2019版高考物理总复习第六章碰撞与动量守恒能力课动量和能量观点的综合应用学案
- 格式:pdf
- 大小:213.19 KB
- 文档页数:15
专题强化七 动力学、动量和能量观点在力学中的应用专题解读1.本专题是力学三大观点在力学中的综合应用,高考对本专题将作为计算题压轴题的形式命题. 2.学好本专题,可以帮助同学们熟练应用力学三大观点分析和解决综合问题.3.用到的知识、规律和方法有:动力学方法(牛顿运动定律、运动学规律);动量观点(动量定理和动量守恒定律);能量观点(动能定理、机械能守恒定律和能量守恒定律).一、力的三个作用效果与五个规律二、常见的力学模型及其结论命题点一动量与动力学观点的综合应用1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换.这种问题由于作用时间都极短,因此用动量守恒定律去解决.例1(2017·山西五校四联)如图1甲所示,质量均为m=0.5kg的相同物块P和Q(可视为质点)分别静止在水平地面上A、C两点.P在按图乙所示随时间变化的水平力F作用下由静止开始向右运动,3s末撤去力F,此时P运动到B点,之后继续滑行并与Q发生弹性碰撞.已知B、C两点间的距离L=3.75m,P、Q与地面间的动摩擦因数均为μ=0.2,取g=10m/s2,求:图1(1)P到达B点时的速度大小v及其与Q碰撞前瞬间的速度大小v1;(2)Q运动的时间t.答案(1)8m/s 7 m/s (2)3.5s解析(1)在0~3s内,以向右为正方向,对P由动量定理有:F1t1+F2t2-μmg(t1+t2)=mv-0其中F1=2N,F2=3N,t1=2s,t2=1s解得v=8m/s设P在B、C两点间滑行的加速度大小为a,由牛顿第二定律有:μmg =maP 在B 、C 两点间做匀减速直线运动,有: v 2-v 12=2aL解得v 1=7m/s(2)设P 与Q 发生弹性碰撞后瞬间的速度大小分别为v 1′、v 2,有:mv 1=mv 1′+mv 212mv 12=12mv 1′2+12mv 22 碰撞后Q 做匀减速直线运动,有: μmg =ma ′t =v 2a ′解得t =3.5s变式1 (2018·宁夏银川质检)质量为m 1=1200kg 的汽车A 以速度v 1=21m/s 沿平直公路行驶时,驾驶员发现前方不远处有一质量m 2=800 kg 的汽车B 以速度v 2=15 m/s 迎面驶来,两车立即同时急刹车,使车做匀减速运动,但两车仍在开始刹车t =1s 后猛烈地相撞,相撞后结合在一起再滑行一段距离后停下,设两车与路面间动摩擦因数μ=0.3,取g =10m/s 2,忽略碰撞过程中路面摩擦力的冲量,求: (1)两车碰撞后刚结合在一起时的速度大小;(2)设两车相撞时间(从接触到一起滑行)t 0=0.2s ,则A 车受到的水平平均冲力是其自身重力的几倍; (3)两车一起滑行的距离. 答案 (1)6m/s (2)6倍 (3)6m 解析 (1)对于减速过程有a =μg对A 车有:v A =v 1-at 对B 车有:v B =v 2-at以碰撞前A 车运动的方向为正方向,对碰撞过程由动量守恒定律得:m 1v A -m 2v B =(m 1+m 2)v 共可得v 共=6m/s(2)对A 车由动量定理得:-Ft 0=m 1v 共-m 1v A 可得F =7.2×104N 则Fm 1g=6 (3)对共同滑行的过程有x =v 2共2a可得x =6m命题点二 动量与能量观点的综合应用1.两大观点动量的观点:动量定理和动量守恒定律. 能量的观点:动能定理和能量守恒定律. 2.解题技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律). (2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理.(3)动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的初、末两个状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力做功问题,就更显示出它们的优越性.例2 如图2所示,一小车置于光滑水平面上,小车质量m 0=3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.水平轻质弹簧右端固定,左端拴接物块b ,另一小物块a ,放在小车的最左端,和小车一起以v 0=4m/s 的速度向右匀速运动,小车撞到固定竖直挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点,质量均为m =1 kg ,碰撞时间极短且不粘连,碰后以共同速度一起向右运动.(g 取10 m/s 2)求:图2(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 答案 (1)1m/s (2)132m (3)0.125m解析 (1)对物块a ,由动能定理得 -μmgL =12mv 12-12mv 02代入数据解得a 与b 碰前a 的速度:v 1=2m/s ;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向,由动量守恒定律得:mv 1=2mv 2 代入数据解得v 2=1m/s(2)当弹簧恢复到原长时两物块分离,a 以v 2=1m/s 的速度,在小车上向左滑动,当与小车同速时,以向左为正方向,由动量守恒定律得mv 2=(m 0+m )v 3,代入数据解得v 3=0.25 m/s. 对小车,由动能定理得μmgs =12m 0v 32代入数据解得,同速时小车B 端到挡板的距离s =132m(3)由能量守恒得μmgx =12mv 22-12(m 0+m )v 32解得物块a 与车相对静止时与O 点的距离:x =0.125m变式2 (2017·山东潍坊中学一模)如图3所示,滑块A 、B 静止于光滑水平桌面上,B 的上表面水平且足够长,其左端放置一滑块C ,B 、C 间的动摩擦因数为μ(数值较小),A 、B 由不可伸长的轻绳连接,绳子处于松弛状态.现在突然给C 一个向右的速度v 0,让C 在B 上滑动,当C 的速度为14v 0时,绳子刚好伸直,接着绳子被瞬间拉断,绳子拉断时B 的速度为316v 0.已知A 、B 、C 的质量分别为2m 、3m 、m .重力加速度为g ,求:图3(1)从C 获得速度v 0开始经过多长时间绳子刚好伸直;(2)从C 获得速度v 0开始到绳子被拉断的过程中整个系统损失的机械能. 答案 (1)3v 04μg (2)4171024mv 02解析 (1)从C 获得速度v 0到绳子刚好伸直的过程中,以v 0的方向为正方向,根据动量定理得: -μmgt =14mv 0-mv 0解得:t =3v 04μg(2)设绳子刚伸直时B 的速度为v B ,对B 、C 组成的系统,以向右为正方向,由动量守恒定律得:mv 0=m ·14v 0+3mv B解得:v B =14v 0绳子被拉断的过程中,A 、B 组成的系统动量守恒,以向右为正方向,根据动量守恒定律得: 3mv B =2mv A +3m ·316v 0解得:v A =332v 0整个过程中,根据能量守恒定律得:ΔE =12mv 02-12×2mv 2A -12×3m ·(316v 0)2-12m ·(14v 0)2=4171024mv 02命题点三 力学三大观点解决多过程问题1.表现形式(1)直线运动:水平面上的直线运动、斜面上的直线运动、传送带上的直线运动. (2)圆周运动:绳模型圆周运动、杆模型圆周运动、拱形桥模型圆周运动.(3)平抛运动:与斜面相关的平抛运动、与圆轨道相关的平抛运动. 2.应对策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度;(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功);(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例3 (2015·广东理综·36)如图4所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1 m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1 kg(重力加速度g 取10 m/s 2;A 、B 视为质点,碰撞时间极短).图4(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 答案 见解析解析 (1)由机械能守恒定律得: 12mv 02=mg ·2R +12mv 2 得:A 滑过Q 点时的速度v =4 m/s>gR = 5 m/s.在Q 点,由牛顿第二定律和向心力公式有:F +mg =mv 2R解得:A 滑过Q 点时受到的弹力F =22 N(2)设A 、B 碰撞前A 的速度为v A ,由机械能守恒定律有: 12mv 02=12mv 2A 得:v A =v 0=6 m/s A 、B 碰撞后以共同的速度v P 前进,以v 0的方向为正方向,由动量守恒定律得: mv A =(m +m )v P解得:v P =3 m/s总动能E k =12(m +m )v 2P =9 J滑块每经过一段粗糙段损失的机械能 ΔE =F f L =μ(m +m )gL =0.2 J 则k =E kΔE=45(3)AB 从碰撞到滑至第n 个光滑段上损失的能量E 损=n ΔE =0.2n J由能量守恒得:12(m +m )v 2P -12(m +m )v 2n =n ΔE代入数据解得:v n =9-0.2n m/s ,(n <k )变式3 如图5所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2s 至t 2=4s 内工作.已知P 1、P 2的质量都为m =1kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4m ,g 取10m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图5(1)若v 1=6m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE k ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E km . 答案 (1)3m/s 9 J (2)10 m/s≤v 1≤14m/s 17J 解析 (1)P 1、P 2碰撞过程动量守恒,以向右为正方向,有mv 1=2mv解得v =v 12=3m/s碰撞过程中损失的动能为ΔE k =12mv 12-12(2m )v 2解得ΔE k =9J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速直线运动,设P 1、P 2碰撞后速度为v ,P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2,由牛顿第二定律和运动学规律,得 μ(2m )g =2ma 3L =vt -12at 2v 2=v -at解得v 1=2v =6L +μgt2tv 2=6L -μgt 22t由于2s≤t ≤4s,所以解得v 1的取值范围10m/s ≤v 1≤14 m/sv 2的取值范围1m/s ≤v 2≤5 m/s所以当v 2=5m/s 时,P 向左经过A 点时有最大速度v 3=v 22-2aL =17m/s则P 向左经过A 点时的最大动能E km =12(2m )v 32=17J1.如图1所示,C 是放在光滑的水平面上的一块木板,木板的质量为3m ,在木板的上面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ.最初木板静止,A 、B 两木块同时以方向水平向右的初速度v 0和2v 0在木板上滑动,木板足够长,A 、B 始终未滑离木板.求:图1(1)木块B 从刚开始运动到与木板C 速度刚好相等的过程中,木块B 所发生的位移大小; (2)木块A 在整个过程中的最小速度. 答案 (1)91v 0250μg (2)25v 0解析 (1)木块A 先做匀减速直线运动,后做匀加速直线运动;木块B 一直做匀减速直线运动;木板C 做两段加速度不同的匀加速直线运动,直到A 、B 、C 三者的速度相等为止,设为v 1.对A 、B 、C 三者组成的系统,以向右为正方向,由动量守恒定律得:mv 0+2mv 0=(m +m +3m )v 1解得v 1=0.6v 0对木块B 运用动能定理,有: -μmgs =12mv 12-12m (2v 0)2解得:s =91v 0250μg(2)当A 和C 速度相等时速度最小,设为v ,以向右为正方向,由动量守恒定律得 则:3mv 0=4mv +m [2v 0-(v 0-v )] 则v =25v 0(其中v 0-v 为A 和B 速度的变化量)2.如图2所示,光滑水平面上有一质量M =4.0kg 的平板车,车的上表面是一段长L =1.5m 的粗糙水平轨道,水平轨道左侧连一半径R =0.25m 的四分之一光滑圆弧轨道,圆弧轨道与水平轨道在点O ′相切.现将一质量m =1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5,小物块恰能到达圆弧轨道的最高点A .取g =10m/s 2,求:图2(1)小物块滑上平板车的初速度v 0的大小;(2)小物块与车最终相对静止时,它距点O ′的距离.答案 (1)5m/s (2)0.5m解析 (1)平板车和小物块组成的系统水平方向动量守恒,设小物块到达圆弧轨道最高点A 时,二者的共同速度为v 1,以向左的方向为正方向 由动量守恒得:mv 0=(M +m )v 1①由能量守恒得:12mv 02-12(M +m )v 12=mgR +μmgL② 联立①②并代入数据解得:v 0=5m/s③(2)设小物块最终与车相对静止时,二者的共同速度为v 2,从小物块滑上平板车到二者相对静止的过程中,以向左的方向为正方向,由动量守恒得:mv 0=(M +m )v 2④设小物块与车最终相对静止时,它距O ′点的距离为x ,由能量守恒得: 12mv 02-12(M +m )v 22=μmg (L +x )⑤联立③④⑤并代入数据解得:x =0.5m.3.如图3所示,小球A 质量为m ,系在细线的一端,线的另一端固定在O 点,O 点到光滑水平面的距离为h .物块B 和C 的质量分别是5m 和3m ,B 与C 用轻弹簧拴接,置于光滑的水平面上,且B 物块位于O 点正下方.现拉动小球使细线水平伸直,小球由静止释放,运动到最低点时与物块B 发生正碰(碰撞时间极短),反弹后上升到最高点时到水平面的距离为h16.小球与物块均视为质点,不计空气阻力,重力加速度为g ,求碰撞过程B 物块受到的冲量大小及碰后轻弹簧获得的最大弹性势能.图3答案 54m 2gh 15128mgh解析 设小球运动到最低点与物块B 碰撞前的速度大小为v 1,取小球运动到最低点时的重力势能为零,根据机械能守恒定律有:mgh =12mv 12解得:v 1=2gh设碰撞后小球反弹的速度大小为v 1′,同理有:mg h 16=12mv 1′2解得:v 1′=2gh 4设碰撞后物块B 的速度大小为v 2,取水平向右为正方向,由动量守恒定律有:mv 1=-mv 1′+5mv 2 解得:v 2=2gh 4由动量定理可得,碰撞过程B 物块受到的冲量为:I =5mv 2=54m 2gh碰撞后当B 物块与C 物块速度相等时轻弹簧的弹性势能最大,据动量守恒定律有 5mv 2=8mv 3据机械能守恒定律:E pm =12×5mv 22-12×8mv 32解得:E pm =15128mgh .4.如图4所示,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C ,B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,求从A 开始压缩弹簧直到与弹簧分离的过程中.图4(1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能. 答案 (1)116mv 02(2)1348mv 02解析 (1)以v 0的方向为正方向,对A 、B 组成的系统,由动量守恒定律得mv 0=2mv 1解得v 1=12v 0B 与C 碰撞的瞬间,B 、C 组成的系统动量定恒,有 m ·v 02=2mv 2解得v 2=v 04系统损失的机械能ΔE =12m (v 02)2-12×2m (v 04)2=116mv 02(2)当A 、B 、C 速度相同时,弹簧的弹性势能最大.以v 0的方向为正方向,根据动量守恒定律得mv 0=3mv解得v =v 03根据能量守恒定律得,弹簧的最大弹性势能E p =12mv 02-12(3m )v 2-ΔE =1348mv 02.小初高试卷教案习题集小初高试卷教案习题集 5.如图5所示,水平放置的轻弹簧左端固定,小物块P 置于水平桌面上的A 点并与弹簧的右端接触,此时弹簧处于原长.现用水平向左的推力将P 缓缓推至B 点(弹簧仍在弹性限度内)时,推力做的功为W F =6J.撤去推力后,小物块P 沿桌面滑动到停在光滑水平地面上、靠在桌子边缘C 点的平板小车Q 上,且恰好物块P 在小车Q 上不滑出去(不掉下小车).小车的上表面与桌面在同一水平面上,已知P 、Q 质量分别为m =1kg 、M =4kg ,A 、B 间距离为L 1=5cm ,A 离桌子边缘C 点的距离为L 2=90cm ,P 与桌面及P 与Q 的动摩擦因数均为μ=0.4,g = 10m/s 2,试求:图5(1)把小物块推到B 处时,弹簧获得的弹性势能;(2)小物块滑到C 点的速度大小;(3)P 和Q 最后的速度大小;(4)Q 的长度.答案 (1)5.8J (2)2m/s (3)0.4 m/s (4)0.4m解析 (1)由能量守恒,增加的弹性势能为:E p =W F -μmgL 1=(6-0.4×1×10×0.05) J=5.8 J(2)对BC 过程由动能定理可知:E p -μmg (L 1+L 2)=12mv 02,代入数据解得小物块滑到C 点的速度为: v 0=2 m/s ;(3)以向右的方向为正方向,对P 、Q 由动量守恒定律得:mv 0=(m +M )v解得共同速度:v =0.4 m/s(4)对P 、Q 由能量守恒得:μmgL =12mv 02-12(m +M )v 2 代入数据解得小车的长度:L =0.4 m.。
第六章碰撞与动量守恒第二节碰撞反冲和火箭一、学习目标1.知道什么事弹性碰撞、非弹性碰撞,会用动量、能量的观点分析解决一维碰撞问题。
2.理解反冲运动原理,能够运用动量守恒定律解决反冲与爆炸问题3.掌握人船模型特点,能够运用动量守恒定律解决此类问题。
二、知识梳理(一)碰撞碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.1.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.2.分类(二)反冲1.“人船模型”问题的特征:两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.运动特点:两个物体的运动特点是“人”走“船”行,“人”停“船”停.3.处理“人船模型”问题的两个关键:(1)处理思路:利用动量守恒,先确定两物体的速度关系,再确定两物体通过的位移的关系.①用动量守恒定律求位移的题目,大都是系统原来处于静止状态,然后系统内物体相互作用,此时动量守恒表达式经常写成m1v1-m2v2=0的形式,式中v1、v2是m1、m2末状态时的瞬时速率.②此种状态下动量守恒的过程中,任意时刻的系统总动量为零,因此任意时刻的瞬时速率v1和v2都与各物体的质量成反比,所以全过程的平均速度也与质量成反比,即有m1v1-m2v2=0.③如果两物体相互作用的时间为t ,在这段时间内两物体的位移大小分别为x 1和x 2,则有m 1x 1t -m 2x 2t=0,即m 1x 1-m 2x 2=0.(2)画出各物体的位移关系图,找出它们相对地面的位移的关系.三、例题与即时训练考点一 弹性碰撞与非弹性碰撞【典例1】 (2018·湖北黄冈模拟)如图所示,质量为m A =2 kg 的木块A 静止在光滑水平面上.一质量为m B =1 kg 的木块B 以初速度v 0=5 m/s 沿水平方向向右运动,与A 碰撞后都向右运动.木块A 与挡板碰撞后立即反弹(设木块A 与挡板碰撞过程无机械能损失),后来木块A 与B 发生二次碰撞,碰后A,B 同向运动,速度大小分别为0.9 m/s,1.2 m/s.求:(1)木块A,B 第一次碰撞过程中A 对B 的冲量; (2)木块A,B 第二次碰撞过程中系统损失的机械能.【即时训练1】 (多选)如图(甲)所示,在光滑水平面上的两小球发生正碰.小球的质量分别为m 1和m 2.图(乙)为它们碰撞前后的s-t 图像.已知m 1=0.1 kg,由此可以判断( ) A.碰后m 2和m 1都向右运动B.碰前m 2静止,m 1向右运动C.m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能【即时训练2】(2015·全国卷Ⅱ)两滑块a 、b 沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段。
2019年高考物理总复习第六章碰撞与动量守恒专题讲座六动力学、动量和能量观点的综合应用课时训练教科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理总复习第六章碰撞与动量守恒专题讲座六动力学、动量和能量观点的综合应用课时训练教科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理总复习第六章碰撞与动量守恒专题讲座六动力学、动量和能量观点的综合应用课时训练教科版的全部内容。
专题讲座六动力学、动量和能量观点的综合应用1.(2018·山东潍坊模拟)如图所示,B,C,D,E,F 5个小球并排放置在光滑的水平面上,B,C,D,E4个球质量相等,而F球质量小于B球质量,A球的质量等于F球质量.A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后( C )A.5个小球静止,1个小球运动B.4个小球静止,2个小球运动C。
3个小球静止,3个小球运动D。
6个小球都运动解析:A,B质量满足m A<m B,则A,B相碰后A向左运动,B向右运动.由于B,C,D,E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B,C,D静止;由于E,F质量满足m E〉m F,则E,F都向右运动。
所以B,C,D静止;A向左运动,E,F向右运动,选项C正确。
2。
如图所示,小车由光滑的弧形段AB和粗糙的水平段BC组成,静止在光滑水平面上,当小车固定时,从A点由静止滑下的物体到C点恰好停止。
如果小车不固定,物体仍从A点静止滑下,则( A )A。
还是滑到C点停住B。
滑到BC间停住C.会冲出C点落到车外D.上述三种情况都有可能解析:设BC长度为L.依照题意,小车固定时,根据能量守恒可知,物体的重力势能全部转化为因摩擦产生的内能,即有Q1=fL,其中f为物体与小车之间的摩擦力.若小车不固定,设物体相对小车滑行的距离为s.对小车和物体系统,根据水平方向的动量守恒定律可知,最终两者必定均静止,根据能量守恒可知物体的重力势能全部转化为因摩擦产生的内能,则有Q2=Q1,而Q2=fs,得到物体在小车BC部分滑行的距离s=L,故物体仍滑到C点停住,选项A正确。