初三数学(特殊值法)上课讲义
- 格式:doc
- 大小:36.00 KB
- 文档页数:4
古语有云:上将伐谋。
数学学习也是如此最重要的是方法而不是单纯的做题,从做题中总结方法才会收到实效。
中考在即给各位考生奉上我的倾情巨作:数学特殊值法。
什么是特殊值法?特殊值法我给大家总结一句话:一般成立特殊一定成立,特殊不成立一般一定不成立。
我给大家举个例子:这道题非常简单大家看一下:已知x+y=2,求 2x+2y=?解法也很简单2(x+y),将 x+y=2 代入得 4.但是我有个学生他不会做,还来问我说这道题他们老师告诉他用的是整体代入法,他不理解。
我当时很奇怪这种题出现几率很高,我问他平时怎么做的,他说他都是蒙的,他是令x=1,y=1,带进去结果恰好也是4,我问他是不是每次都蒙,他说基本都是,有时蒙的对,有时蒙错了。
我以这道题为例给大家说下特殊值法:首先这道题的题目我给大家用汉语翻译一下,对任意的x+y 等于 2,求 2x+2y等于几。
这道题既然出来了他一定有解,而且解是唯一的,根绝我们的特殊值法法则,这里的x+y=2是对任意 x+y=2都成立的,那么我们来个特殊的x=1,y=1,带进去结果等于4,这个结果一定是答案,如果不是答案,就意味着特殊不成立,那么一般也就不成立了此题也就出错了。
我们再来一道题试试,这道题是内蒙呼和浩特2014 中考第 7 题也不难,有些同学肯定也不会。
a,b,c 在数轴上对应的点如下图所示,则下列式子中正确的是a b 0 c xA.ac > bc B.|a –b| = a–bC.–a <–b < c D.–a–c >–b–c这道题拿到手很简单,就是数轴结合,数的性质进行判断,还有去绝对值符号的练习。
这道题常规解法我们不讲了,我们试试特殊值法,令a=-3,b=-1,c=2(这道题不太清楚,出的不好, a 和 c 距离原点的距离不太明显),我们来判断 A ac=-6,bc=-2很显然 A 错了,再来看 B |a-b|=2 ,a-b=-2,很显然 B 错了再来看 C -a=3,-b=1 很显然 C也错了,直接选D,我们也来看下 D -a-c=1 -b-c=-1肯定选 D 了。
《特殊角的三角函数值》试讲逐字稿(附教案)简案一、教学目标【知识与技能目标】学生能够掌握锐角三角形函数值及其计算方法,并能熟练运用。
【过程与方法目标】通过自主探究、合作交流的过程,培养数感,提升推理运算能力。
【情感态度与价值观目标】体会数学的乐趣,培养学习数学的趣味。
二、教学重难点【教学重点】学生能够掌握锐角三角形函数值及其计算方法,并能熟练运用。
【教学难点】运用锐角三角函数进行计算。
三、教学方法讲授法,讨论法,练习法四、教学过程(一)复习导入引导回忆锐角三角函数的定义,以及锐角三角函数它们的正弦余弦和正切的求法,学生回答,引入新课。
(二)新课讲授1.动手操作,解决问题拿出事先发给学生的三角尺,学生测量出三角尺的角度,确定三个特殊角30°、45°、60°2.小组合作,探究新知教师组织学生小组讨论,推导出30度,45度和60 度角的三角函数值,并且填写任务单,提示学生设最短的边为1。
小组汇报,详细讲解其中一个角预设一:学生设最短的边为1预设二:学生设最短边位a最后总结角度规律,从左到右加15°;45 度角的三角函数;30°、60°三角函数值之间的关系。
3.灵活运用,例题讲解出示例题,让学生计算,多媒体出示答案,同桌之间互相纠正。
(三)巩固总结求适合下列条件的锐角的度数(1)tan B=√33(2)2sin a-√2= 0(四)课堂小结教师引导学生对本节课所学知识进行小结,学生畅谈本节课的收获,教师给予点评和补充。
(五)布置作业作业1:完成剩余课后练习题;作业2:学有余力的同学预习下节课的知识《特殊的三角函数值》试讲逐字稿各位老师上午好,我试讲的题目是《特殊的三角函数值》,下面开始我的试讲。
上课,同学们好,请坐一、导入上课前老师来考考大家,之前我们学习了锐角三角函数的定义,有同学知道锐角三角函数它们的正弦余弦和正切分别是怎样求的呢?课代表你来说,课代表说的非常正确,他说在直角三角形ABC中<c=90度,那么<A,它对应的正弦sinA就是,对边比上斜边,cosA等于邻边比上斜边,tanA等于对边比上邻边。
九年级数学精讲班讲义一、一元二次方程。
1. 定义。
- 一般形式:ax^2+bx + c = 0(a≠0)。
- 举例:x^2+2x - 3 = 0,这里a = 1,b = 2,c=- 3。
2. 解法。
- 直接开平方法。
- 对于方程x^2=k(k≥slant0),解得x=±√(k)。
- 例如:(x - 1)^2=4,则x - 1=±2,x = 1±2,即x = 3或x=-1。
- 配方法。
- 步骤:先将二次项系数化为1,然后在方程两边加上一次项系数一半的平方,将方程化为(x + m)^2=n的形式再求解。
- 例如:x^2+4x - 1 = 0,x^2+4x = 1,x^2+4x + 4 = 1+4,(x + 2)^2=5,x=-2±√(5)。
- 公式法。
- 求根公式x=frac{-b±√(b^2)-4ac}{2a}。
- 对于方程2x^2-3x - 1 = 0,a = 2,b=-3,c = - 1,代入公式可得x=frac{3±√((-3)^2)-4×2×(-1)}{2×2}=(3±√(17))/(4)。
- 因式分解法。
- 把方程化为(mx + n)(px + q)=0的形式,则mx + n = 0或px + q = 0。
- 例如:x^2-3x + 2 = 0,分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式Δ=b^2-4ac- 当Δ>0时,方程有两个不相等的实数根。
- 当Δ = 0时,方程有两个相等的实数根。
- 当Δ<0时,方程没有实数根。
- 例如:对于方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1;对于方程x^2+1 = 0,Δ = 0 - 4×1×1=-4<0,方程没有实数根。
妙用特殊值法、特殊位置法联想融通:知道“特殊值法”或“赋值法”吧?以前没听说过也不要紧,顾名思义即知.请就此展开一下联想吧!特殊值法,是由一般到特殊的过程,如果题中出现、或隐含着满足条件的任意数、或任意点都使结论成立,可由特殊值法推断结论.做题中学生不一定明白其中原理,但可以让学生用试值法验证,如果有两或三个(对)以上的特殊数、或特殊值的位置结论一定或不变,一般可选之,或作为猜想的结论.此法,在题目简单时就能很大程度地帮助绩差生、在题目难时很大程度地帮助绩优生.一、代数类[8]解法归一:用使原题有意义的数代替字母求值或推断.例15-1-1 已知x -3y =-3,则5-x +3y =( )A .0B .2C .5D .8交流分享:取y =0,x =-3带入即可. 因为:由四个选项可知,5-x +3y 值为等于0、2、5、8之一,是一个定数,与x 、y 的取值无关,但前提是所选x 、y 的取值满足x -3y =-3,所以可用特殊值法,一般地,至少用两组数试试.技巧:当已知一个方程、求一个代数式值,自己又不会其他方法时,可用此法蒙上.例15-1-2 化简2244xy y x x --+的结果是( ) A . 2x x + B . 2x x - C . 2y x + D . 2y x - 交流分享:选一对使分式值不等于0的数即可,知x =1,y =2. 最好选两组使分式有意义的数,代入原式和各选项,看原式与哪个选项的值相等.技巧:如果不会化简分式,则可用特殊值代入原式与选项试值找答案.例15-1-3 若a <b <0,则下列式子:①a +b <ab ;②a +b <b +2;③1a b>;④11a b <中,正确的有( )A .1个B . 2个C . 3个D . 4个交流分享:给一组满足条件的a 、b 值一试就可得正确选项. 如取a =-2,b =-1.例15-1-4 某商品原价为100元,现在有下列四种调价方案,其中0<n <m <100, 则调价后该商品价格最高的方案是( )A . 先涨m %,再降n %B . 先涨n %,再降m %C .D . 先涨2m n +%,再降2m n +% 交流分享:同上理,给两组满足条件的m 、n 值一试就可. 如m =20、n =10, m =60、n =40例15-1-5 函数y=ax-a与ayx=(a≠0)在同一直角坐标中的图像可能是()A B C D交流分享:设a=1,把函数变成y=x-1与1yx=后画出图像,看自己画出的图像哪个选项相符就选取它,如果没有,再设a=-1再试.例15-1-6如图15-1-1,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心作0°~90°的旋转,那么旋转时露出的△ABC的面积S随着旋转角度n的变化而变化,下面表示S与n的关系的图像大致是()A B C D交流分享: 显然A与D、E重合时S=0,A从D到E时S由0变大再变小到0,结论就得到了.其实在判定运动三角形面积与自变量的关系时,找使中、终三个特殊点,看出它的大小变化,再看三角形的三边,如果三边大小都变,一般是二次函数,如果有一边不变就是一次函数.提醒:请回味与感悟一下你用特殊值法解题的心得与体会.15-1-1ABDE·O体验与感悟15-11. 若3a 2-a =2,则5+2a -6a 2=___________.2. 已知x :y =5:2,M =222xy x y-,N =2222x y x y +-,则M - N =____________. 3. 已知0<a <b <1,不等式正确的是( )A . a <a 2B . a 2>bC . a >abD . 11a b< 4. 甲、乙两人3次都同时到某个体米店买米,甲每次买m (m 为正整数)千克米,乙每次买米用去2m 元. 由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元. 那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是( )A .甲比乙便宜B . 乙比甲便宜C . 甲与乙相同D . 由m 的值确定5. 函数y =ax +b 和y =ax 2+bx +c 在同一直角坐标系内的图像大致是( )A B C D6. 已知函数3y x=-图像上的三个点A (x 1, y 1)、B (x 2, y 2)、C (x 3, y 3),且x 1<0<x 2<x 3, 则y 1、y 2、y 3,的大小关系是( )A . y 1<y 2<y 3B . y 2<y 3<y 1C . y 3<y 2<y 1D .无法确定7. 把直线y =-2x 向上平移后得到直线AB ,已知点B (a , b )的坐标满足b +2a =6, 则直线AB 是( )A . y =-2x -3B . y =-2x +3C . y =-2x -6D . y =-2x +68. 如图15-1-2,已知正三角形ABC 的边长为1,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图像大致是( )A B C D二、几何类[8]解法归一:画出符合题意的特殊位置,如在起点、中点、终点的图形,再来求值或推断. 例15-2-1 如图15-2-1,已知AD 为△ABC 的角平分线,DE ∥AB 交AC于E ,23AE EC =.则AB AC =( )A .13B . 23C . 25D . 35交流分享:就取AE =2,EC =3,则DE =2,AC =5,由相似求得AB 后再求AB :AC 的值,或通过相似到处AB :AC =DE :CE 均可.注:在比例问题中特殊值法用的更是广泛.例15-2-2 如图15-2-2,将一个直角三角形纸片减去直角后得到一个四边形,则∠1+∠2=_____度交流分享:取两锐角分别是30°、60°即可. 因为既然减法是任意的,又求∠1+∠2的值,所以它一定是个与剪法无关的定值,否则无法求∠1+∠2的值.例15-2-3 如图△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E . DF ⊥AC 于点F ,BC =2,则DE +DF =_____.交流分享:当D 在B 时,DE =0,DF 就是AC 边上的高;当然D 取在BC 中点或C 点时亦可得结论.因为D 是BC 边上任意一点, DE +DF 如果不是定值就没法求了,所以它一定是个定值. 另外通过连接AD 用面积法(或用其他方法)也可证明DE+DF 是一个定值,与D 的位置无关.Hi !特殊值法咱早就用过!今天起往后,做选择填空题时咱就常用用它如何?体验与感悟15-21. 若1082x y z ==,则x y z y z ++=+__________. 2. 如图15-2-4,若C 是线段AB 的中点,D 是线段AC 上的任一点(端点除外),则( )3. A . AD ·DB <AC ·CB B . AD ·DB =AC ·CB C . AD ·DB =AC ·CB D . AD ·DB 与AC ·CB 大小关系不确定3. α为锐角,若tan α=45,则si n α=_______, c os α=_______. 4. 直角三角形的两条直角边长为a 、b ,斜边上的高为h ,则下列各式中总能成立的是( ) A . ab =h 2 B . a 2+b 2=2h 2 C .111a b h += D . 222111a b h += A C BD 图15-2-5. 如图15-2-5将一副三角板叠放在一起,使直角顶点重合于O点,则∠AOC+∠DOB =___.图15-2-5 图15-2-6 图15-2-76. 如图15-2-6,在矩形ABCD中,AB=6,AD=8,AC交BD于点O,EM⊥AC于点M, EN⊥BD于点N, 则EM+EN=_________.7. 如图15-2-7,在△ABC中,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B. 已知P、Q两点同时出发,并同时到达终点,连接MP,MQ,PQ, 在整个运动过程中,△MPQ的面积大小变化情况是()A. 一直增大B. 一直减小C.先减小后增大D.先增大后减少特殊值法(特殊位置法)不仅仅在解决选择填空题中有用,它对解难题、大题同样有很大帮助,因为它是合情合理推理的一部分.例15-3-1 在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD. 请推断“BE+CD=BC”成立与否.交流分享:取∠B=60°、45°各一次,看两次结论是否相同即可. 如果特殊情况结论不一,结论肯定不成立. 此题也可通过严格证明得结论,但有难度.例15-3-2 如图15-3-1,位于一条大河两侧的A、B两市准备在河上联合修建一座大桥,请你帮忙确定一下桥的位置(要求桥与河岸a、b垂直),使得从A到B的行程最短. 要求:画出图,不写作法.体验与感悟15-31.如图15-3-2,以△ABC 的边AB 、AC 为直角边向外作等腰直角△ABE 和△ACD ,M 是BC 的中点,请你探究线段DE 与AM 之间的关系:___________.图15-3-2 图15-3-3 图15-3-42.如图15-3-3,在△ABC 中,a , b , c 分别为∠A , ∠B , ∠C 的对边,若∠B =60°, 则c a a b c b+=++( )A .12B .2 A .1 A 3.如图15-3-4,一个矩形被两条线段分成了四个小矩形,如果图形⑴、⑵、⑶的面积分别是8、6、5,则阴影的面积是_________.3.如图15-3-5,矩形的顶点坐标分别为O (0,0), A (3,0), B (0,4), C (3,4), D 为边OB 的中点. E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,点E 、F 的坐标分别为__________、__________.5. 如图15-3-6,点P (t , 0)(t >0)是抛物线y =x 2-tx 与x 轴的交点. 已知矩形ABCD 的三个顶点为A (1, 0), B (1,-5), D (4, 0), 规定:在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”. 若抛物线将这些“好点”分成数量相等的两部分,则t 的取值范围是_______________.提醒:请将一下特殊值法与特殊位置法的妙用吧!仔细体会一下,你会有不少心得.。
讲义编号:组长签字:签字日期:(2)正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。
3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450 600sin α2122 23 cos α 1 23 22 21 tan α33 1 (1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
三、典型例题考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cos α=35,sin α=_______,tan α=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1ncosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
初三数学(特殊值法)
专题一初中数学(特殊值法)
(1)题目中没有出现具体的数据,只有倍数关系
(猜)(初一)1.一个圆柱的底面半径比一个圆锥的底面半径多3倍,高是原来的1/4,则这个圆柱的体积是原来圆柱体积的()
A、3/4
B、27/4倍
C、12倍
D、4/3倍
(猜)(初三)2.AB=2/3AH,AG=2/3AM,三角形ACF的面积是四边形CIKE的()
(猜)(初三)3.圆O被A,B,C,D,E,F,G,H八等分,求
①∠BEC=()度
②与线段AB相等的线段有()条(不包括自己)
③BC( )1/2CE (填等于大于小于)
④八边形ABCDEFGH是圆O面积的()
(初二)4. 已知关于x的一次函数y=ax-a+1和y=(a-1)x-a+2,它们的图象交点是。
(初一)5.若a<-2,则3-│3-│a-3││化简的结果是()
A、3-a
B、3+a
C、-3-a
D、a-3
(初一)6.当m<0时,m与m的大小关系为()
A、m>m
B、m<m
C、m=m
D、无法确定
★(初二)7.
(初一)8.已知有理数a、b满足a>b,则下列式子正确的是()A.-a<b B. a>-b C. -a<-b D. -a>-b
★(初三)9.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(,0),且。
与y轴的正半轴的交点在点(0,2)的下方,则下列结论①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0中正确的是。
(写出序号)
(初二)10.若a、b满足,则的值为。
★(初三)11.
(初一)12.若x>0,y<0,且│x│<│y│,则x+y 0。
若x<0 ,y<0,且│x│>│y│,则x+y 0 。
★(初二)13.
A、a、b、c都不小于0
B、a、b、c都不大于0
C、a、b、c至少一个小于0
D、a、b、c至少一个大于0。