M93C86-RDS7中文资料
- 格式:pdf
- 大小:267.40 KB
- 文档页数:31
常用芯片作用2007-07-30 16:40mc2831(mc2833)低功耗FM发射机mc3362低功耗FM接收机CXA1691BM收音机FM/AM接收芯片双音频编码器件是HM9187,解码芯片是MT8870(注意:HM9187输出的双音频信号幅值太大了,串联一个160K的电阻,送到M 幅度,幅度过高会导致窄带FM的调制/解调出问题.)ICL8038 单片集成压控波形发生器(应用广泛),在0.01~300kHz的范围里可以同时产生正弦波、矩形波和三角波。
使用时只作为压控振荡器、调频信号发生器或单片函数发生器。
其输出电平特性为:方波0.2V suppl y(2mA);三角波幅度为0.33V suppl y,输出阻22V supply,输出阻抗典型值为1kΩ。
MC145151 -2 锁相环芯片,是MC145151-1的性能改进产品,功耗降低而ESD和锁定性能则大有改进。
MC145151-2分别用N计数器和R计数器编程。
本器件集成了参考振荡器、可选参考频率分频器、数字相位鉴相器和14位可编程的除N计数器。
该芯工艺而具有低功耗,电压范围为3~9V;具有片上或离片参考振荡器的操作条件;有两路鉴相信号输出,其中PD out是鉴相器A的是鉴相误差信号,LD用来输出相位锁定信号;除N的范围为3~16383;8个用户可选的除R值分别为8、128、256、512、1应RA2~RA0从000到111的8个状态。
1.音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334 。
4334是老封装,据说已经停产,4344封装比较小,非常好用2.音频放大芯片4558,LM833,5532,此二芯片都是双运放。
3.244和245,由于244是单向a=b的所以只是单向驱动。
而245是用于数据总线等双向驱动选择。
同时245的封装走线非常适4.373和374,地址锁存器,5.max232和max202,max3232 TTL电平转换6.网络接口变压器。
三极管s8050管脚图及参数---------------------------------------------------------------------------4 晶体管2SA1074参数 -----------------------------------------------------------------------------6 2SA1074---------------------------------------------------------------------------------------------6 晶体管2SA1068参数 -----------------------------------------------------------------------------8 2SA1068---------------------------------------------------------------------------------------------8 晶体管2SA107参数-------------------------------------------------------------------------------9 2SA107 ----------------------------------------------------------------------------------------------9 晶体管2SA1072A参数 ------------------------------------------------------------------------- 10 2SA1072A----------------------------------------------------------------------------------------- 10 2SA108 -------------------------------------------------------------------------------------------- 11 2SA1024------------------------------------------------------------------------------------------- 12 2SA1029------------------------------------------------------------------------------------------- 13 2SA1030------------------------------------------------------------------------------------------- 14 BC131 --------------------------------------------------------------------------------------------- 15 BC134 --------------------------------------------------------------------------------------------- 16 BC138 --------------------------------------------------------------------------------------------- 17 AUY35 -------------------------------------------------------------------------------------------- 18 AUY37 -------------------------------------------------------------------------------------------- 19 AUY36 -------------------------------------------------------------------------------------------- 20 AUY38 -------------------------------------------------------------------------------------------- 21 AUZ11 --------------------------------------------------------------------------------------------- 22 BC100 --------------------------------------------------------------------------------------------- 23 BC107 --------------------------------------------------------------------------------------------- 24 BC107P -------------------------------------------------------------------------------------------- 25 晶体管型号参数对照表 ------------------------------------------------------------------------- 26admin减小字体增大字体三极管s8050管脚图及参数、引脚实物图片[本站(中国单片机网),摘自/article/88/196/2008/2008012 37483.html]上一篇文章:三极管9013管脚参数封装说明、引脚实物图片下一篇文章:USB接口充电器电路图三极管s8050管脚图及参数作者:本站来源:本站原创发布时间:2008-1-23 9:43:22 [收藏] [评论]三极管s8050管脚图S8050 pdf,s8050 datasheet 8050参数,8050三极管参数资料pdf晶体管2SA1074参数整理日期:2008-8-31 20:27:34 资料编辑: 点击次数: 132SA1074材料:S外形:图集电极最大直流耗散功率Pcm_W:150集电极最大允许直流电流Icm_A:集电极_基极击穿电压BVcbo_V:集电极_基极击穿电压BVceo_V:160特征频率ft_Hz:放大倍数:国产管参考型号:此参数来自家电维修资料网整理日期:2008-8-31 20:27:47 资料编辑: 点击次数: 302SA1068材料:S外形:图集电极最大直流耗散功率Pcm_W:100集电极最大允许直流电流Icm_A:集电极_基极击穿电压BVcbo_V:集电极_基极击穿电压BVceo_V:150特征频率ft_Hz:40放大倍数:国产管参考型号:此参数来自家电维修资料网整理日期:2008-8-31 20:27:46 资料编辑: 点击次数: 172SA107材料:G外形:图集电极最大直流耗散功率Pcm_W:35m集电极最大允许直流电流Icm_A:-10m集电极_基极击穿电压BVcbo_V:-6集电极_基极击穿电压BVceo_V:特征频率ft_Hz:20000K放大倍数:国产管参考型号:3AG53A此参数来自家电维修资料网整理日期:2008-8-31 20:27:45 资料编辑: 点击次数: 162SA1072A材料:S外形:图集电极最大直流耗散功率Pcm_W:120集电极最大允许直流电流Icm_A:集电极_基极击穿电压BVcbo_V:集电极_基极击穿电压BVceo_V:120特征频率ft_Hz:放大倍数:国产管参考型号:此参数来自家电维修资料网整理日期:2008-8-31 20:27:33 资料编辑: 点击次数: 122SA108材料:G外形:图集电极最大直流耗散功率Pcm_W:80m集电极最大允许直流电流Icm_A:-10m集电极_基极击穿电压BVcbo_V:-20集电极_基极击穿电压BVceo_V:特征频率ft_Hz:45000K放大倍数:国产管参考型号:3AG54B此参数来自家电维修资料网材料:S外形:图集电极最大直流耗散功率Pcm_W:0.4 集电极最大允许直流电流Icm_A:0.1 集电极_基极击穿电压BVcbo_V:集电极_基极击穿电压BVceo_V:400 特征频率ft_Hz:放大倍数:国产管参考型号:3CK1E材料:S外形:图集电极最大直流耗散功率Pcm_W:0.2集电极最大允许直流电流Icm_A:0.1集电极_基极击穿电压BVcbo_V:30集电极_基极击穿电压BVceo_V:30特征频率ft_Hz:200放大倍数:100国产管参考型号:3CG120A此参数来自家电维修资料网材料:S外形:图集电极最大直流耗散功率Pcm_W:0.2集电极最大允许直流电流Icm_A:0.1集电极_基极击穿电压BVcbo_V:50集电极_基极击穿电压BVceo_V:55特征频率ft_Hz:200放大倍数:100国产管参考型号:3CG120B此参数来自家电维修资料网材料:S外形:图集电极最大直流耗散功率Pcm_W:135m 集电极最大允许直流电流Icm_A:100m 集电极_基极击穿电压BVcbo_V:20集电极_基极击穿电压BVceo_V:特征频率ft_Hz:300M放大倍数:国产管参考型号:3DG120D材料:S外形:图集电极最大直流耗散功率Pcm_W:200m 集电极最大允许直流电流Icm_A:集电极_基极击穿电压BVcbo_V:45集电极_基极击穿电压BVceo_V:特征频率ft_Hz:350M放大倍数:国产管参考型号:3DG110F材料:S外形:图集电极最大直流耗散功率Pcm_W:0.8 集电极最大允许直流电流Icm_A:集电极_基极击穿电压BVcbo_V:60 集电极_基极击穿电压BVceo_V:30 特征频率ft_Hz:40M放大倍数:100国产管参考型号:3DK14C材料:G外形:图集电极最大直流耗散功率Pcm_W:15 集电极最大允许直流电流Icm_A:-20 集电极_基极击穿电压BVcbo_V:-70 集电极_基极击穿电压BVceo_V:特征频率ft_Hz:2.5M放大倍数:国产管参考型号:3AD56BAUY37材料:G外形:图集电极最大直流耗散功率Pcm_W:30 集电极最大允许直流电流Icm_A:-10 集电极_基极击穿电压BVcbo_V:-100 集电极_基极击穿电压BVceo_V:特征频率ft_Hz:0.4M放大倍数:国产管参考型号:3AD56CAUY36材料:G外形:图集电极最大直流耗散功率Pcm_W:15 集电极最大允许直流电流Icm_A:-20 集电极_基极击穿电压BVcbo_V:-70 集电极_基极击穿电压BVceo_V:特征频率ft_Hz:3M放大倍数:国产管参考型号:3AD56B材料:G外形:图集电极最大直流耗散功率Pcm_W:30 集电极最大允许直流电流Icm_A:-10 集电极_基极击穿电压BVcbo_V:-130 集电极_基极击穿电压BVceo_V:特征频率ft_Hz:4M放大倍数:国产管参考型号:3AD56C材料:G外形:图集电极最大直流耗散功率Pcm_W:6 集电极最大允许直流电流Icm_A:-1 集电极_基极击穿电压BVcbo_V:-50 集电极_基极击穿电压BVceo_V:特征频率ft_Hz:3.5M放大倍数:国产管参考型号:3AD50A材料:S外形:图集电极最大直流耗散功率Pcm_W:0.59 集电极最大允许直流电流Icm_A:0.15 集电极_基极击穿电压BVcbo_V:350 集电极_基极击穿电压BVceo_V:300 特征频率ft_Hz:10M放大倍数:40国产管参考型号:3DG180N材料:S外形:图集电极最大直流耗散功率Pcm_W:260m 集电极最大允许直流电流Icm_A:100m 集电极_基极击穿电压BVcbo_V:50集电极_基极击穿电压BVceo_V:特征频率ft_Hz:150M放大倍数:国产管参考型号:3DG120D材料:S外形:图集电极最大直流耗散功率Pcm_W:0.3 集电极最大允许直流电流Icm_A:0.2 集电极_基极击穿电压BVcbo_V:集电极_基极击穿电压BVceo_V:50 特征频率ft_Hz:放大倍数:国产管参考型号:3DG120D晶体管型号参数对照表整理日期:2008-1-24 0:34:40 资料编辑: 点击次数: 9072晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应本资料共207页,当前在第001页001002003004005006007008009010011012013014015016017018019020 021022023024025026027028029030 031032033034035036037038039040 041042043044045046047048049050 051052053054055056057058059060 061062063064065066067068069070 071072073074075076077078079080 081082083084085086087088089090 091092093094095096097098099100 101102103104105106107108109110 111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 141142143144145146147148149150 151152153154155156157158159160 161162163164165166167168169170 171172173174175176177178179180 181182183184185186187188189190 191192193194195196197198199200 201202203204205206207三极管型号查询时间:2008-12-24 19:00:32 作者:无被阅:上一篇文章:三极管资料大全下一篇文章:三极管型号查询三极管资料大全时间:2008-12-24 19:04:35 作者:无被阅:下一篇文章:三极管参数大全三极管资料大全时间:2008-12-24 19:04:35 作者:无被阅:。
数字家庭主板M2NDH-支持AMD®SocketAM2Athlon64FX/Athlo64X2/Athlon64/Sempron -AMDLive!™Ready-强大扩充能力:1xPCI-Ex16、2xPCI-E、3xPCI-华硕WiFi-APSolo-华硕DHRemote™-华硕MP3-In™-华硕Q-Connector-高保真音频中央处理器支持AMD®SocketAM2Athlon64FX/Athlo64X2/Athlon64/Sempron 支持AMDCool'n'Quiet™技术AMD64架构,同时兼容32位和64位计算AMDLive!™Ready芯片组NVIDIAnForce®430MCP前端总线2000/1600MT/s内存双通道内存架构4x240-pinDIMM内存插槽,支持最大容量高达8GB的DDR2800/667/533ECC和non-ECC、un-buffered内存扩充插槽1xPCI-Expressx16插槽2xPCI-Expressx1插槽3xPCI2.2插槽存储装置/RAID-1xUltraDMA133/100/66/33-4xSerialATA3.0Gb/s-NVIDIAMediaShield™RAID通过SerialA TA设备支持RAID0、1、0+1、5和JBOD网络功能NVIDIAnForce®430内建GigabitMAC,支持externalAttansicPHY无线局域网:54MbpsIEEE802.11b/g(华硕WiFi-APSolo)音频功能ADI6声道高保真音频CODEC背板S/PDIF数字音频输出USB高达8个USB2.0/1.1接口M2N-VMDH-AMDSocketAM2-NVIDIAGeForce6100/nForce430-双通道DDR2800/667/533-1xPCIExpressx16+1xPCIExpressx1+2xPCI-双VGA:DVI-D和D-Sub-8声道高保真音频-2x1394a接口中央处理器支持AMD®SocketAM2Athlon64X2/Athlon64FX/Athlon64/Sempro nAMDCool'n'Quiet™技术AMD64架构,兼容32位和64位计算AMDLive!™Ready芯片组NVIDIAGeForce6100/nForce430前端总线2000/1600MT/s 内存双通道内存架构4x240-pinDIMM插槽,支持最大容量为8GB的DDR2800/667/533non-ECC,un-buffered内存显卡集成GeForce6100GPU高清晰视频处理,最高分辨率可达1920x1440(@75Hz)支持RGB显示;UXGA1600x1200(@60Hz)支持DVI-D显示支持双VGA输出:DVI-D和RGB注意:DVI-D不能用来输出RGB信号至CRT。
Cs-2目录特色●配备5声道放大器●配有兼容 4K 的 HDMI IN/OUT 插孔(以播放 4K 或 1080p 视频,使用高速 HDMI 线缆或高速 HDMI 以太网线缆●支持 HDMI Standby Through 功能,允许在待机状态下从播放设备向电视传输信号●支持HDCP2.2,严格的版权保护提供高品质的内容 ●支持ARC(音频回传通道) ●支持 Bluetooth 连接●A/V 同步功能,可纠正音频和视频偏差●32位DSP(数字信号处理器),具有优异的计算性能 ●用于压缩的数字音乐文件的 Music Optimizer™ ●相位匹配低音系统●支持多种屏显菜单语言:英语、德语、法语、西班牙语、意大利语、荷兰语、瑞典语、俄语和中文当输入选择器设为 "BLUETOOTH" 时,不显示屏显菜单。
在操作设备时使用主机上的显示屏。
参阅封底了解随机提供的附件。
高级手册(网络发布)高级手册以电子手册的方式在网上发布,其中包含更详细的信息和高级设置。
高级手册被制作成一种可轻松地在 PC 或智能手机上阅读的格式。
高级手册包含以下内容:●AM/FM 接收详情●使用遥控器操作音乐文件 ●使用聆听模式 ●高级设置●使用遥控器操作其他组件 ●连接并操作 Onkyo RI 组件 ●故障排除 ●参考信息高级手册在此处/manual/txsr343/adv/cs.html基本手册(本手册)前面板 ..............................................................................................3后面板 . (4)步骤1:连接 ������������������������������������������������������������51 连接电视和播放器 .....................................................................5 ●连接到电视 (5)●与具有 HDMI 接口的播放器连接........................................6 ●与没有 HDMI 接口的播放器连接........................................62 连接 AM/FM 天线 ......................................................................63 连接扬声器 ..................................................................................7 ●关于如何连接扬声器的说明 . (8)步骤2:设置 ������������������������������������������������������������91 开启电源 ......................................................................................92 进行扬声器设置 ..........................................................................9 ●更改扬声器配置 ......................................................................9 ●设置扬声器距离 .....................................................................10 ●调节扬声器音量 .....................................................................103 HDMI设置 .. (10)●HDMI CEC (RIHD)....................................................................10 ●HDMI Standby Through (10)●ARC(音频回传通道) .........................................................10步骤3:回放 ���������������������������������������������������������111 基本操作 (11)●遥控器的零件名称和功能 (11)●显示屏......................................................................................122 Bluetooth ....................................................................................123 AM/FM 无线电 ..........................................................................134 快捷设置菜单 .............................................................................135 其他有用功能 .............................................................................14故障排除 .........................................................................................15规格 .................................................................................................16显示屏分辨率表 ............................................................................17HDMI 支持的分辨率 ....................................................................17附件 ............................................................................................封底其他Cs-16规格放大器部分额定输出功率 5 ch × 100 W(6 Ω,1 kHz),1 声道驱动 1% (IEC)最大有效输出功率 5 ch × 120 W(6 Ω,1 kHz),1 声道驱动 (JEIT A)动态功率 ( )¼ IEC60268短期最大输出功率 160 W(3 Ω,前) 125 W(4 Ω,前) 85 W(8 Ω,前)THD+N(总谐波失真率+噪声) 0.08%(20 Hz - 20 kHz,半功率)输入灵敏度和阻抗(不平衡) 200 mV/47 kΩ(LINE,1 kHz 100 W/8 Ω)额定RCA输出电平和阻抗 1 V/470 Ω(SUBWOOFER PRE OUT)频率响应 10 Hz - 100 kHz/+1 dB,–3 dB(Direct 模式)音调控制特性 ±10 dB,20 Hz(BASS) ±10 dB,20 kHz(TREBLE)信噪比 100 dB(LINE,IHF-A)扬声器阻抗 6 Ω - 16 Ω视频部分信号电平1.0 Vp-p/75 Ω(分量Y) 0.7 Vp-p/75 Ω(色差分量 Pb/Cb、Pr/Cr) 1.0 Vp-p/75 Ω(复合)色差视频支持的最大分辨率 480i/576i调谐器部分FM调频范围87.5 MHz - 108.0 MHz,RDS AM调频范围 522/530 kHz - 1611/1710 kHz 预设频道 40Bluetooth 部分通讯系统Bluetooth 规格2.1版本+EDR(增强型数据速率)最大通讯范围 视距约 15 米 ( )频段 2.4 GHz 波段调制方法 FHSS(跳频扩频)可兼容的 Bluetooth 规范 A2DP 1.3(高级音频传输模式) AVRCP 1.5(音频视频远程控制配置文件)支持的编解码器 SBC传输范围(A2DP) 20 Hz - 20,000 Hz(采样频率44.1 kHz)¼ 实际范围取决于设备之间的障碍、微波炉周围的磁场、静电、无绳电话、接收灵敏度、天线的性能、操作系统、软件应用程序等因素。
用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。
片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。
可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。
内部MOSFET的开关速度经过优化, 可降低噪声和EMI。
超低漂移斩波放大器可保持±0.001°C的温度稳定性。
直接控制输出电流而不是电压, 以消除电流浪涌。
独立的加热和冷却电流和电压限制提供最高水平的TEC保护。
MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。
真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。
当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。
模拟控制信号精确设置TEC 电流。
MAX1979提供高达6A的单极性输出。
提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。
仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。
提供模拟输出以监控TEC温度和电流。
此外, 单独的过热和欠温输出表明当TEC温度超出范围时。
片上电压基准为热敏电阻桥提供偏置。
MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。
采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。
评估套件可用于加速设计。
应用光纤激光模块典型工作电路出现在数据手册的最后。
WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。
常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。
1.0A 100KHz 100V 降压型DC-DC转换器XL7046特点⏹最高输入电压100V⏹最大占空比85%⏹最小压差2.0V⏹输出电压从1.25V至20V可调⏹5V输出时最大1.0A输出电流⏹15V输出时最大0.5A输出电流⏹固定100KHz开关频率⏹最大输出功率小于8W⏹EN脚TTL关断功能⏹内置高压功率MOSFET⏹效率高达91%⏹出色的线性与负载调整率⏹内置限流功能⏹内置输出短路保护功能⏹SOP8-EP封装应用⏹电动车控制器供电⏹通信描述XL7046是一款高效、高压降压型DC-DC转换器,固定100KHz开关频率,可提供最高1.0A输出电流能力,低纹波,出色的线性调整率与负载调整率。
XL7046内置固定频率振荡器与频率补偿电路,简化了电路设计。
PWM控制环路可以调节占空比从0~85%之间线性变化。
图1. XL7046封装1.0A 100KHz 100V 降压型DC-DC 转换器 XL7046引脚配置CSNCSP VCVINSWENGNDFB12345678图2. XL7046引脚配置表1.引脚说明引脚号 引脚名 描述1 CSN 电流检测负端引脚。
2 CSP 电流检测正端引脚。
3 VC 内部电压调节器旁路电容引脚,需要在VIN 与VC 引脚之间连接1个1uF 电容。
4 VIN 电源输入引脚,需要在VIN 与GND 之间并联电容以消除噪声。
5 SW 功率开关输出引脚。
6 EN 使能引脚,高电平关机,低电平开机,悬空时为低电平,默认与GND 连接。
7 GND 接地引脚。
8FB反馈引脚,通过外部电阻分压网络,检测输出电压进行调整。
参考电压为1.25V 。
背部焊盘为SW1.0A 100KHz 100V 降压型DC-DC 转换器 XL7046方框图EABias current & Voltage ReferenceVINGND75mV 1.25VEA COMPOscillator100KHz/25KHzSWRS Latch and DriverFBStart Up UVLOCSNSwitchENVCocsCSP图3. XL7046方框图典型应用XL7046L1 100uH/2ACIN 47uF 100VC2105R210K 1%R13.3K 1%D1S310SWFBGNDVINVIN4587CFF 10nF COUT 100uF 35VR30.075Ω 1%C1104VOUT 5.0V/0~1.0AOUTPUT 5.0V/0~1.0A VOUT=1.25*(1+R2/R1)CSP 21CSNCC 105VC36ENR3用于限制最大输出电流,当VOUT ≤5V 时,R3选择0.075欧姆;当VOUT>5V 时,R3选择0.082欧姆。
笔记本常用芯片电脑技术2010-01-21 10:05:48 阅读87 评论0 字号:大中小订阅笔记本常用3.3V/5V产升芯片是这样代换的1。
MAX1632 MAX1630 MAX1633 MAX1635 MAX1902 SC1403 可以互换2。
MAX1631 MAX1634 MAX1901 MAX1904 可以代换3。
MAX1999 MAX1997 可以代换4。
SI786 MAX786 可以代换5。
MAX785 MAX786是用在老板子上的。
绝对不能代换。
笔记本常用芯片的认识线性稳压块:2951、LP2951、m5236、2950开机芯片:东芝TM87XX、IBM:TB6805F、TB6806F、TB6808F、TB62501F、TMP48UI/O芯片:PC97338、PC87391、PC87392、pc87393、SMSC系列:FDC7N869、FDC37N958、LPC47N227、LPC47N267 PC8394T(T43)系统供电芯片:MAX1632、MAX1631、MAX1904、MAX1634、MAX785、MAX786、SB3052、SC1402、LTC1628CPU供电芯片:MAX1711、MAX1714、MAX1717、MAX1718、MAX1897 供电芯片搭配使用:ADP3203/ADP3415、ADP3410/ADP3421、ADP3410/ADP3422充电芯片:MAX1645、MAX745、MAX1772、MAX1773、ADP3806、TC490/591、MB3887、MB3878、LT1505GCPU温度控制芯片:MAX1617、MAX1020A、AD1030A、CM8500显卡品牌:ATI、NVIDIA、S3、NEOMAGIC、TRIDENT、SMI、INTEL、FW82807和CH7001A搭配使用网卡芯片:RTL8100、RTL8139、Intel DA82562、RC82540、3COM、BCM440网卡隔离:LF8423、LF-H80P、H-0023、H0024、H0019、ATPL-119 声卡芯片:ESS1921、ESS1980S、STAC9704、AU8810、4299-JQ、TPA0202、4297-JQ、8552TS、8542TS、CS4239-KQ、BA7786、AD1981B、AN12942 PC卡芯片:R5C551、R5C552、R5C476、R54472PC卡供电芯片:TPS2205、TPS2206、TPS2216、TPS2211、PU2211、M2562A、M2563A、M2564ACOM口芯片:MAX3243、MAX213、ADM213、HIN213、SP3243、MC145583键盘芯片:H8C/2471、H8/3434、H8/3431、PC87570、PC87591键盘芯片:具有开机功能:H8/3434、H8/3437、H8/2147、H8/2149、H8/2161、H8/2168、PC87570、PC87591、H8S/XXX M38857、M38867、M38869如有侵权请联系告知删除,感谢你们的配合!。
1/31August 2004M93C86, M93C76, M93C66M93C56, M93C4616Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit (8-bit or 16-bit wide)MICROWIRE® Serial Access EEPROMFEATURES SUMMARYs Industry Standard MICROWIRE Bus sSingle Supply Voltage:– 4.5 to 5.5V for M93Cx6– 2.5 to 5.5V for M93Cx6-W – 1.8 to 5.5V for M93Cx6-Rs Dual Organization: by Word (x16) or Byte (x8) s Programming Instructions that work on: Byte, Word or Entire Memorys Self-timed Programming Cycle with Auto-Erases Ready/Busy Signal During Programming sSpeed:–1MHz Clock Rate, 10ms Write Time(Current product, identified by process identification letter F or M)–2MHz Clock Rate, 5ms Write Time (NewProduct, identified by process identification letter W or G or S) s Sequential Read Operations Enhanced ESD/Latch-Up Behaviour s More than 1 Million Erase/Write Cycles sMore than 40 Year Data RetentionTable 1. Product ListReferencePart Number ReferencePart Number M93C86M93C86M93C56M93C56M93C86-W M93C56-W M93C86-R M93C56-R M93C76M93C76M93C46M93C46M93C76-W M93C46-W M93C76-R M93C46-RM93C66M93C66M93C66-W M93C66-RM93C86, M93C76, M93C66, M93C56, M93C46TABLE OF CONTENTSFEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Table 1.Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Figure 1.Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Figure 2.Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 2.Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 3.Memory Size versus Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 4.Instruction Set for the M93Cx6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 3.DIP, SO, TSSOP and MLP Connections (Top View). . . . . . . . . . . . . . . . . . . . . . . . . . . . .5MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 POWER-ON DATA PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..5INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Table 5.Instruction Set for the M93C46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Table 6.Instruction Set for the M93C56 and M93C66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Table 7.Instruction Set for the M93C76 and M93C86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Erase/Write Enable and Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 4.READ, WRITE, EWEN, EWDS Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Figure 5.ERASE, ERAL Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Erase All. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Write All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 6.WRAL Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10READY/BUSY STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 COMMON I/O OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11CLOCK PULSE COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 7.Write Sequence with One Clock Glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Table 8.Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 9.Operating Conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 10.Operating Conditions (M93Cx6-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 11.Operating Conditions (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 12.AC Measurement Conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 13.AC Measurement Conditions (M93Cx6-W and M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . .14 Figure 8.AC Testing Input Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142/31M93C86, M93C76, M93C66, M93C56, M93C46Table 14.Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 15.DC Characteristics (M93Cx6, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 16.DC Characteristics (M93Cx6, Device Grade 7 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 17.DC Characteristics (M93Cx6-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Table 18.DC Characteristics (M93Cx6-W, Device Grade 7 or 3). . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 19.DC Characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 20.AC Characteristics (M93Cx6, Device Grade 6, 7 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . .18 Table 21.AC Characteristics (M93Cx6-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Table 22.AC Characteristics (M93Cx6-W, Device Grade 7 or 3). . . . . . . . . . . . . . . . . . . . . . . . . .20 Table 23.AC Characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 9.Synchronous Timing (Start and Op-Code Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 10.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 11.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23Figure 12.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . .23 Table 24.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . .23 Figure 13.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . .24 Table 25.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data 24Figure 14.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Outline 25Table 26.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Data.25Figure 15.TSSOP8 3x3mm²– 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline 26Table 27.TSSOP8 3x3mm²– 8 lead Thin Shrink Small Outline, 3x3mm² body size, Mechanical Data 26Figure 16.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . .27 Table 28.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data. . . . . . . . . . . .27PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 29.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 30.How to Identify Current and New Products by the Process Identification Letter. . . . . . .29REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 31.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303/31M93C86, M93C76, M93C66, M93C56, M93C464/31SUMMARY DESCRIPTIONThese electrically erasable programmable memo-ry (EEPROM) devices are accessed through a Se-rial Data Input (D) and Serial Data Output (Q)using the MICROWIRE bus protocol.Table 2. Signal NamesThe memory array organization may be divided into either bytes (x8) or words (x16) which may be selected by a signal applied on Organization Se-lect (ORG). The bit, byte and word sizes of the memories are as shown in Table 3..Table 3. Memory Size versus OrganizationThe M93Cx6 is accessed by a set of instructions,as summarized in Table 4., and in more detail in Table 5. to Table 7.).Table 4. Instruction Set for the M93Cx6A Read Data from Memory (READ) instruction loads the address of the first byte or word to be read in an internal address register. The data at this address is then clocked out serially. The ad-dress register is automatically incremented after the data is output and, if Chip Select Input (S) is held High, the M93Cx6 can output a sequential stream of data bytes or words. In this way, the memory can be read as a data stream from eight to 16384 bits long (in the case of the M93C86), or continuously (the address counter automatically rolls over to 00h when the highest address is reached).Programming is internally self-timed (the external clock signal on Serial Clock (C) may be stopped or left running after the start of a Write cycle) and does not require an Erase cycle prior to the Write instruction. The Write instruction writes 8 or 16 bits at a time into one of the byte or word locations of the M93Cx6. After the start of the programming cy-cle, a Busy/Ready signal is available on Serial Data Output (Q) when Chip Select Input (S) is driv-en High.S Chip Select Input D Serial Data Input Q Serial Data Output C Serial Clock ORG Organisation Select V CC Supply Voltage V SSGroundDevice Number of Bits Number of 8-bit Bytes Number of 16-bit Words M93C861638420481024M93C7681921024512M93C664096512256M93C562048256128M93C46102412864Instruction Description Data READ Read Data from Memory Byte or Word WRITEWrite Data to Memory Byte or WordEWEN Erase/Write Enable EWDS Erase/Write Disable ERASE Erase Byte or Word Byte or WordERAL Erase All Memory WRALWrite All Memory with same DataM93C86, M93C76, M93C66, M93C56, M93C46An internal Power-on Data Protection mechanism in the M93Cx6 inhibits the device when the supply is too low.Figure 3. DIP, SO, TSSOP and MLPNote: 1.See PACKAGE MECHANICAL section for package di-mensions, and how to identify pin-1.2.DU = Don’t Use.The DU (Don’t Use) pin does not contribute to the normal operation of the device. It is reserved for use by STMicroelectronics during test sequences. The pin may be left unconnected or may be con-nected to V CC or V SS. Direct connection of DU to V SS is recommended for the lowest stand-by pow-er consumption.MEMORY ORGANIZATIONThe M93Cx6 memory is organized either as bytes (x8) or as words (x16). If Organization Select (ORG) is left unconnected (or connected to V CC) the x16 organization is selected; when Organiza-tion Select (ORG) is connected to Ground (V SS) the x8 organization is selected. When the M93Cx6 is in stand-by mode, Organization Select (ORG) should be set either to V SS or V CC for minimum power consumption. Any voltage between V SS and V CC applied to Organization Select (ORG) may increase the stand-by current.POWER-ON DATA PROTECTIONTo prevent data corruption and inadvertent write operations during power-up, a Power-On Reset (POR) circuit resets all internal programming cir-cuitry, and sets the device in the Write Disable mode.–At Power-up and Power-down, the device must not be selected (that is, Chip Select Input (S) must be driven Low) until the supplyvoltage reaches the operating value V CCspecified in Table 9. to Table 11..–When V CC reaches its valid level, the device is properly reset (in the Write Disable mode) and is ready to decode and execute incominginstructions.For the M93Cx6 devices (5V range) the POR threshold voltage is around 3V. For the M93Cx6-W (3V range) and M93Cx6-R (2V range) the POR threshold voltage is around 1.5V.5/31M93C86, M93C76, M93C66, M93C56, M93C466/31INSTRUCTIONSThe instruction set of the M93Cx6 devices con-tains seven instructions, as summarized in Table 5. to Table 7.. Each instruction consists of the fol-lowing parts, as shown in Figure 4.:s Each instruction is preceded by a rising edgeon Chip Select Input (S) with Serial Clock (C) being held Low.s A start bit, which is the first ‘1’ read on SerialData Input (D) during the rising edge of Serial Clock (C).s Two op-code bits, read on Serial Data Input(D) during the rising edge of Serial Clock (C). (Some instructions also use the first two bits of the address to define the op-code).sThe address bits of the byte or word that is to be accessed. For the M93C46, the address is made up of 6 bits for the x16 organization or 7 bits for the x8 organization (see Table 5.). For the M93C56 and M93C66, the address is made up of 8 bits for the x16 organization or 9 bits for the x8 organization (see Table 6.). For the M93C76 and M93C86, the address is made up of 10 bits for the x16 organization or 11 bits for the x8 organization (see Table 7.).The M93Cx6 devices are fabricated in CMOS technology and are therefore able to run as slow as 0Hz (static input signals) or as fast as the max-imum ratings specified in Table 20. to Table 23..Table 5. Instruction Set for the M93C46Note: 1.X = Don ’t Care bit.Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address 1DataRequiredClock CyclesAddress 1DataRequired Clock CyclesREAD Read Data from Memory 110A6-A0Q7-Q0A5-A0Q15-Q0WRITE Write Data to Memory101A6-A0D7-D018A5-A0D15-D025EWEN Erase/Write Enable 10011X XXXX 1011 XXXX 9EWDS Erase/Write Disable 10000X XXXX 1000 XXXX 9ERASE Erase Byte or Word 111A6-A010A5-A09ERAL Erase All Memory 10010X XXXX 1010 XXXX 9WRALWrite All Memory with same Data10001X XXXXD7-D01801 XXXXD15-D0257/31M93C86, M93C76, M93C66, M93C56, M93C46Table 6. Instruction Set for the M93C56 and M93C66Note: 1.X = Don ’t Care bit.2.Address bit A8 is not decoded by the M93C56.3.Address bit A7 is not decoded by the M93C56.Table 7. Instruction Set for the M93C76 and M93C86Note: 1.X = Don ’t Care bit.2.Address bit A10 is not decoded by the M93C76.3.Address bit A9 is not decoded by the M93C76.Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address 1,2DataRequiredClock CyclesAddress 1,3DataRequired Clock CyclesREAD Read Data from Memory 110A8-A0Q7-Q0A7-A0Q15-Q0WRITE Write Data to Memory101A8-A0D7-D020A7-A0D15-D027EWEN Erase/Write Enable 100 1 1XXXXXXX 1211XX XXXX 11EWDS Erase/Write Disable 1000 0XXX XXXX 1200XX XXXX 11ERASE Erase Byte or Word 111A8-A012A7-A011ERAL Erase All Memory 100 1 0XXX XXXX 1210XX XXXX 11WRALWrite All Memory with same Data1000 1XXX XXXXD7-D02001XX XXXXD15-D027Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address1,2DataRequiredClock CyclesAddress 1,3DataRequiredClock CyclesREAD Read Data from Memory 110A10-A0Q7-Q0A9-A0Q15-Q0WRITE Write Data to Memory101A10-A0D7-D022A9-A0D15-D029EWEN Erase/Write Enable 10011X XXXX XXXX 1411 XXXX XXXX 13EWDS Erase/Write Disable 10000X XXXX XXXX 1400 XXXX XXXX 13ERASE Erase Byte or Word 111A10-A014A9-A013ERAL Erase All Memory 10010X XXXX XXXX 1410 XXXX XXXX 13WRALWrite All Memory with same Data10001X XXXX XXXXD7-D02201 XXXX XXXXD15-D029M93C86, M93C76, M93C66, M93C56, M93C468/31ReadThe Read Data from Memory (READ) instruction outputs data on Serial Data Output (Q). When the instruction is received, the op-code and address are decoded, and the data from the memory is transferred to an output shift register. A dummy 0bit is output first, followed by the 8-bit byte or 16-bit word, with the most significant bit first. Output data changes are triggered by the rising edge of Serial Clock (C). The M93Cx6 automatically incre-ments the internal address register and clocks out the next byte (or word) as long as the Chip Select Input (S) is held High. In this case, the dummy 0 bit is not output between bytes (or words) and a con-tinuous stream of data can be read.Erase/Write Enable and DisableThe Erase/Write Enable (EWEN) instruction en-ables the future execution of erase or write instruc-tions, and the Erase/Write Disable (EWDS)instruction disables it. When power is first applied,the M93Cx6 initializes itself so that erase and write instructions are disabled. After an Erase/Write En-able (EWEN) instruction has been executed, eras-ing and writing remains enabled until an Erase/Write Disable (EWDS) instruction is executed, or until V CC falls below the power-on reset threshold voltage. To protect the memory contents from ac-cidental corruption, it is advisable to issue the Erase/Write Disable (EWDS) instruction after ev-ery write cycle. The Read Data from Memory (READ) instruction is not affected by the Erase/Write Enable (EWEN) or Erase/Write Disable (EWDS) instructions.M93C86, M93C76, M93C66, M93C56, M93C46EraseThe Erase Byte or Word (ERASE) instruction sets the bits of the addressed memory byte (or word) to 1. Once the address has been correctly decoded, the falling edge of the Chip Select Input (S) starts the self-timed Erase cycle. The completion of the cycle can be detected by monitoring the Ready/ Busy line, as described in the READY/BUSY STA-TUS section.WriteFor the Write Data to Memory (WRITE) instruction, 8 or 16 data bits follow the op-code and address bits. These form the byte or word that is to be writ-ten. As with the other bits, Serial Data Input (D) is sampled on the rising edge of Serial Clock (C).After the last data bit has been sampled, the Chip Select Input (S) must be taken Low before the next rising edge of Serial Clock (C). If Chip Select Input (S) is brought Low before or after this specific time frame, the self-timed programming cycle will not be started, and the addressed location will not be programmed. The completion of the cycle can be detected by monitoring the Ready/Busy line, as described later in this document.Once the Write cycle has been started, it is inter-nally self-timed (the external clock signal on Serial Clock (C) may be stopped or left running after the start of a Write cycle). The cycle is automatically preceded by an Erase cycle, so it is unnecessary to execute an explicit erase instruction before a Write Data to Memory (WRITE) instruction.9/31M93C86, M93C76, M93C66, M93C56, M93C4610/31Erase AllThe Erase All Memory (ERAL) instruction erases the whole memory (all memory bits are set to 1).The format of the instruction requires that a dum-my address be provided. The Erase cycle is con-ducted in the same way as the Erase instruction (ERASE). The completion of the cycle can be de-tected by monitoring the Ready/Busy line, as de-scribed in the READY/BUSY STATUS section.Write AllAs with the Erase All Memory (ERAL) instruction,the format of the Write All Memory with same Data (WRAL) instruction requires that a dummy ad-dress be provided. As with the Write Data to Mem-ory (WRITE) instruction, the format of the Write All Memory with same Data (WRAL) instruction re-quires that an 8-bit data byte, or 16-bit data word,be provided. This value is written to all the ad-dresses of the memory device. The completion of the cycle can be detected by monitoring the Ready/Busy line, as described next.While the Write or Erase cycle is underway, for a WRITE, ERASE, WRAL or ERAL instruction, the Busy signal (Q=0) is returned whenever Chip Se-lect Input (S) is driven High. (Please note, though, that there is an initial delay, of t SLSH, before this status information becomes available). In this state, the M93Cx6 ignores any data on the bus. When the Write cycle is completed, and Chip Se-lect Input (S) is driven High, the Ready signal (Q=1) indicates that the M93Cx6 is ready to re-ceive the next instruction. Serial Data Output (Q) remains set to 1 until the Chip Select Input (S) is brought Low or until a new start bit is decoded. COMMON I/O OPERATIONSerial Data Output (Q) and Serial Data Input (D) can be connected together, through a current lim-iting resistor, to form a common, single-wire data bus. Some precautions must be taken when oper-ating the memory in this way, mostly to prevent a short circuit current from flowing when the last ad-dress bit (A0) clashes with the first data bit on Se-rial Data Output (Q). Please see the application note AN394 for details. CLOCK PULSE COUNTERIn a noisy environment, the number of pulses re-ceived on Serial Clock (C) may be greater than the number delivered by the master (the microcontrol-ler). This can lead to a misalignment of the instruc-tion of one or more bits (as shown in Figure 7.) and may lead to the writing of erroneous data at an er-roneous address.To combat this problem, the M93Cx6 has an on-chip counter that counts the clock pulses from the start bit until the falling edge of the Chip Select In-put (S). If the number of clock pulses received is not the number expected, the WRITE, ERASE, ERAL or WRAL instruction is aborted, and the contents of the memory are not modified.The number of clock cycles expected for each in-struction, and for each member of the M93Cx6 family, are summarized in Table 5. to Table 7.. For example, a Write Data to Memory (WRITE) in-struction on the M93C56 (or M93C66) expects 20 clock cycles (for the x8 organization) from the start bit to the falling edge of Chip Select Input (S). That is:1 Start bit+ 2 Op-code bits+ 9 Address bits+ 8 Data bits11/3112/31MAXIMUM RATINGStressing the device above the rating listed in the Absolute Maximum Ratings" table may cause per-manent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-plied. Exposure to Absolute Maximum Rating con-ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality docu-ments.Table 8. Absolute Maximum RatingsNote: pliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK ® 7191395 specification, andthe European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2.JEDEC Std JESD22-A114A (C1=100pF, R1=1500 Ω, R2=500 Ω)Symbol ParameterMin.Max.Unit T STG Storage Temperature–65150°C T LEAD Lead T emperature during Soldering See note 1°C V OUT Output range (Q = V OH or Hi-Z)–0.50V CC +0.5V V IN Input range –0.50V CC +1V V CC Supply Voltage–0.50 6.5V V ESDElectrostatic Discharge Voltage (Human Body model) 2–40004000V13/31DC AND AC PARAMETERSThis section summarizes the operating and mea-surement conditions, and the DC and AC charac-teristics of the device. The parameters in the DC and AC Characteristic tables that follow are de-rived from tests performed under the Measure-ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parame-ters.Table 9. Operating Conditions (M93Cx6)Table 10. Operating Conditions (M93Cx6-W)Table 11. Operating Conditions (M93Cx6-R)Symbol ParameterMin.Max.Unit V CCSupply Voltage4.55.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C Ambient Operating Temperature (Device Grade 7)–40105°C Ambient Operating Temperature (Device Grade 3)–40125°CSymbol ParameterMin.Max.Unit V CCSupply Voltage2.5 5.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C Ambient Operating Temperature (Device Grade 7)–40105°C Ambient Operating Temperature (Device Grade 3)–40125°CSymbol ParameterMin.Max.Unit V CC Supply Voltage1.8 5.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C14/31Table 12. AC Measurement Conditions (M93Cx6)Note: 1.Output Hi-Z is defined as the point where data out is no longer driven.Table 13. AC Measurement Conditions (M93Cx6-W and M93Cx6-R)Note: 1.Output Hi-Z is defined as the point where data out is no longer driven.Table 14. CapacitanceNote:Sampled only, not 100% tested, at T A =25°C and a frequency of 1MHz.Symbol Parameter Min.Max.Unit C LLoad Capacitance 100pFInput Rise and Fall Times 50ns Input Pulse Voltages0.4V to 2.4V V Input Timing Reference Voltages 1.0V and 2.0V V Output Timing Reference Voltages0.8V and 2.0VVSymbol Parameter Min.Max.Unit C LLoad Capacitance 100pFInput Rise and Fall Times 50ns Input Pulse Voltages0.2V CC to 0.8V CC V Input Timing Reference Voltages 0.3V CC to 0.7V CC V Output Timing Reference Voltages0.3V CC to 0.7V CCVSymbol ParameterTest Condition MinMax Unit C OUT OutputCapacitance V OUT = 0V 5pF C INInputCapacitanceV IN = 0V5pF15/31Table 15. DC Characteristics (M93Cx6, Device Grade 6)Note: 1.Current product: identified by Process Identification letter F or M.2.New product: identified by Process Identification letter W or G or S.Table 16. DC Characteristics (M93Cx6, Device Grade 7 or 3)Note: 1.Current product: identified by Process Identification letter F or M.2.New product: identified by Process Identification letter W or G or S.Symbol ParameterTest Condition Min.Max.Unit I LI Input Leakage Current 0V ≤ V IN ≤ V CC±2.5 µA I LOOutput Leakage Current0V ≤ V OUT ≤ V CC , Q in Hi-Z ±2.5 µA I CCSupply CurrentV CC = 5V, S = V IH , f = 1 MHz, CurrentProduct 11.5 mA V CC = 5V, S = V IH , f = 2 MHz, NewProduct 22mAI CC1Supply Current (Stand-by)V CC = 5V , S = V SS , C = V SS ,ORG = V SS or V CC , Current Product 150 µA V CC = 5V , S = V SS , C = V SS , ORG = V SS or V CC , New Product 215 µA V IL Input Low Voltage V CC = 5V ± 10%–0.450.8 V V IH Input High Voltage V CC = 5V ± 10%2V CC + 1 V V OL Output Low Voltage V CC = 5V, I OL = 2.1mA 0.4 V V OHOutput High VoltageV CC = 5V , I OH = –400µA2.4VSymbol ParameterTest Condition Min.Max.UnitI LI Input Leakage Current 0V ≤ V IN ≤ V CC±2.5 µA I LOOutput Leakage Current0V ≤ V OUT ≤ V CC , Q in Hi-Z ±2.5 µA I CCSupply CurrentV CC = 5V, S = V IH , f = 1 MHz, CurrentProduct 11.5 mA V CC = 5V, S = V IH , f = 2 MHz, NewProduct 22 mA I CC1Supply Current (Stand-by)V CC = 5V , S = V SS , C = V SS ,ORG = V SS or V CC , Current Product 150 µA V CC = 5V , S = V SS , C = V SS , ORG = V SS or V CC , New Product 215 µA V IL Input Low Voltage V CC = 5V ± 10%–0.450.8 V V IH Input High Voltage V CC = 5V ± 10%2V CC + 1 V V OL Output Low Voltage V CC = 5V, I OL = 2.1mA 0.4 V V OHOutput High VoltageV CC = 5V , I OH = –400µA2.4V。
HT93LC86CMOS 16K 3-Wire Serial EEPROMBlock DiagramPin AssignmentRev.1.001March 16,2006Features·Operating voltage:2.2V~5.5V ·Low power consumption -Operating:5mA max.-Standby:10m A max.·User selectable internal organization -16K:2048´8or 1024´16·3-wire Serial Interface ·Write cycle time:5ms max.·Automatic erase-before-write operation ·Word/chip erase and write operation ·Write operation with built-in timer ·Software controlled write protection ·40-year data retention ·106rewrite cycles per word·Commercial temperature range (0°C to +70°C)·8-pin DIP/SOP/TSSOP packageGeneral DescriptionThe HT93LC86is a 16K-bit low voltage nonvolatile,serial electrically erasable programmable read only memory de-vice using a CMOS floating gate process.Its 16384bits of memory are organised into 1024words of 16bits each when the ORG pin is connected to VCC or organised into 2048words of 8bits each when it is tied to VSS.The de-vice is especially suitable for use in many industrial and commercial applications where low power and low voltage operation are essential.The device can easily interface to microcontrollers using the versatile serial interface com-pose of (CS),serial clock (SK),data input (DI)and data output (DO).Pin DescriptionPin Name I/O Description CS I Chip select inputSK I Serial clock inputDI I Serial data inputDO O Serial data outputVSS¾Negative power supply,groundORG I Internal OrganizationWhen ORG is connected to VDD or left floating,the(´16)memory organization is selected. When ORG is connected to VSS,the(´8)memory organization is selected.The ORG pin is connected to an internal pull-high resistor.NC¾No connectionVCC¾Positive power supplyAbsolute Maximum RatingsOperation Temperature(Commercial)..........................................................................................................0°C to70°C Applied V CC Voltage with Respect to VSS..................................................................................................-0.3V to6.0V Applied Voltage on any Pin with Respect to VSS..................................................................................................V SS-0.3V to V CC+0.3V Note:These are stress ratings only.Stresses exceeding the range specified under²Absolute Maximum Ratings²may cause substantial damage to the device.Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliabil-ity.D.C.CharacteristicsSymbol ParameterTest ConditionsMin.Typ.Max.Unit V CC ConditionsV CC Operating Voltage¾¾ 2.2¾ 5.5V I CC1Operating Current(TTL)5V DO no load,SK=1MHz¾¾5mAI CC2Operating Current(CMOS)5V DO no load,SK=1MHz¾¾5mA 2.2V~5.5V DO no load,SK=250kHz¾¾5mAI STB Standby Current(CMOS)5V CS=SK=DI=0V¾¾10m A I LI Input Leakage Current5V V IN=V SS~V CC0¾1m A I LO Output Leakage Current5V V OUT=V SS~V CC,CS=0V0¾1m AV IL Input Low Voltage5V¾0¾0.8V 2.2V~5.5V¾0¾0.1V CC VV IH Input High Voltage5V¾2¾V CC V 2.2V~5.5V¾0.9V CC¾V CC VV OL Output Low Voltage5V I OL=2.1mA¾¾0.4V 2.2V~5.5V I OL=10m A¾¾0.2VV OH Output High Voltage5V I OH=-400m A 2.4¾¾V 2.2V~5.5V I OH=-10m A V CC-0.2¾¾VC IN Input Capacitance¾V IN=0V,f=250kHz¾¾5pF C OUT Output Capacitance¾V OUT=0V,f=250kHz¾¾5pFRev.1.002March16,2006A.C.CharacteristicsSymbol ParameterV CC=5V±10%V CC=3V±10%V CC=2.2VUnit Min.Max.Min.Max.Min.Max.f SK Clock Frequency0200005000250kHzt SKH SK High Time250¾1000¾2000¾ns t SKL SK Low Time250¾1000¾2000¾ns t CSS CS Setup Time50¾200¾200¾ns t CSH CS Hold Time0¾0¾0¾ns t CDS CS Deselect Time250¾250¾1000¾ns t DIS DI Setup Time100¾200¾400¾ns t DIH DI Hold Time100¾200¾400¾ns t PD1DO Delay to²1²¾250¾1000¾2000ns t PD0DO Delay to²0²¾250¾1000¾2000ns t SV Status Valid Time¾250¾250¾¾ns t HV DO Disable Time100¾400¾400¾ns t PR Write Cycle Time¾5¾5¾5msA.C.Test ConditionsInput rise and fall time:5ns(1V to2V)Input and output timing reference levels:1.5VOutput load circuit:See Figure rightRev.1.003March16,2006Functional DescriptionThe HT93LC86is accessed via a three-wire serial com-munication interface.The device is arranged into1024 words by16bits or2048words by8bits depending whether the ORG pin is connected to VCC or VSS.The HT93LC86contains seven instructions:READ,ERASE, WRITE,EWEN,EWDS,ERAL and WRAL.When the user selectable internal organization is arranged into 1024´16(2048´8),these instructions are all made up of 13(14)bits data:1start bit,2op code bits and10(11)ad-dress bits.By using the control signal CS,SK and data input signal DI,these instructions can be transmitted to the HT93LC86.These serial instruction data presented at the DI input will be written into the device on the rising edge of SK.During the READ cycle,the DO pin acts as the data output and during the WRITE or ERASE cycle, the DO pin indicates the BUSY/READY status.When the DO pin is active for reading data or as a BUSY/READY indicator the CS pin must be high;other-wise the DO pin will be in a high-impedance state.For successful instruction execution,CS must be pulled low once after the instruction is sent.After power on,the de-vice is by default in the EWDS state.An EWEN instruc-tion must be performed before any ERASE or WRITE instruction can be executed.The following are the func-tional descriptions and timing diagrams of all seven in-structions.READThe READ instruction will stream out data at a specified address on the DO pin.The data on DO pin changes during the low-to-high edge of SK signal.The8bit or16 bit data stream is preceded by a logical²0²dummy bit. Irrespective of the condition of the EWEN or EWDS in-struction,the READ command is always valid and inde-pendent of these two instructions.After the data word has been read the internal address will be automatically incremented by1allowing the next consecutive data word to be read out without entering further address data.The address will wrap around with CS High until CS returns to LOW.EWEN/EWDSThe EWEN/EWDS instruction will enable or disable the programming capabilities.At both the power on and power off state the device automatically enters the disable mode.Before a WRITE,ERASE,WRAL or ERAL instruc-tion is given,the programming enable instruction EWEN must be issued,otherwise any ERASE/WRITE instruc-tions will be invalid.After the EWEN instruction is issued, the programming enable condition remains until the power is removed off until an EWDS instruction is issued.No data can be written into the device in the programming disable state.By so doing,the internal memory data can be pro-tected.ERASEThe ERASE instruction erases data at the specified ad-dresses in the programming enable mode.After the ERASE op-code and the specified address have been issued,the data erase is activated by the falling edge of CS.Since the internal auto-timing generator provides all timing signals for the internal erase,the SK clock is not required.During the internal erase,the busy/ready sta-tus can be verified by keeping CS high.If busy,the DO pin will remain low but when the operation is over,the DO pin will return to a high level permitting further in-structions to be executed.WRITEThe WRITE instruction writes data into the device at the specified addresses in the programming enable mode. After the WRITE op-code and the specified address and data have been issued,the data writing is activated by the falling edge of CS.Since the internal auto-timing generator provides all timing signal for the internal writ-ing,the SK clock is not required.The auto-timing write cycle includes an automatic erase-before-write capabil-ity.It is therefore not necessary to erase data before the WRITE instruction is issued.During the internal writing, the busy/ready status can be verified by keeping CS high.If busy,the DO pin will remain low but when the operation is over,the DO pin will return to a high level permitting further instructions to be executed.ERALThe ERAL instruction erases the entire1024´16or 2048´8memory cells to a logical²1²state in the pro-gramming enable mode.After the erase-all instruction has been issued,the data erase feature is activated by the falling edge of CS.Since the internal auto-timing generator provides all timing signal for the erase-all op-eration,the SK clock is not required.During the internal erase-all operation,the busy/ready status can be veri-fied by keeping CS high.If busy,the DO pin will remain low but when the operation is over,the DO pin will return to a high level permitting further instructions to be exe-cuted.WRALThe WRAL instruction writes data into the entire 1024´16or2048´8memory cells in the programming enable mode.After the write-all instruction set has been issued,the data writing is activated by the falling edge of CS.Since the internal auto-timing generator provides all timing signals for the write-all operation,the SK clock is not required.During the internal write-all operation,the busy/ready status can be verified by keeping CS high.If busy,the DO pin will remain low but when the operation is over,the DO pin will return to a high level permitting further instructions to be executed.Rev.1.004March16,2006Timing DiagramsREADEWEN/EWDSWRITEERASERev.1.005March16,2006ERALWRALInstruction Set SummaryInstruction Comments StartBitOpCodeAddressORG=0ORG=1X8X16DataORG=0ORG=1X8X16READ Read data110A10~A0A9~A0D7~D0D15~D0 ERASE Erase data111A10~A0A9~A0¾WRITE Write data101A10~A0A9~A0D7~D0D15~D0 EWEN Erase/Write Enable10011XXXXXXXXX11XXXXXXXX¾EWDS Erase/Write Disable10000XXXXXXXXX00XXXXXXXX¾ERAL Erase All10010XXXXXXXXX10XXXXXXXX¾WRAL Write All10001XXXXXXXXX01XXXXXXXX D7~D0D15~D0 Note:²X²stands for don¢t careRev.1.006March16,2006Package Information8-pin DIP(300mil)Outline DimensionsSymbolDimensions in milMin.Nom.Max.A355¾375B240¾260C125¾135D125¾145E16¾20F50¾70G¾100¾H295¾315I335¾375a0°¾15°Rev.1.007March16,20068-pin SOP(150mil)Outline DimensionsSymbolDimensions in milMin.Nom.Max.A228¾244B149¾157C14¾20C¢189¾197D53¾69E¾50¾F4¾10G22¾28H4¾12a0°¾10°Rev.1.008March16,20068-pin TSSOP Outline DimensionsSymbolDimensions in mmMin.Nom.Max.A 1.05¾ 1.20A10.05¾0.15A20.95¾ 1.05B¾0.25¾C0.11¾0.15D 2.90¾ 3.10E 6.20¾ 6.60E1 4.30¾ 4.50e¾0.65¾L0.50¾0.70L10.90¾ 1.10y¾¾0.10q0°¾8°Rev.1.009March16,2006Product Tape and Reel SpecificationsReel DimensionsSOP8N,TSSOP8LSymbol Description Dimensions in mmA Reel Outer Diameter330±1.0B Reel Inner Diameter62±1.5C Spindle Hole Diameter 13.0+0.5-0.2D Key Slit Width 2.0±0.5T1Space Between Flange 12.8+0.3-0.2T2Reel Thickness18.2±0.2Rev.1.0010March16,2006Carrier Tape DimensionsSOP8NSymbol Description Dimensions in mmW Carrier Tape Width 12.0+0.3-0.1P Cavity Pitch8.0±0.1E Perforation Position 1.75±0.1F Cavity to Perforation(Width Direction) 5.5±0.1D Perforation Diameter 1.55±0.1D1Cavity Hole Diameter 1.5+0.25P0Perforation Pitch 4.0±0.1P1Cavity to Perforation(Length Direction) 2.0±0.1A0Cavity Length 6.4±0.1B0Cavity Width 5.2±0.1K0Cavity Depth 2.1±0.1t Carrier Tape Thickness0.3±0.05C Cover Tape Width9.3TSSOP8LSymbol Description Dimensions in mmW Carrier Tape Width 12.0+0.3-0.1P Cavity Pitch8.0±0.1E Perforation Position 1.75±0.1F Cavity to Perforation(Width Direction) 5.5±0.5D Perforation Diameter 1.5+0.1D1Cavity Hole Diameter 1.5+0.1P0Perforation Pitch 4.0±0.1P1Cavity to Perforation(Length Direction) 2.0±0.1A0Cavity Length7.0±0.1B0Cavity Width 3.6±0.1K0Cavity Depth 1.6±0.1t Carrier Tape Thickness0.3±0.013C Cover Tape Width9.3Rev.1.0011March16,2006Holtek Semiconductor Inc.(Headquarters)No.3,Creation Rd.II,Science Park,Hsinchu,TaiwanTel:886-3-563-1999Fax:886-3-563-1189Holtek Semiconductor Inc.(Taipei Sales Office)4F-2,No.3-2,YuanQu St.,Nankang Software Park,Taipei115,TaiwanTel:886-2-2655-7070Fax:886-2-2655-7373Fax:886-2-2655-7383(International sales hotline)Holtek Semiconductor Inc.(Shanghai Sales Office)7th Floor,Building2,No.889,Yi Shan Rd.,Shanghai,China200233Tel:021-6485-5560Fax:021-6485-0313Holtek Semiconductor Inc.(Shenzhen Sales Office)43F,SEG Plaza,Shen Nan Zhong Road,Shenzhen,China518031Tel:0755-8346-5589Fax:0755-8346-5590ISDN:0755-8346-5591Holtek Semiconductor Inc.(Beijing Sales Office)Suite1721,Jinyu Tower,A129West Xuan Wu Men Street,Xicheng District,Beijing,China100031Tel:010-6641-0030,6641-7751,6641-7752Fax:010-6641-0125Holmate Semiconductor,Inc.(North America Sales Office)46712Fremont Blvd.,Fremont,CA94538Tel:510-252-9880Fax:510-252-9885CopyrightÓ2006by HOLTEK SEMICONDUCTOR INC.The information appearing in this Data Sheet is believed to be accurate at the time of publication.However,Holtek as-sumes no responsibility arising from the use of the specifications described.The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification,nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise.Holtek¢s products are not authorized for use as critical components in life support devices or systems.Holtek reserves the right to alter its products without prior notification.For the most up-to-date information, please visit our web site at .Rev.1.0012March16,2006。
三端稳压L7812CV 是中功率三极管大功率三极管2SD1427 N1500V 5A 6.502SD1431 N1500V 5A 6.502SD1439 N1500V 3A 6.502SD1445 N40V 10A 7.002SD1453 N1500V 3A 7.002SD1884 N1500V 5A 7.002SK30A P50A 6mA 3.002SK301 NFET55V 2.00BD235 N60V 2A 1.50BD236 P60V 2A 1.50BD237 N100V 2A 1.60BD238 P100V 2A 1.60BD241 N45V 3A 1.20BD243 N45V 6A 1.50BD682 P100V 4A 3.80BF869 N250V 0.1A 6.50MJE13003 N400V 1.5A 1.50MJE13005 N400V 4A 2.00囧空中飞舞回答采纳率:26.2%2008-10-17 22:51给你一篇文章,你自己找找吧,这是关于你说的那个问题的:N25V 0.05A 0.15 2SC1008 N80V 0.7A 0.359012 P25V 0.1A 0.15 2SC1507 N300V 0.2A 1.509013 N25V 0.1A 0.15 2SC2073 N150V 1.5A 2.00 9014 N25V 0.1A 0.15 2SC2229 N200V 0.05A 2.00 9015 N20V 0.1A 0.15 2SC2233 N200V 4A 2.509018 N20V 0.05A 0.15 2SC2235 N120V 0.8A 2.503DG6 0.802SC2655 N60V 2A 2.002N2222A N60V 0.8A 0.60 2SC2373 N200V 7.5A 2.85 3DG12D 2.50 2SC2383 NPN 2.80BT33 2.50 2SC3039 N500V 7A 2.002N3055 N100V 15A 3.50 2SC3198 N60V 0.015A 3.20 2N3904 N60V0.8A 1.50 2SC3225 N40V 2A 3.202N3906 N40V0.2A 1.50 2SC3280 N160V 12A 7.002N2955 P100V 15A 3.50 2SC3358 N20V 0.1A 1.002N5401 P130V 0.6A 0.20 2SC3692 N100V 7A 6.002N5551 N180V 0.6A 0.20 2SC3749 N800V 3A 6.502SC1815 N60V 0.15A 0.20 2SC3858 NPN 6.502SA1015 P50V 0.15A 0.20 2SD401 N200V 2A 2.002SC8050 N25V 1A 0.20 2SD478 N200V 2A 2.002SC8550 P25V 1A 0.20 2SD627 N1500V 3A 3.502SA1301 P160V 12A 0.60 2SD880 N60V 3A 1.502SA1315 P80V 2A 0.60 2SD869 N1500V 3.5A 6.502SA1494 PNP 0.85 2SD965 N40V 5A 3.00MPSA42 NPN 0.30 2SD882 NPN 1.502SA684 P60V 15A 0.30 2SD1094 N1000V 10A 8.202SA733 P50V 0.1A 0.25 2SD1111 N80V 0.7A 0.502SA768 P60V 4A 0.30 2SD1397 N1500V 3.5A 2.502SA940 P150V 1.5A 2.00 2SD1398 N1500V 5A 3.20 2SA966 P30V 1.5A 1.00 2SD1403 N1500V 6A 6.502SB1142 P60V 2.5A 1.50 2SB566 P50V 4A 1.502SB546 P200V 2A 1.50 2SD1426 N1500V 3.5A 6.502SC945 N50V0.1A 0.35大功率三极管达林顿三极管2SD1427 N1500V 5A 6.50 TIP122 N100V 8A 1.802SD1431 N1500V 5A 6.50 TIP127 P100V 8A 1.802SD1439 N1500V 3A 6.50 TIP137 P100V 8A 6.502SD1445 N40V 10A 7.00 TIP142 N100V 10A 8.002SD1453 N1500V 3A 7.00 TIP147 N100V 10A 8.002SD1884 N1500V 5A 7.00 TIP2955 P60V 15A 3.502SK30A P50A 6mA 3.00 TIP3055 N60V 15A 3.502SK301 NFET55V 2.00 MJ862 N100V 5A 6.00BD235 N60V 2A 1.50 MG2955 P60V 15A 6.00BD236 P60V 2A 1.50 MG10005 N325V 10A 15.00BD237 N100V 2A 1.60 MG10012 N400V 10A 18.00BD238 P100V 2A 1.60 MJ10015 N400V 50A 18.00BD241 N45V 3A 1.20 MJ10016 N50V 50A 18.00BD243 N45V 6A 1.50 MJ10023 P850V 20A 18.00BD682 P100V 4A 3.80 MJ10025 N850V 20A 18.00BF869 N250V 0.1A 6.50 MJ11015 P120V 30A 20.00MJE13003 N400V 1.5A 1.50 MJ11016 N120V 30A 20.00MJE13005 N400V 4A 2.00 MJ11024 20.00A MJE13007 N400V 8A 3.00乞&丐&王&子2008-10-18 02:18中功率三极管有C2482,TIP42,41,C2073,C3807,A1668,D1499 大功率三极管有C1710,C1651,C5296,C5297,巧克力回答采纳率:11.7%2008-10-18 08:19这种问题在网上查就有了何必用如此高分来问?列表比你问的还要丰富你在搜索引擎上搜索下中功率三极管个大功三极管( , )你也可以先找找电子产品信息的网页了解(/Product.asp?BigClassName=大中小功率管)何必用那么高分去问那么容易就获得答案的问题呢?マダオ回答采纳率:6.2%2008-10-18 08:31最常用的主要是8050/8550/9012/9013,晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。
RF LDMOS Wideband Integrated Power AmplifierThe MW7IC008N wideband integrated circuit is designed with on--chip matching that makes it usable from 20to 1000MHz.This multi--stage structure is rated for 24to 32volt operation and covers most narrow bandwidth communication application formats.Driver Applications∙Typical CW Performance:V DD =28Volts,I DQ1=25mA,I DQ2=75mAFrequency G ps (dB)PAE (%)100MHz @11W CW 23.555400MHz @9W CW 22.541900MHz @6.5W CW23.534∙Capable of Handling 10:1VSWR,@32Vdc,900MHz,P out =6.5Watts CW (3dB Input Overdrive from Rated P out )∙Stable into a 5:1VSWR.All Spurs Below --60dBc @1mW to 8Watts CW P out @900MHz∙Typical P out @1dB Compression Point ≃11Watts CW @100MHz,9Watts CW @400MHz,6.5Watts CW @900MHz Features∙Broadband,Single Matching Network from 20to 1000MHz∙Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1)∙Integrated ESD Protection∙In Tape and Reel.T1Suffix =1,000Units,16mm Tape Width,13--inch Reel.Figure 2.Pin Connections123456789101112181716151413242322212019NC V T T S 1V G L S 2N CR F i n S 2R F o u t S 1/V D S 1N C N CN C N CRF outS2/V DS2NC V G S 2V T T S 2NC NC NC NCN C V GS1RF inS1NC NC V GLS11.Refer to AN1977,Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987,Quiescent Current Control for the RF Integrated Circuit Device Family .Go to /rf.Select Documentation/Application Notes --AN1977or AN1987.Document Number:MW7IC008NRev.3,12/2013Freescale Semiconductor Technical Data100--1000MHz,8W PEAK,28V RF LDMOS WIDEBANDINTEGRATED POWER AMPLIFIERMW7IC008NT1MW7IC008NT1Table 1.Maximum RatingsRatingSymbol Value Unit Drain--Source Voltage V DSS --0.5,+65Vdc Gate--Source Voltage V GS --6.0,+12Vdc Operating VoltageV DD 32,+0Vdc Storage Temperature Range T stg --65to +150︒C Operating Junction Temperature T J 150︒C 100MHz CW Operation @T A =25︒C (3)400MHz CW Operation @T A =25︒C (3)900MHz CW Operation @T A =25︒C (3)CW1165W W W Input Power100MHz 400MHz 900MHzP in 272338dBmTable 2.Thermal CharacteristicsCharacteristicSymbol Value (1,2)Unit Thermal Resistance,Junction to Case (CW Signal @100MHz)(Case Temperature 82︒C,P out =11W CW)Stage 1,28Vdc,I DQ1=25mA Stage 2,28Vdc,I DQ2=75mA (CW Signal @400MHz)(Case Temperature 87︒C,P out =9W CW)Stage 1,28Vdc,I DQ1=25mA Stage 2,28Vdc,I DQ2=75mA (CW Signal @900MHz)(Case Temperature 86︒C,P out =6.5W CW)Stage 1,28Vdc,I DQ1=25mA Stage 2,28Vdc,I DQ2=75mAR θJC5.34.94.42.73.53.2︒C/WTable 3.ESD Protection CharacteristicsTest MethodologyClass Human Body Model (per JESD22--A114)1B Machine Model (per EIA/JESD22--A115)A Charge Device Model (per JESD22--C101)IIITable 4.Moisture Sensitivity LevelTest MethodologyRating Package Peak TemperatureUnit Per JESD22--A113,IPC/JEDEC J--STD--0203260︒C1.MTTF calculator available at /rf.Select Software &Tools/Development Tools/Calculators to access MTTF calculators by product.2.Refer to AN1955,Thermal Measurement Methodology of RF Power Amplifiers.Go to /rf.Select Documentation/Application Notes --AN1955.3.CW Ratings at the individual frequencies are limited by a 100--year MTTF requirement.See MTTF calculator (referenced in Note 1).MW7IC008NT1Table 5.Electrical Characteristics (T A =25︒C unless otherwise noted)CharacteristicSymbolMinTypMaxUnitStage 1—Off CharacteristicsZero Gate Voltage Drain Leakage Current (V DS =65Vdc,V GS =0Vdc)I DSS ——10μAdc Zero Gate Voltage Drain Leakage Current (V DS =28Vdc,V GS =0Vdc)I DSS ——1μAdc Gate--Source Leakage Current (V GS =1.5Vdc,V DS =0Vdc)I GSS——10μAdcStage 1—On Characteristics Gate Threshold Voltage(V DS =10Vdc,I D =5.3μAdc)V GS(th) 1.32 2.8Vdc Gate Quiescent Voltage(V DD =28Vdc,I D =25mAdc,Measured in Functional Test)V GS(Q)22.83.5VdcStage 2—Off CharacteristicsZero Gate Voltage Drain Leakage Current (V DS =65Vdc,V GS =0Vdc)I DSS ——10μAdc Zero Gate Voltage Drain Leakage Current (V DS =28Vdc,V GS =0Vdc)I DSS ——1μAdc Gate--Source Leakage Current (V GS =1.5Vdc,V DS =0Vdc)I GSS——10μAdcStage 2—On Characteristics Gate Threshold Voltage(V DS =10Vdc,I D =23μAdc)V GS(th) 1.32 2.8Vdc Gate Quiescent Voltage(V DD =28Vdc,I D =75mAdc,Measured in Functional Test)V GS(Q)2 2.7 3.5Vdc Drain--Source On--Voltage(V GS =10Vdc,I D =3.6Adc)V DS(on)0.10.31VdcFunctional Tests (1)(In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =6.5W CW,f =900MHzPower GainG ps 21.523.531.5dB Power Added Efficiency PAE 3034—%Input Return LossIRL—--15--11dB Typical Broadband Performance (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mAFrequency G ps (dB)PAE (%)IRL (dB)100MHz @11W CW 23.555--20400MHz @9W CW 22.541--17900MHz @6.5W CW23.534--151.Part internally matched both on input and output.(continued)MW7IC008NT1Table 5.Electrical Characteristics (T A =25︒C unless otherwise noted)(continued)Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,100--1000MHz BandwidthCharacteristicSymbol Min Typ Max Unit IMD Symmetry @6.8W PEP ,P out where IMD Third Order Intermodulation 30dBc (1)(Delta IMD Third Order Intermodulation between Upper and Lower Sidebands >2dB)IMD sym—0.1—MHzVBW Resonance Point (1)(IMD Third Order Intermodulation Inflection Point)VBW res —0.1—MHz Gain Flatness in 500--1000MHz Bandwidth @P out =6W Avg.G F — 1.35—dB Gain Variation over Temperature (--30︒C to +85︒C)∆G —0.024—dB/︒C Output Power Variation over Temperature (--30︒C to +85︒C)∆P1dB—0.005—dB/︒CTypical CW Performances —100MHz (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =11W CW,f =100MHz Power GainG ps —23.5—dB Power Added Efficiency PAE —55—%Input Return LossIRL —--20—dB P out @1dB Compression Point,CWP1dB—11—WTypical CW Performances —400MHz (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =9W CW,f =400MHz Power GainG ps—22.5—dB Power Added Efficiency PAE —41—%Input Return LossIRL —--17—dB P out @1dB Compression Point,CWP1dB—9—WTypical CW Performances —900MHz (In Freescale Test Fixture,50ohm system)V DD =28Vdc,I DQ1=25mA,I DQ2=75mA,P out =6.5W CW,f =900MHz Power GainG ps —23.5—dB Power Added Efficiency PAE —34—%Input Return LossIRL —--15—dB P out @1dB Compression Point,CWP1dB—6.5—W1.Not recommended for wide instantaneous bandwidth modulated signals.MW7IC008NT1Figure 3.MW7IC008NT1Test Circuit Component LayoutTable 6.MW7IC008NT1Test Circuit Component Designations and ValuesPartDescriptionPart NumberManufacturer C10.01μF Chip Capacitor GRM3195C1E103JA01Murata C2,C150.1μF Chip Capacitors GRM219F51H104ZA01Murata C3,C1610μF Chip Capacitors GRM55DR61H106KA88L Murata C4,C5,C7,C8,C10,C11,C12,C140.01μF Chip Capacitors C0805C103K5RAC Kemet C6,C171μF,35V Tantalum Capacitors TAJA105K035R AVX C9 2.2pF Chip Capacitor ATC600S2R2CT250XT ATC C13 3.3pF Chip CapacitorATC600S3R3BT250XT ATC L1,L7150nH Ceramic Chip Inductors LL2012--FHLR15J Toko L2,L6180nH Ceramic Chip Inductors LL2012--FHLR18J Toko L3 1.6nH Inductor 0603HC--1N6XJLW Coilcraft L4,L5 5.1nH Inductors0603HP--5N1XJLW Coilcraft R1,R12510Ω,1/10W Chip Resistors RR1220P--511--B--T5Susumu R2,R3,R491Ω,1/8W Chip Resistors CRCW080591R0FKEA Vishay R5*,R9*0Ω,2.5A Chip Resistors CRCW08050000Z0EA Vishay R610K Ω,1/8W Chip Resistor CRCW080510K0JNEA Vishay R7,R1112K Ω,1/8W Chip Resistors CRCW080512K0JNEA Vishay R843Ω,1/8W Chip Resistor CRCW080543R0FKEA Vishay R1015K Ω,1/8W Chip Resistor CRCW080515K0JNEA Vishay PCB0.020",εr =3.66RO4350BRogers*Add for temperature compensationMW7IC008NT1TYPICAL CHARACTERISTICSG p s ,P O W E R G A I N (d B )1000100f,FREQUENCY (MHz)Figure 4.Broadband Performance @P in =14.6dBm CW600400300--307060504030--5--10--15I R L ,I N P U T R E T U R N L O S S (d B )4121086P A E ,P O W E R A D D E D E F F I C I EN C Y (%)500200800700--20--2514P o u t ,O U T P U T P O W E R (W A T T S )900Figure 5.Intermodulation Distortion Productsversus Two--Tone SpacingTWO--TONE SPACING (MHz)10--20--401200I M D ,I N T E R M O D U L A T I O N D I S T O R T I O N (dB c)--60--30--50--10P out ,OUTPUT POWER (WATTS)CWFigure 6.Power Gain and Power AddedEfficiency versus Output Power18109080706050P A E ,P O W E R A D D E D E F F I C I E N C Y (%)G p s ,P O W E R G A I N (d B )2625402423222120193020100MW7IC008NT1TYPICAL CHARACTERISTICSFigure 7.Broadband Frequency Responsef,FREQUENCY (MHz)200G A I N (d B )4006008001000120014001600-36I R L (d B )MW7IC008NT1V DD =28Vdc,I DQ1=25mA,I DQ2=75mAP out =11W @100MHz,9W @400MHz,6.5W @900MHz f MHz Z in ΩZ load Ω10049.78+j1.0747.87--j9.8515048.96+j1.4449.12--j5.4420048.00+j1.5449.09--j2.6625046.67+j1.3648.63--j0.7930045.30+j0.9147.73+j0.4935043.93+j0.1146.60+j1.2240042.53--j0.8645.63+j1.4345041.38--j2.1644.97+j1.1350040.30--j3.7145.04+j0.7055039.38--j5.4445.23+j0.7760038.43--j7.1144.80+j1.2965037.94--j8.7144.32+j1.4870037.49--j10.5243.57+j1.5175037.31--j12.4243.19+j1.3280037.00--j14.0342.61+j0.7785036.74--j15.6442.25+j0.3990036.57--j17.0941.90+j0.0395036.37--j18.5941.67--j0.41100036.12--j20.0641.77--j1.10105035.58--j21.4341.82--j1.60110035.00--j22.7941.90--j2.01115034.53--j24.3942.26--j2.43120033.53--j25.9742.51--j2.80125032.67--j27.8442.74--j2.99130031.61--j29.8943.10--j3.11135030.61--j32.3443.52--j3.19140029.55--j34.8143.86--j3.13145028.23--j37.6144.03--j3.03150027.34--j40.5944.33--j2.67Z in=Device input impedance as measured from gate to ground.Z load =Test circuit impedance as measured from drain to ground.Figure 8.Series Equivalent Input and Load ImpedanceZinZloadOutput Matching NetworkMW7IC008NT1PACKAGEDIMENSIONSMW7IC008NT1MW7IC008NT111RF Device Data Freescale Semiconductor,Inc.12RF Device Data Freescale Semiconductor,Inc.MW7IC008NT1PRODUCT DOCUMENTATION AND SOFTWARERefer to the following documents and software to aid your design process.Application Notes∙AN1955:Thermal Measurement Methodology of RF Power Amplifiers∙AN1977Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family∙AN1987Quiescent Current Control for the RF Integrated Circuit Device FamilyEngineering Bulletins∙EB212:Using Data Sheet Impedances for RF LDMOS DevicesSoftware∙Electromigration MTTF Calculator∙RF High Power Model∙.s2p FileFor Software,do a Part Number search at ,and select the “Part Number”link.Go to the Software &Tools tab on the part’s Product Summary page to download the respective tool.REVISION HISTORYThe following table summarizes revisions to this document.RevisionDate Description 0Aug.2009∙Initial Release of Data Sheet 1Sept.2009∙Modified Fig.3,Test Circuit Component Layout and Table 6,Test Circuit Component Designations andValues to include temperature compensation options,p.5∙Fig.3,Test Circuit Component Layout,corrected V DD1to V GG1,p.5∙Table 6,Test Circuit Component Designations and Values,C6,C17:updated description from “1μF Tantalum Capacitors”to “1μF,35V Tantalum Capacitors”;L1,L7,L2,L6:corrected manufacturer fromCoilcraft to Toko;L3:corrected part number from “0603HC--1N6XJLC”to “0603HC--1N6XJLW”;L4,L5:corrected part number from “100B100JT500XT”to “0603HP--5N1XJLW”;R1,R12:updated descriptionfrom “510ΩChip Resistors”to “510Ω,1/10W Chip Resistors”,p.52Mar.2011∙Updated frequency in overview paragraph from “100to 1000MHz”to “20to 1000MHz”to reflect lower20MHz capability and narrow bandwidth modulation,p.1∙Updated IMD sym Typical value from 180MHz to 0.1MHz and VBW res Typical value from 210MHz to0.1MHz;modified Footnote 1to reflect limited device capability regarding wide video bandwidth,TypicalPerformance table,p.42.1Mar.2012∙Table 3,ESD Protection Characteristics,removed the word “Minimum”after the ESD class rating.ESDratings are characterized during new product development but are not 100%tested during production.ESDratings provided in the data sheet are intended to be used as a guideline when handling ESD sensitivedevices,p.23Dec.2013∙Table 6,Test Circuit Component Designations and Values:updated PCB description to reflect mostcurrent board specifications from Rogers,p.5∙Replaced Case Outline 98ASA10760D,Rev.O with Rev.A,pp.9--11.Mechanical outline drawing modified to reflect the correct lead end features.Format of the mechanical outline was also updated to thecurrent Freescale format for Freescale mechanical outlines.MW7IC008NT113Informationin this document is provided solely to enable system and software implementers to use Freescale products.There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.Freescale reserves the right to make changes without further notice to any products herein.Freescale makes no warranty,representation,or guarantee regarding the suitability of its products for any particular purpose,nor does Freescale assume any liability arising out of the application or use of any product or circuit,and specifically disclaims any and all liability,including without limitation consequential or incidental damages.“Typical”parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications,and actual performance may vary over time.All operating parameters,including “typicals,”must be validated for each customer application by customer’s technical experts.Freescale does not convey any license under its patent rights nor the rights of others.Freescale sells products pursuant to standard terms and conditions of sale,which can be found at the following address:/SalesTermsandConditions.Freescale and the Freescale logo are trademarks of Freescale Semiconductor,Inc.,Reg.U.S.Pat.&Tm.Off.All other product or service names are the property of their respective owners.E 2009,2011--2013Freescale Semiconductor,Inc.How to Reach Us:Home Page: Web Support:/support。
© 2004 by Catalyst Semiconductor, Inc.Characteristics subject to change without notice.Doc. No. 1091, Rev. MHA L OG E N F R E ETML EA D F R E E CAT93C86 (Die Rev. C)16K-Bit Microwire Serial EEPROM FEATURESI High speed operation: 3MHz I Low power CMOS technology I 1.8 to 6.0 volt operationI Selectable x8 or x16 memory organization I Self-timed write cycle with auto-clear I Hardware and software write protection I Power-up inadvertant write protectionI 1,000,000 Program/erase cycles I 100 year data retentionI Commercial, industrial and automotivetemperature rangesI Sequential readI Program enable (PE) pinI “Green” package option availablePIN CONFIGURATIONDIP Package (P, L)SOIC Package (J,W)Catalyst’s advanced CMOS E E PROM floating gate technology. The device is designed to endure 1,000,000program/erase cycles and has a data retention of 100years. The device is available in 8-pin DIP, 8-pin SOIC,8-pin TSSOP and 8-pad TDFN packages.DESCRIPTIONThe CAT93C86 is a 16K-bit Serial EEPROM memory device which is configured as either registers of 16 bits (ORG pin at V CC ) or 8 bits (ORG pin at GND). Each register can be written (or read) serially by using the DI (or DO) pin. The CAT93C86 is manufactured usingSOIC Package (S,V)SOIC Package (K,X)FUNCTIONAL SYMBOLNote:When the ORG pin is connected to VCC, the x16 organiza-tion is selected. When it is connected to ground, the x8 pin isselected. If the ORG pin is left unconnected, then an internal pullup device will select the x16 organization.CSSK PEORG V CCGNDPIN FUNCTIONSPin Name Function CS Chip Select SK Clock Input DISerial Data Input DO Serial Data Output V CC +1.8 to 5.5V Power SupplyGND GroundORG Memory Organization PEProgram EnableCS SK DI DOV CC PE ORG GNDCS SK DI DOV CC ORG GNDV CC CS SKORG GND DO DICS SK DI DOV CC ORG GNDPEPE PE 12348765V CC PE ORG GNDCS SK DI DOTDFN Package (RD4, ZD4)Top View查询CAT93C86供应商2CAT93C86Doc. No. 1091, Rev. MD.C. OPERATING CHARACTERISTICSV CC = +1.8V to +6.0V, unless otherwise specified.Symbol Parameter Test Conditions MinTypMax Units I CC1Power Supply Currentf SK = 1MHz 3mA (Write)V CC = 5.0V I CC2Power Supply Currentf SK = 1MHz 500µA (Read)V CC = 5.0V I SB1Power Supply Current CS = 0V 10µA (Standby) (x8 Mode)ORG=GND I SB2Power Supply Current CS=0V10µA (Standby) (x16Mode)ORG=Float or V CC I LI Input Leakage Current V IN = 0V to V CC 1µA I LO Output Leakage Current V OUT = 0V to V CC ,1µA (Including ORG pin)CS = 0V V IL1Input Low Voltage 4.5V ≤ V CC < 5.5V -0.10.8V V IH1Input High Voltage 4.5V ≤ V CC < 5.5V 2V CC + 1V V IL2Input Low Voltage 1.8V ≤ V CC < 4.5V 0V CC x 0.2V V IH2Input High Voltage 1.8V ≤ V CC < 4.5V V CC x 0.7V CC +1V V OL1Output Low Voltage 4.5V ≤ V CC < 5.5V 0.4V I OL = 2.1mA V OH1Output High Voltage 4.5V ≤ V CC < 5.5V 2.4V I OH = -400µA V OL2Output Low Voltage 1.8V ≤ V CC < 4.5V0.2V I OL = 1mA V OH2Output High Voltage1.8V ≤ V CC < 4.5V V CC - 0.2VI OH = -100µAABSOLUTE MAXIMUM RATINGS*Temperature Under Bias ..................-55°C to +125°C Storage Temperature........................-65°C to +150°C Voltage on any Pin withRespect to Ground (1).............-2.0V to +V CC +2.0V V CC with Respect to Ground ................-2.0V to +7.0V Package Power DissipationCapability (T A = 25°C)...................................1.0W Lead Soldering Temperature (10 secs)............300°C Output Short Circuit Current (2)........................100 mA *COMMENTStresses above those listed under “Absolute Maximum Ratings ” may cause permanent damage to the device.These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. E xposure to any absolute maximum rating for extended periods may affect device performance and reliability.RELIABILITY CHARACTERISTICSSymbol Parameter Reference Test Method Min TypMaxUnits N END (3)Endurance MIL-STD-883, Test Method 10331,000,000Cycles/Byte T DR (3)Data Retention MIL-STD-883, Test Method 1008100Years V ZAP (3)ESD SusceptibilityMIL-STD-883, Test Method 30152000Volts I LTH (3)(4)Latch-UpJEDEC Standard 17100mANote:(1)The minimum DC input voltage is –0.5V. During transitions, inputs may undershoot to –2.0V for periods of less than 20 ns. Maximum DCvoltage on output pins is V CC +0.5V, which may overshoot to V CC +2.0V for periods of less than 20 ns.(2)Output shorted for no more than one second. No more than one output shorted at a time.(3)This parameter is tested initially and after a design or process change that affects the parameter.(4)Latch-up protection is provided for stresses up to 100 mA on address and data pins from –1V to V CC +1V.3CAT93C86Doc. No. 1091, Rev. M4CAT93C86Doc. No. 1091, Rev. MA.C. TEST CONDITIONS Input Rise and Fall Times ≤ 50nsInput Pulse Voltages0.4V to 2.4V 4.5V ≤ V CC ≤ 5.5V Timing Reference Voltages 0.8V, 2.0V4.5V ≤ V CC ≤5.5V Input Pulse Voltages0.2V CC to 0.7V CC 1.8V ≤ V CC ≤ 4.5V Timing Reference Voltages0.5V CC1.8V ≤ V CC ≤ 4.5VPOWER-UP TIMING (1)(2)Symbol ParameterMax Units t PUR Power-up to Read Operation 1ms t PUWPower-up to Write Operation1msNOTE:(1)This parameter is tested initially and after a design or process change that affects the parameter.(2) t PUR and t PUW are the delays required from the time V CC is stable until the specified operation can be initiated.(3)The input levels and timing reference points are shown in “AC Test Conditions ” table.DEVICE OPERATIONThe CAT93C86 is a 16,384-bit nonvolatile memory intended for use with industry standard microproces-sors. The CAT93C86 can be organized as either regis-ters of 16 bits or 8 bits. When organized as X16, seven 13-bit instructions control the reading, writing and erase operations of the device. When organized as X8, seven 14-bit instructions control the reading, writing and erase operations of the device. The CAT93C86 operates on a single power supply and will generate on chip, the high voltage required during any write operation.Instructions, addresses, and write data are clocked into the DI pin on the rising edge of the clock (SK). The DO pin is normally in a high impedance state except when reading data from the device, or when checking the ready/busy status after a write operation.The ready/busy status can be determined after the start of a write operation by selecting the device (CS high) and polling the DO pin; DO low indicates that the write operation is not completed, while DO high indicates that the device is ready for the next instruction. If necessary,the DO pin may be placed back into a high impedance state during chip select by shifting a dummy “1” into the DI pin. The DO pin will enter the high impedance state on the falling edge of the clock (SK). Placing the DO pin into the high impedance state is recommended in applica-tions where the DI pin and the DO pin are to be tied together to form a common DI/O pin.The format for all instructions sent to the device is a logical "1" start bit, a 2-bit (or 4-bit) opcode, 10-bit address (an additional bit when organized X8) and for write operations a 16-bit data field (8-bit for X8organizations).Note: The Write, Erase, Write all and Erase all instructions require PE=1. If PE is left floating, 93C86 is in ProgramEnabled mode. For Write Enable and Write Disable instruction PE=don’t care.ReadUpon receiving a RE AD command and an address (clocked into the DI pin), the DO pin of the CAT93C86 will come out of the high impedance state and, after sending an initial dummy zero bit, will begin shifting out the data addressed (MSB first). The output data bits will toggle on the rising edge of the SK clock and are stable after the specified time delay (t PD0 or t PD1).After the initial data word has been shifted out and CS remains asserted with the SK clock continuing to toggle,the device will automatically increment to the next address and shift out the next data word in a sequential READ mode. As long as CS is continuously asserted and SK continues to toggle, the device will keep incrementing to the next address automatically until it reaches to the end of the address space, then loops back to address 0. In the sequential READ mode, only the initial data word is preceeded by a dummy zero bit. All subsequent data words will follow without a dummy zero bit.WriteAfter receiving a WRITE command, address and the data, the CS (Chip Select) pin must be deselected for a minimum of t CSMIN . The falling edge of CS will start the self clocking clear and data store cycle of the memory location specified in the instruction. The clocking of the SK pin is not necessary after the device has entered the self clocking mode. The ready/busy status of the CAT93C86 can be determined by selecting the device and polling the DO pin. Since this device features Auto-Clear before write, it is NOT necessary to erase a memory location before it is written into.5CAT93C86Doc. No. 1091, Rev. M6Doc. No. 1091, Rev. M7CAT93C86Doc. No. 1091, Rev. M8Doc. No. 1091, Rev. MCopyrights, Trademarks and PatentsTrademarks and registered trademarks of Catalyst Semiconductor include each of the following:DPP ™AE2 ™Catalyst Semiconductor has been issued U.S. and foreign patents and has patent applications pending that protect its products. For a complete list of patents issued to Catalyst Semiconductor contact the Company’s corporate office at 408.542.1000.CATALYST SEMICONDUCTOR MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE, EXPRESS OR IMPLIED, REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR THAT THE USE OF ITS PRODUCTS WILL NOT INFRINGE ITS INTELLECTUAL PROPERTY RIGHTS OR THE RIGHTS OF THIRD PARTIES WITH RESPECT TO ANY PARTICULAR USE OR APPLICATION AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY ARISING OUT OF ANY SUCH USE OR APPLICATION, INCLUDING BUT NOT LIMITED TO, CONSEQUENTIAL OR INCIDENTAL DAMAGES.Catalyst Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Catalyst Semiconductor product could create a situation where personal injury or death may occur.Catalyst Semiconductor reserves the right to make changes to or discontinue any product or service described herein without notice. Products with data sheets labeled "Advance Information" or "Preliminary" and other products described herein may not be in production or offered for sale.Catalyst Semiconductor advises customers to obtain the current version of the relevant product information before placing orders. Circuit diagrams illustrate typical semiconductor applications and may not be complete.Catalyst Semiconductor, Inc.Corporate Headquarters1250 Borregas AvenueSunnyvale, CA 94089Phone: 408.542.1000Fax: 408.542.1200 Publication #:1091 Revison:M Issue date:8/10/04REVISION HISTORYe t aD no i s i veR s t nemmoC40/41/50L s t r aP.68/66/75/65/64C39TACmo r Fde t ae r Ct eehSa t aDweNdna67C39TAC,66C39TAC,75C39TAC,65C39TAC,65C39TACs t eeh sa t ade l gn i so t n ide t a t r ape sneebe v ah68C39TACr e t t eLD Ino i s i v eRe i DddAs e r u t aeFe t adpUno i t p i r c s eDe t adpUno i t i dnoCn i Pe t adpUma r ga i Dl ano i t c nuFddAno i t c nuFn i Pe t adpUs c i t s i r e t c a r ahCgn i t a r epO.C.De t adpUe c na t i c apaCn i Pe t adpUt eSno i t c u r t s n Ie t adpUno i t a r epOe c i v eDe t adpUno i t amr o f n Ign i r ed rOe t adpU40/01/80M t uon i pega k c aPNFDTdeddA。
1/31August 2004M93C86, M93C76, M93C66M93C56, M93C4616Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit (8-bit or 16-bit wide)MICROWIRE® Serial Access EEPROMFEATURES SUMMARYs Industry Standard MICROWIRE Bus sSingle Supply Voltage:– 4.5 to 5.5V for M93Cx6– 2.5 to 5.5V for M93Cx6-W – 1.8 to 5.5V for M93Cx6-Rs Dual Organization: by Word (x16) or Byte (x8) s Programming Instructions that work on: Byte, Word or Entire Memorys Self-timed Programming Cycle with Auto-Erases Ready/Busy Signal During Programming sSpeed:–1MHz Clock Rate, 10ms Write Time(Current product, identified by process identification letter F or M)–2MHz Clock Rate, 5ms Write Time (NewProduct, identified by process identification letter W or G or S) s Sequential Read Operations Enhanced ESD/Latch-Up Behaviour s More than 1 Million Erase/Write Cycles sMore than 40 Year Data RetentionTable 1. Product ListReferencePart Number ReferencePart Number M93C86M93C86M93C56M93C56M93C86-W M93C56-W M93C86-R M93C56-R M93C76M93C76M93C46M93C46M93C76-W M93C46-W M93C76-R M93C46-RM93C66M93C66M93C66-W M93C66-RM93C86, M93C76, M93C66, M93C56, M93C46TABLE OF CONTENTSFEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1Table 1.Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Figure 1.Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Figure 2.Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 2.Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 3.Memory Size versus Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Table 4.Instruction Set for the M93Cx6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Figure 3.DIP, SO, TSSOP and MLP Connections (Top View). . . . . . . . . . . . . . . . . . . . . . . . . . . . .5MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 POWER-ON DATA PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..5INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Table 5.Instruction Set for the M93C46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Table 6.Instruction Set for the M93C56 and M93C66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Table 7.Instruction Set for the M93C76 and M93C86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Erase/Write Enable and Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Figure 4.READ, WRITE, EWEN, EWDS Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Erase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Figure 5.ERASE, ERAL Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Erase All. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Write All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Figure 6.WRAL Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10READY/BUSY STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 COMMON I/O OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11CLOCK PULSE COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 7.Write Sequence with One Clock Glitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Table 8.Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 9.Operating Conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 10.Operating Conditions (M93Cx6-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 11.Operating Conditions (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Table 12.AC Measurement Conditions (M93Cx6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 13.AC Measurement Conditions (M93Cx6-W and M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . .14 Figure 8.AC Testing Input Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142/31M93C86, M93C76, M93C66, M93C56, M93C46Table 14.Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 15.DC Characteristics (M93Cx6, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 16.DC Characteristics (M93Cx6, Device Grade 7 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Table 17.DC Characteristics (M93Cx6-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Table 18.DC Characteristics (M93Cx6-W, Device Grade 7 or 3). . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 19.DC Characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Table 20.AC Characteristics (M93Cx6, Device Grade 6, 7 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . .18 Table 21.AC Characteristics (M93Cx6-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Table 22.AC Characteristics (M93Cx6-W, Device Grade 7 or 3). . . . . . . . . . . . . . . . . . . . . . . . . .20 Table 23.AC Characteristics (M93Cx6-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Figure 9.Synchronous Timing (Start and Op-Code Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 10.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 11.Synchronous Timing (Read or Write) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23Figure 12.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . .23 Table 24.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data. . . . . . . . . .23 Figure 13.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . .24 Table 25.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data 24Figure 14.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Outline 25Table 26.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Data.25Figure 15.TSSOP8 3x3mm²– 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline 26Table 27.TSSOP8 3x3mm²– 8 lead Thin Shrink Small Outline, 3x3mm² body size, Mechanical Data 26Figure 16.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . .27 Table 28.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data. . . . . . . . . . . .27PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 29.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 30.How to Identify Current and New Products by the Process Identification Letter. . . . . . .29REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 31.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303/31M93C86, M93C76, M93C66, M93C56, M93C464/31SUMMARY DESCRIPTIONThese electrically erasable programmable memo-ry (EEPROM) devices are accessed through a Se-rial Data Input (D) and Serial Data Output (Q)using the MICROWIRE bus protocol.Table 2. Signal NamesThe memory array organization may be divided into either bytes (x8) or words (x16) which may be selected by a signal applied on Organization Se-lect (ORG). The bit, byte and word sizes of the memories are as shown in Table 3..Table 3. Memory Size versus OrganizationThe M93Cx6 is accessed by a set of instructions,as summarized in Table 4., and in more detail in Table 5. to Table 7.).Table 4. Instruction Set for the M93Cx6A Read Data from Memory (READ) instruction loads the address of the first byte or word to be read in an internal address register. The data at this address is then clocked out serially. The ad-dress register is automatically incremented after the data is output and, if Chip Select Input (S) is held High, the M93Cx6 can output a sequential stream of data bytes or words. In this way, the memory can be read as a data stream from eight to 16384 bits long (in the case of the M93C86), or continuously (the address counter automatically rolls over to 00h when the highest address is reached).Programming is internally self-timed (the external clock signal on Serial Clock (C) may be stopped or left running after the start of a Write cycle) and does not require an Erase cycle prior to the Write instruction. The Write instruction writes 8 or 16 bits at a time into one of the byte or word locations of the M93Cx6. After the start of the programming cy-cle, a Busy/Ready signal is available on Serial Data Output (Q) when Chip Select Input (S) is driv-en High.S Chip Select Input D Serial Data Input Q Serial Data Output C Serial Clock ORG Organisation Select V CC Supply Voltage V SSGroundDevice Number of Bits Number of 8-bit Bytes Number of 16-bit Words M93C861638420481024M93C7681921024512M93C664096512256M93C562048256128M93C46102412864Instruction Description Data READ Read Data from Memory Byte or Word WRITEWrite Data to Memory Byte or WordEWEN Erase/Write Enable EWDS Erase/Write Disable ERASE Erase Byte or Word Byte or WordERAL Erase All Memory WRALWrite All Memory with same DataM93C86, M93C76, M93C66, M93C56, M93C46An internal Power-on Data Protection mechanism in the M93Cx6 inhibits the device when the supply is too low.Figure 3. DIP, SO, TSSOP and MLPNote: 1.See PACKAGE MECHANICAL section for package di-mensions, and how to identify pin-1.2.DU = Don’t Use.The DU (Don’t Use) pin does not contribute to the normal operation of the device. It is reserved for use by STMicroelectronics during test sequences. The pin may be left unconnected or may be con-nected to V CC or V SS. Direct connection of DU to V SS is recommended for the lowest stand-by pow-er consumption.MEMORY ORGANIZATIONThe M93Cx6 memory is organized either as bytes (x8) or as words (x16). If Organization Select (ORG) is left unconnected (or connected to V CC) the x16 organization is selected; when Organiza-tion Select (ORG) is connected to Ground (V SS) the x8 organization is selected. When the M93Cx6 is in stand-by mode, Organization Select (ORG) should be set either to V SS or V CC for minimum power consumption. Any voltage between V SS and V CC applied to Organization Select (ORG) may increase the stand-by current.POWER-ON DATA PROTECTIONTo prevent data corruption and inadvertent write operations during power-up, a Power-On Reset (POR) circuit resets all internal programming cir-cuitry, and sets the device in the Write Disable mode.–At Power-up and Power-down, the device must not be selected (that is, Chip Select Input (S) must be driven Low) until the supplyvoltage reaches the operating value V CCspecified in Table 9. to Table 11..–When V CC reaches its valid level, the device is properly reset (in the Write Disable mode) and is ready to decode and execute incominginstructions.For the M93Cx6 devices (5V range) the POR threshold voltage is around 3V. For the M93Cx6-W (3V range) and M93Cx6-R (2V range) the POR threshold voltage is around 1.5V.5/31M93C86, M93C76, M93C66, M93C56, M93C466/31INSTRUCTIONSThe instruction set of the M93Cx6 devices con-tains seven instructions, as summarized in Table 5. to Table 7.. Each instruction consists of the fol-lowing parts, as shown in Figure 4.:s Each instruction is preceded by a rising edgeon Chip Select Input (S) with Serial Clock (C) being held Low.s A start bit, which is the first ‘1’ read on SerialData Input (D) during the rising edge of Serial Clock (C).s Two op-code bits, read on Serial Data Input(D) during the rising edge of Serial Clock (C). (Some instructions also use the first two bits of the address to define the op-code).sThe address bits of the byte or word that is to be accessed. For the M93C46, the address is made up of 6 bits for the x16 organization or 7 bits for the x8 organization (see Table 5.). For the M93C56 and M93C66, the address is made up of 8 bits for the x16 organization or 9 bits for the x8 organization (see Table 6.). For the M93C76 and M93C86, the address is made up of 10 bits for the x16 organization or 11 bits for the x8 organization (see Table 7.).The M93Cx6 devices are fabricated in CMOS technology and are therefore able to run as slow as 0Hz (static input signals) or as fast as the max-imum ratings specified in Table 20. to Table 23..Table 5. Instruction Set for the M93C46Note: 1.X = Don ’t Care bit.Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address 1DataRequiredClock CyclesAddress 1DataRequired Clock CyclesREAD Read Data from Memory 110A6-A0Q7-Q0A5-A0Q15-Q0WRITE Write Data to Memory101A6-A0D7-D018A5-A0D15-D025EWEN Erase/Write Enable 10011X XXXX 1011 XXXX 9EWDS Erase/Write Disable 10000X XXXX 1000 XXXX 9ERASE Erase Byte or Word 111A6-A010A5-A09ERAL Erase All Memory 10010X XXXX 1010 XXXX 9WRALWrite All Memory with same Data10001X XXXXD7-D01801 XXXXD15-D0257/31M93C86, M93C76, M93C66, M93C56, M93C46Table 6. Instruction Set for the M93C56 and M93C66Note: 1.X = Don ’t Care bit.2.Address bit A8 is not decoded by the M93C56.3.Address bit A7 is not decoded by the M93C56.Table 7. Instruction Set for the M93C76 and M93C86Note: 1.X = Don ’t Care bit.2.Address bit A10 is not decoded by the M93C76.3.Address bit A9 is not decoded by the M93C76.Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address 1,2DataRequiredClock CyclesAddress 1,3DataRequired Clock CyclesREAD Read Data from Memory 110A8-A0Q7-Q0A7-A0Q15-Q0WRITE Write Data to Memory101A8-A0D7-D020A7-A0D15-D027EWEN Erase/Write Enable 100 1 1XXXXXXX 1211XX XXXX 11EWDS Erase/Write Disable 1000 0XXX XXXX 1200XX XXXX 11ERASE Erase Byte or Word 111A8-A012A7-A011ERAL Erase All Memory 100 1 0XXX XXXX 1210XX XXXX 11WRALWrite All Memory with same Data1000 1XXX XXXXD7-D02001XX XXXXD15-D027Instruc tionDescriptionStart bit Op-Codex8 Origination (ORG = 0)x16 Origination (ORG = 1)Address1,2DataRequiredClock CyclesAddress 1,3DataRequiredClock CyclesREAD Read Data from Memory 110A10-A0Q7-Q0A9-A0Q15-Q0WRITE Write Data to Memory101A10-A0D7-D022A9-A0D15-D029EWEN Erase/Write Enable 10011X XXXX XXXX 1411 XXXX XXXX 13EWDS Erase/Write Disable 10000X XXXX XXXX 1400 XXXX XXXX 13ERASE Erase Byte or Word 111A10-A014A9-A013ERAL Erase All Memory 10010X XXXX XXXX 1410 XXXX XXXX 13WRALWrite All Memory with same Data10001X XXXX XXXXD7-D02201 XXXX XXXXD15-D029M93C86, M93C76, M93C66, M93C56, M93C468/31ReadThe Read Data from Memory (READ) instruction outputs data on Serial Data Output (Q). When the instruction is received, the op-code and address are decoded, and the data from the memory is transferred to an output shift register. A dummy 0bit is output first, followed by the 8-bit byte or 16-bit word, with the most significant bit first. Output data changes are triggered by the rising edge of Serial Clock (C). The M93Cx6 automatically incre-ments the internal address register and clocks out the next byte (or word) as long as the Chip Select Input (S) is held High. In this case, the dummy 0 bit is not output between bytes (or words) and a con-tinuous stream of data can be read.Erase/Write Enable and DisableThe Erase/Write Enable (EWEN) instruction en-ables the future execution of erase or write instruc-tions, and the Erase/Write Disable (EWDS)instruction disables it. When power is first applied,the M93Cx6 initializes itself so that erase and write instructions are disabled. After an Erase/Write En-able (EWEN) instruction has been executed, eras-ing and writing remains enabled until an Erase/Write Disable (EWDS) instruction is executed, or until V CC falls below the power-on reset threshold voltage. To protect the memory contents from ac-cidental corruption, it is advisable to issue the Erase/Write Disable (EWDS) instruction after ev-ery write cycle. The Read Data from Memory (READ) instruction is not affected by the Erase/Write Enable (EWEN) or Erase/Write Disable (EWDS) instructions.M93C86, M93C76, M93C66, M93C56, M93C46EraseThe Erase Byte or Word (ERASE) instruction sets the bits of the addressed memory byte (or word) to 1. Once the address has been correctly decoded, the falling edge of the Chip Select Input (S) starts the self-timed Erase cycle. The completion of the cycle can be detected by monitoring the Ready/ Busy line, as described in the READY/BUSY STA-TUS section.WriteFor the Write Data to Memory (WRITE) instruction, 8 or 16 data bits follow the op-code and address bits. These form the byte or word that is to be writ-ten. As with the other bits, Serial Data Input (D) is sampled on the rising edge of Serial Clock (C).After the last data bit has been sampled, the Chip Select Input (S) must be taken Low before the next rising edge of Serial Clock (C). If Chip Select Input (S) is brought Low before or after this specific time frame, the self-timed programming cycle will not be started, and the addressed location will not be programmed. The completion of the cycle can be detected by monitoring the Ready/Busy line, as described later in this document.Once the Write cycle has been started, it is inter-nally self-timed (the external clock signal on Serial Clock (C) may be stopped or left running after the start of a Write cycle). The cycle is automatically preceded by an Erase cycle, so it is unnecessary to execute an explicit erase instruction before a Write Data to Memory (WRITE) instruction.9/31M93C86, M93C76, M93C66, M93C56, M93C4610/31Erase AllThe Erase All Memory (ERAL) instruction erases the whole memory (all memory bits are set to 1).The format of the instruction requires that a dum-my address be provided. The Erase cycle is con-ducted in the same way as the Erase instruction (ERASE). The completion of the cycle can be de-tected by monitoring the Ready/Busy line, as de-scribed in the READY/BUSY STATUS section.Write AllAs with the Erase All Memory (ERAL) instruction,the format of the Write All Memory with same Data (WRAL) instruction requires that a dummy ad-dress be provided. As with the Write Data to Mem-ory (WRITE) instruction, the format of the Write All Memory with same Data (WRAL) instruction re-quires that an 8-bit data byte, or 16-bit data word,be provided. This value is written to all the ad-dresses of the memory device. The completion of the cycle can be detected by monitoring the Ready/Busy line, as described next.While the Write or Erase cycle is underway, for a WRITE, ERASE, WRAL or ERAL instruction, the Busy signal (Q=0) is returned whenever Chip Se-lect Input (S) is driven High. (Please note, though, that there is an initial delay, of t SLSH, before this status information becomes available). In this state, the M93Cx6 ignores any data on the bus. When the Write cycle is completed, and Chip Se-lect Input (S) is driven High, the Ready signal (Q=1) indicates that the M93Cx6 is ready to re-ceive the next instruction. Serial Data Output (Q) remains set to 1 until the Chip Select Input (S) is brought Low or until a new start bit is decoded. COMMON I/O OPERATIONSerial Data Output (Q) and Serial Data Input (D) can be connected together, through a current lim-iting resistor, to form a common, single-wire data bus. Some precautions must be taken when oper-ating the memory in this way, mostly to prevent a short circuit current from flowing when the last ad-dress bit (A0) clashes with the first data bit on Se-rial Data Output (Q). Please see the application note AN394 for details. CLOCK PULSE COUNTERIn a noisy environment, the number of pulses re-ceived on Serial Clock (C) may be greater than the number delivered by the master (the microcontrol-ler). This can lead to a misalignment of the instruc-tion of one or more bits (as shown in Figure 7.) and may lead to the writing of erroneous data at an er-roneous address.To combat this problem, the M93Cx6 has an on-chip counter that counts the clock pulses from the start bit until the falling edge of the Chip Select In-put (S). If the number of clock pulses received is not the number expected, the WRITE, ERASE, ERAL or WRAL instruction is aborted, and the contents of the memory are not modified.The number of clock cycles expected for each in-struction, and for each member of the M93Cx6 family, are summarized in Table 5. to Table 7.. For example, a Write Data to Memory (WRITE) in-struction on the M93C56 (or M93C66) expects 20 clock cycles (for the x8 organization) from the start bit to the falling edge of Chip Select Input (S). That is:1 Start bit+ 2 Op-code bits+ 9 Address bits+ 8 Data bits11/3112/31MAXIMUM RATINGStressing the device above the rating listed in the Absolute Maximum Ratings" table may cause per-manent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im-plied. Exposure to Absolute Maximum Rating con-ditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality docu-ments.Table 8. Absolute Maximum RatingsNote: pliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK ® 7191395 specification, andthe European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2.JEDEC Std JESD22-A114A (C1=100pF, R1=1500 Ω, R2=500 Ω)Symbol ParameterMin.Max.Unit T STG Storage Temperature–65150°C T LEAD Lead T emperature during Soldering See note 1°C V OUT Output range (Q = V OH or Hi-Z)–0.50V CC +0.5V V IN Input range –0.50V CC +1V V CC Supply Voltage–0.50 6.5V V ESDElectrostatic Discharge Voltage (Human Body model) 2–40004000V13/31DC AND AC PARAMETERSThis section summarizes the operating and mea-surement conditions, and the DC and AC charac-teristics of the device. The parameters in the DC and AC Characteristic tables that follow are de-rived from tests performed under the Measure-ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parame-ters.Table 9. Operating Conditions (M93Cx6)Table 10. Operating Conditions (M93Cx6-W)Table 11. Operating Conditions (M93Cx6-R)Symbol ParameterMin.Max.Unit V CCSupply Voltage4.55.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C Ambient Operating Temperature (Device Grade 7)–40105°C Ambient Operating Temperature (Device Grade 3)–40125°CSymbol ParameterMin.Max.Unit V CCSupply Voltage2.5 5.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C Ambient Operating Temperature (Device Grade 7)–40105°C Ambient Operating Temperature (Device Grade 3)–40125°CSymbol ParameterMin.Max.Unit V CC Supply Voltage1.8 5.5V T AAmbient Operating Temperature (Device Grade 6)–4085°C14/31Table 12. AC Measurement Conditions (M93Cx6)Note: 1.Output Hi-Z is defined as the point where data out is no longer driven.Table 13. AC Measurement Conditions (M93Cx6-W and M93Cx6-R)Note: 1.Output Hi-Z is defined as the point where data out is no longer driven.Table 14. CapacitanceNote:Sampled only, not 100% tested, at T A =25°C and a frequency of 1MHz.Symbol Parameter Min.Max.Unit C LLoad Capacitance 100pFInput Rise and Fall Times 50ns Input Pulse Voltages0.4V to 2.4V V Input Timing Reference Voltages 1.0V and 2.0V V Output Timing Reference Voltages0.8V and 2.0VVSymbol Parameter Min.Max.Unit C LLoad Capacitance 100pFInput Rise and Fall Times 50ns Input Pulse Voltages0.2V CC to 0.8V CC V Input Timing Reference Voltages 0.3V CC to 0.7V CC V Output Timing Reference Voltages0.3V CC to 0.7V CCVSymbol ParameterTest Condition MinMax Unit C OUT OutputCapacitance V OUT = 0V 5pF C INInputCapacitanceV IN = 0V5pF15/31Table 15. DC Characteristics (M93Cx6, Device Grade 6)Note: 1.Current product: identified by Process Identification letter F or M.2.New product: identified by Process Identification letter W or G or S.Table 16. DC Characteristics (M93Cx6, Device Grade 7 or 3)Note: 1.Current product: identified by Process Identification letter F or M.2.New product: identified by Process Identification letter W or G or S.Symbol ParameterTest Condition Min.Max.Unit I LI Input Leakage Current 0V ≤ V IN ≤ V CC±2.5 µA I LOOutput Leakage Current0V ≤ V OUT ≤ V CC , Q in Hi-Z ±2.5 µA I CCSupply CurrentV CC = 5V, S = V IH , f = 1 MHz, CurrentProduct 11.5 mA V CC = 5V, S = V IH , f = 2 MHz, NewProduct 22mAI CC1Supply Current (Stand-by)V CC = 5V , S = V SS , C = V SS ,ORG = V SS or V CC , Current Product 150 µA V CC = 5V , S = V SS , C = V SS , ORG = V SS or V CC , New Product 215 µA V IL Input Low Voltage V CC = 5V ± 10%–0.450.8 V V IH Input High Voltage V CC = 5V ± 10%2V CC + 1 V V OL Output Low Voltage V CC = 5V, I OL = 2.1mA 0.4 V V OHOutput High VoltageV CC = 5V , I OH = –400µA2.4VSymbol ParameterTest Condition Min.Max.UnitI LI Input Leakage Current 0V ≤ V IN ≤ V CC±2.5 µA I LOOutput Leakage Current0V ≤ V OUT ≤ V CC , Q in Hi-Z ±2.5 µA I CCSupply CurrentV CC = 5V, S = V IH , f = 1 MHz, CurrentProduct 11.5 mA V CC = 5V, S = V IH , f = 2 MHz, NewProduct 22 mA I CC1Supply Current (Stand-by)V CC = 5V , S = V SS , C = V SS ,ORG = V SS or V CC , Current Product 150 µA V CC = 5V , S = V SS , C = V SS , ORG = V SS or V CC , New Product 215 µA V IL Input Low Voltage V CC = 5V ± 10%–0.450.8 V V IH Input High Voltage V CC = 5V ± 10%2V CC + 1 V V OL Output Low Voltage V CC = 5V, I OL = 2.1mA 0.4 V V OHOutput High VoltageV CC = 5V , I OH = –400µA2.4V。