当前位置:文档之家› 元素分析知识总结

元素分析知识总结

元素分析知识总结
元素分析知识总结

元素分析知识总结

第一章.原子吸收光谱

1·共振线,第一共振线

共振吸收线:原子由基态跃迁到激发态所吸收的谱线。

第一共振线:由基态跃迁到能量最低的激发态所吸收的谱线。这条谱线强度最大,

灵敏度最高。

2·原子吸收谱线的自然宽度、中心频率、半峰宽

原子吸收线并非是一条严格的几何线,而是占据着极窄的频率范围,具有一定

的自然宽度。原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。

半宽度(Δv):是指在极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差。

海森堡测不准原理:当核外电子跃迁到激发态时,激发态的能级和电子在激发态

停留的时间是测不准的,具有不确定度。即:

E1 :E1 ±ΔE t1 : t1 ±Δt

ΔE·Δt≥h/2π

只有当Δt→∞,ΔE→0 ,此时激发态的能量E1 才有定值,但是电子在激发态的时间只有约10-8,所以激发态的能量E1 是测不准的,只能是一个范围。

而电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 ,

基态能量E0具有定值。所以V= (E1 - E0)/h 是测不准的,中心频率具有不

确定度,所以原子吸收线具有自然宽度。自然宽度(ΔυN)一般为10-5nm数量

级。

中心频率半峰宽

3·为什么原子吸收线具有自然宽度?

根据海森堡测不准原理:ΔE·Δt≥h/2π

电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 ,

基态能量E0具有定值。而电子在激发态的时间只有约10-8,所以激发态的能量

E1 是测不准的,只能是一个范围。所以谱线的频率V= (E1 - E0)/h 是测不准

的,中心频率具有不确定度,所以原子吸收线具有自然宽度。自然宽度(Δυ

N)一般为10-5nm数量级。

4·多普勒变宽、洛伦兹变宽、霍尔兹马克变宽

多普勒变宽:(中心频率不变)

一个运动着的原子所发射出的光,若运动方向朝向观察者(检测器),则观测到光的频率较静止原子所发出光的频率来得高(波长来得短);反之,若运动方向背向观察者,则观测到光的频率较静止原子所发出光的频率来得低(波长来得长)。由于原子的热运动是无规则的,但在朝向、背向检测器的方向上总有一定的分量,所以检测器受到光的频率(波长)总会有一定的范围,因此谱线变宽。

多普勒变宽的表达式:

多普勒变宽是决定谱线变宽程度的主要原因之一。在2000-3000K范围内,其数值一般为0.001-0.005nm之间,约为谱线自然宽度的100倍左右。由于气态中原子热运动分布几率是大致相同的,具有近似的高斯分布,所以多普勒变宽时,中心频率ν0不变,只是两侧对称变宽,但k0值变小

压力变宽:是由于微粒间相互碰撞的结果,因此也称碰撞变宽。吸光原子与蒸汽中的其它原子或粒子相互碰撞引起能级的稍微变化,而且也使激发态原子的平均寿命发生变化,导致吸收线的变宽,这种变宽与吸收区气体的压力有关,压力变大时,碰撞的几率增大,谱线变宽也变大。根据与其碰撞粒子的不同,又分为洛伦兹(Lorents)变宽和赫尔兹马克(Holtsmark)变宽两种。

洛伦兹变宽:(不同种元素)是由吸光原子与其它外来粒子(原子、分子、离子、电子)相互碰撞时产生的,洛伦兹变宽用可表达为

式中NA为阿佛加德罗常数,ζ为碰撞面积,P为压力,R为气体常数,T为热力学温度,A、M分别为被测元素和外来粒子的相对原子量。

压力越大,变宽的范围越大;外来粒子质量越大,使中心频率发生紫移,反之则红移。洛伦兹变宽使中心频率发生位移,且谱线轮廓不对称,使光源(空心阴极灯)发射的发射线和基态原子的吸收线产生错位,影响了原子吸收光谱分析的灵敏度。

赫尔兹马克变宽:(同种元素)这种变宽是指和同种原子碰撞所引起的变宽,也称为共振变宽。只有当被测元素的浓度较高时,同种原子的碰撞才表露出来。因此,在原子吸收法中,共振变宽一般可以忽略。

.解释图中曲线Ⅱ,Ⅲ发生弯曲的原因。

曲线在低浓度区呈直线,在高浓度时曲线向浓度轴弯曲,即曲线II弯曲的原因可能是a洛伦兹变宽的影响;b.光源发射多重线干扰或灯电流过大、产生自吸变宽c.溶液浓度过大,赫尔兹马克变宽严重。d. 样品中的基体产生化学干扰或物理干扰。

曲线在低浓度区呈直线,浓度增高时,曲线向上弯曲,即曲线III是由于某些元素的电离度随浓度不同而引起的:a.在低浓度时,电离度较大,基态原子数少;

b.含量增高时,电离度减小,基态原子数目相对增加

.什么是多普勒变宽和洛伦茨变宽?各有什么特点?

多普勒变宽由原子的热运动引起。若原子运动方向朝向检测器,则观测到光的频率会变高;反之,若运动方向背检测器,则观测到光的频率变低。所以检测器受到光的频率总会有一定的范围,因此谱线变宽。多普勒变宽时,中心频率ν0不变,只是两侧对称变宽,谱线强度变小。

洛伦兹变宽:是由吸光原子与其它外来粒子(原子、分子、离子、电子)相互碰撞时产生的。洛伦兹变宽使中心频率发生位移,且谱线轮廓不对称,使光源(空心阴极灯)发射的发射线和基态原子的吸收线产生错位,影响了原子吸收光谱分析的灵敏度。

5·干扰效应

干扰效应按其性质和产生的原因,可以分为:物理干扰、化学干扰、电离干扰、光谱干扰、背景干扰

物理干扰:是指试样在转移、蒸发和原子化的过程中,由于物理的特性(如粘度、表面张力、密度等)的变化引起吸收强度下降的效应.

消除物理干扰的方法1调节雾化器,改变进样量和雾化效率2.使标准溶液和样品

溶液的物理性质一致,使用相同的溶剂稀释样品3.采用标准加入法

化学干扰:化学干扰是指试样溶液转化为自由基态原子的过程中,待测元素与其他组分之间的化学作用而引起的干扰效应,它主要影响待测元素化合物离解及其原子化。这种效应可以是正效应,提高原子吸收信号;也可以是负效应,降低原子吸收信号。化学干扰是一种选择性干扰,它不仅取决于待测元素与共存元素的性质,而且还与喷雾器,燃烧器,火焰类型、状态、部位密切相关。

化学干扰的来源主要有:

(1)待测元素与共存元素之间形成热力学更稳定的化合物,使参与吸收的基态原子数减少。(2)自由基态原子白发地与环境中的其他原子或基团反应,导致参与吸收的基态原子数减少,这种类型的干扰,主要是自由基态原子与火焰的燃烧产物形成了氧化物和氢氧化物,有时也由于形成碳化物或氮化物所造成的。(3)分析试样溶液的有机或无机基体与待测元素形成易挥发化合物,参与吸收的基态原子数减少,灵敏度降低。(4)还有一些其它来源,如高含量盐类存在会使吸收信号

几种常见的化学干扰

阳离子干扰:在测定Ca, Mg 时, 常受到Al 的干扰, 还有钛、铬、铍、钼、钨、钒、锆等都对碱土金属有抑制作用(镁、钙、锶、钡等)。主要是一些阳离子与被测元素形成难熔化合物。如:Al 对Mg 的干扰, 主要是形成MgO 与Al2O3 生成尖金石, 使Mg 的原子化受到干扰。.阴离子干扰:在测定Ca时, 如样品中含有硫酸盐、磷酸盐、硅酸盐时会对碱土金属产生干扰,主要形成难熔氧化物;使它们的熔点提高。

消除化学干扰的方法

1)改变火焰温度。对于生成难熔、难解离化合物的干扰,可以通过改变火焰的种类、提高火焰的温度来消除。如在空气-乙炔火焰的PO43-对Ca的测定有干扰,当改用氧化二氮-乙炔火焰后,提高火焰温度,可消除此类干扰。2)加入释放剂:向试样中加入一种试剂,使干扰元素与之生成更稳定、更难解离的化合物,而将待测元素从其与干扰元素生成的化合物中释放出来。如测Mg2+时铝盐会与镁生成MgAl2O4难熔晶体,使镁难于原子化而干扰测定。若在试液中加入释放剂SrCl2,可与铝结合成稳定的SrAl2O4而将镁释放出来。磷酸根会与钙生成难解离化合物而干扰钙的测定,若加入释放剂LaCl3,则由于生成更难离解的LaPO4而将Ca释放出来。3)加入保护络合剂:保护络合剂可与待测元素生成稳定的络合物,使待测元素不再与干扰元素生成难解离的化合物而消除干扰。如PO43-干扰Ca的测定,当加入络合剂EDTA后,Ca与EDTA生成稳定的鳌合物,而消除PO43-的干扰8-羟基喹啉与Al形成更稳定的化合物,从而抑制Al对Mg 的干扰。葡萄糖、乙二醇、甘油、甘露醇等都是保护剂。4)加入缓冲剂加入缓冲剂即向试样中加入过量的干扰成分,使干扰趋于稳定状态,此含干扰成分的试剂称为缓冲剂。如用氧化二氮-乙炔测定钛时,铝有干扰,难以获准结果,向试样中加入铝盐使铝的浓度达到200ug/mL时,铝对钛的干扰就不再随溶液中铝含量的变化而改变,从而可以准确测定钛。但这种方法不很理想,它会大大降低测定灵敏度。5)加入助熔剂;氯化铵有助于铬,钼的测定,可以抑制Al、硅酸根、磷酸根、硫酸根的干扰。①氯化铵熔点低,对高熔点的元素起助熔作用。②氯化铵的蒸汽压高,在数千度高温下氯化铵的蒸汽可冲破雾滴有利熔融蒸发。③氯化铵能使测定元素转变成氯化物,这样可以排除干扰,提高灵敏度。6)改变介质、溶剂或改善喷雾器的性能.如测定铬时,溶液中加酸时,可提高灵敏度;测

定铌时,加入HF 酸可提高灵敏度。此外,加入醇类、酮类等有机溶剂后,可改变火焰温度和气氛,使溶液的粘度、表面张力有显著改变,有利提高喷雾效率。7)化学分离

常用的螯合剂有:吡咯烷二硫代氨基甲酸铵(APDC) 二乙基二硫代氨基甲酸钠(DDTC)常用的萃取剂有:4-甲基-2-戊酮(MIBK)

.电离干扰:是指待测元素在火焰中吸收能量后,除进行原子化外,还是部分原子电离,从而降低了火焰中基态原子的浓度,使待测元素的吸光度降低,造成结果偏低。火焰温度愈高,电离干扰越显著。

消除电离干扰的方法

当分析电离电位较低的元素(如K、Na、Be、Sr、Ba、Al),为抑制电离干扰,除了采用降低火焰温度的方法外,还可以向试液中加入消电离剂,如1%CsCl(或KCl、RbCl)溶液,因CsCl在火焰中极易电离产生高的电子云密度,此高电子云密度可以只待测元素的电离而除去干扰。

背景干扰:背景干扰包括1分子吸收.2光散射3火焰气体的吸收和介质中无机酸的吸收

消除背景干扰的方法

.1 用“空白溶液”扣除背景:适合于扣除酸吸收的影响4.4.2利用连续光源背景校正器扣除背景. 在190-370nm的紫外区可用氘灯作为背景校正器;在370nm 以上可用碘钨灯作为背景校正器;具有背景校正器的光路图如下:

2塞曼效应背景校正.:光的向与磁场方向垂直,在强磁场作用下,原子吸收线分裂为π和δ+组分:π平行于磁场方向,波长不变;δ+组分垂直于磁场方向,波长分别向长波与短波移动。这两个分量之间的主要差别是π分量只能吸收与磁场平行的偏振光,而δ+分量只能吸收与磁场垂直的偏振光,而且很弱。即δ+组分为背景吸收,π组分为原子吸收。Zeeman背景校正的特点:a.波长范围宽(190-900nm); b.校正准确度较高,可用于强背景校正;c.与非Zeeman效应扣背景相比,灵敏度略有下降(因为入射线分裂,使其光强下降);d.仪器价格昂贵。

光谱干扰:指所选用的光谱通带内,除分析元素吸收的辐射之外,还有光源或原子化器的某些不需要辐射同时被检测出来的干扰。

6·释放剂、保护剂、消电离剂、基体改进剂

基体改进剂的类型:a.无机改进剂:许多铵盐、无机盐、金属氧化物,如硝酸铵、PdCl2、磷酸氢二铵等。b.有机改进剂:如EDTA、抗坏血酸、硫脲、草酸、蔗糖等。如:欲降低氯化物背景吸收干扰,通常用硝酸铵来控制,其反应:NH4NO3+NaCl→NH4Cl+NaNO3

7·氘灯扣背景、塞曼扣背景

8·标准曲线法

1吸光度A = lgI0 /I = KLN0 = K′C A:吸光度; K:吸光系数;L:为吸光层厚度N0:为待测元素的基态原子数。

2标准曲线法是原子吸收光谱法中常用的定量方法,通过配制一系列待测元素已知浓度的标准溶液(4-5个左右),利用仪器测定每一个标准溶液的吸光度。以标准溶液的浓度为横坐标,吸光度为纵坐标,即可绘制一条标准曲线。根据未知样品的吸光度值,即可从曲线中计算出其浓度大小。标准曲线法的最佳分析范围的吸光度在0.1-0.6之间。在这个区间吸光度的测量误差最小。

3标准曲线法适用于样品组成简单,共存组分互无干扰的试样。

4:当试样溶液的基体比较复杂时,配置和试样溶液相似的标准溶液可以减少试样溶液与标准溶液的性质差异引起的误差,消除某些化学干扰。

方法如下:分别吸取几份等量的待测试验溶液,然后按比例加入不同体积的标准溶液,稀释至相同体积,使测定溶液浓度分别为Cx、Cx+C0、Cx+ 2C0 、Cx+4C0等,在相同条件下依次测定它们的吸光度。以吸光度对加入量作图,

9·检出限、灵敏度、精密度、加标回收率

1)灵敏度:在光谱分析化学中,灵敏度S被定义为:S=dx/dc(1)

其中:dx为测量值的改变,dc为浓度c的改变。

特征浓度S* :能产生1%吸收(即吸光度为0.0044A)信号时所对应的待测元素浓度,用μg/mL/1%表示:S*=C×0.0044/A(2)S*越小,S越大,灵敏度越高。

2)检出极限:检出极限浓度计算公式为:其中:A 为浓度为C的试验溶液多次测定的平均吸光度;ζ为空白溶液测定的标准偏差。空白溶液:是指组成与样品相同的不含被测样品的溶液。

3)精密度:标准偏差(SD或S)相对标准偏差(RSD)

4)准确度:意味着测定结果与“真值”之间的符合程度,它取决于偶然误差和系统误差。表示方法:绝对误差εa=X-T,相对误差(r)εr=(X-T)/T×100%其中:X 为测量值的平均值(mean value)T为真值(true value)

5)加标回收率:

10·常用的光源,光源的自吸现象

1)空心阴极灯,使用时要选择合适的灯电流;2)高强度空心阴极灯,适用于分析线在远紫外区灵敏度低的元素、谱线复杂的元素(如稀土元素)和有谱线干扰的元素。3)无极放电灯,能产生最大光强度和最窄谱线宽度的光源灯4)多元素空心阴极灯5)新型连续光源——高聚焦短弧氙灯,灯内充有高压氙气,在高频高压电压的激发下形成弧光放电,辐射出200-1500nm的紫外到近红外的强连续光谱

2)光源(空心阴极灯)发射的共振线被灯内同种基态原子所吸收,从而导致自吸现象,使空心阴极灯发射的谱线强度急剧下降。灯电流愈大,产生热量愈大,使阴极被溅射出的原子也愈多,有的原子没被激发,所以阴极周围的基态原子也愈多,自吸变宽就愈严重。

3)空心阴极灯中,发射线自吸的直接原因是灯电流较大造成的,在分析工作中,只要光强度够用,灯电流宜小些,以减少自吸变宽。

11·原子吸收光谱仪的结构:一、光源系统二、原子化系统三、分光系统(单色器)四、检测系统五、数据处理系统

1)原子化系统:将元素由离子或化合物形式转化为原子形式的过程叫做原子化。

原子化器的作用是将样品中的待测元素转化为基态原子。原子化系统主要分为两大类: a. 火焰原子化 b. 石墨炉原子化

12·火焰原子化器的结构:雾化器、雾化室、燃烧器

13·为什么样品的利用率低?雾化效率低,雾化效率:是指由雾化器转变成气溶胶进入火焰的溶液量与溶液总提升量之比。一般雾化器的雾化效率为10%-15%,性能优良的雾化器,雾滴直径可达5-25μm。

14·雾化室作用:雾化室具有“记忆”效应,提供空间让气体与小液滴充分混合,

排尾气

15·火焰分类、燃气助燃气的种类

1)按照燃气、助燃气种类划分:①乙炔—空气火焰:能测定30多种元素该火焰适合于测定其氧化物的离解能小于5eV的元素。火焰温度高,可达2300-2500℃;燃烧稳定;重现性好;噪声低;燃烧速度适当;在小于230nm 的波段有明显的分子吸收。②乙炔—一氧化二氮(N2O)火焰使火焰法可测定的元素由30余种扩大到70种左右。火焰特点: a.火焰温度高,最高可达2995℃。火焰燃烧中,N2O分解为34%的氧和66%的氮;b.火焰燃烧速度慢,可连续维持;c.具有较强的还原性气氛,有强还原性的CH、CO、C 、CN、NH 基团,能测定许多易生成稳定氧化物的元素,如:Be、Al、Ti、Zr、Ta、Si、B、V 、W、Mo等;③丙烷—空气火焰④氢气—空气火焰⑤氢气—氩气火焰2)按照燃气/助燃气流量划分a化学计量火焰b.富燃性火焰c.贫燃火焰火焰温度的高低依次为a>b≈c

16·火焰的分区:内焰区>外焰区>焰心区。温度最高的是内焰区

17·燃烧器高度有让谱线正好穿过内焰区的作用

17·光谱通带

1)光谱通带是选定缝宽时,通过出口狭缝的波长范围。△λ=D×S其中:D——单色器的线色散率倒数(在单色器的焦平面上单位距离的两条谱线的波长差)(?/mm)S——出口狭缝的宽度(mm)

18·检测器、光电倍增管,一次只能测定一种元素

19·火焰原子化器常见的故障

雾化器阻塞:及时排废气,回收废液,清理燃烧器积碳。

20·石墨炉升温步骤:干燥、灰化、原子化、净化。斜坡升温

21·氩气作用(内气路:吹走杂质,净化废气,外气路:保护石墨管)循环水作用:冷却电极。

22·平台升温的特点:平台升温滞后于管壁升温

23·常用的石墨管①普通石墨管②热解石墨涂层管③难熔碳化物石墨涂层管④衬钽石墨管

24·氢化物发生技术

氢化物发生原理

As、Sb、Bi、Se、Te、Ge、Pb、Sn八种元素,在酸性介质中被还原生成该元素的氢化物,以气体形式从溶液中分离出来:氢化物由惰性载气带入原子化器中加热分解(热解温度一般在300-900℃)而生成基态原子;检测限比火焰原子化法降低约3个数量级。NaBH4或KBH4:0.5-8%(W/V),加入少许NaOH 可以使溶液稳定,加入的量大约为0.1mol/L

25·影响氢化物发生效率的因素

1)酸的种类和浓度的影响:pH=1.5-2.0范围内才能获得PbH4;Sn的氢化物SnH4的生成需要pH=1.0-1.5。HF在较低的浓度下产生干扰,而HCl、HNO3、H2SO4只有在较高浓度时才会抑制信号。2)共存离子的干扰:常见金属元素如碱金属和碱土金属、Al、V、Ti、Zn、Cr(III)、Mn(II)不干扰形成氢化物元素的测定,干扰主要来自第VIII和第IB族中的元素。为此可以:增加酸度;使用混合酸;萃取分离除去。3)价态的影响:第V A族元素,待测元素在+3价时的峰高灵敏度是+5价时的近两倍;6价的Se和Te没有可测量的信号。常用的还原剂是KI和抗坏血酸的混合物,或采用KI的强酸性溶液。4)NaBH4(KBH4)溶液浓度的影响:NaBH4(KBH4)浓度过大,会产生大量的氢气,使灵敏度下降;NaBH4(KBH4)浓度过低,氢化物不易生成,灵敏度也降低。5)载气及载气流量的影响:载气通常为Ar或N2气,其流量为0.5-1.0L/min 。载气流量大:氢化物被稀释,浓度降低,灵敏度降低;载气流量小:不能将管内的分解物除净,而产生“记忆效应”。

26·石英管原子化器、氩氢火焰、低温火焰

1)石英管原子化器特别适用于氢化物原子化石英管原子化器的特点是不需要外加燃气,直接利用氢化反应中产生的氢气即可,因此结构简单,安全可靠。氩氢火焰原子化效率高,背景辐射低,物理和化学干扰小,重现性好。

27·荧光猝灭、原子荧光

1)原子荧光:共振荧光、非共振荧光、敏化荧光。

2)荧光猝灭:影响荧光效率的另一个主要因素就是荧光猝灭现象。处于激发态的原子,与其他粒子(如分子、原子、离子或电子)发成碰撞,以热能或其他形式释放能量,无辐射跃迁回到低能级的现象叫做荧光猝灭。荧光猝灭会使荧光量子效率降低,强度减弱,甚至导致荧光熄灭。

28·样品消解方法

1.湿法消解。湿法消解是用酸液或碱液并在加热条件下破坏样品中的有机物质的方法。常用的酸解体系有:硝酸-硫酸、硝酸-高氯酸、硝酸-盐酸、氢氟酸,过氧化氢等,它们可将待测物中的有机物和还原性物质全部破坏;碱解多用苛性钠溶液。消解可在坩埚(镍制、聚四氟乙烯制)中进行。

2.干灰化法。包括高温下利用空气中氧的高温炉干灰化法,100~300℃下利用激化了的氧原子的等离子氧低温灰化法。

3.微波消解法。密闭容器反应和微波加热这两个特点,决定了其消解完全、快速、低空白的优点。缺点:但不可避免地带来了高压(可能过压的隐患)、消化样品量小的不足。

29·常用的酸体系

1.常用的酸:HNO3(Au、Pt、Nb、Ta、Zr不被溶解)HCl;HClO4:沸点130℃。是一种强氧化剂,能彻底分解有机物。但高氯酸直接与有机物接触会发生爆炸,因此,通常都与硝酸组合使用。或先加入HNO3反应一段时间后再加入HClO4 。HClO4大都在常压下的预处理时使用,较少用于密闭消解中,要慎重使用;HF、H2O2、H2SO4一般不单独用H2SO4 ,而是与HNO3一起组合使用;H3PO4:热HPO4适用于消解那些用HCl消解时会使某些特定痕量组分挥发损失的铁基合金,磷酸还可溶解铬矿、氧化铁矿、铝炉渣等。具有较低蒸汽压;王水和逆王水:HCl:HNO3=3:1 (v/v ).王水可用来溶解许多金属和合金,其中包括钢、高温合金钢、铝合金、锑、铬和铂族金属等。逆王水可用来溶解氧化硫和黄铁矿。

2常用的混合酸:(a)HNO3: H2SO4, 1:1(v/v) 这种混酸的最高温度仅比单纯HNO3时的最高温度高10℃左右。高温条件下,易于形成硫酸盐络合物,还具有脱水和氧化的性质。通常在完成最初的消化后,可加入H2O2以完成消化。但是,只有当液量减少且冒S02气体后才能添加H2O2 。用它消解的样品有:聚合物、脂肪及有机物质。(b)HNO3:HF,5:1(v/v)。这种混合酸对于溶解金属钛、铌、钽、锆、铪、钨及其合金特别有效,也可用来溶解铼、锡及锡合金、各种碳化物及氮化物、铀及钨矿石、硫化物矿石及各种硅酸盐。(C)H2SO4 :

H3PO4 ,1:1(v/v)此种混合酸可在低压下产生极高的温度,因此要小心使用。H3PO4的作用是充当助溶剂。用于消解陶瓷,尤其是一些含铝高的陶瓷和耐火材料等(D)HNO3、HCl、HF混酸。HNO3 :HCI:HF=5:15:3配制(v/v)这种混酸适用于消解合金、矽酸盐、岩石、熔渣、沸石、玻璃、陶瓷等

30·灰化助剂

1)为加速有机物分解或增进待测物回收而加入的化学品称为“灰化助剂”

2)(1)作为辅助氧化剂加速对有机物氧化,如HNO3,(2)稀释剂。当有机物逐渐被分解为可挥发的简单的氧化物时,器皿和灰分中待测组分的接触和反应的机率也随之增加。为减少这种接触,在试样中加惰性化学品如MgO以稀释灰分,可以减少它们被器皿的滞留和提高回收率。(3)既是氧辅助剂又是稀释剂。例如Mg(NO3)2、Al(NO3)3等轻金属的硝酸盐,这类硝酸盐在高温下是不稳定的可以分解为轻金属的氧化物和NO2和O2,(4)改变待测元素化合物形式。例如H2SO4、K2SO4、H3BO3、NaOH等。最简单的例子是向样品加入H2SO4 ,使易挥发的PbCl2转变成难挥发的PbSO4或将氯离子转变为氯化氢而赶走。NaOH 曾被用来沉淀铁为氢氧化铁或转锌为锌酸盐;H3BO3可以防止Pb(NO3)2被器皿滞留,是因为硼与硅和铅反应形成了硼-硅-铅玻璃,在酸的作用下,可以使Pb 定量的转入溶液,而防止了被石英器皿滞留。(5)溶解灰化残渣中元素时,应根据待测元素的灰化产物的溶解性能选择溶剂,一般多用稀HCl或HNO3,或先用(1+1)HCl使各种元素转化为氯化物再用稀硝酸溶解,直接用浓HNO3处理,容易使某些元素钝化而难以全部转入溶液。

第二章原子发射光谱(多元素)

31·等离子体(高度电离,高纯氩气)

32·离子线。离子被激发后发射的谱线。在高温下产生的离子与溶液中的离子不同,可以有Al+、Al2+、Al 3+及Na+、Na2+等离子状态。M+离子的谱线用罗马字II表示,M2+的谱线用III表示,其余类推。

33·等离子体点火方式(图)等离子体焰炬呈环状结构

34·三层矩管作用,中:点火进样,内:进氩气,外:冷却

35·等离子体火焰温度分布

36·观测方式(横向,纵向)

1)横向观测的特点:可以进行高浓度测定,离子化干扰小,可以进行高盐有机溶液测定。

2)纵向观测的特点:去除氩的光谱,只有元素光谱高效率的导入分光器,可以提高灵敏度。

37·中心通道进样的好处、趋肤效应

1)趋肤效应:对于导体中的交流电流,靠近导体表面处的电流密度大于导体内部电流密度的现象。趋肤效应使导体的电阻增大,电感减小。

2)等离子体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于1L/min)便可穿透ICP,使样品在中心通道停留时间达2~3ms,可完全蒸发、原子化;分析物在中心通道内被间接加热,对ICP放电性质影响小。

38·检测器:PDAD\CID\CCD\SCD

光电二极管阵列(PDAD)

电荷注入式固体检测器(CID)

固体电荷检测器电荷耦合固体检测器(CCD)

分段式电荷耦合固体检测器(SCD)

第三章XRF(无损分析)

39·谱线命名法

1)X射线是原子内层电子在高速运动电子的冲击下产生跃迁而发射的光辐射,波段在10-3-10nm。X射线光谱分为连续光谱和特征光谱。

2)高能量粒子与原子碰撞,将内层电子逐出,产生空穴, 此空穴由外层电子跃入,同时释放出能量,就产生具有特征波长的特征光谱。

3)并不是对应于所有能级组合的谱线都能出现,而是必须遵守电子跃迁的选择定则进行跃迁,才能辐射出特征X射线。Δn=1的跃迁产生的线系命名为α线系,Δn=2的跃迁产生的线系命名为β线系,依次类推。各系谱线产额依K,L,M系顺序递减,因此原子序数<55的元素通常选K系谱线做为分析线,原子序数>55的元素,选L系谱线做为分析线。

4)

40·莫斯来定律、布拉格方程

5)布拉格方程:X射线荧光分析中利用晶体对X射线分光,分光晶体起光栅的作用。晶体分光X射线衍射的条件就是布拉格方程:2d sinθ= nλ。波长为λ的X射线荧光入射到晶面间距为d的晶体上,只有入射角θ满足方程式的

情况下,才能引起干涉。也就是说,测出角度θ,就知道λ,再按莫斯莱公式便可确定被测元素。

6) 莫斯来定律:

41·C\H\O\N 的转化

7) 有机化合物实验式:实验式=含量/原子量

8) 测定有机化合物时,通常有3个步骤:1.试样的分解(干法、湿法)、2.干扰元素的消除3.测定元素的含量

9) C\H 的转化测定 :碳定量地转化为二氧化碳,其中的氢则定量地转化为水,其它的元素则转化为相应的无机物。

10) N 的转化测定:有机物中氮的测定,通常是将有机物中氮转化为N2或NH3的形式。然后分别用气量法或气相色谱法测定N2,用容量法或分光光度法测定NH3,从而计算有机物中氮的百分含量。前法主要归于经典的杜马法(Dumas )后者归于经典的克达尔法(Kjedahl )。有机含氮化合物用浓硫酸消煮分解成为无机的氨化合物的方法叫做Kjeldahl 法;消煮分解的产物为硫酸铵,其

反应式如下:

? 消煮分解完全后,用氢氧化钠溶液中和至碱性。用水蒸气蒸馏将释放出的氨蒸出,用硼酸溶液吸收氨,而后用标准盐酸溶液滴定。除了用硼酸吸收氨外,也可以使用标准盐酸溶液,但需用标准氢氧化钠溶液进行回滴。试样的分解条件 ? 在消化过程中为了加速分解过程,缩短消化时间,常加入适量的无水硫酸钾或硫酸钠做催化剂(统称消化剂)。

?

42·催化剂、万能填充剂、

1) 催化剂(a )多孔性氧化铜,这是最早使用的一种催化剂,它具有很好的氧化性能,且是一种可逆氧化剂,特别是它不仅能在氧气流中使用,而且在情性气流下也具有氧化作用。因此,这种催化剂能提供在情性气流下分解样品的条件,所以在自动元素分析仪中同时测定样品中的碳、氢和氮时就常采用氧化铜作催化剂。(b )四氧化三钴:四氧化三钴是由 CoO 和Co2O3混合组成。其特点是在氧气流中,于较低温度条件下就有很强的催化氧化性能,而且当温度高于800℃时,仍有良好的氧化效能。但是,该催化剂在高温下易腐蚀石英管,使其发脆断裂(c )高锰酸银热解产物:此热解产物在温度低于790℃时,其中所含的银、锰和氧是以1:1:2.6(~2.7)的比例存在,故可把分解产物写作AgMnO4,这种催化剂具 + O CO 2 + H 2O +有机化合物其它化合物高温燃烧催化剂有机含氮化合物4SO 4(NH 4)2SO 4 + 2NaOH Na 2SO 4 + 2NH 3 + 2 H 2O NH 3 + H 3BO (NH 4)H 2BO 3(NH 4)H 2BO 3 + HCl NH 4Cl + H 3BO 3

有工作温度低,催化效能高,同时又能排除卤素和硫干扰的优点

2)万能填充剂,其组成为Ag2WO4、MgO、Co3O4,催化剂按下列次序装管:Ag2WO4 + MgO| Co3O4 | Ag2WO4 + MgO。耐高温,排除卤素和琉的干扰。

43·吸收剂。常用的吸水剂有无水氯化钙、无水硫酸钙、硅胶、无水高氯酸镁和五氧化二磷等,碱石棉吸收二氧化碳。

44·吸收顺序。无水高氯酸镁吸收管,必须安装在碱石棉管的前面。对于含氮有机物,应在水吸收管和二氧化碳吸收管之间,装上氮氧化物吸收管以消除氮的干扰。如:无水高氯酸镁+二氧化锰+碱石棉

第五章ICP-MS

1·真空系统、离子聚焦系统

①质谱仪的几大共性

所有的质量分析器检测的都是离子的质量数.

所有的质量分析器分离的依据都是质荷比m/z

所有的质量分析器检测的都是气相态的离子.

所有的质量分析器都必须在高真空状态下操作,

结论:真空泵是所有质谱仪的“核心”部件。

②真空泵是所有质谱仪的核心

③真空度越高,待测离子受到干扰越少,仪器灵敏度越高(粗真空-常压~10-3

TORR,高真空-10-3 ~10-8 TORR)

2·离子聚焦原理

ICP-MS的离子聚焦系统与原子发射或吸收光谱中的光学透镜一样起聚焦作用,但聚焦的是离子,而不是光子,透镜材料及聚焦原理基于静电透镜,整个离子聚集系统由一组静电控制的金属片或金属筒或金属环组成,其上施加一定值电压。

其原理是利用离子的带电性质,用电场聚集或偏转牵引离子,将离子限制在通向质量分析器的路径上,也就是将来自截取锥的离子聚焦到质量过滤器,拒绝中性原子并消除来自ICP的光子通过。

3·接口

接口是整个ICP-MS系统最关键的部分。接口的功能:将等离子体中的离子有效传输到质谱。

接口:采样锥(~1.1mm 内径)、截取锥(~0.5mm 内径) 两孔相距6-7mm,有Ni和Pt两种材质材质。

采样锥:作用是把来自等离子体中心通道的载气流,即离子流大部分吸入锥孔,进入第一级真空室。采样锥通常由Ni、Al、Cu、Pt等金属制成,Ni锥使用最多。

截取锥:作用是选择来自采样锥孔的膨胀射流的中心部分,并让其通过截取锥进入下一级真空,安装在采样锥后,并与其在同轴线,两者相距6-7mm,通常也有镍材料制成,截取锥通常比采样锥的角度更尖一些,以便在尖口边缘形成的冲击波最小。

4·空间电荷效应

1)在离子聚集系统中,“空间电荷效应”(space charge effect)导致的“质量歧视”是直接影响离子传输效率以及整个质量范围内离子传输均匀性的重要因素,空间电荷效应是ICP-MS基体效应的主要根源(比ICP-AES严重,所以必须要采用内标),在基体离子的质量大于分析离子时尤为严重。

2)空间电荷效应的形成和影响:

本上呈电中性。但离子流离开截取锥后,透镜建立起的电场将收集离子而排斥

电子,电子将不再存在。从而使离子被束缚在一个很窄的离子束中,离子束在瞬间不是准中性的,但离子密度仍然非常高。同电荷离子间的相互排斥使离子束中的离子总数受到限制。

基体浓度越高,重离子数越多,空间电荷效应就越显著。如果不采取任何方式补偿的话,较高质荷比的离子将会在离子束中占优势,而较轻质荷比的离子则遭排斥。高动能的离子(重质量元素)传输效率高于中质量以及轻质量元素。

第六章中子活化分析

1·根据获得样品的核指纹判别材料中含有的元素及含量

J计算题

1、算加标回收率

2、检出限

3、灵敏度

元素分析知识总结

元素分析知识总结 第一章.原子吸收光谱 1·共振线,第一共振线 共振吸收线:原子由基态跃迁到激发态所吸收的谱线。 第一共振线:由基态跃迁到能量最低的激发态所吸收的谱线。这条谱线强度最大, 灵敏度最高。 2·原子吸收谱线的自然宽度、中心频率、半峰宽 原子吸收线并非是一条严格的几何线,而是占据着极窄的频率范围,具有一定 的自然宽度。原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。 半宽度(Δv):是指在极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差。 海森堡测不准原理:当核外电子跃迁到激发态时,激发态的能级和电子在激发态 停留的时间是测不准的,具有不确定度。即: E1 :E1 ±ΔE t1 : t1 ±Δt ΔE·Δt≥h/2π 只有当Δt→∞,ΔE→0 ,此时激发态的能量E1 才有定值,但是电子在激发态的时间只有约10-8,所以激发态的能量E1 是测不准的,只能是一个范围。 而电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 , 基态能量E0具有定值。所以V= (E1 - E0)/h 是测不准的,中心频率具有不 确定度,所以原子吸收线具有自然宽度。自然宽度(ΔυN)一般为10-5nm数量 级。 中心频率半峰宽 3·为什么原子吸收线具有自然宽度? 根据海森堡测不准原理:ΔE·Δt≥h/2π 电子在基态是稳定的,所以电子在基态停留时间的Δt→∞,所以ΔE→0 , 基态能量E0具有定值。而电子在激发态的时间只有约10-8,所以激发态的能量 E1 是测不准的,只能是一个范围。所以谱线的频率V= (E1 - E0)/h 是测不准 的,中心频率具有不确定度,所以原子吸收线具有自然宽度。自然宽度(Δυ N)一般为10-5nm数量级。

第一节 细胞中的元素和化合物知识点

第一节细胞中的元素和化合物 一、1、生物界与非生物界具有统一性:组成细胞的化学元素在非生物界都可以找到 2、生物界与非生物界存在差异性:组成生物体的化学元素在细胞内的含量与在非生物 界中的含量明显不同 二、组成生物体的化学元素有20多种: 大量元素:C、O、H、N、S、P、Ca、Mg、K等; 微量元素:Fe、Mn、B、Zn、Cu、Mo; 基本元素:C; 主要元素;C、O、H、N、S、P; 细胞含量最多4种元素:C、O、H、N; 水 无机物无机盐 组成细胞蛋白质 的化合物脂质 有机物糖类 核酸 三、在活细胞中含量最多的化合物是水(85%-90%);含量最多的有机物是蛋白质(7%- 10%);占细胞鲜重比例最大的化学元素是O、占细胞干重比例最大的化学元素是C。 知识梳理: 统一性:元素种类大体相同 1、生物界与非生物界差异性:元素含量有差异 2.组成细胞的元素 大量元素:C、H、O、N、P、S、K、Ca、Mg 微量元素:Fe、Mn、Zn、Cu、B、Mo主要元素:C、H、O、N、P、S 含量最高的四种元素:C、H、O、N基本元素:C(干重下含量最高) 质量分数最大的元素:O(鲜重下含量最高) 3组成细胞的化合物 无机化合物水(鲜重含量最高的化合物) 无机盐, 糖类 有机化合物脂质 蛋白质(干重中含量最高的化合物) 核酸 4检测生物组织中糖类、脂肪和蛋白质 (1)还原糖的检测和观察 常用材料:苹果和梨 试剂:斐林试剂(甲液:0.1g/ml的NaOH 乙液:0.05g/ml的CuSO4) 注意事项: ①还原糖有葡萄糖,果糖,麦芽

②甲乙液必须等量混合均匀后再加入样液中,现配现用, ③③必须用水浴加热(50—65) 颜色变化:浅蓝色棕色砖红色 (2)脂肪的鉴定 常用材料:花生子叶或向日葵种子 试剂:苏丹Ⅲ或苏丹Ⅳ染液 注意事项: ①切片要薄,如厚薄不均就会导致观察时有的地方清晰,有的地方模糊。 ②酒精的作用是:洗去浮色 ③需使用显微镜观察 ④使用不同的染色剂染色时间不同 颜色变化:橘黄色或红色 (3)蛋白质的鉴定 常用材料:鸡蛋清,黄豆组织样液,牛奶 试剂:双缩脲试剂( A液:0.1g/ml的NaOH B液: 0.01g/ml的CuSO4 )注意事项: ①先加A液1ml,再加B液4滴 ②鉴定前,留出一部分组织样液,以便对比 颜色变化:变成紫色 (4)淀粉的检测和观察 常用材料:马铃薯 试剂:碘液颜色变化:变蓝

元素周期律知识点总结

1. 微粒间数目关系 最外层电子数决定元素的化学性质 质子数(Z )=核电荷数=原子数序 原子序数:按质子数由小大到的顺序给元素排序,所得序号为元素的原子序数。 质量数(A )=质子数(Z ) +中子数(N ) ①最外层电子数与次外层电子数相等: 4Be 、18Ar ;②最外层 电子数是次外层电子数 2倍:6C ;③最外层电子数是次外层电子数 3倍:80;④最外层电子数是次外层电子数 4 倍:10Ne ;⑤最外层电子数是次外层电子数 1/2倍:3Li 、14Si 。 4 .电子总数为最外层电子数 2倍:4Be 。 ~20号元素组成的微粒的结构特点 (1).常见的等电子体 原子结构 : 元素周期律 决定原子种类 冲子N (不带电荷), ----------------------------- f 原子核- > T 质量数(A=N+Z ) I 质子Z (带正电荷)丿T 核电荷数 ______________ 豪同位素 (核素) —巻近似相对原子质量 事元素 T 元素符号 「最外层电子数决定主族元素的... 电子数(Z 个):丿 I 〔化学性质及最高正价和族序数 -■ 广体积小,运动速率高(近光速),无固定轨道 决定原子呈电中性 核外电子/运动特征 排布规律 ,表示方法 、电子云(比喻)——> 小黑点的意义、小黑点密度的意义。 T 电子层数——■周期序数及原子半径 T 原子(离子)的电子式、原子结构示意图 原子(A Z X ) * ________ 2质子(Z 个)]——决定元素种类 广 原子核} W 中子(A-Z )个 决定同位素种类 中性原子:质子数 =核外电子数 阳离子:质子数 =核外电子数 +所带电荷数 阴离子:质子数 =核外电子数一所带电荷数 2.原子表达式及其含义 Xd± A 表示X 原子的质量数;Z 表示兀素X 的质子数;d 表示微粒中X 原子的个数; c ±表示微粒所带的电荷数; ± b 表示微粒中X 元素的化合价。 3.原子结构的特殊性 (1~18号元素) 1.原子核中没有中子的原子: 1 H 。 2 .最外层电子数与次外层电子数的倍数关系。 3 .电子层数与最外层电子数相等: i H 、4Be 、 13AI 。 5 .次外层电子数为最外层电子数 2 倍:3Li 、 i4Si 6 .内层电子总数是最外层电子数 2 倍:3Li 、 15P 。 ①2个电子的微粒。分子: He 、 H 2;离子:Li +、H -、Be 2+ 。

(完整版)材料分析方法期末考试总结

材料分析方法 1.x射线是一种波长很短的电磁波,具有波粒二相性,粒子性往往表现突出,故x射线也可视为一束具有一定能量的光量子流。X射线有可见光无可比拟的穿透能力,可使荧光物质发光,可使气体或其它物质电离等。 2.相干散射:亦称经典散射,物质中的电子在X射线电场的作用下,产生强迫振动。这样每个电子在各方向产生与入射X射线同频率的电磁波。新的散射波之间发生的干涉现象称为相干散射。 3.不相干散射:亦称量子散射,X射线光子与束缚力不大的外层电子,或自由电子碰撞时电子获得一部分动能成为反冲电子,X射线光子离开原来方向,能量减小,波长增加。 4.吸收限:物质原子序数越大,对X射线的吸收能力越强;对一定的吸收体,X射线的波长越短,穿透能力越强,表现为吸收系数的下降,但随着波长的的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。 5.荧光辐射:由入射X射线所激发出来的特征X射线称为荧光辐射(荧光X 射线,二次X射线)。 6.俄歇效应:由于光电效应而处于激发态的原子还有一种释放能量的方式,及俄歇效应。原子中一个K层电子被入射光量子击出后,L层一个电子跃入K层填补空位,此时多余的能量不以辐射X光量子放出,而是以另一个L层电子活的能量跃出吸收体,这样的一个K层空位被两个L层空位代替的过程称为俄歇效应,跃出的L层电子称为俄歇电子。 7.光电子:当入射光量子的能量等于或大于吸收体原子某壳体层电子的结合能时,此光量子就很容易被电子吸收,获得能量的电子从内层溢出,成为自由电子,称为光电子。原子则处于激发态,这种原子被入射辐射电离的现象即光电效应。8.滤波片的作用:滤波片是利用吸收限两侧吸收系数差很大的现象制成的,用以吸收不需要的辐射而得到基本单色的光源。 9.布拉格方程只是获得衍射的必要条件而非充分条件。 10.晶面(hkl)的n级反射面(nh nk nl),用符号(HKL)表示,称为反射面或干涉面。 11.掠射角是入射角(或反射角)与晶面的夹角,可表征衍射的方向。 12.衍射极限条件:在晶体中,干涉面的划取是无极限的,但并非所有的干涉面均能参与衍射,因存在关系dsinθ=λ/2,或d>=λ/2,说明只有间距大于或等于X 射线半波长的那些干涉面才能参与反射。 13.劳埃法:采用连续X射线照射不动的单晶体,因为X射线的波长连续可变,故可从中挑选出其波长满足布拉格关系的X射线使产生衍射。 14.周转晶体法:采用单色X射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录。 15.粉末法:采用单色X射线照射多晶体,试样是由数量众多、取向混乱的微晶体组成。 16.吸收因数:由于试样本身对X射线的吸收,使衍射强度的实测值与计算值不符,为了修正这一影响,则在强度公式中乘以吸收因数。 17.温度因数:原子热振动使晶体点阵原子排列的周期性受到破坏,使得原来严格满足布拉格条件的相干散射产生附加的相差,从而使衍射强度减弱。为修正实验温度给衍射强度带来的影响,需要在积分强度公式中乘以温度因数。

元素周期表38个知识点归纳

人教版化学必修2第一章第一节元素周期表38个知识点归纳1、元素定义:核电荷数相同的同一类原子的总称,一种元素可能有多种形式的原子存在 形式,如:氢元素的几种形式:H、D(2 1H)、T(3 1 H)、H+、H-。 2、元素符号:在元素周期表中每个小格分四层,元素符号在第一层,黑色字体,用拉丁文大写字母表示,当大写字母相同时,加一个小写字母予以区别。 例如:H(氢)、He(氦);C(碳)、Cl(氯)、Ca(钙);N(氮)、Ne(氖)、Na (钠);Al(铝)、Ar(氩)。 3、元素名称:在元素周期表中每个小格分四层,元素名称在第二层,黑色字体,大多数元素的名称是由形声字构成,气态非金属的名称有气字头,固态非金属的名称有石头旁,液态非金属用三点水旁(溴),液态金属用水字底(汞),金属的名称都有金字旁,个别的元素的名称不是形声字,例如:氮不读“炎”音。 4、元素分类: (1)按元素所在的周期分类:同周期元素和不同周期元素 同周期元素共同点:电子层数相同,在元素周期表中处于同一行中,处于左右关系。 不同周期元素不同点:电子层数不相同,在元素周期表中不处于同一行中。 (2)根据元素的原子序数分类:前20号元素或第n号元素 (3)按元素所在的族分类:主族元素、副族元素、第VIII族元素、0族元素 (4)按元素周期表(新课标人教版化学必修2)分类:金属、非金属、过渡元素 其中金属元素专指主族元素的金属元素,非金属包括主族非金属和稀有气体,过渡元素是指所有副族金属元素和Ⅷ族金属元素,。 5、元素的特有数值:元素的原子序数和元素的相对原子质量。 (1)原子序数=核电荷数=质子数,原子序数在核组成符号中处于元素符号的左下角位置,在元素周期表中每个小格内的第一层,位于元素符号的左下角,数字呈鲜红色。 (2)元素的相对原子质量就是按照元素各核素原子的相对原子质量所占的一定百分比计算出的平均值(见课本P10),元素的相对原子质量在元素周期表中每个小格内的第四层,通常保留有效数字4位,数字呈黑色。 6、元素周期表 (1)将化学元素依照某种特有数值从小到大顺序依次排成一行,并将化学性质相似的元素依照某种特有数值从小到大排成一列所形成的表格叫元素周期表。 (2)元素周期表中特有数值:原子序数和相对原子质量。 (3)门捷列夫的元素周期表依照的特有数值是相对原子质量,现行的元素周期表依照的特有数值是原子序数。 7、元素周期表的结构:由七行和十八列构成,其中每一行为一个周期,从左到右第8、9、10列合起来为VIII族,其余每一列为一族,所以元素周期表由7个周期和16个族构成。

高中化学元素化合物易错知识点辨析

1. 碱金属元素原子半径越大,熔点越高,单质的活泼性越大 错误,熔点基本是随着原子半径增大而递减 2. 硫与白磷皆易溶于二硫化碳、四氯化碳等有机溶剂,有机酸则较难溶于水 错误。有机酸是否难溶于水,主要看有机酸的相对分子质量。相对分子质量越大,有机酸越难溶于水。如CH3COOH易溶于水,而高级脂肪酸难溶于水。 3. 在硫酸铜饱和溶液中加入足量浓硫酸产生蓝色固体 正确,浓硫酸吸水后有胆矾析出 4. 能与冷水反应放出气体单质的只有是活泼的金属单质或活泼的非金属单质错误,比如2Na2O2+2H2O→O2↑+4NaOH

5. 将空气液化,然后逐渐升温,先制得氧气,余下氮气 错误,N2的沸点低于O2,会先得到N2,留下液氧 6. 把生铁冶炼成碳素钢要解决的主要问题是除去生铁中除Fe以外各种元素,把生铁提纯 错误,是降低生铁中C的百分比而不是提纯 7. 虽然自然界含钾的物质均易溶于水,但土壤中K%不高,故需施钾肥满足植物生长需要 错误,自然界钾元素含量不低,但以复杂硅酸盐形式存在难溶于水 8. 制取漂白粉、配制波尔多液以及改良酸性土壤时,都要用到熟石灰 正确,制取漂白粉为熟石灰和Cl2反应,波尔多液为熟石灰和硫酸铜的混合物

9. 二氧化硅是酸性氧化物,它不溶于酸溶液 错误,SiO2能溶于氢氟酸 10. 铁屑溶于过量盐酸,再加入氯水或溴水或碘水或硝酸锌,皆会产生Fe3+ 错误,加入碘水会得到FeI2,因为Fe3+的氧化性虽然不如Cl2,Br2,但是强于I2,在溶液中FeI3是不存在的 11. 常温下,浓硝酸可以用铝罐贮存,说明铝与浓硝酸不反应[来源:学科网ZXXK] 错误,钝化是化学性质,实质上是生成了致密的Al2O3氧化膜保护着铝罐 12. NaAlO2、Na2SiO3、Na2CO3、Ca(ClO)2、NaOH、C17H35COONa、C6H5ONa等饱和溶液中通入CO2出现白色沉淀,继续通入CO2至过量,白色沉淀仍不消失

元素知识点总结知识讲解

元素知识点总结

第四单元 物质构成的奥秘 课题1 原 子 1、原子的构成 (1)原子结构的认识 (2)在原子中由于原子核带正电,带的正电荷数(即核电荷数)与核外电子带的负电荷数(数值上等于核外电子数)相等,电性相反,所以原子不显电性 因此: 核电荷数 = 质子数 = 核外电子数 (3)原子的质量主要集中在原子核上 注意:①原子中质子数不一定等于中子数 ②并不是所有原子的原子核中都有中子。例如:氢原子核中无中子 2 、相对原子质量:⑴ ⑵相对原子质量与原子核内微粒的关系: 相对原子质量 = 质子数 + 中子数 课题2 元 素 一、 元素 1、含义:具有相同质子数(或核电荷数)的一类原子的总称。 注意:元素是一类原子的总称;这类原子的质子数相同 相对原子质

因此:元素的种类由原子的质子数决定,质子数不同,元素种类不同。 2、元素与原子的比较: 3、元素的分类:元素分为金属元素、非金属元素和稀有气体元素三种 4、元素的分布: ①地壳中含量前四位的元素:O、Si、Al、Fe ②生物细胞中含量前四位的元素:O、C、H、N ③空气中前二位的元素:N、O 注意:在化学反应前后元素种类不变 二、元素符号 1、书写原则:第一个字母大写,第二个字母小写。 2、表示的意义;表示某种元素、表示某种元素的一个原子。例如:O:表示氧 元素;表示一个氧原子。 3、原子个数的表示方法:在元素符号前面加系数。因此当元素符号前面有了系 数后,这个符号就只能表示原子的个数。例如:表示2个氢原子:2H; 2H:表示2个氢原子。 4、元素符号前面的数字的含义;表示原子的个数。例如:6.N:6表示6个氮原 子。

元素周期表知识点总结教学提纲

元素周期表知识点总 结

第一章 物质结构 元素周期律 第一节 元素周期表 一、原子结构 1. 原子核的构成 核电荷数(Z) == 核内质子数 == 核外电子数 == 原子序数 2、质量数 将原子核内所有的质子和中子的相对质量取近似整数值加起来,所得的数值,叫质量数。 质量数(A )= 质子数(Z )+ 中子数(N )==近似原子量 原子 A Z X 3、阳离子 aW m+ :核电荷数=质子数>核外电子数,核外电子数=a -m 阴离子 b Y n-:核电荷数=质子数<核外电子数,核外电子数=b +n 二、核素、同位素 1、定义 核素:人们把具有一定数目质子和一定数目中子的一种原子称为核素。 同位素:质子数相同而中子数不同的同一元素的不同核素互为同位素。 3、元素的相对原子质量 2、同位素的特点 ① 化学性质几乎完全相同 ②天然存在的某种元素,不论是游离态还是化合态,其各种同位素所占的原子个数百分比(即丰度)一般是不变的。 三、核外电子排布 1、电子云:我们只能指出它在原子核外空间某处出现的机会大小——几率 电子云密度大小反映电子在该区域(单位体积)出现的机会(几率)大小 2、核外电子排布的规律: 1.电子是在原子核外距核由近及远、能量由低至高的不同电子层上分层排布; 2.每层最多容纳的电子数为2n 2(n 代表电子层数); 3.电子一般总是尽先排在能量最低的电子层里,即最先排第一层,当第一层排满后,再排第二层,等等。 4.最外层电子数则不超过8个(第一层为最外层时,电子数不超过2个)。

3、元素性质与元素的原子核外电子排布的关系 ①稀有气体的不活泼性:稀有气体元素的原子最外层有8个电子(He为2)处于稳定结构,因此化学性质稳定,一般不跟其它物质发生化学反应。 ②非金属性与金属性(一般规律) 电外层电子数得失电子趋势元素性质 金属元素<4 易失金属性 非金属元素>4 易得非金属性 一、元素周期表的结构 1.周期:周期序数=电子层数 七个周期(1、2、3短周期;4、5、6长周期;7不完全周期) 2.族: 主族元素的族序数=元素原子的最外层电子数(或:主族序数=最外层电子数) 18个纵行(7个主族;7个副族;一个零族;一个Ⅷ族(8、9、10三个纵行)) 二、元素性质与原子结构 1、碱金属元素 (1) 在结构上: 结构异同:异:核电荷数:由小→大; 电子层数:由少→多; 同:最外层电子数均为1个。 最外层都有1个电子,化学性质相似;随着核电荷数的增加,原子的电子层数递增,原子核对最外层电子的引力逐渐减弱,金属性逐渐增强。 (2) 碱金属元素在化学性质上的规律: ○1相似性:均能与氧气、与水反应,表现出金属性(还原性); 4Li + O2 ==== 2Li2O(白色、氧化锂) 2Na + O2 ==== Na2O2(淡黄色、过氧化钠) 2Na + 2H2O === 2NaOH + H2↑ 2K + 2H2O === 2KOH + H2↑ ○2递变性:与氧气、与水反应的剧烈程度有所不同;在同一族中,自上而下反应的剧烈程度逐渐增大; (3) 元素金属性判断标准

必修一元素化合物知识总结

1、钠和水反应的实质是什么? 钠原子与水电离出的氢离子发生氧化还原反应写出钠和水、盐酸、乙醇反应的化学方程式 2Na+2H 2O=2NaOH+H 2 ↑2Na+2HCl=2NaCl+H 2 ↑ 2C 2H 5 OH+2Na→2C 2 H 5 ONa+H 2 ↑ 2、将钠投入硫酸铜溶液中现象是怎样的? 钠浮在水面上,熔成一只闪亮的小球,在水面上不定向地迅速游动,发出“嘶嘶”的响声; 发生轻微的爆炸,并产生蓝色沉淀 写出相关方程式 2Na+2H2O═2NaOH+H2↑;2NaOH+CuSO4═Cu(OH)2↓+Na2SO4. 3、将钠投入氯化铁溶液中现象是怎样的? 钠浮在水面上,熔成一只闪亮的小球,在水面上不定向地迅速游动,发出“嘶嘶”的响声; 发生轻微的爆炸,并产生红褐色沉淀 写出相关方程式 2Na+2H2O=2NaOH+H2↑ 3NaOH+FeCl3=Fe(OH)3↓+3NaCl 4、用铝箔包住一小块金属钠,然后投入水中,写出相应的方程式 2Na+2H2O=2NaOH+H2↑ 2Al+2NaOH+6H2O=2Na[Al(OH)4] +3H2↑ 5、金属钠着火,为什么不能用水、二氧化碳灭火,用方程式解释 2Na + O2 = Na2O2 2Na2O2 +2H2O = 4NaOH + O2↑ 2Na2O2 + 2CO2 = 2Na2CO3 + O2 6、过氧化钠为什么可以做供氧剂,用化学方程式表示 2Na2O2 +2H2O = 4NaOH + O2↑2Na2O2 + 2CO2 = 2Na2CO3 + O2 7、二氧化硫通过过氧化钠的化学方程式 SO2+Na2O2=Na2SO4 8、将过氧化钠加到氯化亚铁溶液中的现象 有气泡产生,放出大量的热,溶液中先有白色沉淀产生,然后颜色迅速变灰绿色,最后变成红褐色沉淀 将过氧化钠加到品红溶液中的现象 有气体产生,溶液褪色 将过氧化钠加到酚酞试液中的现象 有气体产生,溶液先变红,然后再褪色9、向氯化铝溶液中加入过量的钠,相关化学方程式 2Na+2H2O=2NaOH+H2↑3NaOH+AlCl3=3NaCl+Al(OH)3↓ Al(OH)3 + NaOH = Na[Al(OH)4] 10镁在空气中燃烧发生的反应方程式 2Mg+O2=2MgO 2Mg+CO2=2MgO+C 3Mg+N2=Mg3N2 (条件都是点燃,自己加上) 11蒸干氯化镁溶液得到氯化镁固体需要注意什么,并用化学方程式解释 首先是蒸发浓缩,得到氯化镁晶体MgCl2·6H2O ,过滤洗涤, 然后把晶体放入硬质玻璃管中,(两端都是通的,可以耐受一定温度的玻璃仪器),在氯化氢气流中加热可以得到无水MgCl2氯化镁的水解MgCl2+2H2O?Mg(OH)2+2HCl 因为氯化镁是强酸弱碱盐,加热时促进了氯化镁的水解。而生成的氯化氢易挥发,加热使氯化氢气体挥发,从而减少了生成物中HCl的浓度平衡向正反应方向移动,进而使水解彻底。 若要得到氯化镁固体需要在氯化氢抑制镁离子水解 12、粗盐中的可溶性杂质一般有:CaCl2,MgCl2,Na2SO4等,在精制时,需要加什么试剂?加 入的顺序是什么? 除杂方法: 1.加入BaCl2,产生白色沉淀,至白色沉淀不再增加时停止,滤出沉淀BaSO4,除去杂质SO42-;Ba2+ + SO42- =BaSO4↓ 2.加入Na2CO3,产生白色沉淀,至白色沉淀不再增加时停止,滤出沉淀CaCO3,除去杂质Ca2+和过量的Ba2+; Ca2+ + CO32- =CaCO3↓Ba 2+ + CO32- = Ba CO3↓ 3.加入NaOH,产生白色沉淀,至白色沉淀不再增加时停止,滤出沉淀Mg(OH)2

元素推断题常考知识点总结

1 号元素氢:原子半径最小,同位素没有中子,密度最小的气体 6 号元素碳:形成化合物最多的元素,单质有三种常见的同素异形体(金刚石、石墨、富勒烯)。 7 号元素氮:空气中含量最多的气体(78%),单质有惰性,化合时价态很多,化肥中的重要元素。 8 号元素氧:地壳中含量最多的元素,空气中含量第二多的气体(21%)。生物体中含量最多的元素,与生命活动关系密切的元素,有两种气态的同素异形体。 9 号元素氟:除H 外原子半径最小,无正价,不存在含氧酸,氧化性最强的单质。 11 号元素钠:短周期元素中原子半径最大,焰色反应为黄色。 12 号元素镁:烟火、照明弹中的成分,植物叶绿素中的元素。 13 号元素铝:地壳中含量第三多的元素、含量最多的金属,两性的单质(既能与酸又能与碱反应),常温下遇强酸会钝化。 14 号元素硅:地壳中含量第二多的元素,半导体工业的支柱。 15 号元素磷:有两种常见的同素异形体(白磷、红磷),制造火柴的原料(红磷)、化肥中的重要元素。 16 号元素硫:单质为淡黄色固体,能在火山口发现,制造黑火药的原料。 17 号元素氯:单质为黄绿色气体,海水中含量最多的元素,氯碱工业的产物之一。 19 号元素钾:焰色反应呈紫色(透过蓝色钴玻璃观察),化肥中的重要元素。 20 号元素钙:人体内含量最多的矿质元素,骨骼和牙齿中的主要矿质元素。

2.与元素的原子结构相关知识归纳 ⑴最外层电子数等于次外层电子数的元素是Be、Ar; 最外层电子数是次外层电子数 2 倍的元素有C; 最外层电子数是次外层电子数 3 倍的元素有0; 最外层电子数是次外层电子数 4 倍的元素有Ne。 ⑵次外层电子数是最外层电子数 2 倍的元素有Li、Si; 次外层电子数是最外层电子数 4 倍的元素有Mg。 ⑶内层电子数是最外层电子数2 倍的元素有Li、P; 电子总数是最外层电子数2倍的元素有Be。原子核内无中子的元素是1i H 3.元素在周期表中的位置相关知识归纳 ⑴主族序数与周期序数相同的元素有H、B e、Al; 主族序数是周期序数 2 倍的元素有C、S; 主族序数是周期序数 3 倍的元素有O。 ⑵周期序数是主族序数 2 倍的元素有Li、Ca; 周期序数是主族序数 3 倍的元素有Na。 ⑶最高正价与最低负价的绝对值相等的元素有C、Si; 最高正价是最低负价的绝对值3 倍的元素有S。 ⑷上一周期元素所形成的阴离子和下一周期元素最高价态阳离子的电子层结构 与上一周期零族元素原子的电子层结构相同。 4. 元素的含量 地壳中质量分数最大的元素是0,其次是S; 地壳中质量分数最大的金属元素是Al,其次是Fe; 氢化物中氢元素质量分数最大的是C;所形成的有机化合物中种类最多的是C 5. 元素所形成的单质及化合物的物理特性 ①颜色:常温下,单质为有色气体的元素是F、Cl; 单质为淡黄色固体的元素是S; 焰色反应火焰呈黄色的元素是Na,呈紫色的元素是K (通过兰色钻玻璃) ②状态:常温下,单质呈液态的非金属元素是Br ;单质为白色蜡状固体的元素是

元素周期表知识点总结

第一章 物质结构 元素周期律 第一节 元素周期表 一、原子结构 1. 原子核的构成 核电荷数(Z) == 核内质子数 == 核外电子数 == 原子序数 2、质量数 将原子核内所有的质子与中子的相对质量取近似整数值加起来,所得的数值,叫质量数。 质量数(A)= 质子数(Z)+ 中子数(N)==近似原子量 原子 A Z X 3、阳离子 aW m+ :核电荷数=质子数>核外电子数,核外电子数=a -m 阴离子 b Y n-:核电荷数=质子数<核外电子数,核外电子数=b +n 二、核素、同位素 1、定义 核素:人们把具有一定数目质子与一定数目中子的一种原子称为核素。 同位素:质子数相同而中子数不同的同一元素的不同核素互为同位素。 3、元素的相对原子质量 2、同位素的特点 ① 化学性质几乎完全相同 ②天然存在的某种元素,不论就是游离态还就是化合态,其各种同位素所占的原子个数百分比(即丰度)一般就是不变的。 三、核外电子排布 1、电子云:我们只能指出它在原子核外空间某处出现的机会大小——几率 电子云密度大小反映电子在该区域(单位体积)出现的机会(几率)大小 2、核外电子排布的规律: 1、电子就是在原子核外距核由近及远、能量由低至高的不同电子层上分层排布; 2、每层最多容纳的电子数为2n 2(n 代表电子层数); 3、电子一般总就是尽先排在能量最低的电子层里,即最先排第一层,当第一层排满后,再排第二层,等等。 4.最外层电子数则不超过8个(第一层为最外层时,电子数不超过2个)。 3、元素性质与元素的原子核外电子排布的关系

①稀有气体的不活泼性:稀有气体元素的原子最外层有8个电子(He为2)处于稳定结构,因此化学性质稳定,一般不跟其它物质发生化学反应。 ②非金属性与金属性(一般规律) 电外层电子数得失电子趋势元素性质 金属元素<4 易失金属性 非金属元素>4 易得非金属性 一、元素周期表的结构 1、周期:周期序数=电子层数 七个周期(1、2、3短周期;4、5、6长周期;7不完全周期) 2、族: 主族元素的族序数=元素原子的最外层电子数(或:主族序数=最外层电子数) 18个纵行(7个主族;7个副族;一个零族;一个Ⅷ族(8、9、10三个纵行)) 二、元素性质与原子结构 1、碱金属元素 (1) 在结构上: 结构异同:异:核电荷数:由小→大; 电子层数:由少→多; 同:最外层电子数均为1个。 最外层都有1个电子,化学性质相似;随着核电荷数的增加,原子的电子层数递增,原子核对最外层电子的引力逐渐减弱,金属性逐渐增强。 (2) 碱金属元素在化学性质上的规律: ○1相似性:均能与氧气、与水反应,表现出金属性(还原性); 4Li + O2 ==== 2Li2O(白色、氧化锂) 2Na + O2 ==== Na2O2(淡黄色、过氧化钠) 2Na + 2H2O === 2NaOH + H2↑ 2K + 2H2O === 2KOH + H2↑ ○2递变性:与氧气、与水反应的剧烈程度有所不同;在同一族中,自上而下反应的剧烈程度逐渐增大; (3) 元素金属性判断标准 ○1、根据金属单质与水或者与酸反应置换出氢的难易程度。置换出氢越容易,则金属性越强。

化学元素化合物知识总结

一、特征结构 01. 直线型分子:C2H2CO2CS2 02. 平面型分子:C6H6C2H4 03. V字型:H2O 04. 三角锥型:NH3 05. 正四面体型分子:CH4SiH4CCl4SiCl4P4 06. 10e- 微粒:O2-F-Ne Na+Mg2+Al3+CH4NH3H2O HF NH4+H3O+OH-NH2- 07. 18e- 微粒:Ar F2 C2H6 SiH4 PH3 H2O2 H2S HCl CH3OH CH3F K+Ca2+HS-S2-Cl-O22--Cl 08. 含有非极性共价键的离子化合物:Na2O2FeS2等。 09. 形成化合物种类最多的元素:C 二、特殊物性 01. 有色物质 [固体]黄色系列:S黄FeS2黄Na2O2浅黄AgBr浅黄AgI黄Au黄CuFeS2黄TNT淡黄 红色系列:Cu紫红Cu2O红Fe2O3红棕 黑色系列:C黑CuO黑CuS黑Cu2S黑FeS黑FeO黑Fe3O4黑MnO2黑Ag2O黑 紫色系列:I2紫黑KMnO4紫黑 白色腊状:白磷 [溶液]Cu2+蓝MnO4- 紫红Fe2+ 浅绿Fe3+ 棕黄Fe(SCN)3血红 氯水浅黄绿色溴水橙黄色碘水棕黄色溴的有机溶液橙红→红棕I2的有机溶液紫色→紫红 [气体]F2浅黄绿Cl2黄绿Br2 蒸气红棕I2蒸气紫色NO2红棕 02. 特殊状态 气态单质:H2 O2 Cl2 N2 F2 稀有气体 气态化合物:HX H2S SO2 NH3 NO NO2 C X H Y CO CO2 液态单质:Hg Br2 常见液态化合物:H2O 03. 特殊气味 臭鸡蛋气味的气体:H2S 刺激性气味的气体:Cl2 SO2 HCl NH3大蒜气味:C2H2(不纯) 04. 焰色反应 Na黄K浅紫(通过蓝色钴玻璃)Cu绿Li紫红Rb紫Ca砖红Ba黄绿Rb 紫Sr洋红 三、特殊现象 01. 遇酚酞显红色或湿润红色石蕊试纸变蓝的气体:NH3(碱性气体) 02. 遇空气变为红棕色的气体:NO 03. 加碱产生白色沉淀,迅速变成灰绿色,最终变成红褐色,必有Fe2+ 04. 加苯酚显紫色或加SCN-显血红色或加碱产生红褐色沉淀,必有Fe3+ 05. 遇BaCl2生成不溶于硝酸的白色沉淀,可能是:SO42- Ag+ SO32- SiO32- 06. 遇HCl生成沉淀,可能是:Ag+ SiO32- AlO2- S2O32- 07. 遇H2SO4生成沉淀,可能是:Ba2+ Ca2+ S2O32- SiO32- AlO2- 08. 与H2S反应生成淡黄色沉淀的气体:Cl2 O2 SO2 NO2 09. 电解时阳极产生的气体一般是:Cl2 O2,阴极产生的气体是:H2 10. 能使品红溶液褪色的气体可能是:Cl2 SO2;加热恢复原颜色的是SO2,不恢复的是Cl2 11. 能使品红溶液褪色的物质可能有:NaClO Ca(ClO)2等次氯酸盐氯水过氧化钠过氧化氢活性碳 12. 能使溴水褪色的物质:H2S和SO2及它们相对应的盐、活泼金属、不饱和烃、酚、醛、碱

元素知识点总结范文

第四单元 物质构成的奥秘 课题1 原 子 1、原子的构成 (1)原子结构的认识 (2)在原子中由于原子核带正电,带的正电荷数(即核电荷数)与核外电子带的负电荷数(数值上等于核外电子数)相等,电性相反,所以原子不显电性 因此: 核电荷数 = 质子数 = 核外电子数 (3)原子的质量主要集中在原子核上 注意:①原子中质子数不一定等于中子数 ②并不是所有原子的原子核中都有中子。例如:氢原子核中无中子 2 ⑴ ⑵相对原子质量与原子核内微粒的关系: 相对原子质量 = 质子数 + 中子数 课题2 元 素 一、元素 1、 含义:具有相同质子数(或核电荷数)的一类原子的总称。 注意:元素是一类原子的总称;这类原子的质子数相同 因此:元素的种类由原子的质子数决定,质子数不同,元素种类不同。 4、元素的分布: ①地壳中含量前四位的元素:O 、Si 、Al 、Fe ②生物细胞中含量前四位的元素:O 、C 、H 、N 相对原子质量=

③空气中前二位的元素:N 、O 注意:在化学反应前后元素种类不变 二、元素符号 1、 书写原则:第一个字母大写,第二个字母小写。 2、 表示的意义;表示某种元素、表示某种元素的一个原子。例如:O :表示氧元素;表示 一个氧原子。 3、 原子个数的表示方法:在元素符号前面加系数。因此当元素符号前面有了系数后,这个 符号就只能表示原子的个数。例如:表示2个氢原子:2H ;2H :表示2个氢原子。 4、 元素符号前面的数字的含义;表示原子的个数。例如:6.N :6表示6个氮原子。 三、元素周期表 1、 发现者:俄国科学家门捷列夫 2、 结构:7个周期16个族 3、 元素周期表与原子结构的关系: ①同一周期的元素原子的电子层数相同,电子层数=周期数 ②同一族的元素原子的最外层电子数相同,最外层电子数=主族数 4、 原子序数=质子数=核电荷数=电子数 5、 元素周期表中每一方格提供的信息: 课题3 离子 一、核外电子的排布 1、原子结构图: ①圆圈内的数字:表示原子的质子数 ②+:表示原子核的电性 ③弧线:表示电子层 ④弧线上的数字:表示该电子层上的电子数 1、 核外电子排布的规律: ①第一层最多容纳2个电子; ②第二层最多容纳8个电子; ③最外层最多容纳8个电子(若第一层为最外层时,最多容纳2个电子) 3、元素周期表与原子结构的关系: ①同一周期的元素,原子的电子层数相同,电子层数=周期数 ②同一族的元素,原子的最外层电子数相同,最外层电子数=主族数 4、元素最外层电子数与元素性质的关系 金属元素:最外层电子数<4 易失电子 非金属元素:最外层电子数≥4 易得电子 稀有气体元素:最外层电子数为8(He 为2) 不易得失电子 最外层电子数为8(若第一层为最外层时,电子数为2)的结构叫相对稳定结构 因此元素的化学性质由原子的最外层电子数决定。当两种原子的最外层电子数相同,则这两种元素的化学性质相似。(注意:氦原子与镁原子虽然最外层电子数相同,但是氦原子最外 质子数

钯元素测定分析方法验证报告

Palladium Analytical Method Validation Report 钯元素测定分析法验证报告Effective Day 生效日期:

TABLE OF CONTENTS 目录 1PURPOSE 目的 (3) 2SCOPE 围 (3) 3RESPONSIBILITIES^ (3) 4ABBREVIATIONS 缩略语 (3) 5REGULATIONS AND GUIDELINES 法规和指南 (4) 6REFERENCE DOCUMENTS 参考文件 (4) 7CONFIRMATION PREREQUISITES先决条件确认 (4) 8CONFIRM THE TEST RESULT确认检测结果汇总 (5) 9DEVIATION HANDING 偏差处理总结 (8) 10SUMMARY AND CONCLUSION 总结与结论 (8) 11ADVICE (IF ANY) 建议(如有) (8) 12ATTACHMENT LIST附件清单 (8)

1Purpose 目的 本验证报告的目的是通过记录在案的测试,证明原子吸收分光光度法适用于 原料药(API)中钯元素残留进行定量分析。证明此法适用于盐酸伐昔洛韦钯元素含量检测;6.00ppm 的限度本法可以检出。 2Scope 围 本验证报告适用于盐酸伐昔洛韦中钯元素测定分析法的验证。 3Responsibilities 职责 3.1验证委员会负责验证文件的审批。负责验证的协调工作,以保证本确认文件规定项目的 顺利实施。负责验证数据及结果的审核。 3.2质量管理部负责审核验证文件、及数据的最后确认。负责各种取样验证工作。 负责拟订验证文件。负责验证文件相关确认活动的实施。 3.3生产部负责建立设备档案。负责仪器、仪表的校正。 4Abbreviations 缩略语下面表格中规定了本案中使用的缩略语: 5Regulations and Guidelines 法规和指南 为编写本案,参考了以下法规和指南。 5.1法规 食品药品监督管理总局(CFDA ),中国,药品生产质量管理规(2010 年修订),

知识讲解_元素周期表(学生)

元素周期表 【要点梳理】 要点一、元素周期表的编排 1.门捷列夫制作第一张元素周期表的依据 (1)将元素按照相对原子质量由小到大依次排列。 (2)将化学性质相似的元素放在一个纵行。 要点诠释: ①门捷列夫(1834—1907,俄国化学家)是元素周期表的创始人。它所制作的元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一。 ②随着科学发展,人们逐渐认识到门捷列夫给周期表中元素排序的依据存在缺陷,真正科学的依据是元素原子的核电荷数(即质子数)。 2.原子序数 按照元素在周期表中的顺序给元素所编的序号为原子序数。 原子序数=核电荷数=核内质子数=核外电子数(原子中) 要点诠释: 存在上述关系的是原子而不是离子,因为离子是原子失去或得到电子而形成的,所以在离子中:核外电子数=质子数加上或减去离子的电荷数。 3.现在的元素周期表的科学编排原则 (1)将电子层数相同的元素按原子序数递增的顺序从左到右排成一横行,称为周期; (2)把最外层电子数相同(氦除外)的元素按电子层数递增的顺序从上到下排成纵行,称为族。 要点二、元素周期表的结构 要点诠释: (1)周期:元素周期表有7个横行,也就是7个周期。前三周期叫短周期,后四个周期叫长周期。 (2)族:常见的元素周期表共有18个纵行,从左到右分别叫第1纵行、第2纵行……第18个纵行。把其中的第8、9、10三个纵行称为Ⅷ族,其余每一个纵行各称为一族,分为七个主族、七个副族和一个0族,共16个族。 族序数用罗马数字表示,主族用A、副族用B,并标在族序数的后边。如ⅠA、ⅡA、ⅢA……ⅠB、ⅡB、

元素周期表知识复习总结及习题答案讲解

学员编号:年级:高一课时数: 2 学员姓名:辅导科目:化学学科教师: 授课类型T 元素周期表 C 元素的性质和结构T 核素授课日期及时段 教学内容 引导回顾 在元素周期表中涉及到了哪些知识点呢?我们一起来回顾一下吧! 本周知识点本周解题方法 1.元素周期表的结构 1. 熟悉元素周期表的结构 2.常见族的特别名称 2. 熟记各族名称 3.元素的结构和性质 3. 元素结构与性质随周期的变化 4.核素 4. 辨析核素和同位素 5.元素周期律 5. 熟悉元素周期表及其变化规律 同步讲解 本章主要内容及其相互关系如下所示

●重点难点 本章的学习重点是元素周期表的结构和元素周期律的实质,元素的性质、原子结构和元素在周期表中的位置三者之间关系以及离子键和共价键等知识。 本章的学习难点是同周期、同主族元素性质的递变规律,“位、构、性”三者之间的关系和离子键、共价键的本质。 1、元素周期表的结构 2、常见族的特别名称

第ⅠA族________元素,第ⅦA族________元素,O族______元素,第______族和________族称为过渡元素。 答案:碱金属卤族稀有气体第Ⅷ族所有副 ●问题探究 1.元素周期表提供了每种元素的哪些信息? 提示:在元素周期表中,每一种元素均占据一格。对于每一格,均包含元素的原子序数,元素符号,元素名称,外围电子排布,相对原子质量(或质量数)等内容。 此外,在周期表中,还用不同的颜色来表示金属,非金属或过渡元素等。若元素符号呈红色表明该元素是放射性元素。 2.第一个元素周期表是谁排成的?跟现在的元素周期表排列方式一样吗? 提示:历史上第一个元素周期表是1869年,俄国化学家门捷列夫排成的;他是将元素按照相对原子质量由小到大依次排列,将化学性质相似的元素放在一个纵行。通过分类、归纳,制成了第一张元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系。 第一个元素周期表跟现在使用的元素周期表排列方式不一样。主要区别是元素周期表中元素的排序依据由相对原子质量改为原子的核电荷数。即现在我们使用的元素周期表是按元素原子的核电荷数由小到大的顺序排列而成的。 1.原子序数 按照元素在周期表中的顺序给元素编号,得到原子序数。原子序数与原子结构之间存在着如下关系:原子序数=核电荷数=质子数=核外电子数 温馨提示:存在上述等式关系的粒子是电中性原子,而非单核离子。单核离子是在电中性原子的基础上得到或失去电子而形成的。

各种高中化学知识总结元素及其化合物专题

无机框图推断题剖析 [题型示例] [20XX年全国卷II28题15分]以下一些氧化物和单质 之间可发生如右图所示的反应:其中,氧化物(Ⅰ)是红 棕色固体、氧化物(Ⅱ)、(Ⅲ)、(Ⅳ)在反应条件下都是 气体。 ⑴氧化物(Ⅰ)的化学式(分子式)是。 氧化物(Ⅱ)的化学式(分子式)是。 ⑵反应①的化学方程式是。 反应②的化学方程式是。 反应③的化学方程式是。 [考况简析] 框图推断题,是高考的必考题。考得最多的一年是1995年,考查了2个无机框图推断和1个有机框图推断,共计19分,其余每年都考了1-2个框图推断题,分值都在6-16分左右。 [考查目标] 既考查了以元素及其化合物知识为主要载体的有关基础知识,又考查了学生的基本概念、基本理论、化学实验及化学计算等基础知识,同时也考查了学生的观察、阅读、归纳、分析、推理等综合能力。 [解答方法] 信典倒顺法 第一步——分析信息:析准、析全题中的所有信息。涉及物质性质或结构的信息,要能以元素周期表为线索搜索出物质或物质范围,如既不溶于水也不溶于稀HNO3的白色沉淀有ⅦA-AgCl、ⅪA-BaSO4、ⅣA-H4SiO4;涉及化学反应的要弄清楚旧键的断裂和新键的形成,并注意把握住反应条件和转化的关系。 第二步——抓住典型:抓住典型已知物或典型已知条件或典型转化关系或典型定量数据等,并以其为突破口。 第三步——倒顺推断:在突破口的基础上或倒推或顺推,以推断出有关物质。 第四步——扣问作答:在推断结果的基础上紧扣题问进行作答。 [例题解析] 第一步——分析信息:氧化物(Ⅰ)是红棕色固体==> Ⅰ为Fe2O3;氧化物(Ⅱ)、(Ⅲ)、(Ⅳ)在反应条件下(高温)都是气体==> Ⅱ、Ⅲ、Ⅳ为SO2、SO3、NO、NO2、CO、CO2、H2O 第二步——抓住典型:Ⅰ- Fe2O3 第三步——倒顺推断:顺推:氧化物Ⅰ(Fe2O3)+ 氧化物Ⅱ→ 单质Ⅰ+ 氧化物Ⅳ ==> 氧化物Ⅱ- CO、单质Ⅰ- Fe、氧化物Ⅳ- CO2;顺推:氧化物Ⅱ(CO)+ 氧化物Ⅲ→ 单质Ⅱ+ 氧化物Ⅳ(CO2) ==> 氧化物Ⅲ- H2O、单质Ⅱ- H2;倒推:单质Ⅱ(H2)+ 氧化物Ⅱ(CO)← 氧化物Ⅲ(H2O)+ 单质Ⅲ ==> 单质Ⅲ- C 第四步——扣问作答:⑴氧化物(Ⅰ)的化学式(分子式)是Fe2O3;氧化物(Ⅱ)的化学式(分子式)是CO 。⑵反应①:Fe2O3 + 3CO 高温2Fe + 3CO2;反应②:CO + H2O 高温CO2 + H2;反应③:C + H2O 高温CO + H2。 [归纳小结] ①熟练解题方法;②熟悉元素及其化合物知识;③在搜索物质范围时一定要以元素周期表为线索进行系统搜索;④有的考题的信息会在提问里面,所以,考生要注意通读试题后再来做题更好,不要急于求成。 [规律总结] 一、特征结构

相关主题
文本预览
相关文档 最新文档