聚合物在拥挤环境中的移位Polymer Translocation in Crowded Environments
- 格式:pdf
- 大小:423.36 KB
- 文档页数:4
聚合物中分子迁移的研究进展随着科技的不断发展,聚合物材料的应用范围越来越广泛,从塑料食品包装到超级材料。
而聚合物中的分子迁移问题也愈发凸显。
因此,聚合物中分子迁移的研究一直备受关注。
本文将介绍聚合物中分子迁移的研究进展,包括分子迁移的机理、影响因素以及可能的解决方法。
一、分子迁移的机理聚合物中分子迁移的机理是由分子间的运动和扩散引起的。
聚合物中分子间距离减小,由于温度、压力差等因素作用,分子就会发生扩散。
扩散的核心是自由体积分子的交换运动。
聚合物中的分子迁移大体可以分为三个步骤:吸附、扩散和解吸。
首先,分子在聚合物表面吸附。
随着时间的推移和温度和湿度的变化,分子开始进入聚合物内部。
其次,分子通过交换在聚合物中运动,并反复进入内部和表面之间,最终达到整个聚合物中的平衡状态。
最后,分子离开聚合物表面,回到气相或液相中。
二、影响因素多种因素都会影响聚合物中分子迁移的速度、路径和机制,包括温度、湿度、气体压力、化学成分、分子大小和分子形状等。
在确定聚合物材料的使用性能之前必须充分考虑这些影响因素。
1. 温度在聚合物中,分子迁移速度与温度呈指数关系。
随着温度升高,聚合物的分子能量增加,分子在聚合物内部的运动和扩散也会增加。
而低温下,则会延缓分子的运动和扩散,因而减慢分子迁移速度。
2. 湿度聚合物中存在的水分界面有助于促进分子迁移。
实验表明,湿度越高,聚合物中分子迁移速度越快。
这是因为水分子通过对聚合物的吸附、扩散和解吸作用,促进了分子在聚合物内部的运动与扩散。
3. 化学成分聚合物中不同化学成分的分子具有不同的化学效应和力学性质,因而会影响分子迁移速度和路径。
聚合物中混合物的化学成分、粘度和分子量分布等都会影响分子的迁移。
4. 分子大小和形状在聚合物中,分子体积较大,形状特殊的分子,如支链分子容易附着在聚合物表面上,减速分子运动及聚合物中分子的迁移速度。
而分子体积较小、形状规则的分子则更易钻过聚合物分子之间的空隙,以较快的速度在聚合物中扩散。
中英文对照加聚反应Addition Polymerization加聚物Additi on Polymer粘结剂Adhesive老化Agei ng交替共聚物Alter nat ing Copolymer交替共聚Alternating Copolymerization无定型态Amorphous State阴离子聚合Anionic Polymerization无规立构Atactic无规立构聚合物Atactic Polymer原子转移自由基聚合Auto Tran sfer Radical Polymerizatio n, ATRP 自动加速Auto-accelerati on平均官能度Average Function ality恒比共聚Azeotropic Copolymerizati on恒比点Azeotropic Point支化型聚合物Bran ched Polymer共混改性Blending Modificatioon嵌段共聚物Block Copolymer本体聚合Bulk or Mass Polymerizati on笼敝效应Cage Effect碳链聚合物Carbon Chain Polymer阳离子聚合Cationic Polymerization扩链Chai n Exte nsion链节Cha in Eleme nt链引发Cha in In itiatio n连锁聚合Chain Polymerization链增长Chain Propagati on链终止Chai n Termin ati on链转移Chain Tran sfer链转移剂Chain Tran sfer Age nt手性中心Chiral Ce nter顺丁橡胶cis-1,4-Polybutadiene rubber,BR 涂料Coati ngs共缩聚Co-condensation Polymerization 梳形聚合物Comb-shaped Polymer络合聚合Complexing Polymerization缩聚反应Condensation Polymerization构型异构Configurational Isomerism构象异构Con formati onal Isomerism转化率Con vers ion配位聚合Coordination Polymerization共聚物Copolymer共聚合Copolymerizati on共聚组成Copolymer Compositi on偶合终止Coupli ng Termin ati on反离子Coun teri on临界胶束浓度Critical Micelle Concen tratio n, CMC交联Crossli nking结晶态Crystall ine Morphology降解Degradati on聚合度Degree of Polymerizati on, DP 树枝状聚合物Den dritic Polymer解聚Depolymerizati on分散剂Dispersa nt歧化终止Disproportionation Termination 兀素有机高分子Eleme ntary Orga nic Polymer 乳化作用Emulsificatio n乳化剂Emulsifier乳液聚合Emulsion Polymerization乳胶粒Emulsi on Particle对映体异构Enan tiomer Isomerism环氧树脂Epoxy Resin端基End Group平衡缩聚Equilibrium Polyc onden sati on 过量分率Excessive Ratio反应程度Exte nt of React ion纤维Fiber功能材料Functional Material功能高分子Functional Polymer官能度Function ality, f几何异构Geometrical Isomerism凝胶点Gel poi nt. Pc凝胶效应Gel Effect凝胶化Gelatio n玻璃化温度Glass Tran siti on Temperature, Tg接枝聚合Graft Copolymerizati on 接枝共聚物Graft Copolymer半衰期Half-life杂链聚合物Hetero-cha in Polymer高密度聚乙烯High Den sity Polyethyle ne HDPE咼抗冲聚苯乙烯High Impact Polystyre ne, HIPS 均相成核Homoge nous Nucleati on均聚物Homopolymer均聚合Homopolymerizati on均缩聚Homopolyc onden sati on理想共聚Ideal Copolymerizati on理想恒比共聚Ideal Azeotropic Copolymerizati on 诱导期In ducti on Period诱导分解In duced Decompositi on阻聚剂In hibitor阻聚作用In hibitio n引发剂In itiator引发效率In itiator Efficie ncy无机高分子Inorganic Polymer插入聚合Insertion Polymerization原位复合In-situ Compo unding界面缩聚In terfacial Polyc onden sati on互穿网络In terpe netrat ing Polymer Network 离子聚合Ionic Polymerization离子对Ion-pair异构化聚合Isomerization Polymerization等规立构Isotactic等规度Isotacticity动力学链长Kin etic Chain Len gth梯形聚合物Ladder Polymer自由基寿叩Life-time of Free Radical线型缩聚Lin ear Polyc onden satio n线型聚合物Lin ear Polymer活性聚合Living Polymerization活性”可控自由基聚合“ Living ” /Controlled Polymerization低密度聚乙烯Low Den sity Polyethyle ne LDPE 高分子(大分子)Macromolecule主链Mai n Cha in熔融缩聚Melt Polyc onden sati on茂金属引发剂Metalloce ne In itiator胶束成核Micelle Nucleati on混缩聚Mixing Polyc onden satio n摩尔系数Molar Coefficie nt单体Mono mer单体单元Mono mer Un it单体液滴Mono mer Droplet天然高分子Natural Polymer邻位基团效应Neighbori ng Group Effect交联型聚合物Network Structure Polymer非理想共聚Non-ideal Copolymerization非理想恒比共聚Non-ideal Azeotropic Copolymerization 线型酚醛树脂Novolacs尼龙Nylon尼龙-6 Nylo n-6, PA-6尼龙-66 Nylo n-66, PA-66光学异构Optical Isomerism齐聚物(低聚物)Oligomer氧化偶合反应Oxidative Coupling Polymerization前末端效应Pen ultimate Effect光引发Photo in itiati on塑料Plastics聚酰胺Polyamide, PA聚加成反应Polyadditi on Reacti on聚碳酸酯Polycarbo nate, PC聚酯Polyester, PET聚醚Polyether聚合物Polymer聚合物合金Polymer Alloy高分子化学Polymer Chemistry聚苯乙烯Polystyre ne, PS聚乙烯Polythe ne PE聚氨酯Polyuretha ne聚氯乙烯Polyvinyl Chloride, PVC几率效应Probable Effect辐射引发Radiati on In itiati on自由基聚合Radical Polymerizati on无规聚合物Ran dom Copolymer无规预聚物Ran dom Prepolymer竞聚率Reactivity Ratios重复单元Repeati ng Un it缓聚作用Retardati on缓聚剂Retarder可逆加成-断裂转移自由Reversible Addition Fragmentation Transfer, 聚口RAFT开环聚合Rin g-Ope ning Polymerizati on橡胶Rubber半梯形聚合物Semiladder Polymer侧链Side Cha in侧基Side Group固相缩聚Solid Phase Polyc onden satio n溶液缩聚Soluti on Polyc onden sati on溶液聚合Solution Polymerization星形聚合物Star-shaped Polymer逐步聚合Step Polymerizati on立体异构Stereo isomerism有规立构聚合物Stereo-regular Polymer有规立构聚合Stereo-regular Polymerizati on定向聚合Stereo-specific Polymerizati onSteric EffectStructural UnitStructural MaterialStructural PrepolymerStyre ne-Butadie ne Rubbers,SBR Suspension Polymerization Swolle n Micelle Syn diotactic Syn diotacticity Syn diotactic Polystyre ne Syn thetic Polymer Telechelic Polymer Teryle ne or Poly(ethyle ne terephthalate), PET Thermal In itiati on Thermoplastic PolymerThermosett ing PolymerThree Dime nsional Polyc onden sati on 位阻效应 结构单元 结构材料 结构预聚物 丁苯橡胶 悬浮聚合 增溶胶束 间规立构 间规度 间规聚苯乙烯 合成高分子 遥爪聚合物 涤纶 热引发 热塑性聚合物 热固性聚合物 体型缩聚。
聚合物的流动性聚合物的粘流态线形聚合物在某一温度范围内尚未发生化学分解而链运动已足够强烈以致能实现分子间明显的相对位移聚合物熔融达到能流动的状态。
不存在粘流态的情况)、TdTf的LinearPolymer:PAN、PTIF)交联度很大(体型)或分子链刚性过强的PolymerCuredEpoxyresin、PF、聚乙炔、联苯版权所有化学化工学院流动机理低分子物质:分子通过分子间的孔穴相继向某一方向移动(外力作用方向)形成液体宏观流动现象高分子的流动:(不是简单的整条分子链的跃迁)是通过链段的相继跃迁来实现即通过链段的逐步位移完成整条大分子链的位移形象地说,这种流动类似于蚯蚓的蠕动这模型并不需在高聚物熔体中产生整个分子链那样大小的孔穴,而只要如链段大小的孔穴就可以了。
这里的链段也称流动单元,尺寸大小约含几十个主链原子版权所有化学化工学院高分子的流动不是简单的整个分子的迁移,而是各个链段分段运动的总结果,在外力作用下,高分子链不可避免的要顺外力的方向有所伸展,即高聚物进行粘性流动的同时伴随着一定量的高弹形变,外力消失后高分子链又要蜷曲,形变要恢复一部分高弹形变:由链段运动产生的不可逆形变:整条大分子链质心移动产生的。
除去外力不能回复。
为什么聚合物粘性流动时的形变Conclution:聚合物的流动伴有高弹形变(Why)版权所有化学化工学院高弹形变的回复过程也是一个松弛过程这个特点在加工时必须考虑链的柔顺性:好,则回复快温度:越高,则回复越快版权所有化学化工学院流体的类型聚合物的流变性一牛顿流体:低分子流体在流动时流速越大,流动阻力越大,切应力与切变速率成正比流动性为可用牛顿流体定律来表示。
粘度是流体内部反抗这种流动的内摩擦阻力,与分子间的缠绕程度和分子间的相互作用有关。
不随切应力或切变速率而变化。
单位:N·mS,Pa·s版权所有化学化工学院二非牛顿流体:不符合牛顿流动定律,称为非牛顿流体通常可以用流动曲线来作判定。
判断题1 结晶性聚合物不一定总是形成结晶聚合物(√)交联前的线性聚合物是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力需要结晶条件5.不能通过改变高分子的构象提高高分子的等规度。
(√)高分子的等规度是由分子的化学结构决定的,要改变改变高分子的等规度必须改变高分子的构型。
06年判断题:1.双酚A型聚碳酸酯是结晶性聚合物,所以一定形成结晶聚合物(×)原因:交联前的双酚A型聚碳酸酯聚合物是结晶性聚合物,交联度不太大时,有结晶能力,但随交联度增大,结晶能力减小;当交联度太大时,丧失结晶能力需要结晶条件8.尼龙1010,尼龙66,尼龙610这三种尼龙熔点最高的是尼龙66(√)氢键密度1影响高分子柔顺性的因素有哪些?聚乙烯单个分子的柔顺性很好,为什么高聚物不能作为橡胶使用而作塑料用?答:(1) 影响高分子的柔顺性有那些因素:○1高分子主链结构中键长越长,键角越大或含有孤立双键,单键内旋转越容易,高分子的共轭双键,芳杂环,典型刚性键,高分子的柔顺性较差(体积)○2侧基的极性越大,柔顺性越差,若含有氢键时,柔顺性更差,侧基的刚性越大,柔顺性越差,但沿主链刚性侧基密度增大,柔顺性更差(体积)○3分子量越大分子链的柔顺性越好○4高分子发生交联,交联度不大时,对柔顺性影响不大,交联度太大时,分子链失去柔顺性○5高分子的聚集态结构决定高分子的柔顺性能否表现出来○6温度越高,外力越大,分子链的柔顺性越好;外力作用速度越大,分子链的柔顺性越难表现出来,加入溶剂,分子链的柔顺性较好,但还与外界条件有关(2)对称,柔性越大,分子结构越规整,但同时结晶能力越强,高分子一旦结晶,链的柔顺性就表现不出来,聚合物呈现刚性,聚乙烯的分子链是柔顺的,但由于结构规整,很容易结晶,失去弹性,所以聚乙烯聚合物能够作塑料用不能作橡胶用。
—形变曲线,标出各特征温度,并简要说明。
(1)自由基聚合的聚苯乙烯:试样B的分子量适中,试样A的分子量较小。
高分子物理名词解释《高分子物理》名词解释1.短程结构:聚合物重复单元的化学结构和三维结构统称为聚合物的短程结构。
2.长程结构:由几个重复单元组成的大分子的长度和形状称为聚合物的长程结构3、链段与链节:高分子链中能自由取向并在一定范围独立运动的最小单元称为链段。
链节是指高分子链中不断重复的单元。
4.均方旋转半径:分子链质心与构成分子链的所有链段质心之间矢量距离的均方值。
5.大分子链的末端距离:大分子链中从一端到另一端的定向线段6、构型与构象:构象系指由c-c单键内旋转而形成的空间排布。
构型系指化学键连接的邻近原子或原子团之间的空间状态表征。
7.液晶状态:某些物质的结晶被加热、熔化或被溶剂溶解后,仍部分保持晶体材料分子的有序排列,呈现各种各向异性的物理性质,并形成结晶和液晶性质的过渡状态,这就是所谓的液晶状态。
8、取向函数:9.高斯链:统计单位为链段,链段自由组合。
这种随机取向的聚合物链称为等效自由组合链。
由于其链段分布函数服从高斯分布,故又称为高斯链。
10.等规结构:聚合物的一个或两个构型的结构单元以单一顺序重复排列。
11.随机构型:手性中心的构型是随机排列的。
12、柔顺性和刚性:高分子长链能以不同程度卷曲的特性。
13、ucst和lcst:最高共溶温度和最低共溶温度。
凝胶和凝胶:凝胶是由聚合物链之间的化学键形成的膨胀体,不溶于水和不溶于水。
它既是聚合物的浓缩溶液,又是高弹性固体。
冻胶是由高分子间以分子间作用力形成的,加热时可以溶解。
15、高分子电解质:在侧链中有许多可电离的离子型基团的高分子称为高分子电解质。
16、溶解度参数δ:1.高分子化合物:相对分子量超过10000的化合物,主要由许多原子或原子团通过共价键结合而成。
2.近程结构:构成大分子链的结构单元的化学组成和物理结构。
3.远距结构:由大量结构单元组成的分子链的长度及其空间形式和结构。
4.凝聚态结构:从物理角度定义聚合物的微观结构类型。
1聚合物物理术语解释5.化学结构:除非通过化学键断裂并同时生成新键才能产生改变的分子结构。
第一章1、请用粘弹性的滞后效应相关理论解释塑料注射成型制品的变形收缩现象以及热处理的作用。
答:(1)粘弹性滞后效应是指在外作用力下,聚合物分子链由于跟不上外力作用速度而造成的形变总是落后于外力作用速度的效应。
(2)当注射制件脱模时大分子的形变并非已经停止,在贮存和使用过程中,大分子重排运动的发展,以致密度增加,体积收缩。
(3)在Tg—Tf温度范围对成型制品进行热处理,可以缩短大分子形变的松弛时间,加速结晶聚合物的结晶速度,使制品的形状能加快的稳定下来。
2、比较塑性形变和粘弹性形变的异同点。
答:同:都是不可逆变形。
异:(1)温度区间不同,塑性形变温度区间为Tg—Tf;粘性形变温度区间为Tf以上。
(2)作用力和时间不同,塑性形变需较大外力和较长时间;粘性形变要很小的外力和瞬时。
3、什么是聚合物的力学三态,各自的特点是什么?各适用于什么加工方法?答:玻璃态、高弹态、粘流态称为聚合物的力学三态。
(1)玻璃态:聚合物模量高,形变小,故不宜进行大形变的成型加工。
适用:二次加工(2)高弹态:产生较大的可逆形变;聚合物粘性大,且具有一定的强度。
适用:较大变形的成型工艺。
(3)粘流态:很大的不可逆形变;熔体黏度低。
适用:流动性要求较高的成型加工技术。
第二章1、画出几种典型流体的剪切力-剪切速率流动曲线,并简单说明各自的流变行为特征。
答:宾汉流体:与牛顿流体相同,剪切速率~剪切应力的关系也是一条直线,不同处:它的流动只有当 高到一定程度后才开始。
假塑性流体: 流体的表观粘度随剪切应力的增加而降低。
也即切力变稀现象。
膨胀性流体: 流体的表观粘度随剪切应力的增加而增加。
也即切力增稠现象。
2、怎么样根据聚合物粘度的温敏特性以及切敏特性选择加工条件?答:(1)根据聚合物粘度的温敏特性,当聚合物处于粘流温度以上不宽的温Andrade 公式:选择尽可能打度范围内时,用的温度作为加工条件。
当温度包括从玻璃化温度到熔点这样打的温度范围时,用W.L.F 方程:计算温度T 时的年度选择加工条件。
高分子材料工程专业英语课文翻译(曹同玉,冯连芳)主编高分子专业英语选讲课文翻译资料 A 高分子化学和高分子物理 UNIT 1 What are Polymer 第一单元什么是高聚物?What are polymers For one thing, they are xxplex and giant molecules and are different from low molecular weight xxpounds like, say, xxmon salt. To contrast the difference, the molecular weight of xxmon salt is only , while that of a polymer can be as high as several hundred thousand, even more than thousand thousands. These big molecules or ‘macro-molecules’are made up of much smaller molecules, can be of one or more chemical xxpounds. To illustrate, imagine that a set of rings has the same size and is made of the same material. When these things are interlinked, the chain formed can be considered as representing a polymer from molecules of the same xxpound. Alternatively, individual rings could be of different sizes and materials, and interlinked to represent a polymer from molecules of different xxpounds.什么是高聚物?首先,他们是合成物和大分子,而且不同于低分子化合物,譬如说普通的盐。
聚合物流变学名词解释
聚合物流变学是研究聚合物材料在外力作用下的流变行为的学科。
在聚合物流变学中,有一些常见的名词需要解释,如下:
1. 聚合物,聚合物是由重复单元组成的大分子化合物,它们可以通过化学反应或物理方法合成。
聚合物具有高分子量、可塑性和可变形性。
2. 流变行为,流变行为是指物质在外力作用下的变形和流动特性。
对于聚合物材料,其流变行为可以分为弹性变形、塑性变形和流动变形等。
3. 弹性变形,弹性变形是指物质在受到外力作用后能够恢复到原始形状的能力。
聚合物在低应力下一般表现出弹性行为,即受力后能够迅速恢复原状。
4. 塑性变形,塑性变形是指物质在受到外力作用后无法完全恢复到原始形状的能力。
聚合物在高应力下会发生塑性变形,导致永久性的形变。
5. 流动变形,流动变形是指物质在外力作用下发生持续的形变和流动。
聚合物在高温或高应力条件下会发生流动变形,使其形状发生改变。
6. 剪切应力,剪切应力是指作用在物质表面上的力与单位面积的比值。
在聚合物流变学中,剪切应力是导致聚合物发生流变行为的主要力量。
7. 剪切应变,剪切应变是指物质在受到剪切应力作用下的形变程度。
聚合物的剪切应变与剪切应力呈线性关系,称为线性剪切应变。
8. 流变曲线,流变曲线是描述聚合物材料在外力作用下剪切应力和剪切应变之间关系的曲线图。
根据流变曲线的形状,可以判断聚合物的流变行为类型。
以上是关于聚合物流变学常见名词的解释。
聚合物流变学的研究对于聚合物材料的设计、加工和应用具有重要意义,可以帮助理解和控制聚合物材料的流变性能。
高分子物理作业-2-答案聚合物的力学状态及转变1. 解释名词:(1)聚合物的力学状态及转变由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。
随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。
(2)松弛过程与松弛时间松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。
松弛时间τ是用来描述松弛快慢的物理理。
在高聚物的松弛曲线上,∆x t ()变到等于∆x o 的1/e 倍时所需要的时间,即松弛时间。
(3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积;在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。
因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。
因而高聚物的玻璃态可视为等自由体积状态。
(4)玻璃态与皮革态当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。
这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态;部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。
2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上)1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M )3) 线性非晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 4) 晶态聚合物(1M )5) 晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 6) 交联聚合物(交联度较小) 7) 交联聚合物(交联度较大)3. 判断下列聚合物(写出分子式)的Tg 的高低,阐述其理由:1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷 2) 聚氯乙烯、聚氯丁二烯、聚偏二氯乙烯、顺式1,4聚丁二烯 3) 聚乙烯、聚异丁烯、聚苯乙烯、聚乙烯基咔锉 4) 聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈5) 聚甲基乙烯基醚、聚乙基乙烯基醚、聚正丙基乙烯基醚、聚正丁基乙烯基醚1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷CH 2CH 2n聚乙烯CO C OO CH 2CH 2On聚对苯二甲酸乙二酯n聚苯Si CH 33On聚二甲基硅氧烷聚二甲基硅氧烷<聚乙烯<聚对苯二甲酸乙二酯<聚苯理由:当主链中引入苯基、联苯基、萘基和均苯甲酸二酰胺基等芳杂环以一,链上可以内旋转的单键比例相对减少,分子链的刚性增大,因此有利于玻璃化温度的提高。
调节聚合物分子量分布的方法
聚合物分子量分布由于在日常的生产中起到重要的作用,因此有很
多方式可以用来调节它。
以下是一些常见的调节聚合物分子量分布的
方法:
1、离子相互作用调节法:离子相互作用是影响聚合物分子量分布最重要的因素之一。
如果通过调整离子相互作用参数,可以调节聚合物分
子大小。
2、聚合尺度调节法:聚合物分子量分布受到聚合尺度的影响。
改变聚合物使用的聚合剂数量,可以调节聚合物分子量分布。
3、化学组成调节法:聚合物分子的组成受到物种的影响。
如果改变聚合物的原料,可以调节聚合物分子量分布。
4、温度和pH值调节法:温度和pH值的变化也可以影响聚合物的分
子量分布,处于正确的温度和pH值范围内,也可以调节聚合物分子量
分布。
5、离心调节法:离心是一种能够以物理方式分离分子量高低不同的物质的方法,可以调节聚合物分子量分布。
6、催化剂添加法:催化剂可以加速合成反应,促进小分子物质的聚合,促进聚合物的分子量分布。
7、溶剂交换法:溶剂交换是通过改变溶剂的类型来调节聚合物分子量分布的方法,其原理是改变溶剂环境中的聚合物分子形态,从而改变分子量分布。
以上就是一些常用的调节聚合物分子量分布的方法,它们都有其特定的应用范围,可以根据实际情况任选其一进行使用。
调节聚合物分子量分布要根据不同的情况采用不同的方法,并且通过反复测试,以实现最优的结果。
正确使用以上方法,可以确保聚合物的性能,实现良好的分子量分布,以用于后续的应用。
高分子物理试卷二答案一、单项选择题(10分)1.全同聚乙烯醇的分子链所采取的构象是( A )。
(A )平面锯齿链 (B )扭曲的锯齿链 (C )螺旋链2.下列聚合物找那个,熔点最高的是( C )。
(A )聚乙烯 (B )聚对二甲苯撑 (C )聚苯撑3.聚合物分子链的刚性增大,则黏流温度( B )。
(A )降低 (B )升高 (C )基本不变4.增加聚合物分子的极性,则黏流温度将( C )。
(A )降低 (B )基本不变 (C )升高5.可以用来解释聚合物的零切黏度与相对分子质量之间相互关系的理论是( B )。
(A )分子链取向 (B )分子链缠结 (C )链段协同运动6.在下列情况下,交联聚合物在溶剂中的平衡溶胀比最大的是( C )。
(A )高度交联 (B )中度交联 (C )轻度交联7.光散射的散射体积与θsin 成( B )。
(A )正比 (B )反比 (C )相等 (D )没关系8.高分子的特性黏数随相对分子质量愈大而( A )。
(A )增大 (B )不变 (C )降低 (D )不确定9.理想橡胶的泊松比为( C )。
(A )21< (B )21> (C ) 21 10.交联高聚物蠕变过程中的形变包括( B )。
(A )普弹形变、高弹形变和黏性流动 (B )普弹形变和高弹形变 (C )高弹形变和黏性流动二、多项选择题(20分)1.以下化合物,哪些是天然高分子( AC )。
(A )蛋白质 (B )酚醛树脂(C )淀粉 (D )PS2.柔顺性可以通过以下哪些参数定量表征( ABCD )。
(A )链段长度 (B )刚性因子(C )无扰尺寸 (D )极限特征比3.以下哪些方法可以测量晶体的生长速度( AB )。
(A )偏光显微镜 (B )小脚激光光散射(C )光学解偏振法 (D )示差扫描量热法4.有关聚合物的分子运动,下列描述正确的有( ACD )。
(A )运动单元具有多重性(B )运动速度不受温度影响 (C )热运动是一个松弛过程(D )整个分子链的运动称为布朗运动 (E )运动但愿的大小不同,但松弛时间一样5.下列有关聚合物熔体流变性能的叙述,正确的有( ABDE )。
Polymer Translocation in Crowded EnvironmentsAjay Gopinathan1and Yong Woon Kim2,31School of Natural Sciences,University of California,Merced,California95344,USA 2Materials Research Laboratory,University of California,Santa Barbara,California93106,USA 3School of Physics,Korea Institute for Advanced Study,Seoul130-722,Korea(Received21November2006;published30November2007)We study the effect of the crowded environments on the translocation of a polymer through a pore in a membrane.By systematically treating the entropic penalty due to crowding,we show that the trans-location dynamics are significantly altered,leading to novel scaling behaviors of the translocation time. We also observe new and qualitatively different translocation regimes depending upon the extent of crowding,transmembrane chemical potential asymmetry,and polymer length.DOI:10.1103/PhysRevLett.99.228106PACS numbers:87.15.Vv,05.40.ÿa,36.20.ÿr,87.15.AaTransport of a variety of biopolymers across a dividing membrane is a fundamentally important process in bio-logical systems[1].Examples include transfer of proteins across cellular membranes or endoplasmic reticulum[2], gene swapping through bacterial pili[3],and RNA trans-port through nuclear pore complexes[4].Technological applications include gene delivery[5]and DNA sequenc-ing[6].A considerable amount of theoretical work has focused on both the basic physics[7–11]underlying the translocation process and on how details such as polymer-pore interactions[12],intrinsic polymer structure[13],and confinement[14,15]affect the dynamics of the process.An aspect that has received very little attention is the effect of crowding on the translocation dynamics.For instance, crowding due to macromolecular aggregates and other inclusions in the cellular cytoplasm can be as high as 50%by volume[16]and is known to have considerable influence on reaction rates,protein folding rates,and equi-libria in vivo[17,18].A polymer threading its way through such a crowded environment is subject to a large entropic penalty which should dramatically affect the translocation dynamics.In this Letter,we present thefirst systematic study of polymer translocation in the presence of crowd-ing.The fact that this is a problem that combines aspects of two important issues in polymer science,namely,polymer dynamics in random environments and polymer transloca-tion through a pore,is of significant theoretical and prac-tical interest.We show that the presence of nonlinear terms in the free energy penalty due to crowding leads to quali-tatively different translocation dynamics including novel power law scalings of the translocation time with polymer length as well as situations where the translocation time is nearly independent of the polymer length over several orders of magnitude.We consider a Gaussian polymer of length N(in units of the Kuhn length b)threading through a pore in a membrane from cis side to trans side,as illustrated in Fig.1.The pore is assumed to be small enough that it allows only one monomer to pass through at a time,with an effective diffusion constant D P.Crowding is modeled by randomly distributed spherical obstacles,sterically interacting with the polymer,of radius a and diffusion constant D o at a volume fraction c t on the cis(trans)side.There could also be an excess chemical potential difference for mono-mers between cis and trans side, .We now assume that we can treat the process quasistatically with the polymer segments on both sides being in equilibrium at all times. The validity of the assumption depends on the relative magnitudes of the three time scales in the problem:the total translocation time b2=D P ~ ,the polymer relaxa-tion time R b3=k B T N2[19],and the time scale set by obstacle motion o ÿ2=3=D o.Here,~ is a dimen-sionless function that characterizes the translocation pro-cess and is the medium’s viscosity.Assuming equilibrium statistics for the polymer segments necessarily requires that R [7].In the presence of obstacles,this assumption remains valid in two different regimes, o R and R o.Thefirst regime corresponds to the situation where the obstacles diffuse fast enough that the‘‘polymer obstacles’’system can be assumed to be at equilibrium(dynamic obstacles).In the second regime,the obstacles are essentially immobile over ,and the polymer segment achieves equilibrium statistics in this staticob-FIG.1(color online).Schematic illustration of the transloca-tion process of a polymer in the presence of crowding.stacle environment.It should be noted that if the pore friction is not high enough (i.e., R ’ )[9]or if R o ,the quasistatic assumption breaks down leading to anomalous dynamics.In the regimes where the assumption remains valid,we have a well-defined free energy barrier whose form is governed by the polymer statistics,presence of the membrane,chemical potential gradient,and the presence of crowding.Since the contributions to the free energy from factors other than crowding have been worked out before [7,8],we focus on the entropic penalty that arises from crowding.Polymer configurations in the presence of static ob-stacles correspond to Brownian walk trajectories with a diffusion constant b 2=6that have survived to a time t n with the obstacles playing the role of traps.The fraction of allowed polymer configurations is therefore identical to the survival probability of such a Brownian walker,leading to the free energy expression for the entropic penalty in units of k B T asF s crn ÿlog S n ;(1)where S t is the survival probability of an appropriate Brownian walker at time t [18,20].For short times,S t is given by the Smoluchowski solution S t exp ÿ t [21,22],while for long times,it is dominated by walkers trapped in large void regions leading to the stretched ex-ponential Donsker-Varadhan (DV)solution S t exp ÿ t 3=5 [23,24],where and are constants that depend on trap radius,trap density,and ing the exact solutions for S t [21,23],we can explicitly compute the free energy penalty for a chain of length n due to static obstacles at volume fraction ,yieldingF scr ;n 12 b a 2n 24a 2n b s for n N2:6 b a6=5 2=5n 3=5for n N ;(2)where N a=b 2 ÿ3=2represents the crossover poly-mer length from the Smoluchowski regime to the DVregime [25].For the dynamic obstacle case,the ‘‘polymer obstacles’’system comes to equilibrium.The presence of the obstacles gives rise to a depletion induced attraction between monomers that can lead to a collapsed polymer phase similar to that induced by poor solvents [26].Simulations [27]and analytical work [28]have shown that hard spheres can cause polymers to col-lapse if the sphere density is high enough.For the range of (0:1< <0:5)that we are interested in,the collapse occurs whenever a 2b .For our purposes,it is then safe to assume that our Gaussian polymer is in a collapsed ‘‘dense globule’’state with a volume Nb 3.The free energy penalty is then given by the sum of the confinement en-tropic penalty ( 2R 2G =6R 2where R N1=3b is the con-fining radius)and the work done to create a cavity ofvolume Nb 3that is devoid of obstacles,which is known exactly from scaled particle theory [29].The resulting free energy penalty for the chain due to dynamic obstacles reads asF d cr;n3b 3 1 2 n4 a 1ÿ ÿ92 342=3b 2 2 1 n 2=3a 2 1ÿ 326 9 34 1=3b 3a 1ÿ3 n 1=3:(3)The general expression for total free energy,taking intoaccount the presence of the dividing wall and chemical potential difference,of a chain with n monomers on the trans side and N ÿn on the cis side is then given byF s tot n F s cr c ;N ÿn F s crt ;n12ln n N ÿn n (4)for the static obstacles andF d tot n F d cr c ;N ÿn F d cr t ;n n(5)for the dynamic obstacles.It is to be noted that the loga-rithmic term in Eq.(4),resulting from reduced chain configurations confined in a half-space,does not appearin Eq.(5)because F dcr already includes the entropic penalty associated with confining the chain to a dense globule.The translocation process can now be described by diffusion along the translocation coordinate n under a well-defined F d s tot n .The dynamics of this process is governed by a Fokker-Planck equation which then allows one to compute the translocation time (mean first passage time for the chain to diffuse across the pore [7])asd sb 2D P Z N ÿ11dne F d s tot nZ n 1dn 0e ÿF d s tot n 0:(6)Since we have nonlinear terms in the free energy,we first consider the behavior of for a general free energy func-tional with a power law scaling, e.g.,F n n .Equation (6)and saddle point approximations (in the large N limit)to do the integrals yieldN 2ÿ for F n N ÿnexp Nfor F nn(7)for translocation out of and into a crowded half-space,respectively.Thus,we anticipate new exponents character-izing the scaling properties of the mean passage time with the number of monomers in the crowded medium.We now consider the impact of crowding on transloca-tion dynamics in some physically interesting situations.The first example is that of a polymer escaping from a crowded environment,i.e.,where the cis side is crowdedand the trans side is not ( t 0).In the static case,the dominant contribution to the free energy has the form 2=5c N ÿn3=5for a long chain and c N ÿn for a short chain [see Eq.(2)].Saddle point approximation showsscales as ÿ2=5c N 7=5and ÿ1c N ,respectively.Exact nu-merical evaluations of Eq.(6)confirm the predicted power law scalings with both N (Fig.2)and c (inset in Fig.2).In contrast to the dynamic case where the leading order behavior simply corresponds to having an effective ‘‘os-motic pressure’’from obstacles,the driving force for trans-location in randomly distributed immobile obstacles is weakened by the existence of rare,large voids on the cis side that sufficiently long polymers can explore.This is the physical origin for the novel exponents describing the scaling of with respect to both N and c for a long enough chain in the static case.Another situation of interest is translocation into a crowded environment driven by a chemical potential gra-dient.Here,we take c 0and ÿ where is a positive value representing a chemical potential gradient that favors translocation into the crowded trans side.For the static obstacle case in the large N limit,the linear chemical potential term always dominates for any nonzero value of .Thus N in this limit,while for 0, exp N 3=5 [from Eq.(7)].The situation is similar for the dynamic case but only if exceeds a critical threshold that is sufficient to overcome the osmotic pressure term ( is here defined by the value of the prefactor of the n -linear osmotic pressure term in F cr ).For < ,exp N for a long chain when obstacles are mobile.Figures 3(a)and 3(c)clearly show these distinct limiting behaviors.The plots also reveal a striking phenomenon that seems to occur at intermediate N .Depending on the pa-rameter values,there appear to be regimes spanning several orders of magnitude in polymer length,where is nearly independent of N .The reason for this can be understood by considering the form of the relevant free energy profile as a function of the translocation coordinate n .For the static obstacle case,there is a competition between a linear term ( n )due to the chemical potential and a sublinear term ( n 3=5)that comes from the crowding for a long chain.This gives rise to a free energy barrier whose height and position are nearly independent of N followed by a ‘‘down-ward slope’’all the way to n N .The time taken to surmount this barrier,which is independent of N ,is rate-limiting and hence effectively the total translocation time for polymer lengths shorter than the value of N at which the time taken to traverse the downward slope becomes com-parable.At this point,the scaling crosses over to being linear in N .Similar behavior was discussed in the context of polymer barrier crossing in a biased double well poten-tial [30].The situation for the dynamic obstacle case is similar except that the presence of two sublinear terms ‘‘softens’’the plateau because barrier height and position are no longer independent of N .Figures 3(b)and 3(d)show the different translocation time scaling regimes in the ( t , )phase space at a fixed N .The disappearance of the plateau regime for the dynamic obstacles at highconcen-FIG.2.Translocation time (in units of b 2=D P )of a polymer of length N releasing out of the crowded cis side with static obstacles (solid lines: c 0:1,0:3,0:5in descending order),dynamic obstacles (dotted lines:for the same values of c ),and no crowding (dashed-dotted line: c 0).Inset: vs obstacle volume concentration c for static (solid lines:N 105,104,103in descending order)and dynamic obstacles (dotted lines:for the same values of N ).Note t 0here and the value of b=a 0:3is used throughout theLetter.FIG.3(color online).Translocation time (in units of b 2=D P )vs N for (a)static and (c)dynamic obstacles on the trans side ( t 0:3, c 0)for different values of chemical potential gradient,showing the asymptotic power law scalings as well as the plateau regime at intermediate length scales.Note de-notes the value of the prefactor of the n -linear term of F cr in Eqs.(2)and (3),respectively.Different scaling behaviors (ex-ponential,plateau,power law)of in the ( t , )phase space for (b)static and (d)dynamic obstacles at a fixed N 105.trations is because the presence of two sublinear terms becomes more apparent at higher t .As a final example,we consider the polymer transloca-tion when both sides are crowded and 0.For dy-namic obstacles,the qualitative picture is similar to that with trans side crowding and a chemical potential gradient [compare Figs.3(c)and 3(d)with Figs.4(c)and 4(d)].It is to be noted that the presence of sublinear free energy contributions from both sides of the membrane smears out the plateau even more.In the static case,however,the absence of a linear term in the large N limit gives rise to qualitatively different results.As seen in Fig.4(a),even a minute amount of t leads to exp N 3=5 at large polymer lengths despite substantial crowding on the cis side.This counter-intuitive behavior arises because the free energy profile in this situation always has a barrier whose height scales to leading order as N 3=5,which in turn implies exponential barrier crossing times.The existence of regimes where the translocation time depends very weakly on polymer length,apart from being of theoretical significance,suggests the possibility of de-signing filters for a tunable range of polymer lengths and also has implications for ‘‘synchronized’’transport of pro-teins or nucleic acids from a wide range of sizes in the cellular context.Our predictions can be tested by combin-ing suspensions of uncharged colloids with a conventional setup for DNA translocation experiments.The plateau regimes of Fig.3,for example,should be observed for double-stranded DNA by crowding the trans side with neutral colloids of radii 300nm up to a volume fraction 0:3and applying an electric field of 0:1V =cm across a 100nm thick dividing membrane.[5]M.A.Zanta,P.Belguise-Valladier,and J.P.Behr,Proc.Natl.Acad.Sci.U.S.A.96,91(1999).[6] A.Meller,J.Phys.Condens.Matter 15,R581(2003).[7]W.Sung and P.J.Park,Phys.Rev.Lett.77,783(1996).[8]M.Muthukumar,J.Chem.Phys.111,10371(1999);[9]Y .Kantor and M.Kardar,Phys.Rev.E 69,021806(2004).[10] C.S.Peskin,G.M.Odell,and G.F.Oster,Biophys.J.65,316(1993).[11]R.Zandi,D.Reguera,J.Rudnick,and W.M.Gelbart,Proc.Natl.Acad.Sci.U.S.A.100,8649(2003).[12] E.Slonkina and A.B.Kolomeisky,J.Chem.Phys.118,7112(2003);D.K.Lubensky and D.R.Nelson,Biophys.J.77,1824(1999).[13]U.Gerland,R.Bundschuh,and T.Hwa,Phys.Biol.1,19(2004).[14]M.Muthukumar,Phys.Rev.Lett.86,3188(2001).[15]P.J.Park and W.Sung,Phys.Rev.E 57,730(1998).[16] A.B.Fulton,Cell 30,345(1982).[17] A.P.Minton,Biophys.J.78,101(2000).[18]H.X.Zhou,Acc.Chem.Res.37,123(2004).[19]M.Doi and S.F.Edwards,The Theory of PolymerDynamics (Clarendon Press,Oxford,1986).[20]J.Machta and R.A.Guyer,J.Phys.A 22,2539(1989).[21]M.von Smoluchowski,Phys.Z.17,585(1916).[22]P.M.Richards,J.Chem.Phys.85,3520(1986).[23]M.D.Donsker and S.R.S.Varadhan,Commun.PureAppl.Math.28,525(1975).[24]P.Grassberger and I.Procaccia,J.Chem.Phys.77,6281(1982).[25]G.T.Barkema,P.Biswas,and H.van Beijeren,Phys.Rev.Lett.87,170601(2001).[26]P.G.deGennes,J.Phys.(Paris),Lett.36,L55(1975).[27] E.J.Meyer and D.Frenkel,J.Chem.Phys.100,6873(1994);G.Luna-Barcenas,G.E.Bennett,I.C.Sanchez,and K.P.Johnston,J.Chem.Phys.104,9971(1996).[28]M.R.Shaw and D.Thirumalai,Phys.Rev.A 44,R4797(1991);P.van der Schoot,Macromolecules 31,4635(1998).[29]H.Reiss,H.L.Frisch,and J.L.Lebowitz,J.Chem.Phys.31,369(1959);M.Castelnovo,R.K.Bowles,H.Reiss,and W.M.Gelbart,Eur.Phys.J.E 10,191(2003).[30]K.L.Sebastian and A.K.R.Paul,Phys.Rev.E 62,927(2000).FIG.4(color online). (in units of b 2=D P )vs N for (a)static ( t 0:05)and (c)dynamic obstacles ( t 0:2)for different values of c .Different scaling behaviors (exponential,plateau,power law)of in the ( t , c )phase space for (b)static and (d)dynamic obstacles at a fixed N 3 104.Note that 0here.。