(完整版)传热第二章
- 格式:doc
- 大小:395.40 KB
- 文档页数:21
第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。
一般来说,它是空间坐标和时间坐标的函数。
2.等温面(线):由物体内温度相同的点所连成的面(或线)。
3.温度梯度:在等温面法线方向上最大温度变化率。
4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。
热导率是材料固有的热物理性质,表示物质导热能力的大小。
5.导温系数:材料传播温度变化能力大小的指标。
6.稳态导热:物体中各点温度不随时间而改变的导热过程。
7.非稳态导热:物体中各点温度随时间而改变的导热过程。
8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。
9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。
10.肋效率:肋片实际散热量与肋片最大可能散热量之比。
11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。
12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。
二、填空题1.导热基本定律是_____定律,可表述为。
(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。
(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。
(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。
(肋片实际散热量与肋片最大可能散热量之比。
)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。
(气)6.一般,材料的导热系数与_____和_____有关。
(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。
第二章稳态导热本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力第一节 通过平壁的导热1-1第一类边界条件研究的问题:(D 几何条件:设有一单层平■壁,厚度为a,其宽度、高度远大丁其厚度(宽度、高度 是厚度的10倍以上)。
这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度 方向发生变化。
(届一维导热问题)(2) 物理条件:无内热源,材料的导热系数入为常数。
(3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度t wi 和t w2 , t wi t w2。
(为第一类边界条件,同时说明过程是稳态的)求:平■壁的温度分布及通过平■壁的热流密度值。
方法1导热微分方程:采用直角坐标系,这是一个常物性、无内热源、一维稳态导热 问题(温度只在x 方向变化)。
导热微分方程式为: 史 0 (2-1) dx 2边界条件为:t x0 t w 1 , t x t w 2(2-2)对式(2-1)连续积分两次,得其通解:t c 1x c 2t w 2 t w 1这里C 1、C 2为常数,由边界条件确定,解得:C1C 2 t w 1最后得单层平壁内的温度分布为:t t w 1 %」曳x由丁 a 、t w 1、t w 2均为定值。
所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度),虫―宜const(2-6)dx0—1I~Dfl ——单屋平惬(2-3)(2-4)(2-5)热流密度为:q 史—(t W l t w2) W /m2(2-7)dx若表面积为A,在此条件下,通过平壁的导热热流量则为:qA A— t W考虑导热系数随温度变化的情况:通过平壁的导热热流密度为:dt dtq 0(1 bt) —dx dx竺一1 ]bt t 0 1 2 b t W1 t W21式中,0 1 2bt W1 t W21 22 m则q —(t W1 t W2)从上式可以看出,如果以平壁的平均温度t m虹上来计算导热系数,则平壁的热流密2度仍可用导热系数为常数时的热流密度计算式:(2-8)对丁导热系数随温度线形变化,即0(1 bt),此时导热微分方程为: d dt °0 dx dx解这个方程,最后得:t2bt2bt 2 Wi W2t W2)t W1(t W it、W 一t W2说明:壁内温度不再是直线规律, 而是按曲线变化。
习题平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1W/(m.K)。
解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。
冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。
为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。
解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。
为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。
已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。
解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ 2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
第二章 建筑传热的基本原理2.1 传热方式传热是指物体内部或者物体与物体之间热能转移的现象。
凡是一个物体的各个部分或都物体与物体之间存在着温度差,就必然有热能的仁慈转移现象发生。
建筑物内外热流的传递状况是随发热体(热源)的种类、受热体(房屋)部位、及其媒介(介质)围护结构的不同情况而变化的。
热流的传递称为传热。
根据传热机理的不同,传热的基本方式分为导热、对流和辐射3种。
1、导热(1)导热的机理导热是指物体内部的热量由一高温物体直接向另一低温物体转移的现象。
这种传热现象是两直接接触的物体质点的热运动所引起的热能传递。
一般来说,密实的重质材料,导热性能好,而保温性能差;反之,疏散的轻质材料,导热性能差,而保温性能好。
材料的导热性能以热导率表示。
热导率是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为l 开(K)或1摄氏度(℃),在1h 内;通过1㎡面积传递的热量,单位为瓦/(米·开)[W/(m·K )],或[瓦/(米·℃)W /(m·℃) ]。
热导率与材料的组成结构、密度、含水率、温度等因素有关。
通常把热导率较低的材料称为保温材料,把热导率在0.05W /(m·K)以下的材料称为高效保温材料。
普通混凝土的热导率为1.75W /(m·K),粘土砖砌体为0.81W /(m·K),玻璃棉、岩棉和聚苯乙烯的为0.04~0.05W/(m·K )。
1)杆的导热若一根密实固体的棒,除两端外周围用理想的绝缘材料包裹,其两端的温度分别为1T 和2T ,如图2-1所示。
如1T 大于2T ,则有热量Q 通过截面F 以导热方式由1T 端向2T 端传递。
依据实验可知:Q = F l T T 21-λ (2-1) 式中 Q ——棒的导热量(W); F ——-棒的截面积(㎡);1T ,2T ——分别为棒两端的温度(K);l ——棒长(m);λ——导热系数(W /(m·K))。
刘彦丰华北电力大学工程应用的两个基本目的:•能准确地预测所研究系统中的温度分布;•能准确地计算所研究问题中传递的热流。
要解决的问题:温度分布如何描述和表示?温度分布和导热的热流存在什么关系?如何得到导热体内部的温度分布?第二章导热基本定律及稳态导热刘彦丰华北电力大学本章内容简介2-1 导热基本定律2-2 导热微分方程式及定解条件2-3 通过平壁、圆筒壁、球壳和其它变截面物体的导热(一维稳态导热)2-4 通过肋片的导热分析2-5 具有内热源的导热及多维导热回答问题1和2回答问题3具体的稳态导热问题刘彦丰传热学Heat Transfer 华北电力大学一、温度分布的描述和表示像重力场、速度场等一样,物体中的温度分布称为温度场。
1、温度分布的文字描述和数学表示,如:在直角坐标系中非稳态温度场),,,(τz y x f t =稳态温度场),,(z y x f t =一维温度场二维温度场三维温度场)(x f t =),(τx f t =),(y x f t =),,(τy x f t =),,(z y x f t =),,,(τz y x f t =2-1 导热基本定律刘彦丰传热学Heat Transfer华北电力大学2、温度分布的图示法传热学Heat Transfer 2、温度分布的图示法等温线传热学Heat Transfer二、导热基本定律(傅立叶定律)1822年,法国数学家傅里叶(Fourier )在实验研究基础上,发现导热基本规律——傅里叶定律.法国数学家Fourier: 法国拿破仑时代的高级官员。
曾于1798-1801追随拿破仑去埃及。
后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。
刘彦丰华北电力大学在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。
1、导热基本定律的文字表达:nntgradt q ∂∂−=−=λλ2、导热基本定律的数学表达:t+Δt tt-Δt刘彦丰华北电力大学3、意义已知物体内部的温度分布后,则由该定律求得各点的热流密度或热流量。
第二章思考题1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。
答:傅立叶定律的一般形式为:nx t gradt q∂∂-=λλ=-,其中:gradt 为空间某点的温度梯度;n是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流密度矢量。
2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量? 答:k q j q i q q z y x⋅+⋅+⋅=,其中k j i ,,分别为三个方向的单位矢量量。
3 试说明得出导热微分方程所依据的基本定律。
答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。
4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。
答:① 第一类边界条件:)(01ττf t w =>时,② 第二类边界条件:)()(02τλτf x tw =∂∂->时③ 第三类边界条件:)()(f w w t t h x t-=∂∂-λ5 试说明串联热阻叠加原则的内容及其使用条件。
答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。
使用条件是对于各个传热环节的传热面积必须相等。
7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。
6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。
8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗?答:只要满足等截面的直肋,就可按一维问题来处理。
不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。
9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。
因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。
试分析这一观点的正确性。
答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。
通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。
10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。
答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x 方向和y 方向的数值相等并为常数。
11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。
矩形的一个边绝热,其余三个边均与温度为f t 的流体发生对流换热。
你能预测他所得的温度场的解吗?答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。
习题 平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。
假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1W/(m.K)。
解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。
冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。
为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。
解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。
为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。
已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。
解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。
设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。
环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。
解:热损失为()()22111f f BBA A fwf t t h t t h t t q -+-=+-=λδλδ又50=fw t ℃;B A δδ=联立得m m B A 039.0;078.0==δδ2-5 对于无限大平板内的一维导热问题,试说明在三类边界条件中,两侧边界条件的哪些组合可以使平板中的温度场获得确定的解? 解:两侧面的第一类边界条件;一侧面的第一类边界条件和第二类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件;一侧面的第一类边界条件和另一侧面的第三类边界条件。
平壁导热2-6一火箭发动机燃烧室是直径为130mm 的圆筒体,厚2.1mm ,导热系数为23.2W/(m ·K)。
圆筒壁外用液体冷却,外壁温度为240℃。
测得圆筒体的热流密度为 4.8×106W/㎡,其材料的最高允许温度为700℃。
试判断该燃烧室壁面是否工作于安全温度范围内? 解:2-7如附图所示的不锈钢平底锅置于电器灶具上被加热,灶具的功率为1000W ,其中85%用于加热平底锅。
锅底厚δ=3㎜,平底部分直径d=200㎜,不锈刚的导热系数λ=18W/(m ·K ),锅内汤料与锅底的对流传热表面传热系数为2500W/(㎡·K ),流体平均温度t f =95℃。
试列出锅底导热的数学描写,并计算锅底两表面的温度。
解:2-8一种用比较法测定导热系数装置的原理示于附图中。
将导热系数已知的标准材料与被测材料做成相同直径的圆柱,且标准材料的两段圆柱分别压紧置于被测材料的两端。
在三段试样上分别布置三对测定相等间距两点间温差的热电偶。
试样的四周绝热良好(图中未示出)。
已知试样两端的温度分别为t h =400℃、t c =300℃、Δt r =2.49℃,Δt t,1=3.56℃、Δt t,2=3.60℃,试确定被测材料的导热系数,并讨论哪些因素会影响Δt t,1与Δt t,2不相等? 解:2-9 双层玻璃窗系由两层厚为6mm 的玻璃及其间的空气隙所组成,空气隙厚度为8mm 。
假设面向室内的玻璃表面温度与室外的玻璃表面温度各为20℃及-20℃,试确定该双层玻璃窗的热损失。
如果采用单层玻璃窗,其他条件不变,其热损失是双层玻璃的多少倍?玻璃窗的尺寸为cm cm 6060⨯。
不考虑空气间隙中的自然对流。
玻璃的导热系数为0.78)./(K m W 。
解:332211211λδλδλδ++-=t t q =116.53W/2m mw t t q /520011212=-=λδW Aq Q 95.41==∴所以 62.4453.116520012==q q2-10某些寒冷地区采用三层玻璃的窗户,如附图所示。
已知玻璃厚δg =3㎜,空气夹层宽δair =6㎜,玻璃的导热系数λg =0.8W/(m ·K )。
玻璃面向室内的表面温度t i =15℃,面向室外的表面温度t o =-10℃,试计算通过三层玻璃窗导热的热流密度。
解:2-11提高燃气进口温度是提高航空发动机效率的有效方法。
为了是发动机的叶片能承受更高的温度而不至于损坏,叶片均用耐高温的合金制成,同时还提出了在叶片与高温燃气接触的表面上涂以陶瓷材料薄层的方法,如附图所示,叶片内部通道则由从压气机来的空气予以冷却。
陶瓷层的导热系数为1.3W/(m ·K ),耐高温合金能承受的最高温度为1250K ,其导热系数为25W/(m ·K)。
在耐高温合金与陶瓷层之间有一薄层粘结材料,其造成的接触热阻为10-4㎡·K/W 。
如果燃气的平均温度为1700K ,与陶瓷层的表面传热系数为1000W/(㎡·K),冷却空气的平均温度为400K ,与内壁间的表面传热系数为500W/(㎡·K),试分析此时耐高温合金是否可以安全地工作? 解:2-12 在某一产品的制造过程中,厚为1.0mm 的基板上紧贴了一层透明的薄膜,其厚度为0.2mm 。
薄膜表面上有一股冷却气流流过,其温度为20℃,对流换热表面传热系数为40)./(2K m W 。
同时,有一股辐射能透过薄膜投射到薄膜与基板的结合面上,如附图所示。
基板的另一面维持在温度301=t ℃。
生成工艺要求薄膜与基板结合面的温度600=t ℃,试确定辐射热流密度q 应为多大?薄膜的导热系数)./(02.0K m W f =λ,基板的导热系数)./(06.0K m W s =λ。
投射到结合面上的辐射热流全部为结合面所吸收。
薄膜对60℃的热辐射是不透明的。
解:根据公式t K q ∆=得2/1800306006.0001.03060m W q =⨯=-=()23/8.114202.0102.040112060m W q =⨯+⨯-='-2/8.2942m W q q q Z ='+= 2-13 在附图所示的平板导热系数测定装置中,试件厚度δ远小于直径d 。
由于安装制造不好,试件与冷热表面之间平均存在着一层厚为mm 1.0=∆的空气隙。
设热表面温度1801=t ℃,冷表面温度302=t ℃,空气隙的导热系数可分别按21,t t 查取。
试计算空气隙的存在给导热系数测定带来的误差。
通过空气隙的辐射换热可以略而不计。
解:查附表8得1801=t ℃,);./(1072.321K m W -⨯=λ 302=t ℃,);./(1067.222K m W -⨯=λ无空气时430180221d A t t ffπλδλδ⨯-=-=Φδλλδ32.34029315.0=∴=∴f f有空气隙时At t f'++-=Φλδλδλδ221121得δλ98.43='f所以相对误差为%1.28=-'f ff λλλ圆筒体2-14 外径为100mm 的蒸气管道,覆盖密度为203/m kg 的超细玻璃棉毡保温。