沙湾县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 格式:doc
- 大小:850.00 KB
- 文档页数:18
滨城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2 C .2 D .62. 如果a >b ,那么下列不等式中正确的是( )A .B .|a|>|b|C .a 2>b 2D .a 3>b 3 3. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( ) A .1- B . C .3- D .34. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 5.设向量,满足:||=3,||=4,=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .66. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( )A . C . D .时,函数f (x )的最大值与最小值的和为( )A .a+3B .6C .2D .3﹣a7. 已知函数f (x )=Asin (ωx﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位8. 集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M , N ,P 的关系( )A .M P N =⊆B .N P M =⊆C .M N P =⊆D .M P N ==9. 若1sin()34πα-=,则cos(2)3πα+= A 、78- B 、14- C 、14 D 、78 10.设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-111.已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm12.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅B .{x|x >0}C .{x|x <1}D .{x|0<x <1}可. 二、填空题13.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影. 14.定义某种运算⊗,S=a ⊗b 的运算原理如图;则式子5⊗3+2⊗4= .15.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.16.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .17.在正方形ABCD 中,2==AD AB ,N M ,分别是边CD BC ,上的动点,当4AM AN ⋅=时,则MN 的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.18.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= . 三、解答题19.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6,(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前n 项和.。
沙湾区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知函数,,若,则()A1B2C3D-12.与函数y=x有相同的图象的函数是()A.B.C.D.3.定义在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f (2015)=()A.2 B.﹣2 C.﹣D.4.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为()A.B.C.D.5.若函数f(x)=﹣2x3+ax2+1存在唯一的零点,则实数a的取值范围为()A.[0,+∞)B.[0,3] C.(﹣3,0] D.(﹣3,+∞)6.若,则下列不等式一定成立的是()A .B.C.D.7. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤8. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞9. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .110.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 11.命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥112.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案二、填空题13.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下:甲说:“我们四人都没考好.”乙说:“我们四人中有人考的好.”丙说:“乙和丁至少有一人没考好.”丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的两人说对了.,对任意的m∈[﹣2,2],f(mx 14.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=3x x﹣2)+f(x)<0恒成立,则x的取值范围为_____.15.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是.16.已知数列的前项和是, 则数列的通项__________17.设函数f(x)=,则f(f(﹣2))的值为.18.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是.三、解答题19.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;(3)当m=0时,求证:f (x )≥x 2+x 3.20.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明1212x x +≥.21.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yy af x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值.22.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x=+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.23.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号. (Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.24.已知函数f(x)=(a>0)的导函数y=f′(x)的两个零点为0和3.(1)求函数f(x)的单调递增区间;(2)若函数f(x)的极大值为,求函数f(x)在区间[0,5]上的最小值.沙湾区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=12.【答案】D【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误B:与y=x的对应法则不一样,故B错误C:=x,(x≠0)与y=x的定义域R不同,故C错误D:,与y=x是同一个函数,则函数的图象相同,故D正确故选D【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题3.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f(x)是定义R上的奇函数,当0<x≤1时,f(x)=2x,所以f(﹣1)=﹣f(1)=﹣2,即f(2015)=﹣2.故选:B.【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f (3×672﹣1)=f(﹣1).4.【答案】B【解析】解:∵函数的周期为T==,∴ω=又∵函数的最大值是2,相应的x 值为∴=,其中k ∈Z取k=1,得φ=因此,f (x )的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin (ωx+φ)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题.5. 【答案】 D【解析】解:令f (x )=﹣2x 3+ax 2+1=0,易知当x=0时上式不成立;故a==2x ﹣,令g (x )=2x ﹣,则g ′(x )=2+=2,故g (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g (x )=2x ﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.6.【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D7.【答案】D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]异号,即f (x )为减函数.故②正确; ③表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]同号,即f (x )为增函数.故③不正确, ④⑤左边边的式子意义为x 1,x 2中点对应的函数值,即图中点B 的纵坐标值, 右边式子代表的是函数值得平均值,即图中点A 的纵坐标值,显然有左边小于右边, 故④不正确,⑤正确,综上,正确的结论为②⑤. 故选D .8. 【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
沙湾区高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.2.函数y=(x2﹣5x+6)的单调减区间为()A.(,+∞)B.(3,+∞)C.(﹣∞,)D.(﹣∞,2)3.在△ABC中,b=,c=3,B=30°,则a=()A.B.2C.或2D.24.已知函数f(x)的图象如图,则它的一个可能的解析式为()A.y=2B.y=log3(x+1)C.y=4﹣D.y=5.已知f(x)=,则“f[f(a)]=1“是“a=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件6.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则与()A.互相垂直B.同向平行C .反向平行D .既不平行也不垂直7. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .8. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为()A .a <c <bB .b <a <cC .c <a <bD .c <b <a 9. 在复平面内,复数所对应的点为,是虚数单位,则( )1zi+(2,1)-i z =A .B .C .D .3i--3i -+3i -3i +10.如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为()A .B .C .﹣D .﹣11.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( )A .0<a ≤B .0≤a ≤C .0<a <D .a >12.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是()A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)二、填空题13.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 . 14.设,记不超过的最大整数为,令.现有下列四个命题: x R ∈x []x {}[]x x x =-①对任意的,都有恒成立;x 1[]x x x -<≤②若,则方程的实数解为;(1,3)x ∈{}22sincos []1x x +=6π-③若(),则数列的前项之和为;3n n a ⎡⎤=⎢⎥⎣⎦n N *∈{}n a 3n 23122n n -④当时,函数的零点个数为,函数的0100x ≤≤{}22()sin []sin1f x x x =+-m {}()[]13xg x x x =⋅--零点个数为,则.n 100m n +=其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
沙湾区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 运行如图所示的程序框图,输出的所有实数对(x ,y )所对应的点都在某函数图象上,则该函数的解析式为( )A .y=x+2B .y= C .y=3x D .y=3x 32. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .43. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 4. 设集合M={x|x >1},P={x|x 2﹣6x+9=0},则下列关系中正确的是( ) A .M=P B .P ⊊M C .M ⊊P D .M ∪P=R 5.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A.11? B.12? C.13? D.14?6.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()A.7 B.9 C.11 D.137.在抛物线y2=2px(p>0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为()A.x=1 B.x=C.x=﹣1 D.x=﹣8.已知函数,,若,则()A1B2C3D-19.如图,三行三列的方阵中有9个数a ij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是()A.B.C.D.10.如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是()A .B .C .D .11.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种12.两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.65二、填空题13.已知函数f (x )=sinx ﹣cosx ,则= .14.已知关于 的不等式在上恒成立,则实数的取值范围是__________15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 16.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .17.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .18.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)三、解答题19.(本小题满分10分)选修4-1:几何证明选讲1111]CP=.如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长.(2)若连接OP并延长交圆O于,A B两点,CD OP20.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.2120142015CBA5场比赛中的投篮次数及投中次数如下表所示:3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.22.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.23.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.24.若点(p ,q ),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M (x ,y )横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M (x ,y )落在上述区域的概率?(2)试求方程x 2+2px ﹣q 2+1=0有两个实数根的概率.沙湾区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C.【点评】本题考查了程序框图的应用问题,是基础题目.2.【答案】A【解析】1111]试题分析:199515539()9215()52a aS aa aS a+===+.故选A.111]考点:等差数列的前项和.3.【答案】B【解析】111]试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.考点:几何体的结构特征.4.【答案】B【解析】解:P={x|x=3},M={x|x>1};∴P⊊M.故选B.5.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.7.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.8.【答案】A【解析】g(1)=a﹣1,若f[g(1)]=1,则f(a﹣1)=1,即5|a﹣1|=1,则|a﹣1|=0,解得a=19.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.10.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
沙湾区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为()A.y=x+2 B.y=C.y=3x D.y=3x32.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1 D.3.函数f(x)=tan(2x+),则()A.函数最小正周期为π,且在(﹣,)是增函数B.函数最小正周期为,且在(﹣,)是减函数C.函数最小正周期为π,且在(,)是减函数D.函数最小正周期为,且在(,)是增函数4. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )B.2C. D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 5. 命题“存在实数x ,使x >1”的否定是( ) A .对任意实数x ,都有x >1 B .不存在实数x ,使x ≤1 C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤16.10y -+=的倾斜角为( )A .150B .120C .60 D .307. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=8. 已知直线l :2y kx =+过椭圆)0(12222>>=+b ay x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L ,若L ≥e 的取值范围是( ) (A ) ⎥⎦⎤ ⎝⎛550, ( B ) 0⎛ ⎝⎦(C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540,9.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .10.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <12x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )A .4B .3C.2 D.111.抛物线x=﹣4y2的准线方程为()A.y=1 B.y=C.x=1 D.x=12.“a>0”是“方程y2=ax表示的曲线为抛物线”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要二、填空题13.S n=++…+=.14.已知数列{a n}的前n项和为S n,a1=1,2a n+1=a n,若对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,则实数x的取值范围为.15.已知z是复数,且|z|=1,则|z﹣3+4i|的最大值为.16.已知函数y=f(x),x∈I,若存在x0∈I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0∈I,使得f(f(x0))=x0,则称x0为函数y=f(x)的稳定点.则下列结论中正确的是.(填上所有正确结论的序号)①﹣,1是函数g(x)=2x2﹣1有两个不动点;②若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;③若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;④函数g(x)=2x2﹣1共有三个稳定点;⑤若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同.17.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围.18.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.三、解答题19.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.20.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.21.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且.(Ⅰ)求角B的大小;(Ⅱ)若b=6,a+c=8,求△ABC的面积.22.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留幸福感强 幸福感弱 总计 留守儿童 非留守儿童 总计1111](2)从5人中随机抽取2人进行家访, 求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++附表:20()P K k ≥ 0.050 0.010 0k3.8416.63523.已知命题p :x 2﹣3x+2>0;命题q :0<x <a .若p 是q 的必要而不充分条件,求实数a 的取值范围.24.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .沙湾区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上.故选:C.【点评】本题考查了程序框图的应用问题,是基础题目.2.【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.3.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.4.【答案】B【解析】设2(,)4yP y,则21||||yPFPA+=.又设214yt+=,则244y t=-,1t…,所以||||2PFPA==,当且仅当2t=,即2y=±时,等号成立,此时点(1,2)P±,PAF ∆的面积为11||||22222AF y ⋅=⨯⨯=,故选B.5. 【答案】C【解析】解:∵命题“存在实数x ,使x >1”的否定是 “对任意实数x ,都有x ≤1” 故选C6. 【答案】C 【解析】10y -+=,可得直线的斜率为k =tan 60αα=⇒=,故选C.1 考点:直线的斜率与倾斜角. 7. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .8. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =≥解得2165d ≤。
沙湾县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( )A5B4C3D22.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0 B.1 C.2 D.33.现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有()A.27种B.35种C.29种D.125种4.设a=sin145°,b=cos52°,c=tan47°,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.a<c<b5.+(a﹣4)0有意义,则a的取值范围是()A.a≥2 B.2≤a<4或a>4 C.a≠2 D.a≠46.函数y=e cosx(﹣π≤x≤π)的大致图象为()A.B.C. D.7.已知函数f(x)=xe x﹣mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是()A.B. C.D.8.已知a为常数,则使得成立的一个充分而不必要条件是()A.a>0 B.a<0 C.a>e D.a<e9.若函数f(x)=log a(2x2+x)(a>0且a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间为()A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)10.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .311.已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .12.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .二、填空题13.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .14.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .17.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .18.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .三、解答题19.(本小题满分12分)已知两点)0,1(1 F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若22211PQ F P F Q =+,求直线m 的方程.20.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.21.已知命题p:x2﹣2x+a≥0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围.22.已知函数f(x)=|x﹣a|.(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.23.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.0246.6357.879 10.8324.已知函数y=x+有如下性质:如果常数t>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h(x2)=g(x1)成立,求实数a的值.沙湾县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.2.【答案】C【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题;综上,以上3个命题中真命题的个数是2.故选:C3.【答案】B【解析】排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C52=20种结果,③当三台设备按1、1、1分成三份时分给三个社区时,有C53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B.【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.4.【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,∴y=sinx在(0,90°)单调递增,∴sin35°<sin38°<sin90°=1,∴a<b<c故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.5.【答案】B【解析】解:∵+(a﹣4)0有意义,∴,解得2≤a<4或a>4.故选:B.6.【答案】C【解析】解:函数f(x)=e cosx(x∈[﹣π,π])∴f(﹣x)=e cos(﹣x)=e cosx=f(x),函数是偶函数,排除B、D选项.令t=cosx,则t=cosx当0≤x≤π时递减,而y=e t单调递增,由复合函数的单调性知函数y=e cosx在(0,π)递减,所以C选项符合,故选:C.【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.7.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m<,,故选:C.【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.8.【答案】C【解析】解:由积分运算法则,得=lnx=lne﹣ln1=1因此,不等式即即a>1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a>e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.9.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.10.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.11.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.12.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.二、填空题13.【答案】1 2考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.14.【答案】4.【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.15.【答案】114.【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.16.【答案】25【解析】解:由题意,∠ABC=135°,∠A=75°﹣45°=30°,BC=25km,由正弦定理可得AC==25km,故答案为:25.【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键.17.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些; 乙的5个数据分布在78~99之间,分布相对分散些,方差大些; 所以甲的成绩相对稳定些. 故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.18.【答案】 {2,3,4} .【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2}, ∴C U A={3,4}, 又B={2,3},∴(C U A )∪B={2,3,4}, 故答案为:{2,3,4}三、解答题19.【答案】【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.(II )①若m 为直线1=x ,代入13422=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q直接计算知29PQ =,225||||2121=+Q F P F ,22211PQ F PF Q ?,1=x 不符合题意 ;②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-由⎪⎩⎪⎨⎧-==+)1(13422x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,222143124k k x x +-=⋅由22211PQ F P F Q =+得,110F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k代入得0438)1()143124)(1(222222=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(773-±=x y20.【答案】【解析】解:(1)根据题意,得; 该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体, 其表面积为S=×4π×2×2=8π, 或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)作ME ⊥AC ,EF ⊥BC ,连结FM ,易证FM ⊥BC , ∴∠MFE 为二面角M ﹣BC ﹣D 的平面角, 设∠CAM=θ,∴ EM=2sin θ,EF=,∵tan ∠MFE=1,∴,∴tan=,∴,∴CM=2.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.21.【答案】【解析】解:若P是真命题.则△=4﹣4a≤0∴a≥1;…(3分)若q为真命题,则方程x2+2ax+2﹣a=0有实根,∴△=4a2﹣4(2﹣a)≥0,即,a≥1或a≤﹣2,…(6分)依题意得,当p真q假时,得a∈ϕ;…(8分)当p假q真时,得a≤﹣2.…(10分)综上所述:a的取值范围为a≤﹣2.…(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.22.【答案】【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,∵f(x)≤2的解集为[0,4],∴,∴a=2.(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,∵∃x0∈R,使得,即成立,∴4m+m2>[f(x)+f(x+5)]min,即4m+m2>5,解得m<﹣5,或m>1,∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).23.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j(j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.。
沙湾区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .2032. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=3. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直4. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)5. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2) 6. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0)D .(0,1)7. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88%8. 设a ,b为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .29. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .2710.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π11.已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( ) A.﹣=1B .﹣y 2=1 C .x 2﹣=1 D.﹣=112.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<二、填空题13.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.14.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 . 15.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 17.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .18.已知点E 、F 分别在正方体 的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题19.已知在△ABC 中,A (2,4),B (﹣1,﹣2),C (4,3),BC 边上的高为AD .(1)求证:AB ⊥AC ;(2)求向量.20.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.21.在平面直角坐标系中,已知M (﹣a ,0),N (a ,0),其中a ∈R ,若直线l 上有且只有一点P ,使得|PM|+|PN|=10,则称直线l 为“黄金直线”,点P 为“黄金点”.由此定义可判断以下说法中正确的是①当a=7时,坐标平面内不存在黄金直线; ②当a=5时,坐标平面内有无数条黄金直线;③当a=3时,黄金点的轨迹是个椭圆;④当a=0时,坐标平面内有且只有1条黄金直线.22.已知函数f (x )=|x ﹣m|,关于x 的不等式f (x )≤3的解集为[﹣1,5]. (1)求实数m 的值;(2)已知a ,b ,c ∈R ,且a ﹣2b+2c=m ,求a 2+b 2+c 2的最小值.23.(本小题满分10分)选修4-4:坐标系与参数方程 已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为22x t y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.24.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.沙湾区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.2. 【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .3. 【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 4. 【答案】C 【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆. 又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.5. 【答案】C【解析】解:∵双曲线渐近线为bx ±ay=0,与圆x 2+(y ﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a 2<b 2,∴c 2=a 2+b 2>4a 2,∴e=>2 故选:C .【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.6. 【答案】C【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,又f (﹣1)=﹣1<0,f (0)=30+0=1>0,∴f (﹣1)f (0)<0,可知:函数f (x )的零点所在的区间是(﹣1,0). 故选:C .【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.7. 【答案】B 【解析】8. 【答案】C【解析】解:,因此.a ﹣b=1.故选:C .9. 【答案】C 【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21c os 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主. 10.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.11.【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a 2+b 2=c 2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y 2=1.故选B .【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.12.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]二、填空题13.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.14.【答案】 .【解析】解:∵抛物线C 方程为y 2=4x ,可得它的焦点为F (1,0), ∴设直线l 方程为y=k (x ﹣1),由,消去x 得.设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=,y 1y 2=﹣4①. ∵|AF|=3|BF|,∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22=﹣4, 消去y2得k 2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.15.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.16.【答案】2【解析】17.【答案】6.【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,∴f(x)﹣2x=a,即f(x)=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.18.【答案】【解析】延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为,所以为面AEF与面ABC所成的二面角的平面角。
沙湾县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数2. 已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π 3. 设复数z 满足z (1+i )=2(i 为虚数单位),则z=( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i4. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .25. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直6. 命题“若a >b ,则a ﹣8>b ﹣8”的逆否命题是( ) A .若a <b ,则a ﹣8<b ﹣8 B .若a ﹣8>b ﹣8,则a >bC .若a ≤b ,则a ﹣8≤b ﹣8D .若a ﹣8≤b ﹣8,则a ≤b7. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(-9. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要10.不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1} 11.数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=C .(1)2n n n a += D .21n a n =+ 12.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.08二、填空题13.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为_________.16.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .17.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ . 18x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.三、解答题19.已知等差数列的公差,,. (Ⅰ)求数列的通项公式; (Ⅱ)设,记数列前n 项的乘积为,求的最大值.20.已知命题p :方程表示焦点在x 轴上的双曲线.命题q :曲线y=x 2+(2m ﹣3)x+1与x 轴交于不同的两点,若p ∧q 为假命题,p ∨q 为真命题,求实数m 的取值范围.21.(本小题满分12分)已知向量,a b 满足:||1a =,||6b =,()2a b a ∙-=. (1)求向量与的夹角; (2)求|2|a b -.22.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.23.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.24.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.沙湾县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a ∈R ,函数y=π”是增函数的否定是:“∃a ∈R ,函数y=π”不是增函数. 故选:C .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2. 【答案】D【解析】:()sin )(tan f x a x x x ϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=-对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=3. 【答案】A【解析】解:∵z (1+i )=2,∴z===1故选:A .4. 【答案】A 【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A .考点:几何体的结构特征. 5. 【答案】B【解析】解:∵ =(1,0,2),=(﹣2,0,4), ∴=﹣2, ∴∥, 因此l ⊥α. 故选:B .6.【答案】D【解析】解:根据逆否命题和原命题之间的关系可得命题“若a>b,则a﹣8>b﹣8”的逆否命题是:若a﹣8≤b ﹣8,则a≤b.故选D.【点评】本题主要考查逆否命题和原命题之间的关系,要求熟练掌握四种命题之间的关系.比较基础.7.【答案】A【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0,故选:A.【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题8.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选9.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m <5,但此时方程+=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m <5”的充分不必要条件.故选:C .【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.10.【答案】B【解析】解:∵x (x ﹣1)<2,∴x 2﹣x ﹣2<0,即(x ﹣2)(x+1)<0, ∴﹣1<x <2,即不等式的解集为{x|﹣1<x <2}. 故选:B11.【答案】C 【解析】试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)2n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 12.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D .【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.二、填空题13.【答案】 {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .【解析】解:图中的阴影部分的点设为(x,y)则{x,y)|﹣1≤x≤0,﹣≤y≤0或0≤x≤2,0≤y≤1}={(x,y)|xy>0且﹣1≤x≤2,﹣≤y≤1}故答案为:{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.14.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.15.【答案】20x y --=【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.16.【答案】 [1,)∪(9,25] .【解析】解:∵集合,得 (ax ﹣5)(x 2﹣a )<0,当a=0时,显然不成立, 当a >0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得 9<a ≤25, 当a <0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.17.【答案】1-1,3] 【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈≤≤≤=1-1,3]考点:集合运算 【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 18.【答案】 7.5【解析】解:∵由表格可知=9, =4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x ﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.三、解答题19.【答案】【解析】【知识点】等差数列【试题解析】(Ⅰ)由题意,得解得或(舍).所以.(Ⅱ)由(Ⅰ),得.所以.所以只需求出的最大值.由(Ⅰ),得.因为,所以当,或时,取到最大值.所以的最大值为.20.【答案】【解析】解:∵方程表示焦点在x轴上的双曲线,∴⇒m>2若p为真时:m>2,∵曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,则△=(2m﹣3)2﹣4>0⇒m>或m,若q真得:或,由复合命题真值表得:若p∧q为假命题,p∨q为真命题,p,q命题一真一假若p真q假:;若p假q真:∴实数m 的取值范围为:或.【点评】本题借助考查复合命题的真假判定,考查了双曲线的标准方程,关键是求得命题为真时的等价条件.21.【答案】(1)3π;(2)27. 【解析】试题分析:(1)要求向量,a b 的夹角,只要求得这两向量的数量积a b ⋅,而由已知()2a b a ∙-=,结合数量积的运算法则可得a b ⋅,最后数量积的定义可求得其夹角;(2)求向量的模,可利用公式22a a =,把考点:向量的数量积,向量的夹角与模.【名师点睛】本题考查向量的数量积运算及特殊角的三角函数值,求解两个向量的夹角的步骤:第一步,先计算出两个向量的数量积;第二步,分别计算两个向量的模;第三步,根据公式cos ,a b a b a b⋅<>=求得这两个向量夹角的余弦值;第四步,根据向量夹角的范围在[0,]π内及余弦值求出两向量的夹角. 22.【答案】【解析】解:(Ⅰ)证明:取AC 中点O ,连接PO ,BO ,由于四边形ABCD 为菱形,∴PA=PC ,BA=BC ,∴PO ⊥AC ,BO ⊥AC ,又PO ∩BO=O ,∴AC ⊥平面POB ,又PB ⊂平面POB ,∴AC ⊥PB .(Ⅱ)∵平面PAC ⊥平面ABC ,平面PAC ∩平面ABC=AC ,PO ⊂平面PAC , PO ⊥AC ,∴PO ⊥面ABC ,∴OB ,OC ,OP 两两垂直,故以O 为原点,以方向分别为x ,y ,z 轴正方向建立空间直角坐标系,∵∠ABC=60°,菱形ABCD的边长为2,∴,,设平面PBC 的法向量,直线AB 与平面PBC 成角为θ,∴,取x=1,则,于是,∴,∴直线AB与平面PBC成角的正弦值为.(Ⅲ)法一:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),∴,∴,当且仅当,即时取等号,∴四面体PABC体积的最大值为.法二:设∠ABC=∠APC=α,α∈(0,π),∴,,又PO⊥平面ABC,∴=(),设,则,且0<t<1,∴,∴当时,V'PABC>0,当时,V'PABC<0,∴当时,V PABC取得最大值,∴四面体PABC体积的最大值为.法三:设PO=x,则BO=x,,(0<x<2)又PO⊥平面ABC,∴,∵,当且仅当x2=8﹣2x2,即时取等号,∴四面体PABC体积的最大值为.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养.23.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A1D∩DC=D,∴DE⊥平面A1DC,∵DE∥BC,∴BC⊥平面A1DC,∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0).则,,设平面A1BC的法向量为则,解得,即则BE与平面所成角的正弦值为(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),∴==(0<x<6),即当x=3时,A1B长度达到最小值,最小值为.a=;(2)3.6万;(3)2.9.24.【答案】(1)0.3【解析】(3)由图可得月均用水量不低于2.5吨的频率为:()0.50.080.160.30.40.520.7385%⨯++++=<;月均用水量低于3吨的频率为:()0.50.080.160.30.40.520.30.8885%⨯+++++=>;则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.1 考点:频率分布直方图.。
沙湾县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.2.复数的虚部为( )A .﹣2B .﹣2iC .2D .2i3. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.B. C. D.5.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( ) A .2 B .4C .1D .﹣16. 函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a <C .<a <1D .a ≤0或a >17. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞8. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( ) A.{}|12x x <≤ B.{}|21x x -≤< C. {}|21x x -≤≤ D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.9. 如图,已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上一点,直线PF 2交y 轴于点A ,△AF 1P 的内切圆切边PF 1于点Q ,若|PQ|=1,则双曲线的渐近线方程为( )A .y=±xB .y=±3xC .y=±xD .y=±x10.命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1 C .2 D .311.下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥12.若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a二、填空题13.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .14.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .15.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________.16.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .17.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .18.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .三、解答题19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.20.在直角坐标系xOy 中,圆C 的参数方程(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是ρ(sin θ+)=3,射线OM :θ=与圆C 的交点为O ,P ,与直线l的交点为Q ,求线段PQ 的长.21.已知函数f(x0=.(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间;(2)解不等式f(x﹣1)≤﹣.22.已知不等式的解集为或(1)求,的值(2)解不等式.23.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.24.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.沙湾县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.2. 【答案】C 【解析】解:复数===1+2i 的虚部为2.故选;C .【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.3. 【答案】B【解析】解:当x=﹣1时,满足x ≠0,但x >0不成立. 当x >0时,一定有x ≠0成立, ∴“x ≠0”是“x >0”是的必要不充分条件. 故选:B .4. 【答案】 D【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C 2的实轴长为2m ,焦距为2n ,则2m=|AF 2|﹣|AF 1|=y ﹣x=2,2n=2c=2, ∴双曲线C 2的离心率e===.故选D .【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.5.【答案】A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P(x,y),记F1(﹣3,0),F2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y﹣15,又∵,∴5﹣4y2=20,解得:y=或y=(舍),∴P(3,),∴直线PF1方程为:5x﹣12y+15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.6. 【答案】D【解析】解:∵f (1)=lg1=0, ∴当x ≤0时,函数f (x )没有零点,故﹣2x +a >0或﹣2x+a <0在(﹣∞,0]上恒成立, 即a >2x ,或a <2x在(﹣∞,0]上恒成立,故a >1或a ≤0; 故选D .【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.7. 【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
沙湾县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .132. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是()A .B .C .D .3. 若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x 31++x y y x +A . B . C . D .1-3-34. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( )A .第一象限B .第二象限C .第三象限D .第四象限5. 下列关系式中,正确的是( )A .∅∈{0}B .0⊆{0}C .0∈{0}D .∅={0}6. 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .B .C .D .7. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]8. 若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .129. 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱111ABC A B C -4cm 10cm A 柱的侧面,绕行两周到达点的最短路线的长为( )1AA .B .C .D .16cm 26cm10.执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x =x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.11.已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅12.若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=()A.1B.2C.3D.4二、填空题13.在(1+x)(x2+)6的展开式中,x3的系数是 .14.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .15.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .16.下图是某算法的程序框图,则程序运行后输出的结果是____.17.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .18.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C 相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .三、解答题19.在△ABC 中,内角A ,B ,C 的对边分别为a 、b 、c ,且bsinA=acosB .(1)求B ;(2)若b=2,求△ABC 面积的最大值.20.一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海A 45B 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向75一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.C ABC B21.已知a>b>0,求证:.22.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)一个周期内的一系列对应值如表:x0y10﹣1(1)求f(x)的解析式;(2)求函数g(x)=f(x)+sin2x的单调递增区间.23.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD 与平面PAE 是否垂直?若垂直,请加以证明;若不垂直,请说明理由.24.(本小题满分10分)选修:几何证明选讲41- 如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相PA O A P C B ,AP CD //BC AD , 交于点,为上一点,且.E F CE EC EF DE ⋅=2(Ⅰ)求证:;P EDF ∠=∠(Ⅱ)若,求的长.2,3,2:3:===EF DE BE CE PA沙湾县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.2.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.3.【答案】D【解析】考点:简单线性规划.4.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B5.【答案】C【解析】解:对于A∅⊆{0},用“∈”不对,对于B和C,元素0与集合{0}用“∈”连接,故C正确;对于D,空集没有任何元素,{0}有一个元素,故不正确.6.【答案】A【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.7.【答案】D【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选D. 1()12201620162=⨯⨯=考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称()311533212f x x x x =-+-性和的.第Ⅱ卷(非选择题共90分)8. 【答案】A 【解析】解:复数z===.由条件复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,解得a=3.故选:A .【点评】本题考查复数的代数形式的混合运算,考查计算能力. 9. 【答案】D 【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.10.【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则3x =y 23x =y 3(*)nx n N =∈y 由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D .31000nx =≥7n ≥x 11.【答案】B【解析】解:由题意可得,A={x|﹣1<x <2},∵B={x|﹣1<x <1},在集合B 中的元素都属于集合A ,但是在集合A 中的元素不一定在集合B 中,例如x=∴B ⊊A .故选B . 12.【答案】A【解析】解:∵f (x )=acosx ,g (x )=x 2+bx+1,∴f ′(x )=﹣asinx ,g ′(x )=2x+b ,∵曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,∴f (0)=a=g (0)=1,且f ′(0)=0=g ′(0)=b ,即a=1,b=0.∴a+b=1.故选:A .【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.二、填空题13.【答案】 20 .【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.14.【答案】 甲 .【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.15.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1),∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3,又a 4a 6=(a 5﹣d )(a 5+d )=9﹣d 2=8,∴d 2=1,解得:d=1或d=﹣1(舍去)∴a n =a 5+(n ﹣5)×1=3+(n ﹣5)=n ﹣2.∴a 1=﹣1,∴S 10=10a 1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n }为等差数列,并求得a n =2n ﹣1是关键,考查理解与运算能力,属于中档题. 16.【答案】27【解析】由程序框图可知:符合,跳出循环.43 17.【答案】 (﹣∞,﹣1) .【解析】解:函数的定义域为{x|x >3或x <﹣1}令t=x 2﹣2x ﹣3,则y=因为y=在(0,+∞)单调递减t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1) 18.【答案】 .【解析】解:∵O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C 相交于A ,B 两点,S 01627n1234直线AO与l相交于D,∴直线AB的方程为y=(x﹣),l的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质. 三、解答题19.【答案】【解析】(本小题满分12分)解:(1)∵bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,∴B=…(2)△ABC的面积.由已知及余弦定理,得.又a 2+c 2≥2ac ,故ac ≤4,当且仅当a=c 时,等号成立.因此△ABC 面积的最大值为…20.【答案】(1)小时;(223【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.C 在中,,,,.ABC ∆4575120BAC ∠=+=10AB =9AC t =21BC t =由余弦定理得:,2222cos BC AB AC AB AC BAC =+-∠A A所以,2221(21)10(9)2109()2t t t =+-⨯⨯⨯-化简得,解得或(舍去).2369100t t --=23t =512t =-所以,海难搜救艇追上客轮所需时间为小时.23(2)由,.2963AC =⨯=221143BC =⨯=在中,由正弦定理得.ABC ∆sin 6sin120sin 14AC BAC B BC∠====A A 所以角B 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即,AC BC 可求解此类问题,其中正确画出图形是解答的关键.21.【答案】【解析】解:∵又==∵a>b>0,∴,所以上式大于1,故成立,同理可证22.【答案】【解析】(本题满分12分)解:(1)由表格给出的信息知,函数f(x)的周期为T=2(﹣0)=π.所以ω==2,由sin(2×0+φ)=1,且0<φ<2π,所以φ=.所以函数的解析式为f(x)=sin(2x+)=cos2x…6分(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),令2k≤2x+≤2k,k∈Z则得kπ﹣≤x≤kπ+,k∈Z故函数g(x)=f(x)+sin2x的单调递增区间是:,k∈Z…12分【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查.23.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.24.【答案】【解析】【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.。
沙湾区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)2. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1123. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)5. “x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <46. 已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .7. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.8. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:分组[70,80[80,90[90,100[100,110乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,99. 下列说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .命题“∃x 0∈R ,x+x 0﹣1<0”的否定是“∀x ∈R ,x 2+x ﹣1>0”C .命题“若x=y ,则sin x=sin y ”的逆否命题为假命题D .若“p 或q ”为真命题,则p ,q 中至少有一个为真命题10.已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.11.命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1C .2D .312.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值二、填空题13.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x1,x2,…,x90和y1,y2,…,y90,在90组数对(x i,y i)(1≤i≤90,i∈N*)中,经统计有25组数对满足,则以此估计的π值为.14.在(1+x)(x2+)6的展开式中,x3的系数是.15.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_______元.16.已知f(x)=,x≥0,若f1(x)=f(x),f n+1(x)=f(f n(x)),n∈N+,则f2015(x)的表达式为.17.集合A={x|﹣1<x<3},B={x|x<1},则A∩B=.18.曲线y=x+e x在点A(0,1)处的切线方程是.三、解答题19.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.20.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.21.命题p :关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立,q :函数f (x )=(3﹣2a )x 是增函数.若p ∨q 为真,p ∧q 为假.求实数a 的取值范围.22.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2. (Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =(n ∈N *),求证:b 1+b 2+…+b n <.23.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.24.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.沙湾区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.2. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 3. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面. 故选D【点评】本题主要考查在空间内两条直线的位置关系.4. 【答案】A 【解析】解:复数Z===(1+2i )(1﹣i )=3+i 在复平面内对应点的坐标是(3,1).故选:A .【点评】本题考查了复数的运算法则、几何意义,属于基础题.5. 【答案】B【解析】解:不等式x 2﹣4x <0整理,得x (x ﹣4)<0 ∴不等式的解集为A={x|0<x <4},因此,不等式x 2﹣4x <0成立的一个充分不必要条件,对应的x 范围应该是集合A 的真子集.写出一个使不等式x 2﹣4x <0成立的充分不必要条件可以是:0<x <2,故选:B .6.【答案】A【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.∵当x>0时,t==在x=e时,t有最小值为∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,因此,当x>0时,函数图象恒在x轴上方,排除D选项故选A7.【答案】D8.【答案】B【解析】1从甲校抽取110× 1 200=60人,1 200+1 000=50人,故x=10,y=7.从乙校抽取110× 1 0001 200+1 0009.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,因此不正确;B.命题“∃x0∈R,x+x0﹣1<0”的否定是“∀x∈R,x2+x﹣1≥0”,因此不正确;C.命题“若x=y,则sin x=sin y”正确,其逆否命题为真命题,因此不正确;D.命题“p或q”为真命题,则p,q中至少有一个为真命题,正确.故选:D.10.【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.11.【答案】C【解析】解:命题“设a 、b 、c ∈R ,若ac 2>bc 2,则c 2>0,则a >b ”为真命题; 故其逆否命题也为真命题;其逆命题为“设a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”在c=0时不成立,故为假命题 故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个 故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.12.【答案】 D【解析】解:∵在正方体中,AC ⊥BD ,∴AC ⊥平面B 1D 1DB ,BE ⊂平面B 1D 1DB ,∴AC ⊥BE ,故A 正确; ∵平面ABCD ∥平面A 1B 1C 1D 1,EF ⊂平面A 1B 1C 1D 1,∴EF ∥平面ABCD ,故B 正确;∵EF=,∴△BEF 的面积为定值×EF ×1=,又AC ⊥平面BDD 1B 1,∴AO 为棱锥A ﹣BEF 的高,∴三棱锥A ﹣BEF 的体积为定值,故C 正确;∵利用图形设异面直线所成的角为α,当E 与D 1重合时sin α=,α=30°;当F 与B 1重合时tan α=,∴异面直线AE 、BF 所成的角不是定值,故D 错误; 故选D .二、填空题13.【答案】 .【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.14.【答案】20.【解析】解:(1+x)(x2+)6的展开式中,x3的系数是由(x2+)6的展开式中x3与1的积加上x2与x的积组成;又(x2+)6的展开式中,通项公式为T r+1=•x12﹣3r,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x3的系数是=20.故答案为:20.15.【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。
沙湾县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.1992.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()A.1 B.2 C.3 D.43.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.34.设偶函数f(x)在[0,+∞)单调递增,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(,1)B.(﹣∞,)∪(1,+∞)C.(﹣,)D.(﹣∞,﹣)∪(,+∞)5.已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)6.圆心为(1,1)且过原点的圆的方程是()A.2=1 B.2=1 C.2=2 D.2=27.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.8.不等式的解集为()A.或B.C .或D .9. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个10.(文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 11.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)12.已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π二、填空题13.已知函数f (x )=恰有两个零点,则a 的取值范围是 .14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)15.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.16.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.17.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.18.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=.三、解答题19.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.20.已知函数f(x)=,求不等式f(x)<4的解集.21.如图所示,在正方体1111ABCD A BC D 中. (1)求11AC 与1B C 所成角的大小;(2)若E 、F 分别为AB 、AD 的中点,求11AC 与EF 所成角的大小.22.在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.已知直线l 过点P (1,0), 斜率为,曲线C :ρ=ρcos2θ+8cos θ.(Ⅰ)写出直线l 的一个参数方程及曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交于A ,B 两点,求|PA|•|PB|的值.23.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .24.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。
沙湾区二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A .B .C .D .2. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i3. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( )A .6B .9C .36D .724. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .455. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .6. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2-B.1-C. 1D.2【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.7. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)8. 函数y=2|x|的图象是( )A .B .C .D .9. 独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%10.已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i11.已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA B A.直线 B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.二、填空题13.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .14.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .15.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .16.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .17.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________. 18.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .三、解答题19.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.20.已知等比数列中,。
沙湾县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数2. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .3. O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .24. 定义在R 上的奇函数f (x )满足f (x+3)=f (x ),当0<x ≤1时,f (x )=2x ,则f (2015)=( )A .2B .﹣2C .﹣D .5. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0C .1D .﹣1或1 6. 已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-547. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .8. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n =,则35a a +等于( )A .259B .2516C .6116D .31159. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D. 10.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A .B .C . +D . ++111.如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.412.下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x xx = D 、44550x x -=二、填空题13.已知x 是400和1600的等差中项,则x= .14.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)15.函数f (x )=的定义域是 .16.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .17.若的展开式中含有常数项,则n 的最小值等于 .18.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .三、解答题19.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.20.已知等差数列{a n }满足a 1+a 2=3,a 4﹣a 3=1.设等比数列{b n }且b 2=a 4,b 3=a 8 (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)设c n =a n +b n ,求数列{c n }前n 项的和S n .21.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.22.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.23.若已知,求sinx 的值.24.等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且S n≤S4。
沙湾区外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .42. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()3. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .134. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D . 5. 设0<a <b 且a+b=1,则下列四数中最大的是( )A.a2+b2B.2ab C.a D.6.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则与()A.互相垂直B.同向平行C.反向平行D.既不平行也不垂直7.某程序框图如图所示,则输出的S的值为()A.11 B.19 C.26 D.578.设=(1,2),=(1,1),=+k,若,则实数k的值等于()A.﹣B.﹣C.D.9.若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是()A.¬p为假命题B.¬q为假命题C.p∨q为假命题D.p∧q真命题10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的部分图象如图所示,则函数y=f(x)对应的解析式为()A.B. C.D.11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,,A=60°,则满足条件的三角形个数为()A.0 B.1 C.2 D.以上都不对12.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=()A .B .C .D .二、填空题13.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .14.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.15.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .16.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力. 17.函数y=lgx 的定义域为 .18.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .三、解答题19.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;(3)判断函数f (x )在(1,+∞)上的单调性,并证明.20.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数. (1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;(2)若f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a<2,求函数f(x)的解析式.21.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.22.已知向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),求向量,的夹角θ.23.A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若B⊆A,求a.24.已知函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求θ的最小值.(3)对任意的x∈[,]时,方程f(x)=m有两个不等根,求m的取值范围.沙湾区外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),∴=2,∴p=4.故选D.【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.2.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.3.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.4.【答案】A【解析】考点:二元一次不等式所表示的平面区域.5.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A6.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.7.【答案】C【解析】解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k>3,k=3,S=11不满足条件k>3,k=4,S=26满足条件k>3,退出循环,输出S的值为26.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.8.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.9.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.10.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.11.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.12.【答案】A【解析】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)=故选A.二、填空题13.【答案】12.【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15﹣x)人,只喜爱乒乓球的有(10﹣x)人,由此可得(15﹣x)+(10﹣x)+x+8=30,解得x=3,所以15﹣x=12,即所求人数为12人,故答案为:12.14.【答案】24【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==24海里,则这时船与灯塔的距离为24海里.故答案为:24.15.【答案】异面.【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面.故答案为:异面.16.【答案】±.【解析】分析题意得,问题等价于264++≤只有一解,x axx ax++≤只有一解,即220∴280∆=-=⇒=±,故填:±.a a17.【答案】{x|x>0}.【解析】解:对数函数y=lgx的定义域为:{x|x>0}.故答案为:{x|x>0}.【点评】本题考查基本函数的定义域的求法.18.【答案】1.【解析】解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)∵f(x)=2x﹣,且f(2)=,∴4﹣=,∴a=﹣1;(2分)(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)∵=,∴函数为奇函数.…(6分)(3)函数f(x)在(1,+∞)上是增函数,…(7分)任取x1,x2∈(1,+∞),不妨设x1<x2,则=…(10分)∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(1,+∞)上是增函数…(12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.20.【答案】【解析】解:(1)由导数的几何意义f′(a+1)=12∴3(a+1)2﹣3a(a+1)=12∴3a=9∴a=3(2)∵f′(x)=3x2﹣3ax,f(0)=b∴由f′(x)=3x(x﹣a)=0得x1=0,x2=a∵x∈[﹣1,1],1<a<2∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)∵f(0)=b,∴b=1∵,∴f(﹣1)<f(1)∴f(﹣1)是函数f(x)的最小值,∴∴∴f(x)=x3﹣2x2+1【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.21.【答案】【解析】解:(Ⅰ)函数f(x)的定义域为(0,+∞),且f′(x)=﹣=.当a≤0时,f′(x)>0,所以f(x)在区间(0,+∞)内单调递增;当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).综上述:a≤0时,f(x)的单调递增区间是(0,+∞);a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.因此,a=1.(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.猜想当n≥3,n∈N时,2<a n<.下面用数学归纳法进行证明.①当n=3时,a3=+ln2,故2<a3<.成立.②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.则当n=k+1时,a k+1=1++lna k,由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,h()=1++ln<1++1<.故2<a k+1<成立,即当n=k+1时,不等式成立.根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.综上可得,n>1时[a n]=2.【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.22.【答案】【解析】解:∵向量(+3)⊥(7﹣5)且(﹣4)⊥(7﹣2),∴=0,+8=0,∴=,化为,代入=0,化为:+16﹣cos2θ,∴,∴θ=或.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.23.【答案】【解析】解:解:集合A={x|x2﹣3x+2=0}={1,2}∵B⊆A,∴(1)B=∅时,a=0(2)当B={1}时,a=2(3))当B={2}时,a=1故a值为:2或1或0.24.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.。
沙湾县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .1992. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=()A .1B .2C .3D .43. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A .0B .1C .2D .34. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .(,1)B .(﹣∞,)∪(1,+∞)C .(﹣,)D .(﹣∞,﹣)∪(,+∞)5. 已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=()A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4) 6. 圆心为(1,1)且过原点的圆的方程是()A .2=1B .2=1C .2=2D .2=27. 某几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .16163π-32163π-1683π-3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.8. 不等式的解集为( )A .或B .C .或D .9. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( )A .1个B .2个C .3个D .4个10.(文科)要得到的图象,只需将函数的图象( )()2log 2g x x =()2log f x x =A .向左平移1个单位 B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位11.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是()A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)12.已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π二、填空题13.已知函数f (x )=恰有两个零点,则a 的取值范围是 .14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)15.某城市近10年居民的年收入x 与支出y 之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是 亿元.16.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.17.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6= .18.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则= .三、解答题19.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份x12345销售量y(百件)44566(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.20.已知函数f(x)=,求不等式f(x)<4的解集.21.如图所示,在正方体中.1111ABCD A B C D (1)求与所成角的大小;11A C 1B C (2)若、分别为、的中点,求与所成角的大小.E F AB AD 11A C EF22.在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.已知直线l 过点P (1,0),斜率为,曲线C :ρ=ρcos2θ+8cos θ.(Ⅰ)写出直线l 的一个参数方程及曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,求|PA|•|PB|的值. 23.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.ABCD(1)求证:平面;//PQ SAD (2)求证:平面平面.⊥SAC SEQ 24.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。
沙湾区第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.下列函数中,为偶函数的是()A.y=x+1B.y=C.y=x4D.y=x52.已知点P(1,﹣),则它的极坐标是()A.B.C.D.P Q R S3.下列正方体或四面体中,、、、分别是所在棱的中点,这四个点不共面的一个图形是()4.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()A.i≥7?B.i>15?C.i≥15?D.i>31?5.有下列四个命题:①“若a2+b2=0,则a,b全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q≤1”,则x2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为()A .①②B .①③C .②③D .③④6. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( )A .3,6,9,12,15,18B .4,8,12,16,20,24C .2,7,12,17,22,27D .6,10,14,18,22,267. (2014新课标I )如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 做直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数f (x ),则y=f (x )在[0,π]的图象大致为()A .B .C .D .8. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <39. 阅读右图所示的程序框图,若,则输出的的值等于( )8,10m n ==S A .28B .36C .45D .12010.已知a 为常数,则使得成立的一个充分而不必要条件是()A .a >0B .a <0C .a >eD .a <e11.已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是()A .公差为a 的等差数列B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列12.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm二、填空题13.定积分sintcostdt= .14.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .15.(x ﹣)6的展开式的常数项是 (应用数字作答).16.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 17.已知i 是虚数单位,复数的模为 .18.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题19.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点,求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD .21.如图,四棱锥中,,P ABC -,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====M 为线段上一点,为的中点.AD 2,AM MD N =PC(1)证明:平面;//MN PAB (2)求直线与平面所成角的正弦值;AN PMN22.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cosθ的值.23.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t )=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.24.已知椭圆E:=1(a>b>0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E的方程;(Ⅱ)经过点P(﹣2,0)分别作斜率为k1,k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN 与y轴垂直时,求k1k2的值.沙湾区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(﹣x)=﹣f(x),是奇函数,对于C,定义域为R,满足f(x)=f(﹣x),则是偶函数,对于D,满足f(﹣x)=﹣f(x),是奇函数,故选:C.【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.2.【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,即点P的极坐标为(2,),故选C.【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.3.【答案】D【解析】考点:平面的基本公理与推论.4.【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i≥15?故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.5.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.6.【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为30÷6=5,只有选项C中编号间隔为5,故选:C.7.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C .【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用. 8. 【答案】A【解析】解:当x >2时,x >1成立,即x >1是x >2的必要不充分条件是,x <1是x >2的既不充分也不必要条件,x >3是x >2的充分条件,x <3是x >2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础. 9. 【答案】C【解析】解析:本题考查程序框图中的循环结构.,当121123mnn n n n m S C m---+=⋅⋅⋅⋅= 8,10m n ==时,,选C .82101045mn C C C ===10.【答案】C【解析】解:由积分运算法则,得=lnx=lne ﹣ln1=1因此,不等式即即a >1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a >e 故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.11.【答案】A 【解析】解:∵,∴a n =S (n )﹣s (n ﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用12.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.二、填空题13.【答案】 .【解析】解:0sintcostdt=0sin2td(2t)=(﹣cos2t)|=×(1+1)=.故答案为:14.【答案】 .【解析】解:∵=2,由正弦定理可得:,即c=2a.b=2a,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.15.【答案】 ﹣160 【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.16.【答案】 9 .【解析】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故答案为:9.17.【答案】 .【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.18.【答案】1【解析】三、解答题19.【答案】【解析】20.【答案】【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.21.【答案】(1)证明见解析;(2.【解析】试题解析:(2)在三角形中,由,得AMC 22,3,cos 3AM AC MAC ==∠=,2222cos 5CM AC AM AC AN MAC =+-∠=A A ,则,222AM MC AC +=AM MC ⊥∵底面平面,PA ⊥,ABCD PA ⊂PAD ∴平面平面,且平面平面,ABCD ⊥PAD ABCD PAD AD =∴平面,则平面平面,CM ⊥PAD PNM ⊥PAD 在平面内,过作,交于,连结,则为直线与平面所成角。
沙湾区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( )A .10B .9C .8D .72. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.3. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 4. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④5. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.6. 复数=( )A .B .C .D .7. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.8. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 29. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .10.=( )A .﹣iB .iC .1+iD .1﹣i11.若函数是R 上的单调减函数,则实数a 的取值范围是( )A .(﹣∞,2)B .C .(0,2)D .12.直线2x+y+7=0的倾斜角为( ) A .锐角 B .直角 C .钝角 D .不存在二、填空题13.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.16.给出下列命题:①把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣);②若α,β是第一象限角且α<β,则cosα>cosβ;③x=﹣是函数y=cos(2x+π)的一条对称轴;④函数y=4sin(2x+)与函数y=4cos(2x﹣)相同;⑤y=2sin(2x﹣)在是增函数;则正确命题的序号.17.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x1,x2,…,x90和y1,y2,…,y90,在90组数对(x i,y i)(1≤i≤90,i∈N*)中,经统计有25组数对满足,则以此估计的π值为.18.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为.三、解答题19.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f (x )在区间(0,2)内至少有一个零点; (3)设x 1,x 2是函数f (x )的两个零点,求|x 1﹣x 2|的取值范围.20.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.21.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++22.19.已知函数f(x)=ln.23.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.24.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,(2)若f(6)=1,解不等式f(x+3)﹣f()<2.沙湾区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵考试的成绩ξ服从正态分布N (105,102). ∴考试的成绩ξ关于ξ=105对称, ∵P (95≤ξ≤105)=0.32,∴P (ξ≥115)=(1﹣0.64)=0.18,∴该班数学成绩在115分以上的人数为0.18×50=9 故选:B .【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=105对称,利用对称写出要用的一段分数的频数,题目得解.2. 【答案】C.【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 3. 【答案】D4. 【答案】B【解析】解:①由于“若a 2+b 2=0,则a ,b 全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x 2+2x+q=0有实根,则△=4﹣4q ≥0,解得q ≤1,因此“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B .【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.5. 【答案】C6.【答案】A【解析】解:===,故选A.【点评】本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.7.【答案】A【解析】()12(i)122(i)iiz ii i+-+===--,所以虚部为-1,故选A.8.【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4πR2=6πa2.故选B9.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.10.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.11.【答案】B【解析】解:∵函数是R上的单调减函数,∴∴故选B【点评】本题主要考查分段函数的单调性问题,要注意不连续的情况.12.【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0的倾斜角为θ,则tanθ=﹣2,则θ为钝角.故选:C.二、填空题13.【答案】314.【答案】A【解析】15.【答案】3.【解析】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.16.【答案】【解析】解:对于①,把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cosα=cosβ=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos(2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos(2x+π)的一条对称轴,故③正确.对于④,函数y=4sin(2x+)=4cos[﹣(2x+)]=4cos(﹣2)=4cos(2x﹣),故函数y=4sin(2x+)与函数y=4cos(2x﹣)相同,故④正确.对于⑤,在上,2x﹣∈,函数y=2sin(2x﹣)在上没有单调性,故⑤错误,故答案为:①③④.17.【答案】.【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.18.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.三、解答题19.【答案】【解析】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x 1﹣x 2|===.∵﹣3<<﹣, ∴|x 1﹣x 2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x 轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.20.【答案】【解析】【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l 的方程; (2)当弦AB 被点P 平分时,求出直线的斜率,即可写出直线l 的方程;【解答】解:(1)已知圆C :(x ﹣1)2+y 2=9的圆心为C (1,0),因为直线l 过点P ,C ,所以直线l 的斜率为2,所以直线l 的方程为y=2(x ﹣1),即2x ﹣y ﹣2=0. (2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为,即x+2y ﹣6=0.21.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.X 的分布列为:X 的数学期望为()51515190123282856568E X =⨯+⨯+⨯+⨯= (12)X 0 1 23P528 1528 1556 156分22.【答案】【解析】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a﹣2≤1∴1≤a≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.23.【答案】【解析】解:(1)将点(0,4)代入椭圆C的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.24.【答案】【解析】解:(1)在f()=f(x)﹣f(y)中,令x=y=1,则有f(1)=f(1)﹣f(1),∴f(1)=0;(2)∵f(6)=1,∴2=1+1=f(6)+f(6),∴不等式f(x+3)﹣f()<2等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),即f()<f(6),∵f(x)是(0,+∞)上的增函数,∴,解得﹣3<x<9,即不等式的解集为(﹣3,9).。
沙湾区高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③B .①④C .②③D .②④2. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .1203. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .5 4. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .5. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种6. 函数是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数7. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .28. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣19. 设集合(){,|,,1A x y x y x y =--是三角形的三边长},则A 所表示的平面区域是( )A .B .C .D . 10.设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a12.在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π二、填空题13.阅读右侧程序框图,输出的结果i 的值为 .14.81()x x-的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.15.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.16.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.17.已知i 是虚数单位,复数的模为 .18.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .三、解答题19.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.20.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.21.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;(Ⅱ)若EF •FC=,求正方形ABCD 的面积.22.已知集合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0} (1)求A ∩B(2)若A ∪C=C ,求实数m 的取值范围.23.已知,数列{a n }的首项(1)求数列{a n }的通项公式; (2)设,数列{b n }的前n 项和为S n ,求使S n >2012的最小正整数n .24.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.沙湾区高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:求导函数可得f ′(x )=3x 2﹣12x+9=3(x ﹣1)(x ﹣3),∵a <b <c ,且f (a )=f (b )=f (c )=0. ∴a <1<b <3<c ,设f (x )=(x ﹣a )(x ﹣b )(x ﹣c )=x 3﹣(a+b+c )x 2+(ab+ac+bc )x ﹣abc , ∵f (x )=x 3﹣6x 2+9x ﹣abc ,∴a+b+c=6,ab+ac+bc=9, ∴b+c=6﹣a ,∴bc=9﹣a (6﹣a )<,∴a 2﹣4a <0,∴0<a <4,∴0<a <1<b <3<c ,∴f (0)<0,f (1)>0,f (3)<0, ∴f (0)f (1)<0,f (0)f (3)>0. 故选:C .2. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .3. 【答案】C【解析】解:∵a >0,b >0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.4. 【答案】C【解析】解:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.5.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.6.【答案】B【解析】解:因为==cos(2x+)=﹣sin2x.所以函数的周期为:=π.因为f(﹣x)=﹣sin(﹣2x)=sin2x=﹣f(x),所以函数是奇函数.故选B.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.7.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.8.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.【答案】A【解析】考点:二元一次不等式所表示的平面区域.10.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.11.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C12.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.二、填空题13.【答案】 7 .【解析】解:模拟执行程序框图,可得 S=1,i=3不满足条件S ≥100,S=8,i=5 不满足条件S ≥100,S=256,i=7满足条件S ≥100,退出循环,输出i 的值为7. 故答案为:7.【点评】本题主要考查了程序框图和算法,正确得到每次循环S ,i 的值是解题的关键,属于基础题.14.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.15.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线 【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C 的渐近线方程是:故答案为:,16.【答案】5627【解析】17.【答案】.【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.18.【答案】(﹣1,﹣).【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.三、解答题19.【答案】【解析】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈,即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.20.【答案】(1)()21sin cos S θθ=+,其中02πθ<<.(2)6πθ=时,max S =【解析】试题分析:(1)求梯形铁片ABCD 的面积S 关键是用θ表示上下底及高,先由图形得AOE BOF θ∠=∠=,这样可得高2cos AB θ=,再根据等腰直角三角形性质得()1cos sin AD θθ=-+,()1cos sin BC θθ=++最后根据梯形面积公式得()2AD BC AB S +⋅=()21sin cos θθ=+,交代定义域02πθ<<.(2)利用导数求函数最值:先求导数()'f θ()()22sin 1sin 1θθ=--+,再求导函数零点6πθ=,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接OB ,根据对称性可得AOE BOF θ∠=∠=且1OA OB ==, 所以1cos sin AD θθ=-+,1cos sin BC θθ=++,2cos AB θ=, 所以()2AD BC ABS +⋅=()21sin cos θθ=+,其中02πθ<<.考点:利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.21.【答案】【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,∴EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EF•EC,故AE=EB.(Ⅱ)设正方形的边长为a,连结BF,∵BC为圆O的直径,∴BF⊥EC,在Rt△BCE中,由射影定理得EF•FC=BF2=,∴BF==,解得a=2,∴正方形ABCD的面积为4.【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.22.【答案】【解析】解:由合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0}.∴A={x|﹣1<x<6},,C={x|m<x<m+9}.(1),(2)由A∪C=C,可得A⊆C.即,解得﹣3≤m≤﹣1.23.【答案】【解析】解:(Ⅰ),,.数列是以1为首项,4为公差的等差数列.…,则数列{a n}的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n 为n 的增函数,S n >2012, 即(4n ﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.24.【答案】(1)320x y ++=;(2)()2228x y -+=.【解析】试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.(2)由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,因为矩形ABCD 两条对角线的交点为()2,0M ,所以M 为距形ABCD 外接圆的圆心, 又AM ==从而距形ABCD 外接圆的方程为()2228x y -+=.1考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.。
沙湾县第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+2. 已知函数,,若,则( )A1 B2 C3 D-13. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .44. 如图,圆O 与x 轴的正半轴的交点为A ,点C 、B 在圆O 上,且点C 位于第一象限,点B 的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos 2﹣sincos﹣的值为( )A .B .C .﹣D .﹣5. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .46. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( ) A .6 B .5 C .3 D .47. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.8. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 9 f x [14]f (x )的导函数y=f ′(x )的图象如图所示.)A .2B .3C .4D .510.已知集合2{320,}A x x x x R =-+=∈,{05,}B x x x N =<<∈,则满足条件A C B ⊆⊆的集合C 的个数为A 、B 、2C 、3D 、411.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)12.已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( ) A .(0,1)∪(2,3) B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)二、填空题13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.16.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .18.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .三、解答题19.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分): 甲 83 81 93 79 78 84 88 94 乙 87 89 89 77 74 78 88 98(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由; (Ⅱ)本次竞赛设置A 、B 两问题,规定:问题A 的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B 的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A ,B 成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I )中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.20.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.21.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.22.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.23.在中,、、是角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。
24.已知a>0,b>0,a+b=1,求证:(Ⅰ)++≥8;(Ⅱ)(1+)(1+)≥9.沙湾县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 2. 【答案】A【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0, 解得a=1 3. 【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .4. 【答案】 A【解析】解:∵|BC|=1,点B 的坐标为(,﹣),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos (﹣α)=,﹣sin (﹣α)=﹣,∴sin (﹣α)=.∴cos α=cos[﹣(﹣α)]=coscos (﹣α)+sin sin (﹣α)=+=,∴sin α=sin[﹣(﹣α)]=sincos (﹣α)﹣cos sin (﹣α)=﹣=.∴cos 2﹣sin cos﹣=(2cos2﹣1)﹣sin α=cos α﹣sin α=﹣=,故选:A .【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.5. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2,故选B .6. 【答案】D【解析】解:∵等比数列{a n }中a 4=2,a 5=5, ∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8 =lg (a 1•a 2…a 8)=lg (a 4•a 5)4 =4lg (a 4•a 5)=4lg10=4 故选:D .【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.7. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。
故选A 。
考点:二次函数的图象及性质。
8. 【答案】C.【解析】由,得:, 即,令,则当时,, 即在是减函数, ,,,在是减函数,所以由得,,即,故选9. 【答案】C【解析】解:根据导函数图象,可得2为函数的极小值点,函数y=f (x )的图象如图所示:因为f (0)=f (3)=2,1<a <2,所以函数y=f (x )﹣a 的零点的个数为4个. 故选:C .【点评】本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.10.【答案】D【解析】{|(1)(2)0,}{1,2}A x x x x =--=∈=R , {}{}|05,1,2,3,4=<<∈=N B x x x . ∵⊆⊆A C B ,∴C 可以为{}1,2,{}1,2,3,{}1,2,4,{}1,2,3,4. 11.【答案】A【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.12.【答案】D【解析】解:∵f(x)是定义在R上的奇函数,且f(x﹣2)=f(x+2),∴f(0)=0,且f(2+x)=﹣f(2﹣x),∴f(x)的图象关于点(2,0)中心对称,又0<x<2时,f(x)=1﹣log2(x+1),故可作出fx(x)在0<x<4时的图象,由图象可知当x∈(1,2)时,x﹣2<0,f(x)<0,∴(x﹣2)f(x)>0;当x∈(2,3)时,x﹣2>0,f(x)>0,∴(x﹣2)f(x)>0;∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)故选:D【点评】本题考查不等式的解法,涉及函数的性质和图象,属中档题.二、填空题13.【答案】①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,此时sin2C=,sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣cos2A=sin(2A﹣30°)≤,则sin2C≥sinA•sinB.故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.14.【答案】A.【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。