...2第一章导数及其应用05简单复合函数的求导法则 (共2...
- 格式:ppt
- 大小:2.16 MB
- 文档页数:29
导数复合函数求导法则(非常实用)一、导数复合函数求导法则(非常实用)在学习数学的过程中,我们经常会遇到各种各样的函数,其中有一种特殊的函数叫做复合函数。
复合函数是由两个或多个函数组成的函数,它们之间的关系是“和”的关系。
那么,如何求解复合函数的导数呢?这里我们就来探讨一下导数复合函数求导法则。
我们需要了解什么是导数。
导数是一个函数在某一点处的变化率,也就是说,它表示了函数在这个点的切线斜率。
而求导数的目的,就是为了更好地理解函数在不同点上的变化规律,从而更好地解决实际问题。
那么,如何求解复合函数的导数呢?这里我们可以借鉴一下初等函数的求导方法。
对于一个简单的初等函数f(x),它的导数可以通过以下公式计算:f'(x) = (f(x) f(a)) / (x a)其中,a是一个常数,表示我们要求导的点。
这个公式的意义是:在点a处,函数f(x)的导数等于它在点a两侧的平均变化率。
现在,我们来看一个例子。
假设我们有一个复合函数g(u)(u为参数),它的定义域是[0, 1],值域是[0, 1]。
我们要求的是g(u)在u=0.5时的导数。
根据导数复合函数求导法则,我们可以得到:g'(0.5) = [g(0.5) g(0)] / (0.5 0) = (g(0.5) g(0)) / 0.5这个公式的意义是:在u=0.5处,函数g(u)的导数等于它在u=0和u=0.5两侧的平均变化率。
二、复合函数求导法则的实际应用了解了导数复合函数求导法则之后,我们可以将其应用到实际问题的解决中。
下面我们通过一个例子来说明这一点。
假设我们要设计一个程序,计算一个二次多项式在给定点处的值。
这个二次多项式的定义域是[-1, 1],值域是[-1, 1]。
我们可以将这个二次多项式表示为:h(x) = a * x^2 + b * x + c其中,a、b、c是常数,且满足以下条件:1. a > 0 且 a < 1;2. b > 0 且 b < 1;3. c > -1 且 c < 1;4. |a| + |b| + |c| <= 1;5. a * b * c != 0。
复合函数导数公式及运算法则复合函数导数公式极其运算法则同学们还记得吗,如果不记得了,请往下看。
下面是由小编为大家整理的“复合函数导数公式及运算法则”,仅供参考,欢迎大家阅读。
复合函数导数公式.常用导数公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。
复合函数的导数及导数的运算法则复合函数是指由两个或多个函数组成的函数。
在求复合函数的导数时,需要使用链式法则,即将函数的导数作为求导的一部分。
设有两个函数f(x)和g(x),假设y=f(g(x))是一个复合函数。
我们的目标是求解复合函数y=f(g(x))的导数dy/dx。
根据链式法则,dy/dx可以表示为:dy/dx = df(g(x))/dx根据上述公式,我们可以按照以下步骤求导:Step 1: 首先对f(g(x))进行求导,即求df(g)/dg。
Step 2: 然后对g(x)进行求导,即求dg(x)/dx。
Step 3: 最后将求导得到的结果相乘,即df(g)/dg * dg(x)/dx =dy/dx。
下面我们讨论一些常见的复合函数和它们的导数运算法则。
1. 复合函数的链式法则(Chain Rule)设有函数f(u)和g(x),假设y=f(g(x))是一个复合函数。
根据链式法则,复合函数y=f(g(x))的导数可以表示为:dy/dx = f'(g(x)) * g'(x)其中,f'(u)和g'(x)分别表示f(u)和g(x)的导数。
例如,如果y=(2x+1)^3,则可以将它表示为y=u^3,其中u=2x+1、根据链式法则:dy/dx = 3u^2 * du/dx = 3(2x + 1)^2 * 2 = 6(2x + 1)^22.复合函数中的乘法法则如果复合函数中有乘法运算,则可以使用乘法法则来求导。
例如,如果y=x^2*e^x,则可以使用乘法法则来求导:dy/dx = (d/dx)(x^2) * e^x + x^2 * (d/dx)(e^x)对于每一项使用基本求导法则:dy/dx = 2x * e^x + x^2 * e^x3.复合函数中的除法法则如果复合函数中有除法运算,则可以使用除法法则来求导。
例如,如果y=(x^2+1)/(x-1),则可以使用除法法则来求导:dy/dx = [(d/dx)(x^2 + 1)(x - 1) - (d/dx)(x - 1)(x^2 + 1)]/(x - 1)^2再对每一项使用基本求导法则:dy/dx = [(2x)(x - 1) - (x^2 + 1)]/(x - 1)^24.复合函数中的三角函数法则如果复合函数中包含三角函数,则可以使用三角函数法则来求导。
复合函数求导法则有哪些呢复合函数的求导法则同学们清楚吗,如果不清楚,快来小编这里瞧瞧。
下面是由小编为大家整理的“复合函数求导法则有哪些呢”,仅供参考,欢迎大家阅读。
复合函数求导法则有哪些呢Y=f(u),U=g(x),则y′=f(u)′*g(x)′例1.y=Ln(x^3),Y=Ln(u),U=x^3,y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2)=(3x^2)/Ln(x^3)]例2.y=cos(x/3),Y=cosu,u=x/3由复合函数求导法则得y=-sin(x/3)*(1/3 )=-sin(x/3)/3拓展阅读:求导公式运算法则是什么运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
导数也叫导函数值,又名微商,是微积分中的重要基础概念。
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
求导运算法则是:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
高等数学入门——复合函数的求导法则一、复合函数的定义在高等数学中,复合函数是由两个函数通过组合而成的新函数。
假设有两个函数f(x)和g(x),则它们的复合函数可以表示为f(g(x))。
其中,g(x)是内层函数,f(x)是外层函数。
二、复合函数的求导法则对于复合函数f(g(x)),我们希望求出它的导数。
根据链式法则,复合函数的导数可以通过内层函数和外层函数的导数相乘来计算。
具体的求导法则如下:1. 内层函数求导:首先求出内层函数的导数g'(x)。
2. 外层函数求导:然后求出外层函数对内层函数的导数f'(g(x))。
3. 乘积求导:将内层函数的导数和外层函数对内层函数的导数相乘,即可求得复合函数的导数。
三、示例分析为了更好地理解复合函数的求导法则,我们来看一个具体的示例。
假设有两个函数f(x) = x^2和g(x) = 2x + 1,我们希望求出复合函数f(g(x))的导数。
求出内层函数g(x)的导数:g'(x) = 2然后,求出外层函数对内层函数的导数f'(g(x)):f'(g(x)) = 2g(x) = 2(2x + 1) = 4x + 2将内层函数的导数和外层函数对内层函数的导数相乘,得到复合函数的导数:[f(g(x))]'= f'(g(x)) * g'(x)= (4x + 2) * 2= 8x + 4因此,复合函数f(g(x))的导数为8x + 4。
四、总结通过以上示例分析,我们可以总结出复合函数的求导法则:1. 求出内层函数的导数。
2. 求出外层函数对内层函数的导数。
3. 将内层函数的导数和外层函数对内层函数的导数相乘,得到复合函数的导数。
复合函数的求导法则在微积分中具有重要的应用价值,它可以帮助我们计算复杂函数的导数。
通过理解和掌握复合函数的求导法则,我们可以更好地应用微积分知识解决实际问题。
希望本文能够对读者理解复合函数的求导法则有所帮助。
复合函数求导法则复合函数是由两个或多个函数构成的函数,形式为f(g(x)),其中g(x)是一个函数,f(u)是一个与u相关的函数。
在求复合函数的导数时,我们可以使用复合函数求导法则,该法则有三个部分:链式法则,反链式法则和迭代法则。
1.链式法则:链式法则适用于复合函数f(g(x)),其中g(x)是一个内层函数,f(u)是一个外层函数。
链式法则的公式如下:[f(g(x))]'=f'(g(x))*g'(x)例如,我们考虑函数f(u) = sin(u^2),其中g(x) = x^2、我们先计算g'(x),然后计算f'(u),最后使用链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x)=2x接下来,计算f'(u)如下:f'(u) = cos(u^2) * 2u最后,使用链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(g(x))*g'(x)= cos((x^2)^2) * 2(x^2)= cos(x^4) * 2x^2所以,f(g(x)) = sin(x^4) 的导数为 cos(x^4) * 2x^22.反链式法则:反链式法则适用于复合函数f(g(x)),其中g(x)是一个外层函数,f(u)是一个内层函数。
反链式法则的公式如下:[f(g(x))]'=f'(u)*u'例如,我们考虑函数f(u) = u^3,其中g(x) = sin(x)。
我们可以直接计算出g'(x)和f'(u),然后使用反链式法则计算出f(g(x))的导数。
首先,计算g'(x)如下:g'(x) = cos(x)接下来,计算f'(u)如下:f'(u)=3u^2最后,使用反链式法则计算f(g(x))的导数如下:[f(g(x))]'=f'(u)*u'= 3(sin(x))^2 * cos(x)= 3sin^2(x) * cos(x)所以,f(g(x)) = sin^3(x) 的导数为 3sin^2(x) * cos(x)。
复合函数的求导法则公式复合函数是由两个或多个函数组合成的一个函数,求导时需要运用复合函数的求导法则公式。
下面将详细介绍复合函数的求导法则公式。
1. 基本公式设函数y=f(u),u=g(x),则复合函数 y=f[g(x)] 的导数为:$$ \\frac {\\mathrm{d} y}{\\mathrm{d} x}=\\frac {\\mathrm{d}y}{\\mathrm{d} u} \\cdot \\frac {\\mathrm{d} u}{\\mathrm{d} x}=f'(u)g'(x) $$其中,$f'(u)$表示函数f(u)对u的导数,$g'(x)$表示函数g(x)对x的导数。
例如,设 $f(u) = u^2$,$g(x) = 3x +1$,则$$ y=f[g(x)]=f(3x+1)=(3x+1)^2 $$根据复合函数的求导法则公式,可得:$$ \\frac{\\mathrm{d} y}{\\mathrm{d}x}=\\frac{\\mathrm{d}y}{\\mathrm{d}u}\\cdot \\frac{\\mathrm{d} u}{\\mathrm{d}x}=2u\\cdot3=6(3x+1) $$所以,$y' = \\frac{\\mathrm{d} y}{\\mathrm{d}x} = 6(3x+1)$。
2. 链式法则复合函数的求导法则也可以用链式法则表示为:$$ \\frac {\\mathrm{d} y}{\\mathrm{d} x}=\\frac {\\mathrm{d}y}{\\mathrm{d} u} \\cdot \\frac {\\mathrm{d} u}{\\mathrm{d} x}=\\frac {\\mathrm{d} y}{\\mathrm{d} u_1} \\cdot \\frac {\\mathrm{d}u_1}{\\mathrm{d} u_2} \\cdot \\frac {\\mathrm{d} u_2}{\\mathrm{d}x}=\\frac {\\mathrm{d} y}{\\mathrm{d} u_1} \\cdot \\frac {\\mathrm{d}u_1}{\\mathrm{d} u_2} \\cdot \\frac {\\mathrm{d} u_2}{\\mathrm{d}u_3}\\cdot \\frac {\\mathrm{d} u_3}{\\mathrm{d} x}=\\cdots $$其中,$u_1,g^{(1)}(x)$表示通过一次代换得到的新函数,$u_2,g^{(2)}(x)$表示通过第二次代换得到的新函数,$u_3,g^{(3)}(x)$表示通过第三次代换得到的新函数,$\\cdots$表示通过n次代换得到的新函数,$y=f(u)$。