
1
实验题目: 用热敏电阻测量温度
实验目的:本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。
学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。
实验原理:
1.半导体电阻与金属电阻的电阻-温度特性 半导体的电阻与温度关系满足:T
B T e R R ∞=
式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。
而金属的电阻与温度的关系满足: )](1[1212t t a R R t t -+= 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。
根据定义,电阻的温度系数可由下式来决定:dt
dR R a t
t 1=
R t 是在温度为t 时的电阻值,由下图可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。
因此,热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。
热敏电阻的温度系数约为-(30~60)×10-4K -1,金属的温度系数为1
4104--⨯K (铜),两者相比,热敏电阻的温度系数几乎大几十倍。
所以,半导体电阻对温度变化的反应比金属电阻灵敏得多。
2.惠斯通电桥的工作原理
半导体热敏电阻和金属电阻的阻值范围,一般在1~106
Ω,需要较精确测量时常用电桥法,惠斯通电桥是应用很广泛的一种仪器。
惠斯通电桥的原理,如下图所示。
四个电阻R 0、R 1、R 2、R x 组成一个四边形,R x 是待测电阻。
当B 和D 两点电位相等时,检流计G 中无电流通过,电桥便达到了平衡。
平衡时必有02
1
R R R R x =。
电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。
假设电桥在R 1/R 2=1时调到平衡,则有R x =R 0,这时若把R 0改变一个微小量ΔR 0,电桥便失去平衡从而有电流I G 流过检流计,如果I G 小到检流计察觉不出来,那么人们仍然会认为电桥是平衡的,因而00R R R x ∆+=,ΔR 0就是由于检流计灵敏度不够高而带来的测量误差,因此引入电桥灵敏度S ,定义为:x
x R R n
S /∆∆=
Δn 越大,说明电桥灵敏度越高,带来的测量误差就越小。
2
电桥的测量误差,除了检流计灵敏度的限制外,还有桥臂电阻R 1、R 2和R 0的不确定度带来的误差。
一般来说,这些电阻可以制造的比较精确(误差为0.2%),标准电阻的误差为0.01%左右。
另外,电源电压的误差,也对电桥的测量结果有影响。
实验内容
1.按下图接线,先将调压器输出调为零,测室温下的热敏电阻阻值,注意选择惠斯通电桥合适的量程。
先调电桥至平衡得R 0,改变R 0为R 0+ΔR 0,使检流计偏转一格,求出电桥灵敏度;再将R 0改变为R 0-ΔR 0,使检流计反方向偏转一格,求电桥灵敏度。
求两次的平均值,保证数据的准确性。
2.调节变压器输出进行加温,从30℃开始每隔5℃测量一次R t ,直到85℃。
撤去电炉,使水温慢冷却,测量降温过程中,各对应温度点的R t 。
求升温和降温时的各R 的平均值,然后绘制出热敏电阻的R t -t 特性曲线。
在t=50℃的点作切线,求出该点切线的斜率dt
dR
及电阻温度系数α。
3.作T R t 1}ln{-
曲线,确定常数R ∞和B ,再求50℃时的α:21T
B dt dR R t t -==α 4.比较式2、3计算的两个结果,试解释那种方法求出的材料常数B 和电阻温度系数α更准确。
5.注意事项:在升温时要尽量慢,升温过程中,电桥要跟踪,始终在平衡点附近。
实验数据:
温度T/℃ 升温电阻R/Ω 降温电阻R ˊ/Ω
1/T
lnR
R 的平均值/Ω
30 1260 1265 0.003298697 7.1 1262.5 35 1064 1065 0.003245173 6.4 1064.5 40 882 886 0.003193358 6.3 884 45 749 748 0.003143171 6.4 748.5 50 630 630 0.003094538 6.9 630 55 534 540 0.003047387 6.5 537 60 462 466 0.003001651 6.2 464 65 399 402 0.002957267 5.7 400.5 70 344 347 0.002914177 5.3 345.5 75 300 302 0.002872325 5.5 301 80 260 264 0.002831658 5.4 262 85 220 222
0.002792126
5.2
221
数据处理:
此时U=3V ,灵敏度 17531753
/11
==
S
读出50℃时电阻值R=631.2V ,斜率为-12.0Ω/℃,因此温度系数为: 作T
R t 1
}ln{-曲线: 从图中数据得到3399.80B ,0.017,0689.4lnR =Ω=-=∞∞R
· R 的平均值/Ω
R
的
平均值/Ω
3
将两个温度系数比较可以知道,后者绝对值更大。
实验误差分析:
实验中后一种方法求出的温度系数明显比前一种更加准确,因为前一种只用了50℃附近的数据,误差很大,而后一种数据拟合了所有的数据,整体上对数据进行了统计分析,因而减小了误差。
由于开始升温时电阻变化很快(热敏电阻对温度敏感),因为测得电阻的误差较大,且温度计精确度也不高,总之,本实验精确度不高。
思考题
1.如何提高电桥的灵敏度?
(1)使用较大的电阻,x R 增大;(2)加大电压,电流增大,n 增大。
2.电桥选择不同的量程时,对结果的准确度(有效数字)有何影响?
当21/R R 变大时,对于同样的x R 值,电阻箱阻值变小,可知测量的x R 值的准确度变小,有效数字的位数变少;反之准确度变大。
3. 若玻璃温度计的温度示值与实际温度有所差异,对实验结果有什么影响?应如何保证所测的温度 之准确?
若玻璃温度计的温度示值比实际温度偏小,则测得的阻值偏大;反之测得的阻值偏小。
因此,为了使温度测量准确,应选用示数准确的温度计。
在实验过程中,温度计的示数与实际温度的偏差主要是由温度升高过快造成的,因此加热要断断续续,以减小温度计的示数与实际温度的偏差。