(推荐)高一数学必修2期末试题
- 格式:doc
- 大小:1.21 MB
- 文档页数:18
高一数学必修2期末试题及答案doc一、选择题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. -1B. 1C. 3D. 5答案:B2. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 若a > 0,b > 0,则a + b的最小值是:A. 0B. 1C. 2D. 无法确定答案:D4. 函数y = 2^x的图象在点(1, 2)处的切线斜率为:A. 0B. 1C. 2D. 4答案:D5. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,则a_5的值为:A. 7B. 9C. 11D. 13答案:C6. 已知函数y = x^3 - 3x + 1,则y' =:A. 3x^2 - 3B. x^2 - 3C. 3x^2 + 3D. x^2 + 3答案:A7. 已知圆C的方程为(x - 2)^2 + (y - 3)^2 = 9,则圆心C的坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A8. 若直线y = 2x + 3与抛物线y = x^2 - 4x + 5相交,则交点的个数为:A. 1B. 2C. 3D. 0答案:B9. 已知向量a = (2, 3),b = (-1, 2),则a·b的值为:A. 1B. 2C. 3D. 4答案:C10. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x):A. 3x^2 - 12x + 11B. x^2 - 4x + 11C. 3x^2 - 12x + 5D. 3x^2 - 6x + 11答案:A二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的首项a_1 = 2,公比q = 3,则a_3的值为______。
答案:182. 已知函数y = x^2 - 6x + 8,求函数的对称轴方程为______。
xyOxyOxyOxyO数学必修二综合测试题一. 选择题*1.下列叙述中,正确的是( )(A )因为,P Q αα∈∈,所以PQ ∈α(B )因为P α∈,Q β∈,所以αβ⋂=PQ(C )因为AB α⊂,C ∈AB ,D ∈AB ,所以CD ∈α(D )因为AB α⊂,AB β⊂,所以()A αβ∈⋂且()B αβ∈⋂ *2.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( ).(A)30 (B)45 (C)60 (D)135 *3.已知点(,1,2)A x B 和点(2,3,4),且AB =,则实数x 的值是( ). (A)-3或4 (B)–6或2 (C)3或-4 (D)6或-2*4.长方体的三个面的面积分别是632、、,则长方体的体积是( ).A .23B .32C .6D .6*5.棱长为a 的正方体内切一球,该球的表面积为 ( ) A 、2a π B 、22a π C 、32a π D 、a π24 *6.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线( ) (A )只有一条 (B )无数条 (C )是平面α内的所有直线 (D )不存在 **7.已知直线l 、m 、n 与平面α、β,给出下列四个命题: ①若m ∥l ,n ∥l ,则m ∥n ②若m ⊥ ,m ∥, 则⊥β③若m ∥ ,n ∥ ,则m ∥n ④若m ⊥ , ⊥β ,则m ∥ 或m ⊂≠α其中假命题是( ).(A) ① (B) ② (C) ③ (D) ④**8.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ).**9.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( * ). (A) 4π (B) 54π(C) π (D) 32π **10.直线3y 2x =--与圆9)3y ()2x (22=++-交于E 、F 两点,则∆EOF(O 是原点)的面积为( ).A .52B .43C .23D .556**11.已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率的取值k 范围是 ( )A 、34k ≥或4k ≤- B 、34k ≥或14k ≤- C 、434≤≤-k D 、443≤≤k ***12.若直线k 24kx y ++=与曲线2x 4y -=有两个交点,则k 的取值范围是( ).A .[)∞+,1 B .)43,1[-- C . ]1,43( D .]1,(--∞ 二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.**13.如果对任何实数k ,直线(3+k)x +(1-2k)y +1+5k=0都过一个定点A ,那么点A 的坐标是 .**14.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球面的面积是 . **15.已知222212:1:349O x y O x y +=+=圆与圆(-)(+),则12O O 圆与圆的位置关系为 .***16.如图①,一个圆锥形容器的高为a ,内装一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为2a(如图②),则图①中的水面高度为 .三.解答题:**17.(本小题满分12分)如图,在OABC 中,点C (1,3). (1)求OC 所在直线的斜率;(2)过点C 做CD ⊥AB 于点D ,求CD 所在直线的方程 .**18.(本小题满分12分)如图,已知正四棱锥V -ABCD 中,AC BD M VM 与交于点,是棱锥的高,若6cm AC =,5cm VC =,求正四棱锥V -ABCD 的体积.***19.(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点.(1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.***20. (本小题满分12分)已知直线1l :mx-y=0 ,2l :x+my-m-2=0王新敞(Ⅰ)求证:对m ∈R ,1l 与 2l 的交点P 在一个定圆上;(Ⅱ)若1l 与定圆的另一个交点为1P ,2l 与定圆①②BA1F的另一交点为2P ,求当m 在实数范围内取值时,⊿21P PP 面积的最大值及对应的m .***21. (本小题满分12分)如图,在棱长为a 的正方体ABCD D C B A -1111中,(1)作出面11A BC 与面ABCD 的交线l ,判断l 与线11A C 位置关系,并给出证明; (2)证明1B D ⊥面11A BC ; (3)求线AC 到面11A BC 的距离; (4)若以D 为坐标原点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,试写出1,B B 两点的坐标.****22.(本小题满分14分)已知圆O :221x y +=和定点A (2,1),由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足PQ PA =.(1) 求实数a 、b 间满足的等量关系; (2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.参考答案一.选择题 DBACA BDCCD AB二.填空题 13. )2,1(- 14. 2a 3π 15. 相离 16.(1a三.解答题 17. 解: (1)点O (0,0),点C (1,3),OC 所在直线的斜率为30310OC k -==-. (2)在OABC 中,//AB OC,CD ⊥AB , CD ⊥OC .CD 所在直线的斜率为13CD k =-.CD 所在直线方程为13(1)3y x -=--,3100x y +-=即.18. 解法1:正四棱锥V -ABCD 中,ABCD 是正方形,11163222MC AC BD ∴===⨯=(cm). 且11661822ABCDS AC BD =⨯⨯=⨯⨯=(cm 2).VM 是棱锥的高,Rt △VMC中,4VM ==(cm).正四棱锥V -ABCD 的体积为111842433ABCD S VM ⨯=⨯⨯=(cm 3).解法2:正四棱锥V -ABCD 中,ABCD 是正方形,11163222MC AC BD ===⨯=(cm).且AB BC AC === .2218ABCD S AB ===(cm 2).VM 是棱锥的高,Rt △VMC中,4VM ==(cm).正四棱锥V -ABCD 的体积为113S 319. (1)证明:连结BD .在长方体1AC 中,对角线11//BD B D . 又 E 、F 为棱AD 、AB 的中点, //EF BD ∴.11//EF B D ∴. 又B 1D 1⊂≠ 平面11CB D ,EF ⊄平面11CB D ,∴ EF ∥平面CB 1D 1.(2)在长方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂≠ 平面A 1B 1C 1D 1,∴ AA 1⊥B 1D 1.又在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴ B 1D 1⊥平面CAA 1C 1. 又B 1D 1⊂≠ 平面CB 1D 1,平面CAA 1C 1⊥平面CB 1D 1.20. 解:(Ⅰ)1l 与 2l 分别过定点(0,0)、(2,1),且两两垂直,∴ 1l 与 2l 的交点必在以(0,0)、(2,1)为一条直径的圆:0)1y (y )2x (x =-+- 即0y x 2y x 22=--+王新敞(Ⅱ)由(1)得1P (0,0)、2P (2,1),∴⊿21P PP 面积的最大值必为45r r 221=⋅⋅. 此时OP 与12P P 垂直,由此可得m=3或13-.21.解:(1)在面ABCD 内过点B 作AC 的平行线BE ,易知BE 即为直线l , ∵AC ∥11A C ,AC ∥l ,∴l ∥11A C .(2)易证11A C ⊥面11DBB D ,∴11A C ⊥1B D ,同理可证1A B ⊥1B D , 又11A C ⋂1A B =1A ,∴1B D ⊥面11A BC .(3)线AC 到面11A BC 的距离即为点A 到面11A BC 的距离,也就是点1B 到面11A BC 的距离,记为h ,在三棱锥111B BA C -中有111111B BA C B A B C V V --=,即1111111133A BC ABC S h S BB ∆∆⋅=⋅,∴3h =.(4)1(,,0),(,,)C a a C a a a 22. 解:(1)连,OP Q 为切点,PQ OQ ⊥,由勾股定理有222PQ OP OQ =-.又由已知PQ PA =,故22PQ PA =. 即:22222()1(2)(1)a b a b +-=-+-.化简得实数a 、b 间满足的等量关系为:230a b +-=. (2)由230a b +-=,得23b a =-+.PQ ===故当65a =时,minPQ =即线段PQ解法2:由(1)知,点P 在直线l :2x + y -3 = 0 上.∴ | PQ |min = | PA |min ,即求点A 到直线 l 的距离. ∴ | PQ |min =| 2×2 + 1-3 |2 2 + 12 = 255 . (3)设圆P 的半径为R ,圆P 与圆O 有公共点,圆 O 的半径为1,1 1.R OP R ∴-≤≤+即1R OP ≥-且1ROP ≤+.而OP ==故当65a =时,minOP =此时, 3235b a =-+=,min 1R =.得半径取最小值时圆P 的方程为22263()()1)55x y -+-=.解法2: 圆P 与圆O 有公共点,圆 P 半径最小时为与圆O 外切(取小者)的情形,而这些半径的最小值为圆心O 到直线l 的距离减去1,圆心P 为过原点与l 垂直的直线l ’ 与l 的交点P 0.r = 32 2 + 1 2 -1 = 355 -1.又 l ’:x -2y = 0,解方程组20,230x y x y -=⎧⎨+-=⎩,得6,535x y ⎧=⎪⎪⎨⎪=⎪⎩.即P 0( 65 ,35).∴ 所求圆方程为22263()()1)55x y -+-=.。
人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面α内可记为( )A 、P ∈a ,a ⊂αB 、P ⊂a ,a ⊂αC 、P ⊂a ,a ∈αD 、P ∈a ,a ∈α 2、直线l 是平面α外的一条直线,下列条件中可推出l ∥α的是( ) A 、l 与α内的一条直线不相交 B 、l 与α内的两条直线不相交C 、l 与α内的多数条直线不相交D 、l 与α内的随意一条直线不相交 3x+y+1=0的倾斜角为 ( )A .50ºB .120ºC .60ºD . -60º4、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l ,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥nC 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α 5、函数y=log 2(x 2-2x-3)的递增区间是( )(A )(-∞,-1) (B )(-∞,1) (C )(1,+∞) (D )(3,+∞)6.设函数11232221,,log ,333a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系是( ) A. a b c << B. a c b << C. c a b << D. c b a << 7、假如0<ac 且0<bc ,则直线0=++c by ax 不通过( )A 第一象限B 其次象限C 第三象限D 第四象限 8,A. 体重随年龄的增长而增加B. 25岁之后体重不变C. 体重增加最快的是15岁至25岁D.体重增加最快的是15岁之前9,计算2)2lg 20(lg 2021lg 356lg 700lg -+--A. 20B. 22C. 2D. 1810、经过点A (1,2),且在两坐标轴上的截距相等的直线共有( ) A 1条 B 2条 C 3条 D 4条 11、已知A (2,)3-,B (2,3--),直线l 过定点P (1, 1),且与线段AB 交,年龄/岁5015044565则直线l 的斜率k 的取值范围是( )A 434≤≤-k B 443≤≤k C 21≠k D 4-≤k 或43≥k 12、A,B,C,D 四点不共面,且A,B,C,D 到平面α的距离相等,则这样的平面( ) A 、1个 B 、4个 C 、7个 D 、多数个 二、填空题(每小题5分,共20分)13、在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 为CB ,CD 上的点,且CF ∶CB=CG ∶CD=2∶3,若BD=6cm ,梯形EFGH 的面积 28cm 2,则EH 与FG 间的距离为 。
班级 姓名 学号_______________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆高一年级数学(模块2)试卷(考试时间120分钟,满分150分)一、 选择题(本大题共12小题,每小题5分,共60分)1.下面哪一个不是正方体的平面展开图( )(A )(B )(C )(D)2.右图所示的直观图,其原来平面图形的面积是(A.4 B.42 C.223.用符号表示“点A 在直线l 上,l 在平面α外”,正确的是 ( )A .α∉∈l l A , , B.α⊄∈l l A , C .α⊄⊂l l A ,, D. α∉⊂l l A ,4.已知点A (2,1-),B (4,5),线段AB 的中点M 的坐标为 ( ) A .M (3,3) B .M (1-,3-) C . M (3,2), D .M (6,4)5.若b a 、为异面直线,直线c ∥a ,则c 与b 的位置关系是( ) A.相交 B.异面 C.平行 D.异面或相交6.-y+1=0的倾斜角为 ( )A.150ºB.120ºC.60ºD.30º7.若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值为( ) A.1 B.-1 C.-5 D.5 8.直线2x-y=7与直线3x+2y-7=0的交点是( )A .(3,-1)B .(-1,3)C .(-3,-1)D .(3,1) 9.直线2x-3y+6=0与x 轴的交点是A,与y 轴的交点是B,O 是坐标原点则△AOB 的面积是( ) A.6; B.3; C.4; D.510.两直线02=-+a y x 与02=+-b y x 的位置关系( ) A.垂直 B.平行 C.重合11.右图的正方体ABCD- A 'B 'C 'D '中,面对角线B'C和A'B所成的角是( )A. 450B.600C.900D.30012.直线3x+4y-13=0与圆22(2)(1)16x y ++-= 的位置关系是:( )A. 相离;B. 相交;C. 相切;D. 无法判定二、填空题(本大题共4小题,每小题4分,共16分)13.如下左图是一个底面直径..和高.都是4的圆柱的侧面积为 (最后的结果保留π)14.在平面直角坐标系中,A (2,3),B (-2,-1),则|AB|=15.已知A (-3,-5),B (5,1),则以线段AB 为直径的圆的方程为16.两圆22(2)(1)4x y -++=与22(2)(1)16x y ++-=的位置关系是三、解答题(本大题共6小题74分,17——21题各12分,22题14分)17.如图:AB =⋂βα,α⊥PC ,β⊥PD ,D C 、是垂足,试判断直线CD AB 与的位置关系?并证明你的结论。
人教版高中数学必修二期末检测卷一、单项选择题(本大题共8小题,共40.0分)1.如图,在正方体EFGH−E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A. 平面E1FG1与平面EGH1B. 平面FHG1与平面F1H1GC. 平面F1H1H与平面FHE1D. 平面E1HG1与平面EH1G2.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:①若α⊥β,α∩β=m,n⊂a,n⊥m,则n⊥β;②若α⊥γ,β⊥γ,则α//β;③若α⊥β,m⊥β,m⊄α.则m//α;④若α⊥β,m//α,则m⊥β.其中正确命题的个数为()A. 1B. 2C. 3D. 43.如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l//α,m⊂α和m⊥γ,那么()A. α⊥γ且l⊥mB. α⊥γ,且m//βC. m//β且l⊥mD. α//β且α⊥γ4.著名数学家华罗庚曾说过,“数无形时少直觉,形少数时难入微”,事实上,很多代数问题都可以转化为几何问题加以解决,如:√(x−a)2+(y −b)2可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=√x2+4x+20+√x2+2x+10的最小值为()A. 2√5B. 5√2C. 4D. 85.已知直线l1:ax+(a+2)y+2=0与l2:x+ay+1=0平行,则实数a的值为()A. −1或2B. 0或2C. 2D. −16.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>c1C. b <0,d >0,a >cD. b <0,d >0,a <c7. 对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0,圆C:x 2+y 2+2x =b 2−1(b >0)的位置关系是“平行相交”,则b 的取值范围为 ( )A. (√2,3√22)B. (0,√2)C. (0,3√22)D. (√2,3√22)∪(3√22,+∞) 8. 直线y =kx +3与圆(x −3)2+(y −2)2=4相交于M ,N 两点,若|MN|=2√3,则k 的值是( )A. −34B. 0C. 0或−34D. 34 二、填空题(本大题共5小题,共25.0分)9. 如图所示,在长方体ABCD −A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 .10. 过两圆x 2+y 2−2y −4=0与x 2+y 2−4x +2y =0的交点,且圆心在直线l :2x +4y −1=0上的圆的方程是_________________.11. 与直线x +y −2=0和曲线x 2+y 2−12x −12y +54=0都相切的半径最小的圆的标准方程是_____________.12. 如图所示,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,则截面的面积为 .13. 已知点M 是点P(4,5)关于直线y =3x −3的对称点,则过点M 且平行于直线y =3x −3的直线的方程是________.三、解答题(本大题共7小题,共84.0分)14. 如图,在三棱柱ABC −A 1B 1C 1中,O 为AB 的中点,CA =CB ,AB =AA 1,∠BAA 1=60∘.(1)证明:AB⊥平面A1OC;(2)若AB=CB=2,OA1⊥OC,求三棱锥A1−ABC的体积.15.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.16.求过点P(4,−1)且与直线3x−4y+6=0垂直的直线方程.317.在平面直角坐标系xOy中,O为坐标原点,点A(0,3),设圆C的半径为1,圆心C(a,b)在直线l:y=2x−4上.(1)若圆心C也在直线y=−x+5上,求圆C的方程;(2)在上述的条件下,过点A作圆C的切线,求切线的方程;(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.18.如图,在直三棱柱ABC−A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1//平面DEC1;(2)BE⊥C1E.19.已知ΔABC的顶点B(3,4),AB边上的高所在的直线方程为x+y−3=0,E为BC的中点,且AE所在的直线方程为x+3y−7=0.(Ⅰ)求顶点A的坐标;(Ⅱ)求过E点且在x轴、y轴上的截距相等的直线l的方程.20.已知直线l:x−ay+1=0与圆C:x2+y2−4x−2y+1=0交于A,B两点,|AB|=2√3.(1)求a的值;(2)求与直线l平行的圆C的切线方程.答案和解析1.【答案】A【解析】【分析】本题考查了线面平行的判定,面面平行的判定,属于中档题.根据几何体中的线段特征确定平行关系,再确定线面的平行关系,E1G1//面EGH1,E1F//面EGH1,即可得出确定的平行平面.【解答】解:如图:在正方体EFGH−E1F1G1H1中,连接EG,E1F,E1G1,H1E,H1G,∵EG//E1G1,EG⊂面EGH1,E1G1⊄面EGH1,∴E1G1//面EGH1,∵E1F//H1G,H1G⊂面EGH1,E1F⊄面EGH1,∴E1F//面EGH1,∵E1G1∩E1F=E1,E1G1,E1F⊂面E1FG1,∴面EGH1//面E1FG1,故选A.2.【答案】B【解析】【分析】本题以命题的真假判断为载体,考查了空间直线与平面的位置关系及平面与平面的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.根据空间线面平行和垂直的几何特征及判定方法,逐一分析四个命题的真假,最后综合讨论5结果,可得答案.【解答】解:根据面面垂直的性质,故①正确;由α⊥γ,β⊥γ,得到α//β或相交,故②错误;由α⊥β,且m⊥β,得到m与α可能平行,也可能m在平面面α内,又m⊄α,则m//α,故③正确;若α⊥β,m//α,则m与β可能平行,可能相交,也可能线在面内,故④错误;其中正确命题的个数为2.故选B.3.【答案】A【解析】【分析】本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,属于基础题.m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.【解答】解:∵m⊂α且m⊥γ,∴α⊥γ,∵l=β∩γ,∴l⊂γ.又∵m⊥γ,∴l⊥m,即α⊥γ且l⊥m,故选A.4.【答案】B【解析】【分析】本题考查利用函数的几何意义求函数的最值,考查两点之间的距离公式的运用,属于中档题.由题意得到f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离,即要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|即可求解.【解答】解:∵f(x)=√x2+4x+20+√x2+2x+10=√(x+2)2+(0−4)2+√(x+1)2+(0−3)2,∴f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离之和.设点A(−2,4)关于x轴的对称点为A′,则A′的坐标为(−2,−4).要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|=√(−1+2)2+(3+4)2=5√2,即f(x)=√x2+4x+20+√x2+2x+10的最小值为5√2.故选B.5.【答案】D【解析】【分析】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题.由a·a−(a+2)=0,即a2−a−2=0,解得a.经过验证即可得出.【解答】解:由题意知a⋅a−(a+2)=0,即a2−a−2=0,解得a=2或−1.经过验证可得:a=2时两条直线重合,舍去.∴a=−1.故选D.6.【答案】C【解析】【分析】本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解.【解答】解:l1 :y=−1a x−ba,l2 : y=−1cx−dc,由图象知:①−1a >−1c>0,②−ba<0,③−dc>0,,故选C.77.【答案】D【解析】【分析】本题主要考查直线与圆的位置关系及应用,属于中档题.结合新定义,求出圆心到直线的距离,根据相离相切的条件求出b 的范围,进而求出平行相交时b 的范围.【解答】解:圆C 的标准方程为(x +1)2+y 2=b 2,由两直线平行得a(a +1)−6=0,解得a =2或a =−3.又当a =2时,直线l 1,l 2重合,应舍去,∴两平行线的方程分别为x −y −2=0和x −y +3=0.由直线x −y −2=0与圆(x +1)2+y 2=b 2相切,得b =√2=3√22; 由直线x −y +3=0与圆相切,得b =√2=√2.当两直线与圆都相离时,b <√2.∴“平行相交”时,b 满足{b >√2,b ≠3√22, ∴b 的取值范围是(√2,3√22)∪(3√22,+∞). 故选D . 8.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题. 由点到直线距离公式可得弦心距d =√k 2+1,再由弦长,半径,弦心距之间关系列出关于k 的等式,由此解得k 的值.【解答】解:圆心(3,2)到直线y =kx +3的距离d =√k 2+1,则|MN|=2 √4−(3k+1)2k 2+1=2√3,解得k =0或k =−34. 故选C .9.【答案】√105.【解析】【分析】本题主要考查直线与平面所成的角、线面垂直的判定,属于中档题.根据正方形条件得到线线垂直,再由线面垂直得到线线垂直,进而证明线面垂直找到点C1在面BB1D1D上的射影O,即线面角∠OBC1,进一步利用锐角三角形求解.【解答】解:如图所示,在长方体ABCD−A1B1C1D1中,连接A1C1、B1D1,交于O点,连接OB,由已知四边形A1B1C1D1是正方形,∴A1C1⊥B1D1,又∵BB1⊥平面A1B1C1D1,OC1⊂平面A1B1C1D1,∴OC1⊥BB1,而BB1∩B1D1=B1,∴OC1⊥平面BB1D1D.∴OB是BC1在平面BB1D1D内的射影.∴∠C1BO是BC1与平面BB1D1D所成的角.在正方形A1B1C1D1中,OC1=12A1C1=12√22+22=√2.在矩形BB1C1C中,BC1=√BC2+CC12=√4+1=√5.9∴sin∠C1BO=OC1BC1=√2√5=√105.故答案为√105.10.【答案】x2+y2−3x+y−1=0【解析】【分析】本题考查求圆的一般方程,圆系方程及其应用,属于中档题.可设新圆方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1),通过整理,不难表示出新圆的圆心坐标,接下来根据新圆的圆心在直线l上,将所得圆心坐标代入,解方程即可得解.【解答】解:设所求圆的方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1).整理得x2+y2+−41+λx+2−2λ1+λy−4λ1+λ=0,所以圆心坐标为(21+λ,λ−11+λ),因为圆心在直线2x+4y=1上,故41+λ+4(λ−1)1+λ=1,解得λ=13.所以所求圆的方程为x2+y2−3x+y−1=0.故答案为x2+y2−3x+y−1=0.11.【答案】(x−2)2+(y−2)2=2【解析】【试题解析】【分析】本题考查直线与圆相切的性质的应用,求圆的标准方程,难度一般.先求出圆心C1(6,6)到直线x+y−2=0的距离为d=√2=5√2.再求过点C1且垂直于x+ y−2=0的直线y=x,所求的最小圆的圆心C2在直线y=x上,圆心C2到直线x+y−2=0的距离为5√2−3√22=√2,则圆C2的半径长为√2.设C2的坐标为(x0,x0),则00√2=√2,解得x0=2(x0=0舍去),所以圆心坐标为(2,2),即可求出所求.【解答】解:曲线化为(x−6)2+(y−6)2=18,=5√2.其圆心C1(6,6)到直线x+y−2=0的距离为d=|6+6−2|√2过点C1且垂直于x+y−2=0的直线为y−6=x−6,即y=x,所以所求的最小圆的圆心C2在直线y=x上,如图所示,=√2,圆心C2到直线x+y−2=0的距离为5√2−3√22则圆C2的半径长为√2.设C2的坐标为(x0,x0),=√2,解得x0=2(x0=0舍去),则00√2所以圆心坐标为(2,2),所以所求圆的标准方程为(x−2)2+(y−2)2=2.故答案为(x−2)2+(y−2)2=2.12.【答案】2√6【解析】【分析】本题考查截面面积的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连接MN,作A1H⊥MN于H,由题意能求出截面的面积.【解答】解:分别取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,11∵A1N//PC1//MC,且A1N=PC1=MC,∴四边形A1MCN是平行四边形.又∵A1N//PC1,A1N⊄平面PBC1,PC1⊂平面PBC1,∴A1N//平面PBC1,同理可证A1M//平面PBC1,∵A1N∩A1M=A1,且A1N,A1M⊂平面A1MCN,∴平面A1MCN//平面PBC1,因此,过点A1与截面PBC1平行的截面是平行四边形A1MCN,连接MN,作A1H⊥MN于点H,∵A1M=A1N=√5,MN=2√2,∴△A1MN为等腰三角形.∴A1H=√3,∴S△A1MN =12×2√2×√3=√6.故S▱A1MCN =2S△A1MN=2√6.故答案为2√6.13.【答案】3x−y+1=0【解析】【分析】本题考查了点关于直线的对称点的求法,考查了直线方程的点斜式,是基础题.设出M的坐标,利用点到直线的距离以及两平行线间的距离公式求解.【解答】解:因为点M是点P(4,5)关于直线y=3x−3的对称点,所以两点到直线y=3x−3的距离相等,所以过点M且平行于直线y=3x−3的直线与y=3x−3之间的距离等于点P到直线y=3x−3的距离.点P(4,5)到直线3x−y−3=0距离为√12+32=√10.设过点M且与直线y=3x−3平行的直线的方程为3x−y+c=0,13所以由两平行线间的距离公式有√12+32=√10,即|c +3|=4,解得c =1或c =−7, 即所求直线的方程为3x −y −7=0或3x −y +1=0.由于点P(4,5)在直线3x −y −7=0上,故过M 点且平行于直线y =3x −3的直线方程是3x −y +1=0.14.【答案】(1)证明:∵CA =CB ,O 为AB 的中点,∴OC ⊥AB .∵AB =AA 1,∠BAA 1=60∘,∴△AA 1B 为等边三角形,∴OA 1⊥AB ,又OC ∩OA 1=O ,∴AB ⊥平面A 1OC .(2)解:∵AB =CB =2,∴△ABC 为边长是2的等边三角形,则S △ABC =12×2×√3=√3.∵OA 1⊥AB ,OA 1⊥OC ,AB ∩OC =O ,∴OA 1⊥平面ABC ,即OA 1是三棱锥A 1−ABC 的高,又OA 1=√3,∴三棱锥A 1−ABC 的体积V =13×√3×√3=1.【解析】本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出CO ⊥AB ,A 1O ⊥AB ,由此能证明AB ⊥平面A 1OC .(2)推导出A 1O ⊥平面ABC ,由此能求出三棱锥A 1−ABC 的体积.15.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0; 当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =√(a−1)2+(2a+3)2=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 16.【答案】解:∵所求直线与直线3x −4y +6=0垂直,∴设其为4x +3y +m =0.∵该直线过点P(4,−1),∴4×4+3×(−1)+m =0,解得m =−13.故所求直线方程为4x +3y −13=0.【解析】考查对于直线方程的求解问题,利用垂直性质求解,属于基础.17.【答案】解:(1)由{y =2x −4y =−x +5 得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x −3)2+(y −2)2=1;(2)由题意知切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx −y +3=0,∴√k 2+1=1,∴|3k +1|=√k 2+1,∴2k(4k +3)=0,∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3,即y =3或者3x +4y −12=0;(3)设M 为(x,y),由√x 2+(y −3)2=√x 2+y 215整理得直线m :y =32, ∴点M 应该既在圆C 上又在直线m 上,即:圆C 和直线m 有公共点,∴|2a −4−32|≤1,∴94≤a ≤134,终上所述,a 的取值范围为:[94,134].【解析】此题考查了圆的切线方程,点到直线的距离公式,涉及的知识有:两直线的交点坐标,直线的点斜式方程,圆的标准方程,是一道综合性较强的试题.(1)联立直线l 与直线y =−x +5,求出方程组的解得到圆心C 坐标,可得圆C 的方程;(2)根据A 坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k 的方程,求出方程的解得到k 的值,确定出切线方程即可;(3)设M(x,y),由|MA|=|MO|,利用两点间的距离公式列出关系式,整理后得到点M 的轨迹为直线y =32,由M 在圆C 上,得到圆C 与直线相交,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.18.【答案】证明:(1)∵在直三棱柱ABC −A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,∴DE//AB ,AB//A 1B 1,∴DE//A 1B 1,∵DE ⊂平面DEC 1,A 1B 1⊄平面DEC 1,∴A 1B 1//平面DEC 1.解:(2)∵在直三棱柱ABC −A 1B 1C 1中,E 是AC 的中点,AB =BC .∴BE ⊥AA 1,BE ⊥AC ,又AA 1∩AC =A ,∴BE ⊥平面ACC 1A 1,∵C 1E ⊂平面ACC 1A 1,∴BE ⊥C 1E .【解析】(1)推导出DE//AB ,AB//A 1B 1,从而DE//A 1B 1,由此能证明A 1B 1//平面DEC 1.(2)推导出BE ⊥AA 1,BE ⊥AC ,从而BE ⊥平面ACC 1A 1,由此能证明BE ⊥C 1E .本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.【答案】解:(1)AB 边上的高所在的直线方程为x +y −3=0,∴k AB =−1−1=1. ∴直线AB 方程为:y −4=x −3,化为:x −y +1=0,联立{x −y +1=0x +3y −7=0,解得x =1,y =2.∴A(1,2).(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得a =4,b =1.∴E(4,1). 由直线l 与x 轴、y 轴截距相等,①当直线l 经过原点时,设直线l 的方程为:y =kx .把E 的坐标代入可得:1=4k ,解得k =14.∴直线l 的方程为:y =14x.②当直线l 不经过原点时,设直线l 的方程为:x +y =m .把E 的坐标代入可得:m =5.∴直线l 的方程为:x +y =5.综上直线l 的方程为:x −4y =0或x +y −5=0.【解析】本题考查了直线的方程、直线的交点、相互垂直的直线斜率之间的关系、中点坐标公式、分类讨论方法,考查了推理能力与计算能力,属于基础题.(1)AB 边上的高所在的直线方程为x +y −3=0,可得k AB =1.把直线AB 方程与AE 的方程联立解得A 的坐标.(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得E 坐标.由直线l 与x 轴、y 轴截距相等,对截距分类讨论即可得出.20.【答案】解:(1)∵圆C :(x −2)2+(y −1)2=4,∴圆心为(2,1),半径r =2,∴圆心到直线x −ay +1=0的距离为:d =√12+a 2=√r 2−(√3)2=√4−3=1, 解得a =43,(2)由(1)知直线l :3x −4y +3=0,因为切线与直线l 平行,所以设所求的切线方程为3x −4y +D =0.因为直线与圆相切,所以圆心到切线的距离d =√32+(−4)2=|2+D |5=2.所以D =8或D =−12.所以所求切线方程为3x −4y +8=0或3x −4y −12=0.【解析】本题主要考查了点到直线的距离公式,考查直线与圆的位置关系,属于基础题.(1)首先确定圆心和半径,然后利用点到直线的距离公式可以列出等式,由此求出a的值.(2)由(1)知直线l:3x−4y+3=0,依题意,设所求切线方程为3x−4y+D=0,则圆心到=2.求解即可得结果切线的距离d=|2+D|517。
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.在直角坐标系中,已知A(-1,2),B(3,0),那么线段AB中点的坐标为中点的坐标为(().A.(2,2)B.(1,1)C.(-2,-2)D.(-1,-1) 2.右面三视图所表示的几何体是.右面三视图所表示的几何体是(().A.三棱锥.三棱锥B.四棱锥.四棱锥C.五棱锥.五棱锥D.六棱锥.六棱锥3.如果直线x+2y-1=0和y=kx互相平行,则实数k的值为的值为(().A.2 B.21C.-2 D.-214.一个球的体积和表面积在数值上相等,则该球半径的数值为.一个球的体积和表面积在数值上相等,则该球半径的数值为(().A.1 B.2 C.3 D.4 5.下面图形中是正方体展开图的是.下面图形中是正方体展开图的是(().6.圆x2+y2-2x-4y-4=0的圆心坐标是的圆心坐标是(().A.(-2,4) B.(2,-4) C.(-1,2) D.(1,2)7.直线y=2x+1关于y轴对称的直线方程为轴对称的直线方程为(().A.y=-2x+1 B.y=2x-1 C.y=-2x-1 D.y=-x-1 8.已知两条相交直线a,b,a∥平面 a,则b与a 的位置关系是的位置关系是(().A.bÌ平面a B.b⊥平面aC.b∥平面a D.b与平面a相交,或b∥平面a9.在空间中,a,b是不重合的直线,a,b是不重合的平面,则下列条件中可推出是不重合的平面,则下列条件中可推出a∥b的是的是(().A.aÌa,bÌb,a∥b B.a∥a,bÌbC.a⊥a,b⊥a D.a⊥a,bÌa10.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是的位置关系是(().正视图正视图 侧视图侧视图俯视图俯视图(第2题)11.如图,正方体ABCD —A'B'C'D'中,直线D'A 与DB 所成的角可以表示为所成的角可以表示为(( ). A .∠D'DB B .∠AD' C' C .∠ADBD .∠DBC'12. 圆(x -1)2+(y -1)2=2被x 轴截得的弦长等于轴截得的弦长等于(( ). A . 1 B .23C . 2 D . 3 13.如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是中点,则下列叙述正确的是(( ).A .CC 1与B 1E 是异面直线是异面直线 B .AC ⊥平面A 1B 1BAC .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E14.有一种圆柱体形状的笔筒,底面半径为4 4 cm cm ,高为12 12 cm cm .现要为100个这种相同规格的笔筒涂色个这种相同规格的笔筒涂色((笔筒内外均要涂色,笔筒厚度忽略不计要涂色,笔筒厚度忽略不计)). 如果每0.5 kg 涂料可以涂1 m 2,那么为这批笔筒涂色约需涂料.,那么为这批笔筒涂色约需涂料.A .1.23 kg B .1.76 kg C .2.46 kg D .3.52 kg 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.分.把答案填在题中横线上. 15.坐标原点到直线4x +3y -12=0的距离为的距离为 .16.以点A (2,0)为圆心,且经过点B (-1,1)的圆的方程是 .17.如图,在长方体ABCD —A 1B 1C 1D 1中,棱锥A 1——ABCD 的体积与长方体的体积之比为_______________.18.在平面几何中,有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值.拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点_______________________________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.分.解答应写出文字说明,证明过程或演算步骤. 19.已知直线l 经过点经过点((0,-2),其倾斜角是60°. (1)求直线l 的方程;的方程;(2)求直线l 与两坐标轴围成三角形的面积.与两坐标轴围成三角形的面积. 20.如图,在三棱锥P —ABC 中,PC ⊥底面ABC , AB ⊥BC ,D ,E 分别是AB ,PB 的中点.的中点.(1)求证:DE ∥平面P AC ;CBAD A ¢ B ¢C ¢D ¢(第11题)A 1 B 1 C 1 ABEC(第13题)ABC DD1 C 1 B 1 A 1 (第17题)ACPE(2)求证:AB ⊥PB ;21.已知半径为5的圆C 的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.相切. (1)求圆C 的方程;的方程;(2)设直线ax -y +5=0与圆C 相交于A ,B 两点,求实数a 的取值范围;的取值范围;(3) 在(2)的条件下,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.存在,请说明理由.22.为C 的圆经过点A(1,1)和B(2,-2)且圆心C 在直线L:x-y+1=0上,求圆心为C 的圆的标准方程 23.知圆22:68210C x y x y +--+=和直线:430l kx y k --+=.⑴ 证明:不论证明:不论k 取何值,直线l 和圆C 总相交;总相交;⑵ 当当k 取何值时,圆C 被直线l 截得的弦长最短?并求最短的弦的长度截得的弦长最短?并求最短的弦的长度24知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为27;③圆心在直线x -3y =0上. 求圆C 的方程. 25,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点,求证:(1) FD ∥平面ABC; (2) AF ⊥平面EDB.26.图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,的中点, (1) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.F EDCBAM FGE C1D1A1B1DC ABPD 1B 1D B。
期末模拟卷2一、单选题(本大题共8小题,共40.0分)1.复数为虚数单位在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【详细解析】【详细分析】本题考查复数的几何意义,直接由复数求出在复平面内对应的点的坐标得答案.【参考解答】解:复数为虚数单位在复平面内对应的点的坐标为:,位于第四象限.故选D.2.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A. B. C. D.【答案】D【详细解析】【详细分析】本题主要考查概率的求法,解题时要认真审题,注意列举法的合理运用,属于基础题.先求出基本事件总数,再用列举法求出抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件个数,由此能求出抽得的第一张卡片上的数大于第二张卡片上的数的概率.【参考解答】解:从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:,, ,,,,,,,,共有个基本事件,抽得的第一张卡片上的数大于第二张卡片上的数的概率,故选:D.3.已知一个三棱柱的高为3,如图是其底面用斜二测画法画出的水平放置的直观图,其中,则此三棱柱的体积为A. 2B. 4C. 6D. 12【答案】C【详细解析】【详细分析】本题考察直观图与原图的关系,以及棱柱的体积公式,属于基础题.依据直观图可知原图的底面三角形的底边长为2,高为2,可求出柱体的底面面积,再依据棱柱体积公式可求出答案.【参考解答】解:设三棱柱的底面三角形为,由直观图可知,,且,,故.故答案选C.4.已知非零向量,,若,且,则与的夹角为A. B. C. D.【答案】B【详细解析】【详细分析】本题考查了向量的数量积,考查了向量垂直的关系,考查了向量夹角的求解本题的关键是由垂直求出数量积为0.由向量垂直可得,结合数量积的定义表达式可求出,又,从而可求出夹角的余弦值,进而可求夹角的大小.【参考解答】解:因为,所以,因为,所以,.故选:B.5.设为平面,a,b为两条不同的直线,则下列叙述正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】B【详细解析】【详细分析】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.利用空间线线、线面、面面间的关系对每一个选项逐一详细分析判断得解.【参考解答】解:若,,则a与b相交、平行或异面,故A错误;若,,则由直线与平面垂直的判定定理知,故B正确;若,,则或,故C错误;若,,则,或,或b与相交,故D错误.故选:B.6.已知圆锥的顶点为P,母线PA,PB所成角的余弦值为,PA与圆锥底面所成角为,若的面积为,则该圆锥的体积为A. B. C. D.【答案】C【详细解析】【详细分析】本题考查线面角的概念、三角形面积公式、圆锥的体积公式,考查转化与化归思想,考查空间想象能力、运算求解能力.设底面半径为,根据线面角的大小可得母线长为2r,再根据三角形的面积得到r 的值,最后代入圆锥的体积公式,即可得答案.【参考解答】解:如图所示,设底面半径为,与圆锥底面所成角为,,,母线PA,PB所成角的余弦值为,,,,故选:C.7.已知数据的方差为4,若,则新数据的方差为A. 16B. 13C.D.【答案】A【详细解析】【详细分析】本题考查利用方差的性质求解方差的问题,属于基础题.根据方差的性质直接计算可得结果.【参考解答】解:由方差的性质知:新数据的方差为:.故选:A.8.在中,A,B,C所对的边分别是a,b,c,若,且,则A. 3B. 4C. 5D. 6【答案】D【详细解析】【详细分析】本题主要考查正弦定理和余弦定理的应用,属于中档题.根据题目已知条件应用余弦定理和正弦定理进行化简,即可得到答案.【参考解答】解:,,,,又.代入可得故答案选D.二、多选题(本大题共4小题,共20.0分)9.有甲乙两种报纸供市民订阅,记事件E为“只订甲报纸”,事件F为“至少订一种报纸”,事件G为“至多订一种报纸”,事件H为“不订甲报纸”,事件I为“一种报纸也不订”下列命题正确的是A. E与G是互斥事件B. F与I是互斥事件,且是对立事件C. F与G不是互斥事件D. G与I是互斥事件【答案】BC【详细解析】【详细分析】本题考查了互斥事件和对立事件的概念,属于基础题.根据互斥事件、对立事件的概念判断即可.【参考解答】解:对于A选项,E、G事件有可能同时发生,不是互斥事件;对于B选项,F与I不可能同时发生,且发生的概率之和为1,是互斥事件,且是对立事件;对于C选项,F与G可以同时发生,不是互斥事件;对于D选项,G与I也可以同时发生,不是互斥事件.故选:BC.10.下面是甲、乙两位同学高三上学期的5次联考的数学成绩,现只知其从第1次到第5次分数所在区间段分布的条形图从左至右依次为第1至第5次,则从图中可以读出一定正确的信息是A. 甲同学的成绩的平均数大于乙同学的成绩的平均数B. 甲同学的成绩的中位数在115到120之间C. 甲同学的成绩的极差小于乙同学的成绩的极差D. 甲同学的成绩的中位数小于乙同学的成绩的中位数【答案】DB【详细解析】【详细分析】本题考查了频数分布直方图与应用问题,是基础题.根据频数分布直方图的数据,对选项中的命题进行详细分析,判断正误即可.【参考解答】解:对于A,甲同学的成绩的平均数,乙同学的成绩的平均数,所以甲同学的成绩的平均数小于乙同学的成绩的平均数,故A错误;由题图甲知,B正确;对于C,由题图知,甲同学的成绩的极差介于之间,乙同学的成绩的极差介于之间,所以甲同学的成绩的极差也可能大于乙同学的成绩的极差,故C错误;对于D,甲同学的成绩的中位数在之间,乙同学的成绩的中位数在之间,所以甲同学的成绩的中位数小于乙同学的成绩的中位数,故D正确.故选:BD.11.下列结论正确的是A. 已知是非零向量,,若,则B. 向量,满足,,与的夹角为,则在上的投影向量为C. 点P在所在的平面内,满足,则点P是的外心D. 以,,,为顶点的四边形是一个矩形【答案】DBA【详细解析】【详细分析】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属中档题.利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一详细分析,即可容易判断选择.【参考解答】解:对A:因为,又,可得,故,故A选项正确;对B:因为,,与的夹角为,所以.故在上的投影向量为,故B选项正确;对C:点P在所在的平面内,满足,则点P为三角形ABC的重心,故C选项错误;对D:不妨设,则,故四边形ABCD是平行四边形;又,所以,故四边形ABCD是矩形故D选项正确;综上所述,正确的有ABD.故选ABD.12.如图,在四棱锥中,底面ABCD是正方形,底面ABCD,,截面BDE与直线PC平行,与PA交于点E,则下列判断正确的是A. E为PA的中点B. 平面PACC. PB与CD所成的角为D. 三棱锥与四棱锥的体积之比等于.【答案】ABD【详细解析】【详细分析】本题考查立体几何的综合应用,熟练线线、线面、面面之间的位置关系,审清题意,考验详细分析能力,属中档题.采用排除法,根据线面平行的性质定理以及线面垂直的判定定理,结合线线角的求法,锥体体积公式的计算,可得结果.【参考解答】解:对于A,连接AC交BD于点M,连接EM,如图所示,面BDE,面APC,且面面,,又四边形ABCD是正方形,为AC的中点,为PA的中点,故A正确.对于B,面ABCD,面ABCD,,又,,面PAC面PAC,故B正确.对于C,,为PB与CD所成的角,面ABCD,面ABCD,,在中,,,故C错误.对于D,由等体积法可得,又,,故D正确.故选:ABD.三、填空题(本大题共4小题,共20.0分)13.若复数z满足方程,则.【答案】【详细解析】【详细分析】本题考查复数的计算,属基础题.根据题意可得,然后根据复数的乘法可得结果.【参考解答】解:由,则,所以,所以,故答案为:14.如图,在平行四边形ABCD中,M,N分别为AD,AB上的点,且,MN交于点若,则的值为.【答案】【详细解析】【详细分析】本题考查平面向量共线定理的推论,涉及向量的线性运算,属基础题.用向量表示,结合三点共线,即可求得参数值.【参考解答】解:根据题意,,因为三点共线,所以,解得.故答案为.15.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于.【答案】【详细解析】【详细分析】本题考查相互独立事件的概率乘法公式,属于基础题.根据题意,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个问题回答正确,第一个问题可对可错.【参考解答】解:根据题意,记“该选手恰好回答了4个问题就晋级下一轮”为事件A,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个问题回答正确,第一个问题可对可错;由相互独立事件的概率乘法公式,可得,故答案为.16.如图,在正方体中,点O为线段BD的中点,设点P在线段上,直线OP与平面所成的角为,则的最小值,最大值.【答案】1【详细解析】【详细分析】此题考查正方体的性质和直角三角形的边角关系,线面角的求法,考查推理能力,属于中档题。
(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D GAC 与三棱锥P GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。
高中数学必修二期末考试试卷(三)(含答案解析)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线l 经过原点和(1,-1),则l 的倾斜角是( ) A.45° B.-45° C.135° D.45°和135° 答案 C解析 ∵直线l 经过坐标原点和点(1,-1),∴直线l 的斜率k =-11=-1,∴直线l 的倾斜角α=135°,故选C.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |等于( )A.10B.180C.6 3D.6 5考点 两点间的距离公式 题点 求两点间的距离 答案 D 解析 k MN =a -4-2-a=-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A.k ≥34或k ≤-4B.-4≤k ≤34C.-34≤k ≤4D.以上都不对考点 直线的图象特征与倾斜角、斜率的关系 题点 倾斜角和斜率关系的其他应用 答案 A解析 建立如图所示的直角坐标系.由图可得k ≥k PB 或k ≤k P A .∵k PB =34,k P A =-4,∴k ≥34或k ≤-4.4.若光线从点P (-3,3)射到y 轴上,经y 轴反射后经过点Q (-1,-5),则光线从点P 到点Q 走过的路程为( ) A.10 B.5+17 C.4 5D.217考点 对称问题的求法 题点 光路可逆问题 答案 C解析 Q (-1,-5)关于y 轴的对称点为Q 1(1,-5),易知光线从点P 到点Q 走过的路程为|PQ 1|=42+(-8)2=4 5.5.到直线3x -4y -1=0的距离为2的直线方程是( ) A.3x -4y -11=0B.3x -4y -11=0或3x -4y +9=0C.3x -4y +9=0D.3x -4y +11=0或3x -4y -9=0 答案 B解析 直线3x -4y -11=0与3x -4y +9=0到直线3x -4y -1=0的距离均为2, 又因为直线3x -4y +11=0到直线3x -4y -1=0的距离为125,故不能选择A ,C ,D ,所以答案为B.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A.-32 B.-23 C.25 D.2考点 直线的两点式方程 题点 利用两点式求直线方程 答案 A解析 由两点式y -19-1=x +13+1,得y =2x +3,令y =0,得x =-32,即为在x 轴上的截距.7.若直线mx +ny +2=0平行于直线x -2y +5=0,且在y 轴上的截距为1,则m ,n 的值分别为( ) A.1和2 B.-1和2 C.1和-2D.-1和-2 考点 直线的一般式方程与直线的平行关系 题点 根据平行求参数的值答案 C解析 由已知得直线mx +ny +2=0过点(0,1),则n =-2,又因为两直线平行,所以-m n =12,解得m =1.8.若直线(2m -3)x -(m -2)y +m +1=0恒过某个点P ,则点P 的坐标为( ) A.(3,5) B.(-3,5) C.(-3,-5) D.(3,-5)答案 C解析 方程(2m -3)x -(m -2)y +m +1=0可整理得m (2x -y +1)-(3x -2y -1)=0,联立⎩⎪⎨⎪⎧ 2x -y +1=0,3x -2y -1=0,得⎩⎪⎨⎪⎧x =-3,y =-5.故P (-3,-5).9.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(0,4) B.(0,2) C.(-2,4)D.(4,-2)考点 对称问题的求法 题点 直线关于点的对称问题 答案 B解析 ∵l 1:y =k (x -4)过定点M (4,0), 而点M 关于点(2,1)的对称点为N (0,2), 故直线l 2过定点(0,2).10.直线y =ax +1a的图象可能是( )考点 直线的斜截式方程 题点 直线斜截式方程的应用 答案 B解析 根据斜截式方程知,斜率与直线在y 轴上的纵截距同正负.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12考点 直线的一般式方程与直线的垂直关系 题点 根据垂直求参数的值 答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 12.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且两者之间的距离是5,则m +n 等于( ) A.-1 B.0 C.1 D.2考点 两条平行直线间的距离公式及应用 题点 利用两条平行直线间的距离求参数的值 答案 B解析 由题意知,所给两条直线平行,∴n =-2. 由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0.二、填空题(本大题共4小题,每小题5分,共20分)13.过点(-2,-3)且在x 轴,y 轴上的截距相等的直线方程为____________. 考点 直线的截距式方程 题点 利用截距式求直线方程 答案 x +y +5=0或3x -2y =0解析 当直线过原点时,所求直线的方程为3x -2y =0;当直线不过原点时,所求直线的方程为x +y +5=0.14.过两直线x -3y +1=0和3x +y -3=0的交点,并且与原点的最短距离为12的直线的方程为________.答案 x =12或x -3y +1=0解析 易求得两直线交点的坐标为⎝⎛⎭⎫12,32,当斜率不存在时,显然直线x =12满足条件.当斜率存在时,设过该点的直线方程为y -32=k ⎝⎛⎭⎫x -12, 化为一般式得2kx -2y +3-k =0, 因为直线与原点的最短距离为12,所以|3-k |4+4k 2=12,解得k =33,所以所求直线的方程为x -3y +1=0.15.已知直线x -2y -2k =0与两坐标轴围成的三角形的面积不大于1,则实数k 的取值范围是________________. 答案 [-1,0)∪(0,1]解析 令x =0,得y =-k ,令y =0,得x =2k , ∴三角形的面积S =12|xy |=k 2.又S ≤1,即k 2≤1.∴-1≤k ≤1.又当k =0时,直线过原点,与两坐标轴构不成三角形,故应舍去. ∴实数k 的取值范围是[-1,0)∪(0,1].16.已知直线l 与直线y =1,x -y -7=0分别相交于P ,Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________. 考点 中点坐标公式 题点 求过中点的直线方程 答案 -23解析 设P (x,1),则Q (2-x ,-3),将点Q 的坐标代入x -y -7=0,得2-x +3-7=0. ∴x =-2,∴P (-2,1),∴k l =-23.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得直线l ′的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0).∵直线l 的斜率k =3,∴其倾斜角θ=60°. 若直线l 绕点M 逆时针方向旋转30°, 则直线l ′的倾斜角为60°+30°=90°, 此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan 30°=33, 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.18.(12分)已知直线l 经过点(0,-2),其倾斜角的大小是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积.解 (1)由直线的点斜式方程得直线l 的方程为y +2=tan 60°·x ,即3x -y -2=0. (2)设直线l 与x 轴、y 轴的交点分别为A ,B , 令y =0得x =233;令x =0得y =-2.所以S △AOB =12|OA |·|OB |=12×233×2=233,故所求三角形的面积为233.19.(12分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解 (1)设l 2的方程为2x -y +m =0, 因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3, 即l 2:2x -y -3=0.联立⎩⎪⎨⎪⎧ x +2y -4=0,2x -y -3=0得⎩⎪⎨⎪⎧x =2,y =1.直线l 1与l 2的交点坐标为(2,1). (2)当l 3过原点时,l 3的方程为y =12x .当l 3不过原点时,设l 3的方程为x a +y2a =1(a ≠0),又直线l 3经过l 1与l 2的交点, 所以2a +12a =1,得a =52,l 3的方程为2x +y -5=0.综上,l 3的方程为x -2y =0或2x +y -5=0.20.(12分)已知点A (5,1)关于x 轴的对称点为B (x 1,y 1),关于原点的对称点为C (x 2,y 2). (1)求△ABC 中过AB ,BC 边上中点的直线方程; (2)求△ABC 的面积. 考点 中点坐标公式 题点 与中位线有关的问题解 (1)∵点A (5,1)关于x 轴的对称点为B (x 1,y 1),∴B (5,-1), 又∵点A (5,1)关于原点的对称点为C (x 2,y 2), ∴C (-5,-1),∴AB 的中点坐标是(5,0),BC 的中点坐标是(0,-1).过(5,0),(0,-1)的直线方程是y -0-1-0=x -50-5, 整理得x -5y -5=0.(2)易知|AB |=|-1-1|=2,|BC |=|-5-5|=10,AB ⊥BC , ∴△ABC 的面积S =12|AB |·|BC |=12×2×10=10.21.(12分)已知直线l 1:y =-k (x -a )和直线l 2在x 轴上的截距相等,且它们的倾斜角互补,又知直线l 1过点P (-3,3).如果点Q (2,2)到直线l 2的距离为1,求l 2的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 由题意,可设直线l 2的方程为y =k (x -a ), 即kx -y -ak =0,∵点Q (2,2)到直线l 2的距离为1,∴|2k -2-ak |k 2+1=1,①又∵直线l 1的方程为y =-k (x -a ), 且直线l 1过点P (-3,3),∴ak =3-3k .② 由①②得|5k -5|k 2+1=1,两边平方整理得12k 2-25k +12=0,解得k =43或k =34.∴当k =43时,代入②得a =-34,此时直线l 2的方程为4x -3y +3=0;当k =34时,代入②得a =1,此时直线l 2的方程为3x -4y -3=0.综上所述,直线l 2的方程为4x -3y +3=0或3x -4y -3=0.22.(12分)已知直线l :y =4x 和点P (6,4),点A 为第一象限内的点且在直线l 上,直线P A 交x 轴的正半轴于点B ,(1)当OP ⊥AB 时,求AB 所在直线的方程;(2)求△OAB 面积的最小值,并求当△OAB 面积取最小值时点B 的坐标. 考点 点到直线的距离题点 与点到直线的距离有关的最值问题解 (1)∵点P (6,4),∴k OP =23.又∵OP ⊥AB ,∴k AB =-32.∵AB 过点P (6,4),∴直线AB 的方程为y -4=-32(x -6),化为一般式可得3x +2y -26=0.(2)设点A (a,4a ),a >0,点B 的坐标为(b,0),b >0,当直线AB 的斜率不存在时,a =b =6,此时△OAB 的面积S =12×6×24=72.当直线AB 的斜率存在时,有4a -4a -6=0-4b -6,解得b =5aa -1, 故点B 的坐标为⎝⎛⎭⎫5a a -1,0,故△OAB 的面积S =12·5a a -1·4a =10a 2a -1,即10a 2-Sa +S =0.①由题意可得方程10a 2-Sa +S =0有解, 故判别式Δ=S 2-40S ≥0,∴S ≥40,故S 的最小值为40,此时①为a 2-4a +4=0,解得a =2. 综上可得,△OAB 面积的最小值为40, 当△OAB 面积取最小值时,点B 的坐标为(10,0).。
高中第一学期期末教学模块测试高一数学(必修2)试题参考公式:1)2S c c h ''+正棱台或圆台侧=(; S ch 正棱柱或圆柱侧=;12S ch '正棱锥或圆锥侧=;24S R π球面=; 13V S S S S h 下下台体上上=(++);V sh 柱体=; V sh 锥体1=3; 343V R π球=第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前;考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后;用铅笔把答题卡上对应题目的答案标号涂黑;如需改动;用橡皮擦干净后;再选涂其它答案;不能答在试题卷上。
一、选择题:本大题共12小题;每小题5分;共60分。
在每小题给出的四个选项中;只有一项是符合题目要求的。
1.图为某物体的实物图;则其俯视图为( )2.若直线l 只经过第一、二、四象限;则直线l 的斜率k ( )A. 大于零B.小于零 D. 大于零或小于零 D. 以上结论都有可能 3.在空间直角坐标系中Q(1;4;2)到坐标原点的距离为A.21B. 21C.3D. 74、 图(1)是由哪个平面图形旋转得到的( )A B C D5.四面体A BCD,,两两互相垂直;则顶点A在底面BCD上的-中;棱AB AC AD投影H为BCD△的()A.垂心B.重心C.外心D.内心6.一个正方体的顶点都在球面上;它的棱长为2cm;则球的表面积是()A.220πcm8πcmB.212πcmC.22πcmD.27.一束光线从点A(-1;1)出发经x轴反射;到达圆C: (x-2)2+(y-2)2=1上一点的最短路程是A. 4B. 5C. 32-8.如下图;都不是正四面体的表面展开图的是()A.①⑥B.④⑤C.③④D.④⑥9.已知点(,2)(0)-+=的距离为1;则a等于()a a>到直线:30l x yA.2B.22-C.21+-D.1210.在平面直角坐标系中;直线(32)3x y+-=的位置关-+=和直线(23)2x y系是()A.相交但不垂直B.垂直C.平行D.重合11.圆:22460+-=交于A Bx y x yx y x+-+=和圆:2260,两点;则AB的垂直平分线的方程是()A.30--=x y++=B.250x yC.390x y --= D.4370x y -+=12.过点(01)-,)的直线l 与半圆22:430(0)C x y x y +-+=≥有且只有一个交点;则直线l 的斜率k 的取值范围为( ) A.0k =或43k = B.113k <≤ C.43k =或113k <≤D.43k =或113k ≤≤二、填空题:本大题共6小题;每小题5分;共30分。
S B 1C 1A 1CA1. 倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x2. 原点在直线l 上的射影是P(-2,1),则直线l 的方程是 ( )A .02=+y xB .042=-+y xC .052=+-y xD .032=++y x3. 如果直线l 是平面α的斜线,那么在平面α内( )A .不存在与l 平行的直线B .不存在与l 垂直的直线C .与l 垂直的直线只有一条D .与l 平行的直线有无穷多条4. 过空间一点作平面,使其同时与两条异面直线平行,这样的平面( )A .只有一个B .至多有两个C .不一定有D .有无数个5. 直线093=-+y ax 与直线03=+-b y x 关于原点对称,则b a ,的值是 ( )A .a =1,b = 9B .a =-1,b = 9C .a =1,b =-9D .a =-1,b =-96. 已知直线b kx y +=上两点P 、Q 的横坐标分别为21,x x ,则|PQ|为 ( )A .2211k x x +⋅-B .k x x ⋅-21C .2211k x x +- D .k x x 21-7. 直线l 通过点(1,3)且与两坐标轴的正半轴所围成的三角形面积为6,则直线l 的方程是 ( )A .063=-+y xB .03=-y xC .0103=-+y xD .083=+-y x8. 如果一个正三棱锥的底面边长为6) A.92 B.9 C.2729. 一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )A .31003cm πB .32083cm πC .35003cm π D.33cm 10. 在体积为15的斜三棱柱ABC -A 1B 1C 1中,S 是C 1C 上的一点,S -ABC 的体积为3,则三棱锥S -A 1B 1C 1的体积为 ( ) A .1 B .32 C .2 D .3 11. 已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率的取值k 范围是 ( ) A .34k ≥或4k ≤- B .34k ≥或14k ≤- C .434≤≤-k D .443≤≤k 12. 过点(1,2),且与原点距离最大的直线方程是( )A .052=-+y xB .042=-+y xC .073=-+y xD .032=+-y x13. 过点)3,2(P 且在两坐标轴上截距相等的直线的方程是____________.14. 过点(-6,4),且与直线032=++y x 垂直的直线方程是___________.15. 在正方体ABCD —A 1B 1C 1D 1中,BC 1与平面BB 1D 1D 所成的角是 .16. 已知两点)2,1(-A ,)1,2(-B ,直线02=+-m y x 与线段AB 相交,则m 的取值范围是 .17. 如图,△ABC 为正三角形,且直线BC 的倾斜角是45°,则直线AB ,,AC 的倾斜角分别为:AB α=__________, AC α=____________.18. 正四面体(所有面都是等边三角形的三棱锥)相邻两侧面所成二面角的余弦值是 .三、解答题:19. 已知平行四边形的两条边所在的直线方程分别是x +y +1=0和3x -y +4=0, 它的对角线的交点是M (3, 0), 求这个四边形的其它两边所在的直线方程20. 在△ABC 中,BC 边上的高所在的直线的方程为012=+-y x ,∠A 的平分线所在直线的方程为0=y ,若点B 的坐标为(1,2),求点 A 和点 C 的坐标..如图,在正方体ABCD —A 1B 1C 1D 1中,已知M 为棱AB 的中点.(Ⅰ)AC 1//平面B 1MC ;(Ⅱ)求证:平面D 1B 1C ⊥平面B 1MC .如图,射线OA 、OB 分别与x 轴成 45角和30角,过点)0,1(P 作直线AB 分别与OA 、OB 交于A 、B .(Ⅰ)当AB 的中点为P 时,求直线AB 的方程;(Ⅱ)当AB 的中点在直线x y 21=上时,求直线AB 的方程.高一数学必修2复习训练题参考答案13.x 15.30° 16.]5,4[- 17.105°;165° 18.1319.07=-+y x 和0223=--y x .20.(Ⅰ)32h =,221()3V h a ab b =++=.(Ⅱ)3h =,'h =,127(33)'22S a b h =+== 21.由 ⎩⎨⎧=+-=0120y x y 得⎩⎨⎧==01y x ,即A 的坐标为 )0,1(-,∴ 1102+-=AB k , 又∵ x 轴为∠BAC 的平分线,∴ 1-=-=AB AC k k , 又∵ 直线 012=+-y x 为 BC 边上的高, ∴ 2-=BC k .设 C 的坐标为),(b a ,则11-=+a b ,212-=--a b , 解得 5=a ,6=b ,即 C 的坐标为)6,5(. 22.(Ⅰ)MO//AC 1;(Ⅱ)MO ∥AC 1,AC 1⊥平面D 1B 1C ,MO ⊥平面D 1B 1C ,平面D 1B 1C ⊥平面B 1MC .23.解:(Ⅰ)由题意得,OA 的方程为x y =,OB 的方程为x y 33-=,设),(a a A , ),3(b b B -。
高一数学必修2期末试题及答案解析参考公式:圆台的表面积公式:S r '2 r2 r'l rl (r'、r分别为圆台的上、下底面半径,I为母线长)柱体、椎体、台体的体积公式:V柱体二Sh(S为底面积,h为柱体高)1V椎体= §Sh(S为底面积,h为椎体高)1 ________V台体二S' ,S'S S h (S',S分别为上、下底面面积,h为台体高)3、选择题A 1个C、3个2.如图所示,正方体的棱长为标系中的坐标是1,点A是其一棱的中点,贝U点B、1,1」2A在空间直角坐C、D、3.如图所示,长方体ABCD A1B1C1D1 中, BAB1 30。
,贝U GD与BB所成的角是A 60B、90B、2个D、4个C 、30D 、45C 、2x y 3 0 3D 、 2x y 5 04.下列直线中,与直线x y 1 0的相交的是 A 2x 2y 6 B 、 x C 、 y x 3 D 、5.在空间四边形 ABCD 的各边 AB BC 、CD 、 DA 上的依次取点E 、F 、G 、H ,若EH 、FG 所在直线相交于点P ,则 A 、点 P 必在直线AC 上 B 、点 P 必在直线BD 上 C 、点 P 必在平面DBC 外 D 、点 P 必在平面ABC 内 6.已知直线a ,给出以下四个命题: ①若平面 II 平面 ,则直线a//平面 ②若直线a//平面,则平面 //平面 ③若直线a 不平行于平面,则平面 不平行于平面其中正确的命题是 A 、② B 、③ C 、①②D 、①③ 7.已知直线a a y 1 0与直线2x ay 1 0垂直, 则实数a 的值等于B 、C 、D > 0,28.如图所示,已知AB 平面BCD , BC CD ,则图中互相垂直的平面有 A 3对 B 、2对 1对 D 、0对9.已知P 2, 1是圆x y 225的弦AB 的中点,则弦 AB所在的直线的方程是 B 、x y 1B10.已知直线ax by c O(a,b,c都是正数)与圆x2 y2 1相切,则以a,b,c为三边长的三角形A、是锐角三角形B、是直角三角形C、是钝角三角形D、不存在二、填空题11.直线y 2x与直线x y 3的交点坐标是_________________ 。
高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。
4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。
)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。
6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。
7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。
若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。
8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。
9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。
10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。
11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。
高一数学必修2期末试题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修2期末试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修2期末试题及答案解析(word版可编辑修改)的全部内容。
高一数学必修2期末试题及答案解析参考公式:圆台的表面积公式:()22''S r r r l rl π=+++('r r 、分别为圆台的上、下底面半径,l 为母线长)柱体、椎体、台体的体积公式: =(V Sh S 柱体为底面积,h 为柱体高)1=(3V Sh S 椎体为底面积,h 为椎体高)()1=''3V S S S S h ++台体(',S S 分别为上、下底面面积,h 为台体高)一、选择题1。
下列几何体中是棱柱的有A 、1个B 、2个C 、3个D 、4个2. 如图所示,正方体的棱长为1,点A 是其一棱的中点,则点A 在空间直角坐标系中的坐标是A 、11,,122⎛⎫⎪⎝⎭B 、11,1,2⎛⎫⎪⎝⎭C 、11,1,22⎛⎫⎪⎝⎭D 、11,,12⎛⎫ ⎪⎝⎭3. 如图所示,长方体1111ABCD A B C D -中,130BAB ∠=°,则1C D 与1B B 所成的角是A、60°B、90°C、30°D、45°4。
下列直线中,与直线10x y+-=的相交的是A、226x y+=B、0x y+=C、3y x=-- D、1y x=-5。
在空间四边形ABCD的各边AB BC CD DA、、、上的依次取点E F G H、、、,若EH FG、所在直线相交于点P,则A、点P必在直线AC上B、点P必在直线BD上C、点P必在平面DBC外D、点P必在平面ABC内6. 已知直线aα⊂,给出以下四个命题:①若平面//α平面β,则直线//a平面β;②若直线//a平面β,则平面//α平面β;③若直线a不平行于平面β,则平面α不平行于平面β。
SB 1C 1A 1高一数学必修2试题.一、选择题:1. 倾斜角为135,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x 2. 原点在直线l 上的射影是P(-2,1),则直线l 的方程是 ( ) A .02=+y x B .042=-+y xC .052=+-y xD .032=++y x 3. 如果直线l 是平面α的斜线,那么在平面α内( )A .不存在与l 平行的直线B .不存在与l 垂直的直线C .与l 垂直的直线只有一条D .与l 平行的直线有无穷多条 4. 过空间一点作平面,使其同时与两条异面直线平行,这样的平面( )A .只有一个B .至多有两个C .不一定有D .有无数个5. 直线093=-+y ax 与直线03=+-b y x 关于原点对称,则b a ,的值是 ( ) A .a =1,b = 9 B .a =-1,b = 9 C .a =1,b =-9 D .a =-1,b =-96. 已知直线b kx y +=上两点P 、Q 的横坐标分别为21,x x ,则|PQ|为 ( )A .2211k x x +⋅- B .k x x ⋅-21 C .2211kx x +- D .kx x 21-7. 直线l 通过点(1,3)且与两坐标轴的正半轴所围成的三角形面积为6,则直线l 的方程是 ( )A .063=-+y xB .03=-y xC .0103=-+y xD .083=+-y x8. 如果一个正三棱锥的底面边长为615 )A.92B.9 C.272939. 一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )A .31003cm π B .32083cm πC .35003cm πD 34163π 10. 在体积为15的斜三棱柱ABC -A 1B 1C 1中,S 是C 1C 上的一点,S -ABC 的体积为3,则三棱锥S -A 1B 1C 1的体积为 ( )A .1B .32C .2D .311. 已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率的取值k 范围是 ( )A .34k ≥或4k ≤- B .34k ≥或14k ≤- C .434≤≤-k D .443≤≤k12. 过点(1,2),且与原点距离最大的直线方程是( )A .052=-+y xB .042=-+y xC .073=-+y xD .032=+-y x 二、填空题:13. 过点)3,2(P 且在两坐标轴上截距相等的直线的方程是____________. 14. 过点(-6,4),且与直线032=++y x 垂直的直线方程是___________. 15. 在正方体ABCD —A 1B 1C 1D 1中,BC 1与平面BB 1D 1D 所成的角是 .16. 已知两点)2,1(-A ,)1,2(-B ,直线02=+-m y x 与线段AB 相交,则m 的取值范围是 . 17. 如图,△ABC 为正三角形,且直线BC 的倾斜角是45°,则直线AB ,,AC 的倾斜角分别为:AB α=__________,AC α=____________.18. 正四面体(所有面都是等边三角形的三棱锥)相邻两侧面所成二面角的余弦值是 . 三、解答题:19. 已知平行四边形的两条边所在的直线方程分别是x +y +1=0和3x -y +4=0, 它的对角线的交点是M (3, 0), 求这个四边形的其它两边所在的直线方程.20.正三棱台的上、下底边长为3和6.(Ⅰ)若侧面与底面所成的角是60°,求此三棱台的体积; (Ⅱ)若侧棱与底面所成的角是60°,求此三棱台的侧面积;21.在△ABC 中,BC 边上的高所在的直线的方程为012=+-y x ,∠A 的平分线所在直线的方程为0=y ,若点B 的坐标为(1,2),求点 A 和点 C 的坐标..22.如图,在正方体ABCD —A 1B 1C 1D 1中,已知M 为棱AB 的中点. (Ⅰ)AC 1//平面B 1MC ;(Ⅱ)求证:平面D 1B 1C ⊥平面B 1MC .23.如图,射线OA 、OB 分别与x 轴成45角和30角,过点)0,1(P 作直线AB 分别与OA 、OB 交于A 、B .(Ⅰ)当AB 的中点为P 时,求直线AB 的方程; (Ⅱ)当AB 的中点在直线x y 21=上时,求直线AB 的方程.(A) (B ) (C) (D) 图1一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 () (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C)32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4 (B )5 (C )321- (D )26 6.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β图2C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( )(A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531 (B) 532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D GAC 与三棱锥P GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分) 15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点.(1)证明:DN//平面PMB ;NP(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.一、 选择题1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。
2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C.D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( )A. 300B.450C. 600D. 9004、右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( ) A. 300 B.450 C. 600 D. 9005、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=5-; C.a=2-,b=5; D.a=2-,b=5-.6、直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1)7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=08、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( ) A.3aπ; B.2aπ; C.a π2; D.a π3.ABA ’9、已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A. 2cm; B.cm 34; C.4cm; D.8cm 。
10、圆x 2+y 2-4x-2y-5=0的圆心坐标是:( )A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).11、直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( ) A. 相离; B. 相交; C. 相切; D. 无法判定.12、圆C 1: 1)2()2(22=-++y x 与圆C 2:16)5()2(22=-+-y x 的位置关系是( ) A 、外离 B 相交 C 内切 D 外切 二、填空题13、底面直径和高都是4cm 的圆柱的侧面积为 cm 2。