数学建模常用模型方法总结精品
- 格式:docx
- 大小:18.65 KB
- 文档页数:2
数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。
具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模方法一、机理分析法从基本物理定律以及系统的结构数据来推导出模型。
1. 比例分析法--建立变量之间函数关系的最基本最常用的方法。
2. 代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3. 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4. 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5. 偏微分方程--解决因变量与两个以上自变量之间的变化规律。
二、数据分析法从大量的观测数据利用统计方法建立数学模型。
1. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
3. 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
4. 时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法1. 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2. 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3. 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)二、风扇的最优化布局设计为你上课的教室安装风扇,请你做风扇的最优化布局设计;建模提示:(1)在风扇数目一定的情况下,风扇的位置不同,效果也不同,是否一定存在一个最好的布局?(2)在风扇数目不定的情况下,就有一个安装多少台风扇为最佳方案的问题,自然也应该存在一个最佳数量结果。
数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。
随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。
本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。
一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。
它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。
贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。
2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。
它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。
数理统计模型在市场预测、风险评估等领域有着重要的应用。
3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。
线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。
4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。
非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。
二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。
它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。
神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。
2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。
它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。
遗传算法模型在组合优化、机器学习等领域具有广泛的应用。
3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。
它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。
2常用的建模方法
(I)初等数学法。
主要用于一些静态、线性、确定性的模型。
例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型。
(2)数据分析法。
从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。
(3)仿真和其他方法。
主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,根据试验结果进行不
断分析修改,求得所需模
型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。
(4)层次分析法。
主要用于有关经济计划和管理、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领
域,以便进行决策、评价、分析、预测等。
该方法关键的一步是建立层次结
构模型。
数学建模常用模型方法总结数学建模是指用数学方法对实际问题进行抽象和描述,进而建立数学模型来解决实际问题的方法。
数学建模是现代科学技术的重要手段之一,它在实际应用中起着重要的作用。
下面将介绍一些常用的数学建模方法。
一、线性规划线性规划是在约束条件下求解线性目标函数的问题,广泛应用于经济、工程等领域。
它的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & \mathbf{C}^T\mathbf{X} \\\text{subject to}\quad & \mathbf{A}\mathbf{X} \leq \mathbf{b} \\& \mathbf{X} \geq \mathbf{0}\end{align*}$$其中,$\mathbf{C}$是一个列向量,$\mathbf{X}$是要优化的目标变量,$\mathbf{A}$是一个矩阵,$\mathbf{b}$是一个列向量。
二、非线性规划非线性规划是在约束条件下求解非线性目标函数的问题。
非线性规划模型往往在现实问题中具有更广泛的适用性。
非线性规划的数学模型可以表示为:$$\begin{align*}\text{maximize}\quad & f(\mathbf{X}) \\\text{subject to}\quad & \mathbf{g}(\mathbf{X}) \leq\mathbf{0} \\& \mathbf{h}(\mathbf{X}) = \mathbf{0}\end{align*}$$其中,$f(\mathbf{X})$是一个目标函数,$\mathbf{g}(\mathbf{X})$是不等式约束条件,$\mathbf{h}(\mathbf{X})$是等式约束条件。
三、动态规划动态规划是一种通过将问题分解成子问题的方式来求解复杂问题的方法。
它通常适用于具有最优子结构性质的问题。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。
量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。
图论是研究由线连成的点集的理论。
一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。
数学建模_四大模型总结四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。
量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。
3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。
图论是研究由线连成的点集的理论。
一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。
数学建模算法汇总数学建模常用的算法分类全国大学生数学建模竞赛中,常见的算法模型有以下30种:1.最小二乘法2.数值分析方法3.图论算法4.线性规划5.整数规划6.动态规划7.贪心算法8.分支定界法9.蒙特卡洛方法10.随机游走算法11.遗传算法12.粒子群算法13.神经网络算法14.人工智能算法15.模糊数学16.时间序列分析17.马尔可夫链18.决策树19.支持向量机20.朴素贝叶斯算法21.KNN算法22.AdaBoost算法23.集成学习算法24.梯度下降算法25.主成分分析26.回归分析27.聚类分析28.关联分析29.非线性优化30.深度学习算法一、线性回归:用于预测一个连续的输出变量。
线性回归是一种基本的统计学方法,用于建立一个自变量(或多个自变量)和一个因变量之间的线性关系模型,以预测一个连续的输出变量。
这个模型的形式可以表示为:y = β0 + β1x1 + β2x2 + ... + βpxp + ε其中,y 是因变量(也称为响应变量),x1, x2, ..., xp 是自变量(也称为特征变量),β0,β1,β2, ...,βp 是线性回归模型的系数,ε 是误差项线性回归的目标是找到最优的系数β0, β1, β2, ...,βp,使得模型预测的值与真实值之间的误差最小。
这个误差通常用残差平方和来表示:RSS = Σ (yi - ŷi)^2其中,yi 是真实的因变量值,ŷi 是通过线性回归模型预测的因变量值。
线性回归模型的最小二乘估计法就是要找到一组系数,使得残差平方和最小。
线性回归可以通过多种方法来求解,其中最常用的方法是最小二乘法。
最小二乘法就是要找到一组系数,使得残差平方和最小。
最小二乘法可以通过矩阵运算来实现,具体地,系数的解可以表示为:β = (X'X)^(-1)X'y其中,X 是自变量的矩阵,包括一个截距项和所有自变量的值,y 是因变量的向量。
线性回归在实际中的应用非常广泛,比如在金融、医学、工程、社会科学等领域中,都可以使用线性回归来预测和分析数据。
数学建模的常用模型与求解方法知识点总结数学建模是运用数学方法和技巧来研究和解决现实问题的一门学科。
它将实际问题抽象化,建立数学模型,并通过数学推理和计算求解模型,从而得出对实际问题的理解和解决方案。
本文将总结数学建模中常用的模型类型和求解方法,并介绍每种方法的应用场景。
一、线性规划模型与求解方法线性规划是数学建模中最常用的模型之一,其基本形式为:$$\begin{align*}\max \quad & c^Tx \\s.t. \quad & Ax \leq b \\& x \geq 0\end{align*}$$其中,$x$为决策变量向量,$c$为目标函数系数向量,$A$为约束系数矩阵,$b$为约束条件向量。
常用的求解方法有单纯形法、对偶单纯形法和内点法等。
二、非线性规划模型与求解方法非线性规划是一类约束条件下的非线性优化问题,其目标函数或约束条件存在非线性函数。
常见的非线性规划模型包括凸规划、二次规划和整数规划等。
求解方法有梯度法、拟牛顿法和遗传算法等。
三、动态规划模型与求解方法动态规划是一种用于解决多阶段决策问题的数学方法。
它通过将问题分解为一系列子问题,并利用子问题的最优解构造原问题的最优解。
常见的动态规划模型包括最短路径问题、背包问题和任务分配等。
求解方法有递推法、记忆化搜索和剪枝算法等。
四、图论模型与求解方法图论是研究图及其应用的一门学科,广泛应用于网络优化、城市规划和交通调度等领域。
常见的图论模型包括最小生成树、最短路径和最大流等。
求解方法有贪心算法、深度优先搜索和广度优先搜索等。
五、随机模型与概率统计方法随机模型是描述不确定性问题的数学模型,常用于风险评估和决策分析。
概率统计方法用于根据样本数据对随机模型进行参数估计和假设检验。
常见的随机模型包括马尔可夫链、蒙特卡洛模拟和马尔科夫决策过程等。
求解方法有蒙特卡洛法、马尔科夫链蒙特卡洛法和最大似然估计等。
六、模拟模型与求解方法模拟模型是通过生成一系列随机抽样数据来模拟实际问题,常用于风险评估和系统优化。
数学建模的建模方法
数学建模的建模方法有以下几种常用的方法:
1. 数学优化模型:通过建立一个目标函数和一系列约束条件来描述问题,并利用数学优化方法寻找使目标函数最优的解。
2. 方程模型:将问题转化为一组方程或不等式,利用数学方法求解得到结果。
3. 统计模型:基于一定的统计原理和假设,利用统计方法来分析和预测数据、进行参数估计和假设检验等。
4. 动态模型:将问题看作是一个动态的过程,并建立一套描述系统演化过程的方程组,以预测未来状态和行为。
5. 分段模型:将系统划分为多个不同的阶段或状态,并对每个阶段或状态建立适当的模型,再通过合并各个模型的结果来得到整体的解析。
6. 离散模型:将问题中的连续变量离散化为一组有限的状态或取值,并用状态转移矩阵或概率分布描述变量之间的关系和演化规律。
7. 系统动力学模型:基于对系统结构和行为的理解,建立一系列动态方程来描述系统各种因素之间的相互作用和演化过程。
8. 随机过程模型:用概率论和随机过程理论来描述系统的不确定性和随机性,并对系统的平均行为和波动性进行分析和预测。
以上仅是一些常用的数学建模方法,实际建模过程中可以根据具体问题的特点选择合适的建模方法,或者结合多种方法进行综合建模。
数学建模常用模型方法总结无约束优化线性规划非线性规划整数规划组合优化多目标规划目标规划动态规划网络规划多层规划等…运筹学模型(优化模型)图论模型存储论模型排队论模型博弈论模型可靠性理论模型等…运筹学应用重点: ①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理优化模型四要素:①目标函数②决策变量③约束条件④求解方法(MATLAB--通用软件 LINGO--专业软件)概率论与数理统计模型多元分析模型假设检验模型相关分析回归分析聚类分析、主成分分析因子分析判别分析典型相关性分析对应分析多维标度法连续优化离散优化从其他角度分类数学规划模型方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归马尔萨斯人口预测模型Logistic 人口预测模型灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典 NP 问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法(启发式)神经网络算法蒙特卡罗算法元胞自动机算法穷蚁群算法(ACA)传染病模型微分方程模型人口预测控制模型经济增长模型战争模型等等。
常用算法模型举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型。
数学建模常用模型方法总结无约束优化线性规划连续优化非线性规划整数规划离散优化组合优化数学规划模型多目标规划目标规划动态规划从其他角度分类网络规划多层规划等…运筹学模型(优化模型)图论模型存储论模型排队论模型博弈论模型可靠性理论模型等…运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理优化模型四要素:①目标函数②决策变量③约束条件④求解方法(MATLAB--通用软件LINGO--专业软件)聚类分析、主成分分析因子分析多元分析模型判别分析典型相关性分析对应分析多维标度法概率论与数理统计模型假设检验模型相关分析回归分析方差分析贝叶斯统计模型时间序列分析模型决策树逻辑回归传染病模型马尔萨斯人口预测模型微分方程模型人口预测控制模型经济增长模型Logistic 人口预测模型战争模型等等。
灰色预测模型回归分析预测模型预测分析模型差分方程模型马尔可夫预测模型时间序列模型插值拟合模型神经网络模型系统动力学模型(SD)模糊综合评判法模型数据包络分析综合评价与决策方法灰色关联度主成分分析秩和比综合评价法理想解读法等旅行商(TSP)问题模型背包问题模型车辆路径问题模型物流中心选址问题模型经典NP问题模型路径规划问题模型着色图问题模型多目标优化问题模型车间生产调度问题模型最优树问题模型二次分配问题模型模拟退火算法(SA)遗传算法(GA)智能算法蚁群算法(ACA)(启发式)常用算法模型神经网络算法蒙特卡罗算法元胞自动机算法穷举搜索算法小波分析算法确定性数学模型三类数学模型随机性数学模型模糊性数学模型。
1.回归模型 (含剔除)5.2模型一的建立(含交叉项的多项式回归模型)由以上分析可知,如果交易费用率y 与影响其变动的主要影响因素:16,x x ,之间有很密切的关系,则应该有:()126,,,y f x x x ε=+ (5-1)其中,y 和12,6,x x x ,分别代表交易费用和影响其变动的主要因素。
经初步判断,()126,,,y f x x x = 是多项式函数,其表达式为:220116671126131214132756281232912447456y x x x x x x x x x x x x x x x x x x x βββββββββββε=+++++++++++++++ (5-2)其中,016,,,βββ 分别为对应二级指标12,6,x x x ,的系数;712,,ββ 分别为对应2216,,x x 的系数;131427,,,βββ 分别为对应6种二级指标12,6,x x x ,两两组合而成的2615C =项交叉项的系数;282947,,,βββ 分别为对应6种二级指标12,6,x x x ,三三组合而成的3620C =项交叉项的系数。
(最多有三个之间的互相影响)因素不能超过8个式(5-2)对应的数据矩阵X 和向量Y 分别为:226470.4860.1150.4860.4730.5130.4210.1030.2850.1190.1510.2270.121X P A F A F AB EF ABC DEF Y ⨯⎡⎤=⎣⎦⎛⎫ ⎪= ⎪⎪⎝⎭ 其中,P 为一个30行1列的单位矩阵;X 为一个30行1列的矩阵,其A F -列数据分别对应表3中第A F -列中的数据;22A F -列数据分别对应表3中第A F -列中的数据的平方;AB EF 列数据分别对应表3中第A F -列中的数据两两组合而成的2615C =项交叉项的乘积;ABC DEF 列数据分别对应表3中第A F -列中的数据三三组合而成的3620C =项交叉项的乘积;Y 为一个6行47列的矩阵,各行数据分别对应附录一中各国每年交易费用率的数据。
数学建模方法总结数学建模方法总结(通用17篇)数学建模方法总结篇1这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。
它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。
它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。
数学模型主要是将现实对象的信息加以翻译,归纳的产物。
通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。
其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。
例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案。
这些问题和建模都有着很大的联系。
而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。
这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。
数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。
它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。
从现在我们的学习来看,我们都是直接受益者。
就拿我此次学习数学建模后写论文。
【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心
数学建模常用模型方法总结
无约束优化
线性规划连续优化
非线性规划
整数规划离散优化
组合优化
数学规划模型多目标规划
目标规划
动态规划从其他角度分类
网络规划
多层规划等…
运筹学模型
(优化模型)
图论模型存
储论模型排
队论模型博
弈论模型
可靠性理论模型等…
运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理
优化模型四要素:①目标函数②决策变量③约束条件
④求解方法(MATLAB--通用软件LINGO--专业软件)
聚类分析、
主成分分析
因子分析
多元分析模型判别分析
典型相关性分析
对应分析
多维标度法
概率论与数理统计模型
假设检验模型
相关分析
回归分析
方差分析
贝叶斯统计模型
时间序列分析模型
决策树
逻辑回归
传染病模型马尔萨斯人口预测模型微分方程模型人口预
测控制模型
经济增长模型Logistic 人口预测模型
战争模型等等。
灰色预测模型
回归分析预测模型
预测分析模型差分方程模型
马尔可夫预测模型
时间序列模型
插值拟合模型
神经网络模型
系统动力学模型(SD)
模糊综合评判法模型
数据包络分析
综合评价与决策方法灰色关联度
主成分分析
秩和比综合评价法
理想解读法等
旅行商(TSP)问题模型
背包问题模型车辆路
径问题模型
物流中心选址问题模型
经典NP问题模型路径规划问题模型
着色图问题模型多目
标优化问题模型
车间生产调度问题模型
最优树问题模型二次分
配问题模型
模拟退火算法(SA)
遗传算法(GA)
智能算法
蚁群算法(ACA)
(启发式)
常用算法模型神经网络算法
蒙特卡罗算法元
胞自动机算法穷
举搜索算法小波
分析算法
确定性数学模型
三类数学模型随机性数学模型
模糊性数学模型。