双语:女博士自绘漫画版化学论文
- 格式:docx
- 大小:15.28 KB
- 文档页数:3
毕业论文外文资料翻译学院:化学与制药工程学院专业:化学与工艺姓名:甄希同学号: 090101227 外文出处:附件: 1.外文资料翻译译文;2.外文原文。
(用外文写)β沸石作为制取烷基糖苷表面活性剂的催化剂:晶体的大小和疏水性的作用Hβ分子筛是一个活性和选择性的葡萄糖形成烷基糖苷非离子表面活性剂的缩醛化反应催化剂。
极性的反应物的大小和特点,中间体和产品,确定的质构特性强烈影响该催化剂(晶粒尺寸和吸附性能)的活性,选择性,和失活。
两个系列不同浓度的Si–O–Si 连通性缺陷的最佳活性沸石中的Si / Al比的优化,这是在较低的Si / Al比和较低的缺陷浓度,即系列达到,在更多的疏水性序列。
因此,优化的疏水性系列催化剂比亲水性更活跃,它也显示出较好的抗失活。
引言表面活性剂主要是用在我们的社会目前通常使用的许多产品中例如,他们存在于洗涤剂组合物,纺织品洗涤,美容产品,甚至在食品生产中。
作为清洁剂他们对经济和生态环境的影响是特别重要的。
在这种情况下,一个非常重要的特性是烷基链分支水平有关的生物降解。
这个因素强烈的决定在许多情况下,控制生产过程,成为重要因子。
最近的替代表面活性剂烷基糖苷C8和C18烷基链之间的制备在这种情况下,来自天然苷产品可用于制备积的木非离子表面活性剂具有良好的生物降解性和低程度的皮肤和口服毒性。
我们最近的工作,是用Fisher方法制备丁基糖苷使用沸石作为催化剂,这些低苷较好地溶于脂肪醇可作为制备高葡糖苷中间体而大孔酸性沸石被证明是交流性的催化剂,它被观察到对反应物的吸附产品发挥重要作用的动力学的过程,因此确定的转换和产物选择性。
考虑到反应发生在一个高度亲水性的反应物(葡萄糖)和亲水性低的(脂族醇)之间导致产品含有亲水性和疏水性基团就不奇怪了。
同时,在反应过程中,不同大小的反应物和产物干预,对沸石孔隙的扩散模式控制极为重要,这当足够的孔隙组合和晶粒尺寸。
因此,在我们看来,它应该是可能的强烈地影响沸石的催化活性通过改变烷基糖苷亲水性和疏水性。
Vol.31高等学校化学学报No.112010年11月CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 2184 2189生物素修饰纳米银探针的制备及在蛋白芯片可视化检测中的应用李慧1,钟文英1,许丹科2(1.中国药科大学基础部分析化学教研室,南京210009;2.南京大学化学化工学院,南京210093)摘要采用寡核苷酸为连接分子成功制备了生物素修饰的纳米银探针,并建立了纳米银催化同种金属离子的特异性还原显色反应.实验采用蛋白质芯片为分析工具,以微量人IgG 为蛋白分析模式研究了纳米银探针/氢醌/硝酸银体系的显色分析性能.实验结果表明,上述检测体系可对160fg 100pg 含量范围内的微量蛋白显示可视化结果,蛋白点的灰度值与其浓度具有良好的相关性,最小蛋白检测量可达160fg.同时还开展了与商品化链亲和素纳米金/银增强试剂显色方法的对比实验,结果表明,本法制备的探针对蛋白的检出限降低了约40倍,且具有存储稳定、反应快速等优点.关键词生物素修饰纳米银;氢醌/硝酸银;微量蛋白检测;蛋白芯片中图分类号O657.39文献标识码A 文章编号0251-0790(2010)11-2184-06收稿日期:2010-03-12.基金项目:国家“九七三”计划项目(批准号:2006CB910803)和蛋白质组学国家重点实验室开放课题资助.联系人简介:钟文英,女,博士,副教授,主要从事量子点的合成及分析应用和蛋白芯片检测新技术研究.E-mail :wyzhong@cpu.edu.cn许丹科,男,博士,教授,主要从事生物阵列传感器件及蛋白质芯片领域的研究.E-mail :xudanke@nju.edu.cn 随着纳米材料科学的发展,研究具有检测生物分子独特功能的纳米试剂已成为纳米材料研究的前沿.其中纳米金已经被广泛应用于免疫分析[1]、免疫层析[2]及显色反应等领域.此外,纳米金也被进一步用于催化银增强显色反应研究[3 7].近年来,具有优良光学特性的纳米银正被越来越多地应用于蛋白质[8]和DNA [9 11]等生物分子的检测分析[12,13].纳米银具有摩尔消光系数高、表面增强拉曼散色效应强和催化活性好等独特的物理化学性能[8],但其良好的催化显色特性并未见应用于微量蛋白的检测.文献[14]报道,在金属纳米颗粒上催化还原同种金属离子具有较好的灵敏度,如在纳米金上采用金增强试剂比采用银增强试剂检测蛋白质的灵敏度更高.基于此,本文开展了纳米银表面催化还原银离子的蛋白显色检测方法的研究.通过以蛋白芯片分析为模式进一步研究了纳米银探针高灵敏、快速检测微量蛋白的可能性.微量蛋白通过微阵列点样仪固定于醛基修饰的载玻片表面,依次加入的生物素标记的羊抗人IgG 、亲和素以及生物素修饰纳米银探针/氢醌/硝酸银检测试剂可与微量蛋白发生特异性的显色反应.实验对可能影响可视化检测效果的探针和氢醌/硝酸银浓度以及相关反应条件进行了优化,并将所建立的方法与商品化的纳米金/银增强显色试剂的分析结果进行了系统比较,对此方法的优势进行了探讨.1实验部分1.1材料、试剂与仪器醛基修饰的载玻片(上海百傲科技有限公司),生物素标记的羊抗人IgG (Bio-gahIgG ,美国KPL 公司),亲和素标记的胶体金(SA-AuNPs )和银增强试剂A ,B (美国Sigma 公司),寡核苷酸PA [5'SH-(CH )6-AAAAAAAAAAAAAAA3'-Biotin ](上海生工生物工程公司);牛血清白蛋白(BSA )、人IgG 及1ˑPBS (137mmol /L NaCl +2.7mmol /L KCl +10mmol /L +Na 2HPO 4·12H 2O +2mmol /L KH 2PO 4)均购自南京布克生物有限公司,氢醌(分析纯,南京化学试剂有限公司),硝酸银(分析纯,上海申博化工有限公司),硼氢化钠(分析纯,天津市化学试剂研究所),吐温-20(天津市科密欧化学试剂开发中心).微阵列点样仪(博奥生物技术有限公司),Scanmaker i900型扫描仪,LuxScan3.0芯片图像分析软件(北京博奥生物技术有限公司),JEM-2100型透射电子显微镜(日本JEOL 公司).1.2实验步骤1.2.1银纳米粒子的制备参照文献[15]的方法,在冰浴条件下,将40mL 2mmol /L 的硝酸银溶液逐滴加入至80mL 3mmol /L 硼氢化钠溶液中,不断搅拌至反应完全,继续搅拌至室温,得到纳米银溶液,常温保存.1.2.2生物素修饰银纳米粒子探针的制备参照文献[16]的方法,将1mL 纳米银溶液与10μmol /L 寡核苷酸PA 混合放置18h ,加入122μL 1ˑPBS ,静置6h 后,加入2mol /L NaCl 22μL ,然后每隔2h 加入2mol /L NaCl 21μL 至NaCl 的终浓度为0.1mol /L.放置48h 后,取600μL 液体离心3次(15min /次,转速为15000r /min ),沉淀用200μL 0.1mol /L PBS (0.1mol /L NaCl +0.1ˑPBS )重悬,制得Bio-AgNPs 探针.1.2.3蛋白芯片的制备以牛血清白蛋白作为阴性对照蛋白,生物素标记的羊抗人IgG 为阳性对照蛋白,6个不同浓度的人IgG (抗原)作为样品蛋白,采用微阵列点样仪在醛基修饰的载玻片上点制18个4ˑ4蛋白点的阵列(即18个反应池,每个反应池里是一个4ˑ4的小阵列),点样量约为10nL /点;于37ħ放置2h ,4ħ放置过夜;使用前进行封闭(25μL 10mg /mL BSA ,封闭1h )和清洗处理[1ˑPBST (1ˑPBS +0.05%Tween )清洗2次,5min /次,氮气吹干].1.2.4蛋白芯片的分析检测在制备好的蛋白芯片上加入5μg /mL 生物素标记的羊抗人IgG 25μL ,反应1h ,以1ˑPBST 清洗3次,加入25μL 10μg /mL SA 反应45min ,用1ˑPBST 清洗3次,加入V (Bio-AgNPs )ʒV (0.1mol /L PBS )=1ʒ20的25μL 检测探针反应30min ,用1ˑPBST 清洗3次,0.1mol /L PBN (0.1ˑPBS +0.1mol /L NaNO 3)清洗1次除去氯离子,干燥后加显色剂.常温下,氢醌/硝酸银反应5min ,银增强试剂反应10min.采用LuxScan3.0芯片图像分析软件采集扫描数据(文中所有的图像均用此软件处理),数据处理用灰度值进行比较.2结果与讨论与经典的酶联免疫分析反应[17]相比,基于纳米材料的催化显色反应具有试剂相对稳定及易于合成等优点.纳米金的银增强显色反应已被广泛应用于组织化学[18,19]与蛋白芯片[3 6]的图像分析中,但将其用于蛋白质检测时检出限未见明显降低.为了进一步降低检出限,本文自行设计合成了银纳米探针及显色试剂,建立了蛋白芯片上检测微量蛋白的方法,其分析流程如图1所示.Fig.1Schematic illustration of Bio-AgNPs-conjugated antibody recognition and signal amplificationwith hydroquinone /Ag +2.1纳米银探针的修饰及TEM 分析文献[9 11]报道的纳米银采用5'端修饰巯基的寡核苷酸作为探针,通过与寡核苷酸的杂交以检测目标寡核苷酸片段.本法以寡核苷酸PA 为连接分子,在寡核苷酸的5'端与3'端分别修饰巯基与生,5'端的巯基与纳米银形成稳定的配位结合,3'端的生物素特异性结合链亲和素.同时,在纳5812No.11李慧等:生物素修饰纳米银探针的制备及在蛋白芯片可视化检测中的应用Fig.2TEM image of Bio-AgNPs米银催化氢醌/硝酸银时还要利用寡核甘酸磷酸基团的负电性及其具有一定长度的特性.纳米银寡核苷酸在0.1mol /L PBS (pH =7)缓冲液中能稳定存在.图2为生物素修饰纳米银的TEM 图.从图2可见,所制备的生物素修饰的银纳米粒子的平均粒径为(17.5ʃ3.3)nm ,粒径分布为14.220.8nm.2.2氢醌和硝酸银显色剂浓度的选择氢醌和硝酸银反应的原理如下[20]:2AgNO 3+C 6H 4(OH )→ 2CO (CHCH )2CO +2HNO 3+2Ag ↓氢醌是常用显影剂,其浓度为1.82mmol /L.氢醌、银离子及缓冲液作为显色剂常被用于组织免疫化学[18,19,21]和蛋白芯片[3 6]研究,可被纳米金标记物特异性催化而显色.此显色剂的缺点在于,在缓冲溶液的作用下,氢醌和银离子的自身氧化还原反应会导致样品点周围的背景升高,因此选择氢醌和银离子在水溶液(pH =7)的环境下反应以减少背景信号.为考察此反应中硝酸银的合适浓度,将1mg /mL BSA 和不同浓度的链亲和素固定在醛基修饰的载玻片上,将氢醌与不同浓度的硝酸银(182,18.2和1.82mmol /L )等体积混合后加到蛋白芯片反应池中反应.扫描检测结果显示,浓度为18.2mmol /L 的硝酸银与等体积氢醌混合后得到的信噪比最大,因此选择硝酸银浓度为18.2mmol /L ,氢醌浓度为1.82mmol /L.2.3蛋白芯片反应条件的优化2.3.1链亲和素(SA )浓度与生物素修饰纳米银(Bio-AgNPs )浓度的优化固定1mg /mL BSA 和不同浓度的生物素标记的羊抗人IgG ,固定抗体的浓度分别为32,160和800ng /mL 以及4,20,100和500μg /mL ,依次加入10μg /mL SA 和Bio-AgNPs 探针[V (Bio-AgNPs )ʒV (0.1mol /L PBS )=1ʒ20],其余反应条件参照芯片分析过程.扫描结果显示,固定抗体浓度低于800ng /mL 的抗体点没有信号,随着抗体浓度的增加,其灰度值随之增加(芯片扫描图见图3).Fig.3Schematic illustration (A )and actual images (B )of selecting concentration of SA and Bio-AgNPs10μg /mL SA ,V (Bio-AgNPs )ʒV (PBS )=1ʒ20.a .1mg /mL BSA ;b .32ng /mL Bio-gah-IgG ;c .160ng /mL Bio-gah-IgG ;d .800ng /mLBio-gah-IgG ;e .4μg /mL Bio-gah-IgG ;f .20μg /mL Bio-gah-IgG ;g .100μg /mL Bio-gah-IgG ;h .500μg /mL Bio-gah-IgG.选择灰度值中等强度的抗体固定量(20μg /mL )来优化SA 和Bio-AgNPs 的浓度,图4(图4的偏差来源于2次测量结果的平均值)说明了当抗体固定浓度为20μg /mL 时,不同SA 浓度(100,10和1μg /mL )与不同稀释倍数的Bio-AgNPs [V (Bio-AgNPs )ʒV (0.1mol /L PBS )分别为1ʒ10,1ʒ20和1ʒ40]的芯片信号变化(样品点信号值/背景值)关系.当SA 浓度为100μg /mL 时,1:10的探针产生的背景高,信噪比低,1ʒ20和1ʒ40的探针产生的信噪比高,但1ʒ20探针的偏差大;当SA 浓度为10μg /mL 时,1ʒ10,1ʒ20和1ʒ40的探针浓度产生的信噪比差别不大,其中1ʒ20信号产生的偏差最小;当SA 浓度为1μg /mL 时,信噪比降低.综合上述结果,选择10μg /mL SA 和1ʒ20(体积比)Bio-AgNPs 作为以6812高等学校化学学报Vol.31下实验的分析条件.Fig.4Selecting concentration of SA andBio-AgNPs a .100μg /mL SA ;b .10μg /mL SA ;c .1μg /mL SA.V (Bio-AgNPs )ʒV (PBS ):Ⅰ.1ʒ10;Ⅱ.1ʒ20;Ⅲ.1ʒ40.Fig.5Selecting concentration of Bio-goat anti human IgGa .Signal intensity ;b .backgroud intensity.ρ(Bio-Goat anti Human IgG )/(ng ·mL -1):Ⅰ.50000;Ⅱ.5000;Ⅲ.500;Ⅳ.50;Ⅴ.5.2.3.2生物素标记的抗体浓度的筛选按蛋白芯片制备方法,选择人IgG 固定量为2μg /mL ,加入不同浓度的生物素标记的羊抗人IgG (50和5μg /mL 以及500,50和5ng /mL ,空白),其余反应条件参照芯片分析过程.样品点信号强度与生物素标记的羊抗人IgG 浓度的关系如图5所示(图5的偏差来源于6次测量结果的平均值).扫描结果显示,当生物素标记的羊抗人IgG 浓度为50μg /mL 时,背景较高,图像不清晰;当生物素标记的羊抗人IgG 浓度为5μg /mL 以及500和50ng /mL 时,信号强度高,背景低,且5μg /mL 时信号最强,信号的偏差最小;当浓度为5ng /mL 时,信号明显降低.综合以上结果,选择5μg /mL 作为生物素标记的羊抗人IgG 的最佳浓度.2.4纳米银/氢醌/硝酸银试剂在蛋白芯片上的检测性能将1mg /mL BSA 和浓度为16,80和400ng /mL 以及2,10和50μg /mL 的人IgG ,50μg /mL Bio-Fig.6Detection of IgG using Bio-AgNPs a .Linear relationship between IgG concentration and relative grayscale using hydroquinone /Ag +as color reagent ;b .linear re-lationship between IgG concentration and relative Grayscale using silver enhancer as color reagent.gahIgG 制备成蛋白芯片,依照蛋白芯片分析方法检测、扫描,结果如图6所示.氢醌/硝酸银作为显色剂时,人IgG 浓度在16ng /mL 10μg /mL 之间,IgG 浓度与相对灰度值的对数(样品点信号值/阳性点)具有较好的相关性(如图6曲线a 所示,图6偏差均来源于6次测量结果的平均值),检出限为16ng /mL (样品点信号平均值/阳性点信号平均值约等于背景信号平均值/阳性点信号平均值+3SD ,则此样品点浓度为最低检测量),与文献[22]报道的利用芯片技术检测IgG 的方法相比,本文建立的显色法检测IgG 具有方法简单、直接且所需样品少等特点,检测浓度可低至16ng /mL ;银增强试剂作为显色剂时,IgG 浓度在80ng /mL 50μg /mL 之间具有较好的相关性(如图6曲线b 所示).实验结果表明,氢醌/硝酸银的显色效果要优于银增强试剂,主要表现在两个方面:(1)在常温下(25ħ),前者的显色时间更短,只需5min ,而后者需要10min ,且前者产生的信号比后者强(IgG 浓度在16ng /mL 10μg /mL 范围内);(2)前者的背景比后者低.这是由于两者反应的原理稍有不同所致,以氢醌/硝酸银为显色剂仅仅是利用纳米粒子的催化特性,当有银纳米粒子存在时,纳米粒子起催化作用可加快氢醌和硝酸银的反应,使银离子在纳米粒子表面迅速被还原而呈现显著的黑色;而没有纳米银粒子存在时,氢醌和硝酸银反应缓慢,被还原的银也较少,信号点周围的背景较低.当采用银,它被纳米粒子催化显色的同时,在缓冲溶液中其自身也较快地发生氧化还原反7812No.11李慧等:生物素修饰纳米银探针的制备及在蛋白芯片可视化检测中的应用应,使信号点周围产生黑色沉淀,即背景高.2.5与商品化链亲和素纳米金试剂的比较链亲和素修饰纳米金与银增强试剂的显色结果显示,当人IgG 浓度在625ng /mL 20μg /mL之间Fig.7Detection of IgG using SA-AuNPs a .Linear relationship between IgG concentration and relative grayscale using hydroquinone /Ag +as color reagent ;b .linear re-lationship between IgG concentration and relative grayscale using silver enhancer as color reagent.时,人IgG 浓度与相对灰度值的对数(样品点信号值/阳性点)具有相关性(如图7曲线b 所示,图7偏差均来源于6次测量结果的平均值);纳米金与氢醌/硝酸银的显色结果显示,当人IgG 浓度在625ng /mL 20μg /mL 之间时与相对灰度值的对数具有相关性(如图7曲线a 所示).实验结果表明,显色剂对纳米金探针的显色能力较弱.其主要的原因有两方面:(1)两种探针修饰结构不同,导致两种纳米粒子的催化作用不同.纳米银是由具有一定长度的寡核苷酸修饰的,显色剂可以和纳米粒子的整个表面接触,因而纳米粒子可以充分发挥其催化作用;而纳米金是利用生物大分子链亲和素修饰的,部分表面被占据,无法起到催化作用,因而催化能力较低;(2)寡核苷酸上有很多带负电的磷酸基团,能静电吸附Ag +,使Ag+快速、大量地聚集在纳米银粒子表面被催化还原而迅速显色;且在反应的过程中,1分子链亲和素可以和3分子纳米银探针反应,增加了探针的结合量.所以此种修饰的银纳米粒子的催化特性更优良.为了对纳米金和纳米银探针及其两种显色剂进行比较分析,上述实验可以分为以下4组:(1)生物素修饰纳米银催化氢醌/硝酸银显色(结果如图6曲线a 所示);(2)生物素修饰纳米银催化银增强显色(结果如图6曲线b 所示),(3)链亲和素纳米金催化氢醌/硝酸银显色(结果如图7曲线a 所示);(4)链亲和素纳米金催化银增强显色(结果如图7曲线b ).综合图6和图7的结果可以发现,实验(1)和(2)的检出限低于实验(3)和(4),说明本实验中修饰状态下的纳米银催化特性强于纳米金.此外,实验(1)的最低检测量及图像背景均低于实验(2),且显色时间也比实验(2)短,说明氢醌/硝酸银作为显色剂的效果强于商品化的银增强试剂.综上所述,本实验基于探针修饰方法的创新及显色剂的优化,设计合成了生物素修饰纳米银探针及氢醌/硝酸银显色试剂,并成功地实现了对蛋白芯片上微量蛋白的灵敏、可视化检测.与商品化的链亲和素纳米金检测探针及银增强显色试剂相比,本文报道的检测试剂具有更高的检测灵敏度(检测灵敏度提高了约40倍),显色速度更快,且探针十分稳定,常温保存即可.参考文献[1]Deng X.Y.,Gao D.J.,Tian Y.,Chen Y.H.,Yu A.M.,Zhang H.Q.,Wang X.H.,Chen Y..Chem.Res.Chinese Universities[J ],2010,26(1):23—26[2]Liu B.H.,Tsao Z.J.,Wang J.J.,Yu F.Y..Anal.Chem.[J ],2008,80:7029—7035[3]Liang R.Q.,Tan C.Y.,Ruan K.C..J.Immunol.Methods [J ],2004,285:157—163[4]Duan L.L.,Wang Y.F.,Li S.S.C.,Wan Z.X.,Zhai J.X..BMC Infectious Diseases [J ],2005,5:53[5]Guo H.S.,Zhang J.N.,Yang D.,Xiao P.F.,He N.Y..Colloid.Surf.B [J ],2005,40:195—198[6]Gupta S.,Huda S.,Kilpatrick P.K.,Velev O.D..Anal.Chem.[J ],2007,79:3810—3820[7]Taton T.A.,MirkinC.A.,Letsinger R.T..Science [J ],2000,289:1757—1760[8]Wei H.,Chen C.G.,Han B.Y.,Wang E.K..Anal.Chem.[J ],2008,80:7051—7055[9]Thompson D.G.,Enright A.,Faulds K.,Smith W.E.,Graham D..Anal.Chem.[J ],2008,80:2805—2810[10]Lee J.S.,Lyttonjean A.K.R.,Hurst S.J.,Mirkin C.A..Nano Lett.[J ],2007,7(7):2112—2115[11]Tokareava I.,Hutter E..J.Am.Chem.Soc.[J ],2004,126:15784—15789[12]Sengupta A.,Thai C.K.,Sastry M.S.R.,Matthaei J.F.,Schwartz D.T.,Davis E.J.,Baneyx F..Langmuir [J ],2008,24:2000—20088812高等学校化学学报Vol.31[13]KaleleA S.A.,Kundu A.A.,Gosavi S.W.,Deobagkar D.N.,Deobagkar D.D.,Kulkarni S.K..Small [J ],2006,2(3):335—338[14]Kim D.,Daniel W.L.,Mirkin C.A..Anal.Chem.[J ],2009,81:9183—9187[15]Munro C.H.,Smith W.E.,Garner M.,Clarkson J.,White P.C..Langmuir [J ],1995,11:3712—372[16]Li H.,Sun Z.Y.,Zhong W.Y.,Xu D.K.,Chen H.Y..Anal.Chem.[J ],2010,82:5477—5483[17]Joos T.O.,Schrenk M.,Hopfl P.,Kroger K.,Chowdhury U.,Stoll D.,Schorner D.,Durr M.,Herick K.,Rupp S.,Sohn K.,Hammerle H..Electrophoresis [J ],2000,21:2641—2650[18]Holgate C.S.,Jackson P.,Cowen P.N.,Bird C.C..J.Histochem.Cytochem.[J ],1983,31:938—944[19]Lackie P.M..Histochem.Cell Biol.[J ],1996,106:9—17[20]Xie F.,Baker M .S.,Goldys E.M..J.Phys.Chem.B [J ],2006,110:23085—23091[21]Chou L.Y.T.,Fischer H.C.,Perrault S.D.,Chan W.C.W..Anal.Chem.[J ],2009,81:4560—4565[22]Li T.,Guo L.P.,Wang Z.X..Biosens.Bioelectro.[J ],2008,23:1125—1130Preparation of Biotinylated Silver Nanoparticles and Its Application ofVisual Detection Method for Protein ChipLI Hui 1,ZHONG Wen-Ying 1*,XU Dan-Ke 2*(1.Department of Analytical Chemistry ,Department of Basic Sciences ,China Pharmaceutical University ,Nanjing 210009,China ;2.School of Chemistry and Chemical Engineering ,Nanjing University ,Nanjing 210093,China )Abstract Biotinylated silver nanoparticles (Bio-AgNPs )were successfully prepared using oligonucelotide as coupling molecules.The resulted bio-AgNPs could be used for visual detection for protein arrays by a catalyti-cal reaction with hydroquinone /AgNO 3.To probe the feasibility of visual detection ,human IgG was used as a model protein sample to be immobilized on the glass slides and bio-AgNPs were employed to couple with the protein via stripavaidin labeled anti-human IgG.The results show that the linear relationship of protein concen-tration is between 160fg and 100pg and the limit of detection is 160fg (S /N =3).Compared with the method using SA-labeled gold nanoparticle or silver enhancement ,the sensitivity of this method is increased about 40fold.The presented method shows its advantages including high sensitivity ,stability and rapidity.KeywordsBiotinylated silver nanoparticle (Bio-AgNP );Hydroquinone /AgNO 3;Micro-protein detection ;Protein chip(Ed.:A ,G )9812No.11李慧等:生物素修饰纳米银探针的制备及在蛋白芯片可视化检测中的应用。
/ac Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold NanoparticlesChangerath Radhakumary and Kunnatheeri Sreenivasan*Laboratory for Polymer Analysis,Biomedical Technology Wing,Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram695012,Indiab Supporting InformationC hemical sensors are miniaturized devices that can deliverreal-time and online information on the presence of specific compounds or ions in complex matrixes.1Metallic nanoparticle based sensing has emerged as an important colorimetric tool for the detection of biomolecules linked to the onset of diseases to aid in early diagnosis.Among them,colloidal gold is extensively used for molecular sensing due to the wide opportunities it offers in the design of easy to perform methods.2The synthesis of gold colloid with an organic monolayer in a one-step process is also exploited, and this monolayer provides the extraordinary stability to the nanoparticles along with the additional surface properties.3À8 Optical sensing based on the plasmon resonance absorption exhibited by nanoparticles has been used with a view to develop analytical tools in clinical diagnosis.9À11It is well-known that the gold nanoparticles display surface plasmon resonance(SPR) absorption bands at a specific wavelength(∼519nm).The frequency and width of the SPR absorption depend on the size and shape of the metal nanoparticle as well as on the dielectric constant of the metal itself and of the medium surrounding it.12 On aggregation of the gold nanoparticles,the absorption maxima shifts to longer wavelengths resulting in the color change of the colloid from wine red to blue due to mutually induced dipoles that depend on interparticle distance and aggregate size.13In the present study,we use functionalized gold nanoparticles for urine glucose sensing.We focus on urine because it is the most informativefluid that can be obtained noninvasively and is used routinely to diagnose and monitor a variety of medical conditions.14The glucose level in blood is used as a clinical indicator of diabetes.The presence of glucose in urine is a more dangerous condition,as it is an indication of worsening of diabetes. According to the World Health Organization,over150million people in the world were affected with diabetes in the year2004 and it is expected to climb further to366million in2030.The affected population has to be tested for blood glucose levels daily for an effective treatment.In order to avoid the inconveniences caused by drawing blood intravenously or by hand pricking,a preliminary screening of the patients with high level diabetes (having renal glycosuria)15,16can be done instantly by checking their urine glucose levels.The visible color change of the functionalized gold nanopar-ticles on interacting with urine glucose enable the patients to have a self-checking method at home and seek immediate medical attention.Recently,Malhotra et al.and Li et al.have studied in length the characteristics of glucose oxidase(GOD) immobilized GNPs.17,18These authors have shown enhanced stability of GOD by the process of immobilization.Ma and Ding have reported that,while free GOD in solution only retains about 22%of its relative activity at90°C,the immobilized GOD on gold nanorods retains about39.3%activity.19Li et al.also suggested that such GOD/GNPs bioconjugates can be consid-ered as a catalytic nanodevice to construct a nanoreactor basedReceived:December18,2010Accepted:February25,2011inaccessible to the bulk of the population.on a glucose oxidation reaction for a biotechnological purpose.18 Interestingly,the feasibility of the use of these entities in the sensing of glucose has not been attempted.Zhang et al.have reported the use of modified glassy carbon electrode for the application of glucose sensing.The GNPs was deposited on the electrode surface through the glucose oxidase catalyzed oxidation of glucose which in turn was measured by differential pulse stripping voltammetry.20Very recently,Jiang et al.have demon-strated the application of a AuNP based colorimetric assay for the simple but effective detection of glucose in the rat brain by taking advantage of the cascade reactions of GOD catalyzed oxidation of glucose and the Fenton reaction of H2O2,as well as the oxidative cleavage of ssDNA with OH radicals.21There has been an ever increasing demand for the develop-ment of simple,cost-effective methodologies in an easy to read out format for the detection of clinically relevant molecules to aid in diagnosis.Such approaches are extremely important,particu-larly in third world countries where high tech diagnostics aids are inaccessible to bulk of the population.14Simple procedures which could be performed at home without the need of sophisticated expensive instrumentation possibly bring radical changes in rural health care management.Visual detection of disease specific marker molecules in biologicalfluids such as urine,saliva,or blood is an attractive approach to address these issues.A color change observable by the naked eye in response to the concentration of an analyte can be an indication of a disease condition warranting further medical attention.Herein,we report conjugation of GOD,the enzyme specific toβ-D glucose onto thiol capped GNPs,using carbodiimide chemistry and its use in the colorimetric detection of glucose in urine.’EXPERIMENTAL SECTIONMaterials.Gold chloride,glucose oxidase(GOD),trisodium citrate,Tween20,16-mercaptohexadecanoic acid(16-MHDA), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC),and N-hydroxysuccinimide(NHS)were obtained from Sigma-Al-drich,Bangalore,India.The glucose standard used is from the glucose kit supplied by Enzyme Technologies Pvt.Ltd., Mumbai,India.Preparation of Gold Nanoparticles.GNPs were synthesized as reported by Turkevich et al.22Briefly,to a boiling solution of 20mL of1.0mM HAuCl4,2mL of a1%solution of trisodium citrate dihydrate was added under constant stirring.The contents were removed from the hot plate when the solution turned red. The cooled contents were kept under refrigeration until its usage.Preparation of Alkane Thiol Modified Gold Colloids.The surface modification of gold colloids using alkane thiols was done as per Aslan and Luna.2Briefly,equal volumes of gold colloid and Tween20(2mg/mL)in phosphate buffer at pH7.0were gently mixed and allowed to stand for a minimum of20min to allow for the physisorption of Tween20to the gold nanoparticles.Then,a solution of0.5mM16-MHDA in methanol was added to the above solution and allowed to stand for4h.Excess Tween20and thiols were removed from the surface modified gold colloids by centrifugation for20min at14000rpm with an ultracentrifuge (Sigma3À30K,Germany).The absorbance spectra of the colloidal gold and the modified colloids with Tween20,16-MHDA was taken with a UVÀvisible spectrophotometer (Varian,Cary-Win Bio,Melbourne,Australia)using1cm path length polystyrene cuvettes.Conjugation of GOD on Alkanethiol Modified Gold Col-loids.Immobilization of GOD with16-MHDA capped gold nanoparticles was done on the basis of the EDC/NHS chemistryvia the formation of an amide linkage between the carboxyl groups of the16-MHDA and the primary amine groups of the GOD.The thiolated gold colloids(3mL)were activated with 5mL of a mixture of EDC and NHS,both10mM in phosphate buffer at pH7.0by incubating the mixture at room temperature for30min.Then,2mL of GOD solution(1mg/mL in phosphate buffer)was added to the above mixture and incubated at room temperature for2h and then kept overnight at4°C. After centrifugation at14000rpm,the GOD immobilized gold nanoparticles were resuspended in3mL of phosphate buffer(pH 7.0)and kept refrigerated until use.Fourier Transform Infrared Spectroscopy(FT-IR)of the Nanoparticles.The FT-IR spectra of the citrate stabilized GNPs and GOD capped GNPs were recorded in the range of 600À4000cmÀ1on a Nicolet5700FT-IR spectrometer (Nicolet Inc.,Madison,USA)using a Diamond ATR accessory.Particle Size and Zeta Potential Determination.The tech-nique of dynamic light scattering(DLS;Malvern Instruments Ltd.,Malvern,UK)was used for the determination of the size of the nanoparticles.All measurements were performed at a fixed angle of90°at25°C.The zeta potential of a particle is the overall charge that the particle acquires in a particular medium and is also measured using the same equipment at25°C.Transmission Electron Microscopy.Transmission electron microscopy(TEM)images were obtained on a Hitachi,H7650 microscope(Tokyo,Japan).The gold colloid and the GOD capped gold colloid were deposited onto a200mesh copper grid coated with a Formvar film and dried overnight.Glucose Sensing Using GOD Functionalized Gold Col-loids.The shift in the SPR absorption maxima of the GOD functionalized GNPs on adding predetermined quantities of glucose standard is recorded using a UVÀvisible absorption spectrophotometer,and a calibration curve was plotted with the wavelength against the optical density.The urine samples,which did not contain glucose,were collected from a clinical laboratory. These fluids were spiked with glucose and used as the test samples.The corresponding shift in the absorption maxima was used to calculate the amount of glucose present.Selectivity of the Method.The selectivity of the method was investigated by checking the shift in SPR absorption maxima of the GOD functionalized GNPs on interacting with normal urine samples and the same spiked with albumin/creatinine in the ratio of40mg/mM and cysteine200μM/L.To confirm the precision and recovery of the probe,each set of experiments was carried out in triplicate,and similar results within the maximum error of 2À3%were obtained.’RESULTS AND DISCUSSIONThe surface plasmon resonance makes the absorption cross section of the nanoparticles several orders of magnitude stronger than the most strongly absorbing molecules and the light scattering cross section several orders of magnitude stronger than the organic dyes.23Hence,most of the applications of gold nanoparticles as sensors are based on detecting the shift in surface plasmon peak either due to change in the local dielectric constant of the nanoparticles by adsorbed biomolecules or due to analyte induced aggregation of the nanoparticles.24À29Both these effects rely on the selectivity provided by the functionalized capping agents.Functionalization of GNPs.The typical plasmon absorptionpeak of the gold colloid was observed at 519nm (Supporting Information,Figure S1),indicating the formation of spherical GNPs.30,31This is further substantiated in Figure S2(Supporting Information)which shows the TEM images of the GNPs at a magnification of 500nm,and the nanoparticles displayed an average size of 11to 12nm.After adding Tween 20,the SPR absorption maximum of the gold colloid was shifted to 523(1nm due to the physical adsorption of the surfactant on the GNPs and was consistent with the reported shifts of the band upon formation of dielectric layers around colloidal metals.2The absorption maxima further shifted to 524(1nm upon chemisorption of 16-MHDA,indicating the formation of a thicker monolayer around the nan-oparticles,as reported by Aslan etal.2The presence of a physisorbed layer of Tween 20on the surface of colloidal gold could prevent irreversible aggregation of gold nanoparticles during and after chemisorption of alkane thiols.2On conjugating the ÀCOOH group of the 16-MHDA with the amino group of GOD,the SPR was further red-shifted to 534(1nm.The spectral shift is not accompanied by any broadening,confirming nonaggregation of the particles at this stage.Fourier Transform Infrared Spectroscopy (FT-IR).We re-corded FT-IR spectra of the nanoparticles to get further insight on the surface modification (Supporting Information,Figure S3).Citrate stabilized GNPs showed peaks at 1509and 1399cm À1,characteristic of citrate ions.GOD conjugated GNPs showed intense peaks at 1654and 1549cm À1,typical of amide I (ÀC d O)and amide II (N ÀH bending)bands of the enzyme and a strong ÀC ÀO Àstretching band at 1074cm À1.The peak at 3278cm À1was assigned the N ÀH/O ÀH stretching frequency of the GOD.Effect of Glucose on the SPR Absorption Maximum of the GOD Conjugated GNPs.On adding varied amount of glucose (from 10to 100μg/mL),the SPR absorption band was found to shift from 535to 569nm,reflecting the formation of aggregates having enhanced sizes.The reaction is instant,and no incubation time is required between glucose and GOD conjugated GNPs.The corresponding spectra are shown in Figure 1.The red shift in the plasmon peak was found to vary almost linearly with the concentration of glucose,suggesting the possi-bility of the use of this methodology for the quantitative estimation(inset in Figure 1).The magnitude of wavelength shift was con-comitantly increased with concentration of glucose,and beyond 90μg/mL,it is leveled o ff,indicating the saturation of the reactive sites.The lowest amount of glucose that can produce a red shift in the SPR absorption maxima was found to be 10À90μg/mL with a detection limit of 5μg/mL.Particle Size and Zeta Potential Determinations.The particle sizes and zeta potentials of the GNPs before and after the addition of glucose (50and 100μg/mL)are given in Table 1.The average particle size of GNPs was 22.5(0.7nm,and the same was increased to 158nm on conjugating with GOD.On adding 50μg/mL glucose,the particles size was increased to 231.7nm and the size was enlarged to 1202nm on the addition of 100μg/mL glucose,showing the tendency toward the formation of aggregates.The formation of aggregated assembly is reflected again in the color change of the solution from red to blue (Figure2).As shown in Table 1,the zeta potential of the GNPs was reduced from À48(0.41mV to À21.4mV,on conjugating with GOD.When 50μg/mL glucose was added to GOD functionalized GNPs,the charge was reduced to À14.1mV and subsequently to À5.85mV on the addition of 100μg/mL glucose.The considerable reduction in zeta potential also indicates the tendency for the formation of aggregates.GOD oxidizes glucose to gluconic acid and H 2O 2.H þions resulted from the formation of gluconic acid could reduce anionic character of the enzyme,bringing down the negative zeta potential.At acidic pH,nanoparticles have shown less zeta potential due to the increased chemical potential of H þions.32The magnitude of the measured zeta potential is an indication of the net charge over the nanoparticles and can be used toFigure 1.UV Àvisible absorption spectra of GOD conjugated GNP showing red shift on reacting with di fferent quantities of glucose standard.(Inset is the graphical relationship of wavelength shift against increasing quantities of glucose.)Table 1.Size and Charge of the Nanoparticlessampleparticle size (nm)zeta potential (mV)gold nanoparticles 22.5(0.7À48(0.41Au-GOD158(2À21.4(0.1Au-GOD-glucose 50μg/mL 231.7(9À14.1(0.3Au-GOD-glucose 100μg/mL1202(26À5.9(0.5Figure 2.Color of (A)GNPs and (B)GOD-GNP on reacting with g 100μg/mL glucose.predict the long-term stability of the particles.If all the particles in suspension have either a large negative or a positive zetapotential,there will not be any tendency for them to come closer due to strong repulsion.33However,if the particles have low zeta potential values,the probability of them coming together to form an aggregate is higher.The GOD functionalized GNPs synthe-sized in our laboratory did not show any sign of aggregation even after 2months under refrigerated conditions.Transmission Electron Microscopic (TEM)Analysis.We measured the size of the particles using TEM.Figure 3A shows the size of the GOD conjugated GNPs as 44À47nm.Figure 3B ÀD displays the sizes of the GOD functionalized GNPs on interaction with 5,100,and 150μg/mL glucose,respectively.The size of the nanoparticles increased on adding increasing quantities of glucose.When 50μg/mL glucose was added,the size was increased to 73À75nm;with 100μg/mL glucose,it became 102to 145nm,and a total aggregate was formed on adding 150μg/mL glucose.TEM,however,showed lower values for the size of the nanoparticles compared to DLS measurements (Table 1).DLS measurement records higher values since the light is scattered by the core particle and the layers formed on the surface of the particles.TEM,on the other hand,shows the size of metallic core only.He et al.have also made similar observations earlier.34Glucose induced aggregation of GOD conjugated GNPs leading to color change is well supported by the absorption,particle size measurements,and TEM investigations.Glucose Sensing in Urine Samples.We spiked a urine sample with glucose (50μg/mL),and the absorption peaks are shown in Figure 4.The peak maximum showed a shift of 21nmexactly as in the case of the aqueous standard sample (see Figure 1),demonstrating the feasibility of extending the method for the estimation of glucose in real samples.Rather than quantitative estimation,it seems that the method provides a quick qualitative screening of samples.It is apparent from Figure 2that a concentration of 100μg/mL glucose showed a visible color change of the solution to conclude that the glucose content of the test solution is g 100μg/rmation of this kind could be used for further assessment of the health status of the individual.The optical detection method discussed here may be useful for rural populations where clinical laboratory facilities are limited.Figure 3.TEM images of (A)GOD conjugated GNP,(B)50μg/mL glucose added,(C)100μg/mL glucose added,and (D)150μg/mL glucose added.Figure 4.Wavelength shift with a urine sample spiked with 50μg/mL glucose.导致纳米金聚集的原因Selectivity of the Method.To check the cross reactivity of the GOD functionalized GNPs,we conducted the following studies.Diabetic patients are at increased risk of renal diseases. The principal feature of diabetic nephropathy is proteinuria which is defined as the albumin/creatinine ratio being g30 mg/mmol.35We spiked the urine sample with100μL of aqueous solution containing albumin/creatinine in the ratio40mg/mM to mimic the urine samples of patients with diabetic nephro-pathy.It is also reported that the concentration of cysteine in urine is200μM/L.36A urine sample(100μL)spiked with cysteine is also added to Au-GOD to check its selectivity toward glucose.The SPR absorption maximum of the Au-GOD shifted only on adding50μL of100mg/dL glucose standard.No red shift for albumin/creatinine or cysteine was found,confirming that the GOD functionalized GNPs were highly specific to glucose and had no interference with any other molecules present in the urine.The SPR absorption pattern and the corresponding color images in the inset are shown in Figure S4 (Supporting Information).’CONCLUSIONSWe devised a simple method for the detection of glucose in fluids like urine using GOD immobilized gold nanoparticles.The color of the solution was found to change from red to blue in the presence of∼100μg/mL glucose.Plasmon absorption peak was red-shifted proportionally up to100μg/mL glucose,and good correlation was obtained between the wavelength shift and concentration pointing out the feasibility of the use of the method for the quantitative measurement of glucose in urine. The color change observable by the naked eye can advanta-geously be used for a preliminary screening at home itself and may be referred for more focused investigations.The method seems to be a potential one,particularly for the rural population in third world countries.’ASSOCIATED CONTENTb Supporting Information.Additional information as noted in text.This material is available free of charge via the Internet at .’AUTHOR INFORMATIONCorresponding Author*E-mail:sreeni@sctimst.ac.in.Phone:091À471À2520248.Fax: 091À471À2341814.’ACKNOWLEDGMENTWe are grateful to the Director of SCTIMST and Head of the Biomedical Technology Wing,SCTIMST,for providing all the facilities for conducting this study.We are also thankful to Ms.S. Many and Mr.W.Paul for their technical assistance in getting the TEM images and DLS data.’REFERENCES(1)Wolfbeis,O.S.;Weidgans,B.M.In Fiber Optic Chemical sensors and biosensors-A view back in Optical Sensors;Baldin,F.,Chester,A.N., Homola,J.,Martellucci,S.,Eds.;Springer:The Netherlands,2006;pp 17À44.(2)Aslan,K.;Prez-Luna,ngmuir2002,18,6059–6065.(3)Templeton,A.C.;Wuelfing,W.P.;Murray,R.W.Acc.Chem.Res. 2000,33,27–36.(4)Shon,Y.S.;Mazzitelli,C.;Murray,ngmuir2001, 17,7735–7741.(5)Cliffel,D.E.;Zamborini,F.P.;Gross,S.M.;Murray,R.W. Langmuir2000,16,9699–9702.(6)Aguila,A.;Murray,ngmuir2000,16,5949–5954.(7)Templeton,A.C.;Pietron,J.J.;Murray,R.W.;Mulvaney,P.J. Phys.Chem.B2000,104,564–570.(8)Kometani,N.;Tsubonishi,M.;Fujita,T.;Asami,K.;Yonezawa, ngmuir2001,17,578–580.(9)Perez-Luna,V.H.;Aslan,K.;Betala,P.In Encyclopedia of Nanoscience and Nanotechnolgy;Schwarz,J.A.,Contescu,C.I.,Putyera, K.,Eds.;Marcel Dekker:New York,USA,2004;Vol2,pp27À49.(10)Daniel,M.C.;Astruc,D.Chem.Rev.2004,104,293–346.(11)Durne,J.Angew.Chem.,Int.Ed.2009,48,2–28.(12)Link,S.;Sayed,M.A. E.Annu.Rev.Phys.Chem.2003, 54,331–366.(13)Aslan,K.;Zhang,J.;Lakowicz,J.R.;Geddes,C.D.J.Fluoresc. 2004,14,391–400.(14)Martinez,A.W.;Phillips,S.T.;Whitesides,G.M.Anal.Chem. 2010,82,3–10.(15)Rennke,H.G.;Rose,B.D.Renal Pathophysiology-the essentials, 1st ed.;Lippincott Williams:Philadelphia,p194.(16)Corazon,D.Conjecture Corporation;Wilborn,C.,Ed.;09 September,2010c;.(17)Pandey,P.;Singh,S.P.;Arya,S.K.;Gupta,V.;Datta,M.;Singh, S.;Malhotra,ngmuir2007,23,3333–3337.(18)Li, D.;He,Q.;Cui,Y.;Duan,L.;Li,J.BBRC2007, 355,488–493.(19)Ma,Z.;Ding,T.Nanoscale Res Lett.2009,4,1236–1240.(20)Zhang,H.;Liu,R.;Sheng,Q.;Zheng,J.Colloids Surf.,B2011, 82,532–535.(21)Jiang,Y.;Zhao,H.;Lin,Y.;Zhu,N.;Ma,Y.;Mao,L.Angew. Chem.,Int.Ed.2010,49,4800–4804.(22)Turkevich,J.;Stevenson,P.C.;Hillier,J.Discuss.Faraday Soc. 1951,11,55–75.(23)Huang,X.;Sayed,I.H.E.;Qian,W.;Sayed,M.A.E.J.Am.Chem. Soc.2006,128,2115–2120.(24)Nath,N.;Chilkoti,A.J.Fluoresc.2004,14,377–389.(25)McFarland,C.L.;Haynes,C.A.;Mirkin,R.P.;Duyne,V.; Godwin,c.2004,81,544A.(26)Travan,A.;Pelillo,C.;Donati,I.;Marsich,E.;Benincasa,M.; Scarpa,T.;Semeraro,S.;Turco,G.;Gennaro,R.;Paoletti,S.Biomacro-molecules2009,10,1429–1435.(27)Durr,N.J.;Larson,T.;Smith,D.K.;Korgel,B.A.;Sokolov,K.; Yakar,A.B.Nano Lett.2007,7,941–945.(28)Huang,C.C.;Chang,H.T.Anal.Chem.2006,78,8332–8338.(29)Rex,M.;Hernandez,F.E.;Campiglia,A.D.Anal.Chem.2006, 78,445–451.(30)Ai,K.;Liu,Y.;Lu,L.J.Am.Chem.Soc.2009,131,9496–9497.(31)Liu,J.;Lu,Y.Anal.Chem.2004,76,1627–1632.(32)Sun,L.;Zhang,Z.;Wang,S.;Zhang,J.;Li,H.;Ren,L.;Weng,J.; Zhang,Q.Nanoscale Res Lett.2009,4,216–220.(33)Application Note by Malvern Instruments;Malvern Instruments Ltd.:Worcestershire,U.K.,May2,2005.(34)He,Y.Q.;Liu,S.P.;Kong,L.;Liu,Z.F.Spectrochim.Acta,Part A 2005,61,2861–2866.(35)Andersen,S.;Blouch,K.;Bialek,J.;Deckert,M.;Parving,H.H.; Myers,B.D.Kidney Int.2000,58,2129–2137.(36)Ku s mierek,K.;G z owacki,R.;Bald,E.Anal.Bioanal.Chem. 2006,385,855–860.。
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 12 期CuBi 2O 4/BiOBr@GH 双功能光催化剂的制备及其光催化性能李世文,王亮,李春虎(中国海洋大学化学化工学院, 山东 青岛 266100)摘要:采用溶剂热法制备Z 型CuBi 2O 4/BiOBr (CBOB )异质结,并与石墨烯水凝胶(GH )复合得到CuBi 2O 4/BiOBr@GH(CBOBG )。
通过X 射线衍射、X 射线光电子能谱、扫描电子显微镜、透射电子显微镜、N 2吸附-脱附、紫外-可见光谱、荧光光谱和电化学等表征方法对催化剂的晶体结构、表面组成、微观形貌、比表面积与光电性能进行分析。
在可见光下,通过降解四环素耦合还原Cr(Ⅵ)实验,考察了CBOBG 的光催化活性。
实验结果表明,CBOBG 在120min 内,对四环素的降解率达到了86.1%,对Cr(Ⅵ)的还原率达到了100%。
通过活性物种捕获实验证明,降解过程的主要活性物质为超氧自由基和光生空穴,还原过程的主要活性物质为光生电子。
关键词:复合材料;CuBi 2O 4/BiOBr ;石墨烯水凝胶;催化剂;光催化中图分类号:TQ426.9 文献标志码:A 文章编号:1000-6613(2023)12-6363-09Preparation and photocatalytic properties of CuBi 2O 4/BiOBr@GHbifunctional photocatalystsLI Shiwen ,WANG Liang ,LI Chunhu(College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China)Abstract: The Z-scheme CuBi 2O 4/BiOBr (CBOB) heterojunction was prepared by a solvothermal method and compounded with graphene hydrogel (GH) to obtain CuBi 2O 4/BiOBr@GH (CBOBG). The crystal structure, surface composition, microstructure, specific surface area and photoelectric properties of the photocatalyst were characterized by XRD, XPS, SEM, TEM, N 2 adsorption-desorption, UV-vis DRS, PL spectra and electrochemistry. The photocatalytic activity of CBOBG was further studied by the tetracycline degradation coupled reduction of Cr(Ⅵ) under visible light. The results showed that the degradation rate of tetracycline and the reduction rate of Cr(Ⅵ) of CBOBG reached 86.1% and 100% respectively within 120min. The main active substances in the degradation process were superoxide radical and hole, while those in the reduction process were electron.Keywords: composites; CuBi 2O 4/BiOBr; graphene hydrogel; catalyst; photocatalysis 抗生素的滥用和重金属离子的随意排放使得水生态环境逐渐恶化,已经严重威胁着人类的健康[1]。
什么点亮我的生化作文英文回答:Illuminating My Biochemistry Essay.In the tapestry of academic endeavors, crafting a biochemistry essay is akin to assembling a intricate mosaic, each tile representing a complex concept intertwined within the intricate web of life itself. To truly illuminate sucha masterpiece, several strategies can be employed, eachakin to a brushstroke that brings forth clarity and depth.1. Delve into the Depths of Understanding:A comprehensive understanding of the fundamental concepts of biochemistry is the cornerstone upon which a brilliant essay is built. Begin by immersing yourself in textbooks, attending lectures with unwavering attention,and engaging in discussions with your professors and peers. Seek out resources that delve into the intricate workingsof metabolism, genetics, molecular biology, and the manifold processes that govern the symphony of life.2. Master the Art of Precision:In the realm of biochemistry, precision is paramount. Ensure that your essay employs accurate and specific language, avoiding vague or ambiguous terms that may obscure your ideas. Define key concepts meticulously, using precise numerical data and scientific terminology. Clarity is the conduit through which your insights can reach their full potential.3. Craft a Cohesive Narrative:An effective biochemistry essay is a cohesive narrative that seamlessly weaves together complex ideas into alogical and compelling storyline. Structure your essay with an engaging introduction that captures the reader's attention, a body that methodically explores the various aspects of your topic, and a conclusion that ties the threads together and leaves a lasting impression.4. Utilize Visual Aids to Enhance Comprehension:Visual aids are invaluable tools for illuminating complex concepts. Incorporate clear and visually appealing diagrams, graphs, or tables to illustrate biochemical processes and relationships. These visual representations can enhance understanding and make your essay more accessible to readers.5. Seek Feedback and Refine:The path to a polished essay is paved with constructive feedback. Share your draft with peers, tutors, or professors and solicit their insights. Be open to suggestions that may improve the clarity, accuracy, or flow of your work. With each round of refinement, your essaywill shine brighter and more effectively convey your knowledge.6. Proofread with a Critical Eye:Once your essay is complete, scrutinize it with acritical eye. Check for errors in grammar, spelling, and punctuation. Ensure that your references are accurate and complete. A polished and error-free essay is a testament to your attention to detail and professionalism.中文回答:点亮我的生化作文。
乳液聚合胶束成核机理谁提出来的对应的英文文章乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的。
该理论在1971年由他在《Journal of Colloid and Interface Science》发表的一篇名为"Polymerization of Micelles: A Phenomenological Approach"的英文文章中详细阐述。
后附译文Introduction:Emulsion polymerization is a widely used technique for the synthesis of various polymers. The process involves the formation of polymer particles in a water-insoluble monomer phase dispersed in water through the use of surfactants and emulsifiers. The understanding of the nucleation mechanism in this process is crucial for optimizing the synthesis and controlling the particle size and morphology. In this regard, the groundbreaking work of Jean-Pierre Chapel on the mechanism of micelle nucleation in emulsion polymerization provides valuable insights and has been of significant interest to researchers.Brief Background:Emulsion polymerization involves the formation of micelles, which are colloidal aggregates of surfactant molecules, to stabilize the monomer droplets in water. These micelles act as the nucleation sites for the polymerization reaction. Jean-Pierre Chapel proposed a phenomenological approach to explain the micelle nucleation process in emulsion polymerization. His work focused on understandingthe role of surfactants and their interactions with the monomer molecules in the nucleation process.Chapel's Phenomenological Approach:Chapel's approach involved the use of classical thermodynamics to model the micelle nucleation mechanism in emulsion polymerization. He considered the system as a two-phase mixture of monomer droplets dispersed in water and the impact of surfactant molecules on the nucleation process. Chapel formulated his theory based on well-established thermodynamic principles and made a few key assumptions.Assumptions:1. The surfactant molecules are assumed to spontaneously adsorb at the monomer-water interface due to the hydrophobicity of the monomers.2. The adsorption of surfactant at the monomer-water interface leads to the formation of a monolayer around the monomer droplet, stabilizing it against coalescence.3. Polymerization occurs within the surfactant-stabilized monomer droplets.Theoretical Explanation:Chapel's phenomenological approach involved the use of classical nucleation theory and the Gibbs free energy change associated with micelle formation. He derived equations that describe the change in free energy due to the adsorption of surfactant molecules at the monomer-water interface, the deformation of the surfactant monolayer, and the formation of micelles. Chapel recognized that the monomer-water interfaceequilibrium must be considered in the calculations. His model allowed for the prediction of the critical micelle concentration (CMC) and the rate of polymerization based on the thermodynamic parameters of the system.Significance of Chapel's Work:Chapel's model provided a deeper understanding of the nucleation process in emulsion polymerization. His approach allowed for the prediction and control of the CMC, which is a critical parameter in determining the stability of the emulsion and the particle size distribution. Chapel's work also highlighted the importance of surfactant properties, such as hydrophobicity and molecule structure, in the nucleation and stabilization processes. This knowledge has been invaluable for the design and synthesis of emulsion polymerization systems with desired properties.Further Research and Applications:Since Chapel's seminal work, researchers have built upon his model and expanded the understanding of emulsion polymerization mechanisms. The development of more efficient and versatile surfactants, advancements in experimental techniques, and computational modeling have further enhanced the understanding of the nucleation process. This knowledge has led to the development of new emulsion polymerization techniques and the synthesis of polymers with tailored properties for a wide range of applications, including coatings, adhesives, and biomaterials.Conclusion:Jean-Pierre Chapel's phenomenological approach to understanding the micelle nucleation mechanism in emulsion polymerization has provided valuable insights into the roleof surfactants in this process. His work has laid the foundation for further research in the field and has contributed significantly to the design and synthesis of polymer particles with controlled properties. The understanding of the nucleation mechanism is crucial for optimizing emulsion polymerization processes and enables the production of polymers for diverse applications.乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的.该理论在1971年由他在《胶体和界面科学杂志》发表的一篇名为“胶束聚合:现象学方法”的英文文章中详细阐述。
收稿日期:2001-10-25作者简介:张丽莉(1978-),女,湖北宜昌人,在学硕士,主要从事超临界物质性质的研究。
专题综述超临界水的特性及应用张丽莉,陈 丽,赵雪峰,于 琳,田宜灵(天津大学理学院,天津300072)摘要:介绍了水在高温高压下的热力学性质、氢键、离子积、扩散系数和粘度等在超临界区域的特殊性,以及超临界水溶液在介电常数、偏摩尔体积、溶解性和极性等方面的特殊性质,并阐述了超临界水在化学反应和废物处理中的特殊应用。
关键词:超临界水;性质;临界曲线;化学反应中图分类号:O61112; 文献标识码:A 文章编号:1004-9533(2003)01-0033-06O61113Properties of Supercritical W ater and Its ApplicationZH ANGLi -li ,CHE N Li ,ZH AO Xue -feng ,Y U Jing -lin ,T LAN Y i -ling(School of Science ,T ianjin University ,T ianjin 300072,China )Abstract :This review covers the unusual characteristic including the therm o -physical proper 2ties ,Hydrogen bonding ,ionic product ,diffuse coefficient and vlscosity et al of supercritical wa 2ter (SCW )at high tem peratures and pressures.Furtherm ore ,the special properties of supercriti 2cal aqueous s olution in dielectrlc constant ,partial m olar v olume ,s olubility and polarity were pr 2esented.The applications of SCW in chemical reaction and waste disposal were als o introduced.K ey w ords :supercritical water ;property ;critical curve ;reaction 气体和液体统称流体。
Breakthrough TechnologiesA Versatile Zero Background T-Vector System for Gene Cloning and Functional Genomics1[C][W][OA]Songbiao Chen,Pattavipha Songkumarn,Jianli Liu,and Guo-Liang Wang*Department of Plant Pathology,The Ohio State University,Columbus,Ohio43210(S.C.,P.S.,J.L.,G.-L.W.); and Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization,Hunan Agricultural University,Changsha410128,China(G.-L.W.)With the recent availability of complete genomic sequences of many organisms,high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand.Although site-specific recombination-based cloning systems,such as Gateway cloning technology,are extremely useful for efficient transfer of DNA fragments into multiple destination vectors,the two-step cloning process is time consuming and expensive.Here,we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation.The improved T-vector system takes advantage of the restriction enzyme Xcm I to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation.We demonstrate the feasibility andflexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression,gene silencing,protein tagging,protein subcellular localization detection,and promoter fragment activity analysis in plants.Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general,cost-efficient,and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.Rapid advances in genome sequencing technologies in the last few years have led to the complete decoding of many complex eukaryotic genomes and have stim-ulated large-scale analysis of gene functions in se-quenced genomes.In general,gene function can be elucidated using a variety of approaches,such as ectopic expression,gene silencing,protein subcellular localization examination,gene expression pattern analysis by promoter activity assay,structure-function analysis,and in vitro or in vivo biochemical assays (Hartley et al.,2000;Curtis and Grossniklaus,2003; Earley et al.,2006).Typically,all these approaches require the cloning of target genes,mutated fragments, or their promoter fragments into various specialized vectors for subsequent characterization.However,the traditional approach for engineering expression con-structs based on the restriction enzyme/ligase cloning method is extremely laborious and time consuming and is often hampered by lack of appropriate restric-tion sites;thus,the production of constructs is a significant technical obstacle for large-scale functional gene analysis in plants.In recent years,the Gateway cloning system from Invitrogen and the Creator cloning system from CLONTECH have been developed to facilitate large-scale production of gene constructs.The recombina-tional cloning systems are based on a two-step process (Marsischky and LaBaer,2004).The DNA fragment of interest isfirst cloned into a general donor plasmid. Subsequently,the DNA fragmentflanked by two site-specific recombination sites in the donor vector can be transferred precisely into a variety of expression vec-tors by site-specific recombination reactions.A great advantage of the recombinational cloning technologies is that once the DNA fragment has been engineered into a donor vector,the transfer of the DNA fragment into an expression destination vector is a simple reac-tion that requires no traditional restriction enzyme/ ligase cloning.The recombinational cloning systems, particularly the Gateway technology,have been widely used in the research community,and many Gateway-compatible open reading frame entry(do-nor)clone collections and expression vectors have been created for functional genomics in many organ-isms(Yashiroda et al.,2008),including plants(Karimi et al.,2007b).On the other hand,although extremely useful for the simple and efficient transfer of DNA fragments into multiple expression destination vec-tors,the usefulness of the Gateway cloning system is rather limited for many projects where only a single expression vector is required for a DNA fragment.The two-step cloning process of the Gateway technology is laborious and time consuming for the production of a1This work was supported by the National Science Foundation-Plant Genome Research Program(grant no.0605017).*Corresponding author;e-mail wang.620@.The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors()is: Guo-Liang Wang(wang.620@).[C]Somefigures in this article are displayed in color online but in black and white in the print edition.[W]The online version of this article contains Web-only data.[OA]Open access articles can be viewed online without a sub-scription./cgi/doi/10.1104/pp.109.137125single expression vector.This is particularly true when a large number of plasmids must be cloned.Although a one-step recombinational cloning method was de-scribed to eliminate the production of an entry clone (Fu et al.,2008),the approach is rather limited in scope because long primers containing the specific attach-ment site(att)and two-step PCR are required(Fu et al., 2008).TA cloning is routinely used for cloning of PCR-amplified fragments.This technique exploits the ter-minal transferase activity of some DNA polymerases that add a3#-A overhang to each end of the PCR product.PCR products can be easily cloned into a linearized vector with3#-T overhangs compatible with 3#-A overhangs.Because it is difficult to generate a high-quality TA cloning vector in individual laborato-ries,many TA cloning kits are available in the market. Many of them use blue/white screening for recombi-nants,and the DNA fragments can only be cloned into the TA vector provided in the kit.To meet the need for high-throughput cloning of DNA fragments into di-verse expression vectors,we have developed a signif-icantly improved TA cloning vector system by taking advantage of the negative selection gene marker ccdB to eliminate the self-ligation background after trans-formation.We refer to this new method as the zero background TA cloning system(ZeBaTA).Numerous cloning tests in our laboratory have shown that ZeBaTA provides very high cloning efficiency with almost no self-ligation.Moreover,the ZeBaTA technology can be flexibly adapted for developing specialized expression vectors allowing single-step assembly of PCR-ampli-fied genes or fragments.We demonstrate the feasibility andflexibility of the technology by developing a set of 12transient and12stable transformation vectors for constitutive gene expression,gene silencing,protein tagging,protein subcellular localization,and promoter fragment activity analysis for rice(Oryza sativa)and Arabidopsis(Arabidopsis thaliana).Our results suggest that ZeBaTA technology can also be easily used to develop expression vectors for other organisms(e.g. Escherichia coli,yeast[Saccharomyces cerevisiae],insect, and mammal),thereby providing a novel and general high-throughput platform for functional genomics of target genes.RESULTSConstruction of the ZeBaTA SystemTwo different strategies were used to produce T-vectors,i.e.adding a single thymidine at the3# blunt ends of a linearized vector(Holton and Graham, 1991;Marchuk et al.,1991)and generating single3#-T overhangs of a linearized vector by restriction endo-nuclease digestion(Kovalic et al.,1991;Mead et al., 1991;Ichihara and Kurosawa,1993;Chen et al.,2006a). Although the former has been used to produce com-mercial cloning kits like the pGEM-T system,we selected the restriction endonuclease digestion-mediated strategy to develop a TA cloning vector system because this approach is easy to use for indi-vidual laboratories.Previous publications have de-scribed the use of restriction enzyme Xcm I(Kovalic et al.,1991;Mead et al.,1991)or Ahd I/Eam1105I (Ichihara and Kurosawa,1993;Chen et al.,2006a)to produce intermediate T-vectors.We chose Xcm I as the digestion enzyme to develop the ZeBaTA cloning system because it had a better digestion efficiency than AhdI.Figure1.Construction of the ZeBaTA system.A,Schematic represen-tation of direct cloning of PCR product using the ZeBaTA vector system. The linker of the vector(in gray)is removed after Xcm I digestion yielding a linearized T-vector.B,TA cloning tests of the ZeBaTA system.(1)Self-ligation of Xcm I-digested pGXT using T4DNA ligase from Promega.(2)Ligation of Xcm I-digested pGXT with the PCR product of the rice blast fungus M.oryzae gene MGG_07986.5using T4DNA ligase from Promega.(3)Ligation of Xcm I-digested pGXT with the PCR product of MGG_07986.5using T4DNA ligase from USB Corporation. C,Samples of restriction digestion analysis of the randomly selected colonies derived from ligation of Xcm I-digested pGXT with the PCR product of MGG_07986.5using T4DNA ligase from Promega.pGXT contains two Bam HI recognition sites outside the two Xcm I recognition sites(Supplemental Fig.S1),and MGG_07986.5contains one internal Bam HI site.All samples(lanes1–20)digested by Bam HI released two bands as expected.M,1-kb DNA ladder.Chen et al.The schematic illustration of the improved T-vector system for PCR-amplified gene/fragment cloning is shown in Figure 1A.A pair of Xcm I recognition sites,CCAATACT/TGTATGG,was introduced in the vec-tors,which allowed the generation of a single thymi-dine residue at both 3#ends of the vector when digested with Xcm I.To eliminate the potential self-ligation due to incomplete Xcm I digestion of the vec-tor,the ccdB gene (Bernard and Couturier,1992;Miki et al.,1992),which inhibits growth of E .coli strains by expressing a protein to interfere with its DNA gyrase,was introduced between the two Xcm I sites.Hence,any self-ligation transformants containing the ccdB gene will be eliminated.To test the cloning efficiency of the T-vector system,an intermediate vector pGXT was generated based on the backbone of the pGEM-T easy vector.After Xcm I digestion,ligation reactions of the resulting T-vector alone and T-vector with the PCR-amplified product of the rice blast fungus Mag-naporthe oryzae gene MGG_07986.5were set up follow-ing the standard protocol of the Promega pGEM-T easy vector system.Transformation tests showed that ligation of the T-vector with the MGG_07986.5frag-ments yielded a large number of colonies,whereas ligation of the T-vector alone yielded only a few colonies (Fig.1B).Restriction digestion screening con-firmed that the plasmids yielded from ligation of theT-vector with the PCR product were true recombinants (Fig.1C).To establish a general guide for consistently successful cloning,several factors,such as Xcm I over-digestion for generating a T-vector,insert-to-vector molar ratios,and different T4DNA ligases,were tested to determine their effect on cloning efficiency.Surprisingly,we observed that T4DNA ligases could have a significant impact on cloning efficiency.Liga-tions using Promega T4DNA ligase,the same product used by the pGEM-T easy vector system,consistently gave very high cloning efficiency with almost no self-ligation background.However,regular T4DNA li-gases from USB Corporation usually gave very low ligation efficiency for this TA cloning system (Fig.1B).Although the ligation efficiencies were a little higher at insert-to-vector molar ratios of 4:1to 8:1with the T-vector generated by standard digestion,ligations from vectors with 10-or 20-fold overdigestion and ligations with insert-to-vector molar ratios of 1:1,4:1,8:1,and 12:1all yielded good cloning efficiency when Promega T4DNA ligase was used (data not shown).Set of Expression ZeBaTA Vectors for PlantsUsing ZeBaTA,we developed a set of transient and stable expression vectors for different applications in both dicot and monocot plants.The backbone ofallFigure 2.Site-specific mutagenesis of the maize ubiqutin-1promoter (A)and the backbone of the binary vector pCAMBIA1300(B)in which three Xcm I recognition sites were deleted.The nucleotides represented in lowercase italic letters are the positions where deletions or mutations were made.Kan,Kanamycin resistance gene;LB,T-DNA left border;RB,T-DNA right border.C,Comparison of the levels of GUS expression mediated by the original and modified maize ubiquitin-1promoter in transiently transfected rice protoplasts.GUS activities are represented as a ratio of relative GUS/LUC.The experiment was repeated three times with similar results.1,Protoplast sample transfected with pUbiGUS;2,protoplast sample transfected with pXUN-GUS.A Zero Background Vector Systemtransient expression vectors is derived from pBlue-script II KS (),a high-copy-number cloning vector that can facilitate the isolation of a large amount of plasmid DNA for transient ex-pression.The backbone of all stable expression vectors is derived from pCAMBIA1300(),an Agrobacterium tumefaciens binary vector widely used for transformation in both dicot and monocot plants.Two different promoters,a cauliflower mosaic virus 35S promoter (Odell et al.,1985)and a maize (Zea mays )ubiquitin-1promoter (Christensen et al.,1992)were used to drive expression of genes of interest in dicots and monocots,respectively.The 35S promoter is more efficient in dicots,whereas the maizeubiquitin-1Figure 3.ZeBaTA-based expression vectors for gene overexpression/silencing,protein tagging,protein subcellular localization,and promoter analysis in plants.A,Schematic structures of the transient expression vectors generated by Xcm I digestion.B,Schematic structures of the Agrobacterium -mediated stable transformation vectors generated by Xcm I digestion.LB,T-DNA left border;RB,T-DNA right border.Chen et al.promoter is more efficient in monocots(Christensen et al.,1992).The original maize ubiquitin-1promoter and pCAMBIA1300vector,however,contain one and three Xcm I recognition sites,respectively(Fig.2,A and B).To facilitate the construction of the ZeBaTA-based expression vectors,the Xcm I recognition sites of the maize ubiquitin-1promoter and pCAMBIA1300vec-tor were eliminated by site-specific deletion or site-specific mutation(Fig.2,A and C).The designed expression vectors were all engineered with the cas-sette of the Xcm I-ccdB-Xcm I fragment(Supplemental Fig.S1).Figure3,A and B,illustrates the structural maps of the12transient and12stable transformation T-vectors.All vectors have been tested for cloning at least one time,and the results showed that these ZeBaTA expression vectors,including those binary vectors that are relatively large in size(.10kb), consistently yielded high cloning efficiency(Supple-mental Fig.S2).Because the maize ubiquitin-1promoter used in this system was modified to block its original Xcm I recog-nition site by deleting a single base(Fig.2A)at the position of nucleotide2480,a gus gene(Jefferson et al., 1987)was amplified by PCR and then cloned into the Xcm I-digested pXUN vector to produce an expression construct to test the expression activity of the modified maize ubiquitin-1promoter.The derived constructpXUN-GUS and a control construct pUbi-GUS(Chen et al.,2006b),of which a gus gene is driven by the original maize ubiquitin-1promoter,were tested tran-siently in the transfected rice protoplasts.Transient expression assays showed that the levels of GUS activity in rice protoplasts transfected with these two constructs were similar(Fig.2C),indicating that the deletion of nucleotide2480does not affect the activity of the maize ubiquitin-1promoter.Testing of Tagged Protein ExpressionEpitope tagging is a widely used method for the rapid and effective characterization,purification,and in vivo localization of the protein products of cloned genes.To facilitate gene cloning for epitope tagging in plants,a total of12epitope-tagging vectors(Fig.3,A and B)were constructed using ZeBaTA.These vectors contain a35S promoter or a maize ubiquitin-1pro-moter,allowing direct cloning of genes of interest into expression vectors to express a translational fusion of target protein with three commonly used epitope tags in plants(i.e.FLAG,HA,or Myc;Earley et al.,2006). To determine the feasibility of this epitope-tagging system,a gfp gene was cloned into the pXUN-HA vector to fuse with the HA tag.The resulting expres-sion construct pXUN-HA-GFP was transiently ex-pressed in rice protoplasts.As shown in Figure4,A and B,protoplasts transfected with pXUN-HA-GFP showed strong GFPfluorescence,and HA-tagged GFP protein was detected in protein extracts of trans-fected protoplasts but not in the nontransfected con-trol,demonstrating the potential application of this system for functional study of target proteins in plants.Gene Silencing by Hairpin RNAi or Artificial MicroRNA In plants,a typical and efficient approach to induce gene silencing is to use an inverted-repeat construct to express hairpin RNA(hpRNA;Waterhouse et al.,1998; Smith et al.,2000).However,a major limitation of the hpRNA interference(hpRNAi)approach for high-throughput gene functional analysis is the cumber-some cloning procedure for generating hpRNAi constructs(Helliwell and Waterhouse,2003).The gen-eration of a hpRNAi construct using conventional restriction enzyme digestion and DNA ligation meth-ods usually requires several cloning steps.Although Gateway cloning technology has been adapted to gen-erate hpRNAi constructs(Helliwell and Waterhouse, 2003;Miki and Shimamoto,2004),it still requires two cloning steps.With the ZeBaTA system,hpRNAi con-structs can be made by a single-step cloning procedure (Fig.5A).Instead of making an inverted-repeat cas-sette by DNA recombination techniques,we designed a new approach to assemble the hpRNAi cassette by overlapping PCR.Briefly,a target fragment with an additional3#-terminal sequence complementary to both the5#-and3#-terminal ends of a designed spacer fragment is amplified as afirst step.The overlapping fragments are then fused together in a subsequent PCR reaction,and the resulting inverted-repeat is cloned directly into a ZeBaTA expression vector(Fig.5A).To test the feasibility of this approach,an RNAiconstruct Figure4.Transient expression and protein-tagging detection of the ZeBaTA vectors in rice protoplasts.A,Fluorescence microscopy of the expression of HA-tagged GFP in rice protoplasts.B,Detection of HA-tagged GFP by western ne1,Nontransfected control protoplast sample;lanes2to4,independent protoplast samples transfected with pXUN-HA-GFP.[See online article for color version of thisfigure.]A Zero Background Vector Systemwas generated by overlapping PCR in which the sense and antisense 217-bp fragments of the Arabidopsis phytoene desaturase gene (PDS )were separated by a 420-bp stuffer fragment derived from the gus gene.The resulting fragment was cloned into the pCXSN vector (Fig.3B)to generate the expression construct pCXSN-atPDS-RNAi.The RNAi construct was introduced into Arabidopsis by the floral-dip method.Over 80%of transgenic plants had a clear albino phenotype (Fig.6A),a typical visible phenotype caused by silencing of the PDS gene (Guo et al.,2003;Miki and Shimamoto,2004).Recently,the artificial microRNA (amiRNA)ap-proach has been introduced for highly specific gene silencing in both dicot and monocot plants (Niu et al.,2006;Schwab et al.,2006;Ossowski et al.,2008;Warthmann et al.,2008).Typically,the amiRNA is generated by site-directed mutagenesis on precursors of endogenous miRNAs to exchange the natural miRNA sequences with those of amiRNAs using overlapping PCR (Ossowski et al.,2008).The same ZeBaTA-based vector system developed for ectopic gene expression and hpRNAi can also be used for making amiRNA expression constructs by simpleTAFigure 5.Schematic illustration of the construction of hpRNAi or amiRNA constructs by single-step cloning.A,Generation of hpRNAi constructs by overlapping PCR approach.The target gene fragment and the stuffer sequence fragment are amplified in the first-round PCR.Primers P2,P3,and P4introduce complementary adapters (indicated by vertically lined boxes)to the amplified fragments.The two amplified fragments are fused together as an inverted-repeat cassette in the second-round PCR by using single P1primer.The resulting fragment is then directly cloned into the plant expression T-vector.B,Generation of amiRNA constructs by overlapping PCR approach.C,Generation of amiRNA constructs for rice genes by single-step PCR.The expression vectors pXUN-osaMIR528and pCXUN-osaMIR528were preassembled with 5#and 3#stemloop backbone sequences of a rice miRNA precursor Osa-MIR-528(Warthmann et al.,2008).Thus,making amiRNA constructs for rice target genes only requires an amiRNA-amiRNA*fragment generated from single-step PCR.The nucleotides represented in lowercase letters are the positions where mutations were made to introduce two Xcm I recognition sites.Chen et al.cloning (Fig.5B),thus bypassing the time-consuming two-step procedure for the regular restriction enzyme digestion-mediated cloning or the Gateway cloning (Ossowski et al.,2008).We further developed a ZeBaTA-amiRNA system to simplify the generation of rice amiRNA constructs because our lab is focusing on rice functional genomics.The new ZeBaTA-amiRNA vector was designed based on the stemloop backbone derived from Osa-MIR528,an endogenous rice miRNA precursor that has been used to efficiently express amiRNAs for highly specific silencing of targeted genes in rice (Warthmann et al.,2008).By site-directed muta-genesis of a single base on the 5#and 3#stemloop backbones of Osa-MIR528,respectively,a cassette of 5#Osa-MIR528stemloop backbone-Xcm I-ccdB -Xcm I-3#Osa-MIR528was assembled and cloned into the expres-sion vectors where the expression of amiRNA is under the control of the maize ubiquitin-1promoter.Figure 5C illustrates the structural maps of the Osa-MIR528-based vectors pXUN-osaMIR528and pCXUN-osaMIR528.The vectors allow for high-throughput generationof rice amiRNA constructs by cloning the amiRNA-amiRNA*fragment generated from a single-step PCR into the ZeBaTA vector with the preassembled Osa-MIR528stemloop backbone (Fig.5C;Supplemental Fig.S3),thus avoiding the time-consuming overlapping PCR.The modified vector was evaluated by expression of the amiRNA for silencing of the OsPDS gene.The two constructs pCXUN-amiPDS and pCXUN528-PDS,which contain original or modified Osa-MIR528stem-loop backbone with amiRNA sequence targeting OsPDS ,respectively ,were introduced into rice cv Nip-ponbare by Agrobacterium -mediated transformation.Consistent with a previous study (Warthmann et al.,2008),70.1%of the primary transgenic lines transformed with pCXUN-amiPDS had a bleaching PDS silencing phenotype (Fig.6B;Table I).Similarly,77.1%of the primary transgenic lines transformed with pCXUN528-PDS had the same albino phenotype,suggesting that the mutagenesis on the Osa-MIR528stemloop backbone does not affect the biogenesis of the amiRNA for silenc-ing of the PDS gene.Protein Subcellular Localization/Colocalization and Promoter Activity AssayTo investigate the subcellular localization or colo-calization of particular proteins,a set of ZeBaTA vectors (i.e.pXDG,pXDR,pCXDG,and pCXDR)was devised for transient or stable expression of protein fusions with GFP or red fluorescent protein.The vectors contain a 35S promoter-driven gfp or DsRed cassette that has been used to visualize protein local-ization in both dicot and monocot plants (Goodin et al.,2002;Chen et al.,2006b).As shown in Figure 3,A and B,PCR products of genes of interest can be simply engineered into the vectors to fuse with the gfp or DsRed gene.To confirm whether the vectors can be used for detecting protein localization in plant cells,the rice Spin1gene encoding a putative RNA-binding protein previously shown to be nuclear targeted(Vega-Sa´nchez et al.,2008)was cloned into vectors pXDG and pXDR to fuse in-frame with gfp and DsRed ,respectively.Transient expression of the constructs pXDG-Spin1and pXDR-Spin1in rice protoplasts dem-onstrated that the GFP-and DsRed-SPIN1fusion proteins were targeted to the nuclear region as pre-dicted (Fig.7A).For promoter activity assays,two reporters,gus and gfp ,were used for constructing pXGUS-P/pCXGUS-P and pXGFP-P/pCXGFP-P ,respectively.The linear T-vectors of pXGUS-P/pCXGUS-P orpXGFP-P/Figure 6.Silencing of the PDS gene in Arabidopsis and rice by the ZeBaTA-based hpRNAi or amiRNA approaches.A,Arabidopsis plants transformed with the hpRNAi construct pCXSN-atPDS-RNAi showing the PDS silencing albino phenotype.(1)Control plant;(2and 3)two examples of transgenic Arabidopsis plants.B,Rice plants transformed with the amiRNA vectors showing the albino phenotype.(1)Control plant;(2)example of pCXUN-amiPDS-transformed plants;and (3)example of pCXUN528-PDS-transformed plants.C,RT-PCR analysis of PDS suppression transgenic rice plants.Five independent primary plants (1,2,3,4,and 5)transformed with pCXUN-amiPDS and five independent primary plants (6,7,8,9,and 10)transformed with pCXUN528-PDS were selected for the analysis.CK,Wild-type Nip-ponbare plant used as the control.Table I.PDS silencing frequency of transgenic rice mediated by the ZeBaTA-amiRNA systemamiRNA VectorTotal Independent TransformantsAlbino PhenotypeEfficiency%pCXUN-amiPDS 553970.1pCXUN528-PDS 352777.1A Zero Background Vector SystempCXGFP-P (Fig.3,A and B)allow direct cloning of PCR-amplified promoter fragments located in front of the reporter genes.As proof of concept,the 35S pro-moter was cloned into pCXGUS-P to drive expression of the reporter gene gus .Arabidopsis plants stably transformed with the construct pCX-35S-GUS showed constitutive GUS expression in the whole plants (Fig.7B),confirming the feasibility of the system for assay-ing promoter activity.DISCUSSIONWith the rapid development of the next-generation sequencing technology,more plant genomes will be sequenced in the near future.How to rapidly deter-mine the function of the identified genes on a large scale is a daunting challenge.The ability to efficiently make constructs to transiently and stably express specific genes in cells,tissues,or whole plants is a fundamental aspect and bottle neck of plant functional genomics research.Traditionally,the cloning vectorsfor plant research carry a multicloning site (MCS)within their target gene expression cassettes.The restriction sites in the MCS are rather limited,making cloning of most target genes difficult.Although TA cloning vectors have been widely used for cloning of PCR-amplified fragments,the system has not yet been incorporated in the cloning vectors for transient and stable expression of target genes because of the tech-nical challenge of generating low-background TA cloning vectors.The Gateway system has been a popular choice for generating various constructs be-cause it allows the gene of interest to be easily cloned into specifically designed plasmids without DNA re-striction digestions.The two-step cloning and expen-sive reagents,however,make the Gateway system impractical for large-scale cloning in most individual laboratories when the entry clone collections are not available.The ZeBaTA system described here over-comes the limitations of both the TA and Gateway cloning systems.After two Xcm I recognition sites have been introduced into the MCS,any PCR fragments with a T-overhang can be easily cloned into a ZeBaTA vector.With the introduction of the negative selection marker gene ccdB between the two Xcm I sites,any self-ligation transformants are ing this tech-nology,we constructed a set of 12transient and 12stable transformation vectors for plant gene expres-sion studies and tested the vectors in rice or Arabi-dopsis in our laboratories.These vectors can be used in a wide range of functional genomics projects in plants and will be distributed to the research community upon request.Under certain conditions,cloning with T-vectors generated by digestion with Ahd I or Xcm I gave low efficiency and the T residue of the insert-vector junc-tion in the recombinant clones is often missing (Mead et al.,1991;Chen et al.,2006a).Chen et al.(2006a)speculated that this may be due to the presence of unknown factors that,during digestion and prepara-tion of the T-vectors,influence the stability of 3#-T overhangs.In this study,we found that the main factor affecting successful cloning is the use of an appropri-ate T4DNA ligase.We tested the Promega T4DNA ligase,which is included in the pGEM-T easy vector system,and the T4DNA ligase from USB Corporation.The ligations using Promega T4DNA ligase consis-tently gave a very high cloning efficiency;most of the ligations using USB Corporation T4DNA ligases yielded low efficiency.Many of the recombinant plas-mids from the latter ligations missed a T residue in the insert-vector junction,consistent with observations by Mead et al.(1991)and Chen et al.(2006a).The T residue is missing mainly because regular commercial T4DNA ligases contain exonuclease activities that can remove the 3#-T tails from the vector,as reported in the technical manual of the pGEM-T and pGEM-T easy vector systems (/tbs/tm042/tm042.pdf);removal of the 3#-T tails from the vector results in very low cloning efficiency.When the Promega T4DNA ligase was used for ligation,weFigure 7.Protein subcellular localization and promoter activity anal-ysis using the ZeBaTA vectors.A,Fluorescence microscopy of the coexpression of GFP and DsRed,or GFP-SPIN1and DsRed-SPIN1fusions in rice protoplasts.Scale bar =20m m.The RNA binding nuclearprotein SPIN1was used as a tester (Vega-Sa´nchez et al.,2008).B,GUS staining of Arabidopsis transformed with pCX-35S-GUS,where the 35S promoter was cloned into the vector pCXGUS-P to test the system.CK,Plant transformed with control vector pCAMBIA1300();pCX-35S-GUS-1and pCX-35S-GUS-2,two independent primary transgenic plants.Chen et al.。
微乳法制备Fe3O4磁性纳米粒子的研究第25卷第1期2006年3月武汉工业学院JournalofWuhanPolytechnicUniversityV01.25No1Mar.2oO6文章编号:1009—4881(2006)O1—0065—03微乳法制备Fe3O4磁性纳米粒子的研究柴波(武汉工业学院化学与环境工程系,湖北武汉430023)摘要:首先对油包水(W/O)型微乳液进行了制备研究,利用拟三元相图探明了一定条件下的W/O型微乳液中的最佳体系.进而利用此W/O型微乳液作为"微反应器"制备FeO纳米粒子.采用TEM,XRD和IR对所制备的Fe3O纳米粒子进行了分析表征.关键词:微乳液;乳化剂;拟三元相图;Fe3O4纳米粒子中图分类号:O611.62;TM277文献标识码:A0引言FeO纳米粒子具有优异的磁性和表面活性,在磁记录材料,生物技术以及催化等领域具有广泛的应用前景¨J.近年来,随着磁性微球药物以及磁流体的进一步开发应用,Fe,O纳米粒子的制备方法和性质研究越来越引起人们的重视.利用微乳液来制备纳米材料是最近几年发展起来的新方法,由于制备的纳米粒子表面包裹一层乳化剂分子,使粒子间不易聚结,同时反应在"水核"内进行,从而有效地控制微粒的大小,因而受到越来越多研究者的关注J.本文通过对拟三元相图的比较分析,找到了以油相为煤油时,形成最佳W/O型微乳体系的条件,并借助此最佳微乳体系制备Fe0纳米粒子.1实验部分1.1试剂和仪器试剂:FeC13?6H2O:AR;FeC12?4H2O:AR;NaOH:AR;Span80:CR;石油磺酸盐:CR;异丙醇:AR; 正丁醇:AR;正己醇:AR;丙酮:AR;煤油(工业级).仪器:JB2型恒温磁力搅拌器;S:Q一50型超声波清洗器;高速离心机;JEM一100CXII透射电子显微镜;X—ray衍射仪(日本Rigaku理学);EQUIX55 收稿日期:2005—1O一19作者简介:柴波(1978一),男,湖北省十堰市人,助教. 型红外光谱仪(德国Brucker).1.2最佳W/O型微乳液体系的制备本实验选用价格廉价的煤油为油相,通过选择不同的乳化剂,助表面活性剂,以及乳化剂与助表面活性剂的不同比例,利用拟三元相图来寻找形成W/O型微乳液体系的最佳条件,在此条件下形成的微乳液即为最佳微乳反应器.所选体系的油相为煤油,其HLB值(亲水亲油平衡值)为6,为了形成W/O型微乳液,乳化剂的HLB值应与其大致相符J.因而选择油溶性的乳化剂Span80(HLB值为4.3)作为主乳化剂,再复配阴离子乳化剂石油磺酸盐(HLB值为11.7),使两者复配后的HLB值大约为6.根据复合乳化剂HLB值的计算方法:HLB=HLB】×W+HLB2×W2(其中:HLB.,HLB2为各组分的HLB值;W,W2为各组分在混合物中的质量百分数),可知Span80和石油磺酸盐按质量百分比4:1复配.乳化剂与助表面活性剂的最佳比例,通过拟三元相图来分析,且此时皆选用异丙醇作为助表面活性剂.图1为乳化剂与异丙醇不同比例所作的相图.当W/O型微乳液体系达到最佳状态,油相和水相组成大致相等,即所谓的双连续结构,此时增溶水量达到最大.由图1可知,W/O型微乳区内所使用的乳化剂和醇的用量都比较大,且图中虚线上各点煤油和纯水的组成相等.在W/O微乳区内,只武汉工业学院2006在有a,b,c三点处,增溶水量达到最大.进一步比较a,b,c三点的增溶水量,c点最大,a点最小,但b,c两点相差并不大.从尽量少用乳化剂,又要保证较大的增溶水量两方面考虑,最终选择b点,即乳化剂与助表面活性剂的比例确定为1:1.W/O微乳液煤油w/o~t乳液00煤油图1乳化剂与助表面活性剂不同比例的拟三元相图同样,再利用拟三元相图找出最适合的助表面的最大增溶水量明显大于正丁醇和正己醇.根据微活性剂,所选用的醇有正丁醇,异丙醇和正己醇,乳乳液形成的几何排列理论,这主要是由于带有支链化剂与醇的比例皆为1:1.由图2不难看出,在的异丙醇不仅可以增加界面的的柔性,使界面易于77/0型微乳区内,只有d,e,f三点处煤油和纯水组弯曲,而且支链能够增大烷基链的横截面积,从而显成大致相等,比较d,e,f三点的增溶水量,e点最大,着大于极性头的横截面积,界面发生凸向油相的优即异丙醇作为助表面活性剂形成的W/O型微乳液先弯曲,导致形成W/O型微乳液.0煤油0.0煤油图2乳化剂与不同助表面活性剂的拟三元相图可见,当油相为煤油时,选用乳化剂为Span80很好.反应后得到超细粒子料液,经离心,洗涤,干一石油磺酸盐(4:1)复配,助表面活性剂为异丙醇燥后得到FeO纳米粒子.反应式为: 且乳化剂与助表面活性剂比例为1:1时,可形成最Fe+2Fe+8OH--+Fe3O4+4HO 佳的77/0型微乳体系.1.3FeO纳米粒子的制备制备77/0型微乳液的目的是利用其中的水核(又称为"水池")制备无机纳米粒子,30℃下将2M的NaOH水溶液代替纯水增溶在上述最佳77/0型微乳体系中呈透明状,滴加摩尔浓度均为2M的Fe",Fe¨(其摩尔比为2:3)离子的混合水溶液,至反应系统pH值等于11,搅拌3h.两种阳离子进入到微乳液"水池"中与NaOH反应,产物粒径受"水池"大小制约,为纳米级.同时水核界面膜又限制了粒子的成长,并且粒子之间不能聚结,所以稳定性2结果与表征Fe,O纳米粒子经透射电镜检测,图3中所示结果表明:磁性微粒呈球形,平均粒径在50nm,粒径分布比较均匀,图中阴影部分为乳化剂与助表面活性剂.由此可见,制备的Fe,O纳米粒子被乳化剂紧紧包裹着,因而能稳定地存在.Fe,O纳米粒子经X—ray衍射仪分析,如图4所示,FeO颗粒有较完整的尖晶石结构,特征峰很明显,但与标准JCPDF卡相比,谱峰略显宽缓,主要为纳米级的原因.颗粒的平均粒径可以根据Debye。
第26卷第5期2002年 9月河北师范大学学报(自然科学版)Journal of H ebei N o r m al U niversity(N atural Science Editi on)V o l.26N o.5Sep.2002Ξ化学沉淀法制备纳米氧化锆的研究王焕英1,2, 宋秀芹2(1.衡水师范专科学校化学系,河北衡水 053000;2.河北师范大学化学学院,河北石家庄 050016)摘 要:以氧氯化锆(Zr OC l2・8H2O)和氨水(N H3・H2O)为原料,采用化学沉淀法制备了纳米级氧化锆微粉,考察了反应温度、反应物浓度、溶液pH值、煅烧温度和时间对产物粒径的影响,获得了最佳工艺条件.通过透射电镜、X射线衍射研究了产品的粒度、形貌和结构,所得纳米Zr O2分散性良好,粒度分布均匀,平均粒径约20nm,粒子形状为球形.关键词:化学沉淀法;纳米;氧化锆;制备中图分类号:O612.4;TB383 文献标识码:A 文章编号:100025854(2002)0520488204纳米Zr O2是一种粒径介于1~100nm之间的新型高功能精细无机材料,是制备特种陶瓷最重要的原料之一,它可用于制备多种功能陶瓷元件,如氧传感器、压电陶瓷、透明铁电陶瓷和合成宝石等,也可用于制备多种增韧结构陶瓷刀具、陶瓷阀门、轴承及先进的陶瓷发动机零件.尤其是近些年来,纳米氧化锆陶瓷的高韧性和低温塑性变型能力已被实验证实,成为改善陶瓷材料脆性的新战略途径[1].纳米氧化锆的制备方法目前报道的有溶胶2凝胶法(so l2gel)[2]、水热法[3]、溅射源法[4]等,但是这些方法在工业实施中有一定困难.本文中,笔者以Zr OC l2・8H2O和N H3・H2O为原料,采用反向化学沉淀法制备纳米Zr O2,考察了影响产物的各种因素,获得了制备的最佳工艺条件,并对产品进行了表征.化学沉淀法一般是指将沉淀剂加入到金属盐溶液中进行沉淀,然后再对沉淀物进行固液分离、洗涤、干燥以及加热分解等后处理从而制得粉末产品.化学沉淀法分为正向化学沉淀法(将沉淀剂加入到金属盐溶液中)和反向化学沉淀法(将金属盐溶液加入到沉淀剂中)2种,通过对这2种方法所制得的纳米粉体的比较,反向化学沉淀法所制得的纳米Zr O2粒径更细小,颗粒更均匀.化学沉淀法制备Zr O2粉体的反应过程可表示为: Zr OC l2+2N H3・H2O+H2O=Zr(OH)4↓+2N H4C l, Zr(OH)4→Zr O2+H2O(g).1 实验部分1.1 主要试剂和仪器氧氯化锆(Zr OC l2・8H2O),分析纯,中国医药上海化学试剂站;氨水(N H3・H2O),分析纯,石家庄市试剂厂.pH S3C数字酸度计,851恒温磁力搅拌器,真空干燥箱,马福炉,日立H600型透射电子显微镜,R igaku D m ax RA型X射线衍射仪.1.2 工艺流程与实验方法反向沉淀工艺流程为:N H3・H2O溶液加入Zr OC l2・8H2OZr(OH)4分离、洗涤、真空干燥、煅烧纳米Zr O2Ξ收稿日期:20020323;修回日期:20020531基金项目:河北省教育厅科研基金资助项目(2002)作者简介:王焕英(19682),女,河北武邑人,衡水师范专科学校讲师,现为河北师范大学在职硕士研究生. 取一定量的N H 3・H 2O 溶液,将其加入反应器中,然后加入一定浓度的Zr OC l 2・8H 2O 溶液,在搅拌下进行加热反应.反应结束后,陈化、抽滤,用水洗涤至沉淀中不含C l -(用A gNO 3溶液检验),再用无水乙醇洗涤2~3遍(起到表面活性剂的作用,防止以后在煅烧过程中的团聚),真空干燥、煅烧即可得到纳米Zr O 2粉体.1.3 分析与检测产品粒径用日立H600型透射电镜观测,用R igaku D m ax RA 型X 射线衍射仪检测粒子晶型.2 结果与讨论2.1 反应物原始浓度对产物粒径的影响反应物原始浓度与粒径的关系如图1所示,从中可以看出,在实验考察的范围内,随氧氯化锆浓度的增大,产品的粒径越来越小,这可以从粒子成核理论得到解释,粒子的形成有晶核的生成与生长2个过程,溶液中浓度越大,则过饱和度越大,生成晶核的速度愈快,数目也越多.晶核形成以后,溶质在晶核上不断沉积,晶粒不断长大;浓度越小,碰撞少,形成的晶核数目少,生成的晶粒粒径就比较大.要得到粒径小的Zr O 2,应选取较高浓度的Zr OC l 2・8H 2O 溶液,由实验得到的最佳浓度为1.0m o l L .2.2 溶液pH 对产物粒径的影响实验结果表明,随溶液pH 值升高,产品粒径增大,产品粒径随pH 值的变化曲线如图2所示.从理论上讲[5,6],沉淀物胶粒是带电的,其带电性随着溶液pH 的变化而变化,胶粒表面带电增强了胶粒的空间位阻效应,当胶粒表面所带电荷与电解质所带电荷相等且异号时,胶粒处于等电点状态(pH =7),在等电点附近,一方面由于位阻效应显著削弱,沉淀开始形成的胶粒不稳定,很快聚成大块絮状物;另一方面,溶剂通过胶粒表面渗入胶粒的渗透压减弱,导致溶胶颗粒较大.在接近等电点时,粉体的粒径较大,随着pH 值的降低,酸性增大,胶粒表面会带有同号的正电荷,胶粒间相互排斥,所以,胶粒的稳定性提高,分散性较好;另一方面,胶粒带电后,渗透压增强,粒径减小,因此在偏离等电点较远的pH 值范围,溶胶的颗粒粒径较小,但pH 值不能太低,否则胶粒带电饱和,大量酸的存在只会使唐南效应又减弱[5],导致颗粒粒径又增大.实验结果表明,若获得纳米级Zr O 2颗粒,反应的最佳pH 值范围为pH =4~5.图1 Zr O 2粒径与Zr OC l 2・8H 2O 浓度关系 图2 粒径随pH 变化的关系曲线2.3 反应温度对产物粒径的影响反应温度与粒径的关系曲线如图3所示.结果表明,温度低,晶核形成慢且数目少,形成的晶粒粒径大;温度高,晶核形成快且数目多,形成的晶粒粒径较小,但是反应温度不能太高,一般不超过60℃.温度太高,使沉淀的沉降和溶解这一动态平衡加速,可能使其凝胶晶化.2.4 煅烧温度和时间对产物粒径的影响实验中发现,煅烧温度过高,时间过长,会使纳米Zr O 2发生团聚,粒径增大,因此在保证Zr (OH )4煅烧分解完全的基础上,温度越低,时间越短越好.分别在350℃4h ,550℃4h ,600℃2h ,700℃2h ,800℃1h 进行煅烧,确定最佳煅烧条件为550℃4h .984第5期 王焕英等:化学沉淀法制备纳米氧化锆的研究 图3 粒径随反应温度变化的关系曲线2.5 产品结构分析图4为在不同温度下煅烧的Zr O 2X 射线衍射图谱.由图谱看出,250℃煅烧的XRD 图谱在2Η约30°附近出现1个馒头峰,说明此时粉料为无定形的;350℃煅烧所得样品的XRD 图谱只出现了四方相Zr O 2(t )的特征峰而没有单斜相Zr O 2(m )的特征峰,而且在2Η约30°处馒(a )250℃,(b )350℃,(c )550℃,(d )700℃图4 粉末经不同温度煅烧后的XRD 图5 纳米Zr O 2的T E M 照片头峰仍没有消失,说明Zr O 2(无定形)未完全转化为Zr O 2(t );550℃煅烧4h 的粉末在2Η约30°处的馒头峰已不存在,说明在该温度下,无定形的Zr O 2已完全转化为四方相的Zr O 2,但仍没有单斜相Zr O 2出现;700℃煅烧的粉末的XRD 图谱既出现了Zr O 2(t )的特征峰,又出现了Zr O 2(m )的特征峰.从衍射峰还可以看出,峰形有些变宽,这是由于粒子粒径变小的缘故,由Sch rrer 公式D =k Κ B co s Η计算550℃煅烧产物的粒径,取其最强衍射峰(111)面的半高宽,得其粒径d =23nm ,与透射电镜T E M 照片结果(d 约24nm )较为接近,说明在550℃产物已晶化较好.在550℃煅烧4h 所得产物的T E M 照片如图5所示,由图可看出,该条件下所得纳米Zr O 2的粒径约为20nm ,粒子形状为球形.3 结 论(1)以Zr OC l 2・8H 2O 和N H 3・H 2O 为原料,采用反向化学沉淀法,可以制得平均粒径约20nm ,分散性良好的球形纳米Zr O 2.(2)反向化学沉淀法制备纳米Zr O 2的最佳工艺条件为Zr OC l 2・8H 2O 溶液浓度为1.0m o l L ,反应温度60℃,溶液pH 值4~5,煅烧550℃4h .参考文献:[1] CH EN D a 2m ing ,M EN G Guo 2w en ,ZHAN G Chen ,et al .N ew technique of p roducing nano 2sized Zr O 2based pow 2ders and characteristics of the pow der [J ].Pow ers T echno logy ,1996,(2):362.[2] 李汶军,施尔畏,郑燕青,等.水热盐溶液卸压法制备氧化物粉体[J ].无机材料学报,1999,14(3):456.[3] 章天金,王世敏,肖明,等.So l 2Gel 法制备Zr O 2超微粉末的反应机理研究[J ].湖北大学学报(自然科学版),1996,16(2):128.94 河北师范大学学报(自然科学版) 第26卷[4] 施锦行.纳米陶瓷的制备及其特性[J ].中国陶瓷,1997,33(3):36.[5] 周祖康.胶体化学基础[M ].北京:北京大学出版社,1987.150.[6] A YAO K ,A K I RA W 编著.邓彤,赵学范译.界面电现象原理、测量和应用[M ].北京:北京大学出版社,1992.9.I m provem en t of Nano -sized ZrO 2Powder Prepared byChem ica l Prec ip ita ti ng ProcessW AN G H uan 2ying 1,2, SON G X iu 2qin 2(1.D epartm ent of Chem istry,H engshui T eachers Co llege,H ebei H engshui 053000,Ch ina;2.Co llege of Chem istry ,H ebei N o r m al U niversity ,H ebei Sh ijiazhuang 050016,Ch ina )Abstract :U sing Zr OC l 2・8H 2O and N H 3・H 2O as raw m aterials ,the nanom eter 2sized Zr O 2are p repared by chem ical p reci p itating p rocess .T he influences of reacti on tem peratu re and concen trati on ,the value of pH ,calcinati on tem peratu re and ti m e on p roduct p article size are investigated .T he m o st favou rab le techno logical conditi on s fo r the p rep arati on of nanom eter 2sized Zr O 2are ob tained .XRD and T E M and T G ,UV are u sed to characterized the sam p le .T he p roduct has an average diam eter of 20nm w ith good dispersity and sp here 2shap ed .Key words :chem ical p reci p itating m ethod ;nanom eter 2sized m aterial ;Zr O 2(责任编辑 邱 丽)(上接第484页)I nvestiga tion of L ow Tem pera ture Hea t Capac itiesof Aqueous K 2Cr 2O 7SolutionNAN Zhao 2dong 1, TAN Zh i 2cheng 2, SUN L i 2x ian2(1.D epartm ent of Q ufu N o r m al U niversity ,Shandong Q ufu 273165,Ch ina ;2.T her mochem istry L abo rato ry ,D alian Institute of Chem ical Physics ,Ch inese A cadem y of Sciences ,L iaoning D alian 116023,Ch ina )Abstract :In o rder to investigated the m echan is m of heat tran siti on of aqueou s po tassium dich ro 2m ate so lu ti on as w o rk ing flu id in heat p i p e ,the m o lar heat cap acities of po tassium dich rom ate so lu ti on (C p ,m )w ere m easu red by a low tem peratu re adiabatic calo ri m eter over the range from 80~370K .N other m al anom aly w as ob served in the range from 80~265K .T he functi on s of C p ,m vs .T w ere estab 2lished based on the m easu red heat cap acity data by u sing the least 2square fitting m ethod .T he freezing po in t ,m o lar freezing en thalpy and freezing en trop y of the so lu ti on w ere estab lished to be 272.52K ,6.085kJ m o l and 22.33J(K ・m o l ),respectively .T he heat cap acities of the so lu ti on are near a con stan t in the range 275K ≤T ≤370K .A cco rding to the relati on sh i p of ther m odynam ic functi on s ,the ther m o 2dynam ic functi on values of the so lu ti on w ere calcu lated in the tem peratu re range of 275~370K w ith 5K in tervals .Key words :po tassium dich rom ate ;aqueou s so lu ti on ;heat capacity ;ther m odynam ic functi on ;a 2diabatic calo ri m etry(责任编辑 邱 丽)194第5期 王焕英等:化学沉淀法制备纳米氧化锆的研究 。
钒酸铋光催化材料的制备及光催化性能的研究谨以此论文献给关心我支持我的人于亚芹●钒酸铋光催化材料的制备及其光催化性能的研究学位论文完成日期:一型至:呈指导教师签字:癯查圭答辩委员会成员签字:二蚕丝乏互逖:明独创声本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含未获得??注;塑遗直墓丝益墨挂型直明的:奎拦亘窒或其他教育机构的学位或证书使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。
学位论文作者签名:孑衫彳签字日期:讲年厂月少日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。
本人授权学校可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。
同时授权中国科学技术信息研究所将本学位论文收录到《中国学位论文全文数据库》,并通过网络向社会公众提供信息服务。
保密的学位论文在解密后适用本授权书学位论文作者签名: 导师签字:于耍彳稚世签字日期:加,。
年歹月罗日签字日期:讪年‘月罗日钒酸铋光催化材料的制备及其光催化性能的研究摘要随着全球性能源危机和环境污染问题的日益严重,能有效利用太阳能实现光催化制氢或降解污染物的可见光催化技术及其材料的制备与开发,已成为材料学、化学和环境科学等领域的研究热点。
作为一种新型可见光响应型光催化材料,由于具有较窄能隙、较高可见光催化活性等优点引起了人们广泛的关注。
鉴于光催化材料良好的应用前景,本论文利用不同的方法制备了微米管,并对其微观结构与形貌,生长过程与机理及其可见光催化性能进行了研究。
首先,在水热条件下,以异丙醇为诱导剂,制备出结晶良好的具有白钨矿结构的四方管状颗粒。
英语漫画作文好帮手——“333”法妈妈好帮手氧清洁颗粒 xx年《普通高等学校招生全国统一考试江苏卷说明》在英语书面表达部分新增了一个漫画作文示例。
漫画类作文开放性更大,要求考生具有敏锐的观察力、丰富的想像力、严谨的逻辑思维能力,要求考生主题明确、想象合理、条理清楚、语言简练。
为了让学生尽快适应这种新题型,笔者独创了一套“3.3.3”法,设法构建漫画作文模板来规范和指导学生的漫画作文写作。
一、解读“3.3.3”法简单地说,“3.3.3”法包括写漫画作文的三个步骤(3 steps),每个步骤包括三个部分(3 sections),在三个步骤中各有一条建议(3 tips)。
为了更好地解读“3.3.3”法,下面以江苏省扬州市xx届高三期末调研测试卷书面表达为例进行讲解。
原题如下:请你以普通百姓的身份,给某报社写一篇稿件,说明下图现象,并提出你的建议。
稿件必须包括下列内容:1.描述图片内容并指出其所反映的社会问题;2.分析问题产生的原因;3.提出解决问题的具体措施。
■注意:1.词数不少于150;2.不可逐条翻译;3.可适当增加细节,以使文章连贯;4.开头已为你写出,不计入总词数。
参考词汇:hogwash oil地沟油第一步:从漫画到文字(picture→text)As is shown clearly in the picture,漫画作文第一步包括三部分:开头句(beginning),表层含义(literal meaning),寓意(implied meaning)。
第一部分通常可用示例开头所给出的句子,当然也有很多变化形式。
重点和难点是第二部分:简明扼要地描述漫画表层含义。
要注意以下几点:1.要用好图画之外的文字材料(包括作文题目文字说明、标题、提示语、参考词汇以及作文开头给出部分)。
2.要关注漫画的细节和夸张部分,例如,一个表情可以暗示人物的心情;一个夸张行为可能揭示漫画的寓意。
第三部分是点明漫画的寓意,引出文章主题。
英文化工专利文献中长句翻译的功能对等
石蕊
【期刊名称】《长春工程学院学报(社会科学版)》
【年(卷),期】2016(017)002
【摘要】化工专利文献属于信息型文本,其翻译应以实现信息传递准确和译语读者接受为准则。
英文化工专利文献以结构复杂和层次繁多的长句为特征。
本文通过分析英文化工专利文献中7种长句翻译法,探讨如何实现该文本类型翻译中信息功能与交际功能的对等。
【总页数】3页(P59-61)
【作者】石蕊
【作者单位】天津外国语大学英语学院,天津300204
【正文语种】中文
【中图分类】H315.9
【相关文献】
1.英文专利文献中名词短语的翻译 [J], 林晓庆
2.专利文本翻译中复杂长句翻译算法研究 [J], 晋耀红
3.文本功能视角下化工英文专利文献翻译 [J], 石蕊
4.专利文献翻译中复合长句翻译问题分析 [J], 李会彩
5.英文专利文献的语言特点及翻译——以林业类文献为例 [J], 万佳琦;肖飞
因版权原因,仅展示原文概要,查看原文内容请购买。
化学女博士用漫画解释化学!Late last spring, a doctoral student worked late in tothe night. As she doodled, her chemistry thesis tookon a life of its own, transform ing into a comic book.去年春末,一位博士生常常忙到深夜。
经过她的妙笔,她的化学论文以自己的方式“活了起来”,变成了一本连环漫画。
Veronica Berns, 28, was working on her Ph. D. inchemistry at the University of Wisconsin -Madison.Berns said she long struggled to e xplain her work to her parents and friends. The self-described comicbook fan said she began drafting her thesis onquasicrystals— a subset of crystals that divergefrom the usual structural characteristics of crystals. Berns qui ckly concluded that sh e would be best able to describe the oddball compounds wi th illustrations.28岁的维罗妮卡·伯恩斯是威斯康辛大学麦迪逊分校的一名化学博士生。
伯恩斯说,她曾长期苦于向父母和朋友解释自己的专业。
当她开始起草关于准晶体的论文时,自称漫画迷的她很快意识到她可以通过绘图的方式更好的讲解这些古怪的化合物。
准晶体是一种从普通晶体分化出来的子晶体。
小保芳琴子论文在哈佛大学医学院学习期间,小保方晴子产生了“STAP”细胞的设想。
哺乳动物的细胞特化使得细胞个体得以行使各种不同的功能,从一个已分化的细胞类型向另一类型转变的过程被认为是非常罕见的。
但小保方晴子认为,通过令高度分化的体细胞接受外来刺激,可以使细胞回到类似于“干细胞”的状态,研究人员将这一细胞称为“刺激触发性多能性获得细胞”,英文名Stimulus-Triggered Acquisition of Pluripotency cells,缩写为STAP细胞。
2009年8月,小保方晴子开始写作第一篇关于STAP细胞方面的论文,于2010年春季向科学杂志《自然》投稿。
但“不可能存在动物细胞接受外来刺激而获得多能性”在细胞学界是一条常识,这一论文未获通过。
同在Charles Vacanti教授研究室工作的及论文合著者哈佛大学准教授小岛宏司评价道“此后的2-3年她(小保方晴子)内心真的很痛苦”。
2011年3月,日本理化学研究所的研究团队主任若山照彦(后任山梨大学教授)听闻此事后,表示愿意伸出援手,于是小保方晴子加入若山照彦研究团队,就任理化学研究所客座研究员。
研究表明,细胞类型的转换能够利用“细胞重编程”实现——通过在特定条件下引入某些转录因子,研究者可以改变细胞的特化程度。
2006年,日本的山中伸弥团队通过调控4种转录因子获得了诱导性多能干细胞(iPSCs),因此获颁2012年诺贝尔生理学奖,2013年,北京大学生命科学学院邓宏魁教授和赵扬博士带领的研究团队发现了化学诱导多能干细胞(CiPSCs),全球的干细胞研究也开始步入新的时代。
小保方晴子和同事通过荧光蛋白监测细胞的多能性,如果目标细胞展现出与多能性相关的基因表达,他们就可以检测到绿色荧光。
研究者对不同环境压迫条件下的白细胞进行了检测,发现短期暴露在低pH溶液中的白细胞,有部分激活了多能性标记。
研究者将这些细胞收集起来,发现它们具备早期胚胎的基因标记——即所谓“刺激触发的多能性获得”(STAP)。
硕士学位论文M.D.Thesis异常体验与绘画创作Abnormal experience and painting达海莎Da haisha西北师范大学Northwest Normal University二零一二年五月目 录独创性声明 (I)摘 要 (II)Abstract (III)绪 论 (1)1 艺术创作中的情感表现和异常信理 (2)1.1 情感与艺术 (2)1.2 艺术创作中的潜意识 (3)1.3 艺术家情感个性中的异常体验 (4)2 异常体验与绘画创作 (9)2.1异常体验——八大山人的孤独精神 (9)2.2 异常体验——达利的“梦幻”世界 (11)2.3 异常体验——弗里达痛与美的交织 (14)2.4 异常体验——卢梭别样的童真 (17)4.5 异常体验——张晓刚的自恋情结 (19)3 异常体验带给我们的思考 (22)参考文献 (IV)附 图 (V)摘 要艺术创作的核心原则即包含了人类自身内在情感的独特体验。
艺术家自身创造意识的生成从某种程度上来自于自我内在体验的回馈,即由个体内心精神状态所形成的其自身的独特感知体验会通过艺术创造流露出来。
对于内心存在特殊体验的的人来说,由这种异常的创作意识所衍生出的艺术作品代表了最高层次的美和意愿的满足。
或者说,个体通过内隐着异常的创作冲动与欲望的艺术创造来满足其精神层面的要求,以求得对画面的整体认知以及形式语言特征的把握。
异常的创造意识被看作是异常者内在特殊存在方式及矛盾心理的反映,即在艺术创造中,个体通过将形象赋予象征的符号意义来映射其自身的这种由特殊创作体验所孕育的创造意识。
他们敏锐地感受着世界,不断积蓄着强烈的情感,并通过各自独具个性的表达方式把这种心理体验宣泄或升华出来,为人类创造了不可估量的艺术财富。
但是,通过本文对异常者的创造体验的研究,我们可以窥探到他们创作行为中充斥的独立精神体验,这并不是完全的“异常”(沉浸在自身被规范的角色中无法自拔)。
Late last spring, a doctoral student worked late into the night. As she doodled, her chemistry thesis took on a life of its own, transforming into a comic book.
去年春末,一位博士生常常忙到深夜。
经过她的妙笔,她的化学论文以自己的方式“活了起来”,变成了一本连环漫画。
Veronica Berns, 28, was working on her Ph. D. in chemistry at the University of Wisconsin -Madison. Berns said she long struggled to explain her work to her parents and friends. The self-described comic book fan said she began drafting her thesis on quasicrystals — a subset of crystals that diverge from the usual structural characteristics of crystals. Berns quickly concluded that she would be best able to describe the oddball compounds with illustrations.
28岁的维罗妮卡·伯恩斯是威斯康辛大学麦迪逊分校的一名化学博士生。
伯恩斯说,她曾长期苦于向父母和朋友解释自己的专业。
当她开始起草关于准晶体的论文时,自称漫画迷的她很快意识到她可以通过绘图的方式更好的讲解这些古怪的化合物。
准晶体是一种从普通晶体分化出来的子晶体。
"They're not very well-polished illustrations. That's on purpose," Berns said. "I wanted it to be like I'm explaining on the back of an envelope."
“它们不是画功一流的图画,而是功能性更强。
”伯恩斯说,“我一度想让它起到这样的作用——就像我在信封的背面画图向人们解释化学一样。
”
And on many occasions, it was on the back of an envelope or on a napkin that she doodled sketches of the chemical bonds to better show her parents what she was working on in the lab. Jody Berns, Veronica's mother, said their family has a history of doodling and has shared comics for years.
以前的很多时候,她就是通过在信封或者餐巾纸的背面画化学键的草图,向父母解释她在实验室里的工作。
维罗妮卡的母亲乔迪·伯恩斯说,她们家一直有涂鸦的传统,很多年来大家都一起看各种漫画。
Berns surprised her family with her comic book "Atomic Size Matters" at her graduation last year. The book depicts cartoons of Berns wearing various costumes and uses humor as well as simple comparisons to describe elaborate chemistry.
在去年的毕业典礼上,伯恩斯以漫画书《原子大小的重要性》给了家人意外的惊喜。
在这本书里,伯恩斯自己的漫画形象以不同的行头出镜,用幽默诙谐、简单类比的方式向人们描述复杂的化学。
"We're just really proud that she can take something so complex and put it into a fun visual explanation that everyone can enjoy," Jody Berns said.
“我们很骄傲,她可以把如此复杂的东西变成有趣的图像解析,让每个人都能欣然接受”,乔迪·伯恩斯说。
Veronica Berns' professor Danny Fredrickson said Berns was the first of his students to construct her thesis in an artistic way. He said often it is difficult for scientists to explain what they do with proper context.
维罗妮卡·伯恩斯的教授丹尼·弗雷德里克森说,伯恩斯是他的学生中第一个以艺术的形式完成论文的人。
他还说,通常情况下,科学家们都很难用适当的语境来解释他们所做的事情。
"If it's worth doing, we should be able to explain it," Fredrickson said.
“如果值得这么做,我们都应该能够解释,”弗雷德里克森说。
And he said Berns managed to accomplish that.
他说,伯恩斯已经做到了。
Berns said she hopes other scientists will find ways to illustrate what they're doing in the lab. She now lives in Chicago and works as a chemist. Berns also writes a blog in which she uses comics to explain the work of Nobel Prize winning scientists.
伯恩斯说,她希望其他科学家可以找到方法阐述他们的实验室工作。
她现在住在芝加哥,是一名化学工作者。
她还在自己的博客里用漫画向人们解释诺贝尔奖科学家们的著作。
Berns started a Kickstarter fundraising campaign to finance printing a small batch of the books. She said she wanted to raise $5,965 to cover the costs of professional printing. The website says she has raised more than $14,000.
为了能将这些书中的一小部分付印,伯恩斯在Kickstarter网站上发起了一项筹款活动。
她说她需要筹集5965美元,用于支付专业印刷的成本。
该网站透露,她筹得的款额已经超过了1.4万美元。
Vocabulary
doodle:涂鸦
quasicrystal:准晶体
subset:(组成大套的)一小套
oddball:奇怪的
chemical bond:化学键
elaborate:复杂的
更多英语学习方法:企业英语培训/。