五年级奥数约数与倍数
- 格式:doc
- 大小:22.00 KB
- 文档页数:3
第十讲约数与倍数在前面的章节,我们学习了数论中的整除和质数合数等知识.有关约数与倍数的知识.约数和倍数的定义是这样的:对整数a 和b ,如果a |b ,我们就称a 是b 的约数(因数),b 是a 的倍数.根据定义,我们很容易找到一个数的所有约数,例如对12:因为12 1 12 2 6 3 4 ,可知12可以被1、2、3、4、6、12整除,那么它的约数有 1、2、3、4、6、12,共6个.从上面12的分拆可以看出,约数具有“ 成对出现”的特征,也就是:最大约数对应最 小约数、第二大约数对应第二小约数等. 所以在写一个数的所有约数时,可以逐对写出.另 外如果计算较大约数不太方便,可以转而计算与其成对的较小约数.例题1. 12345654321的第三大约数是多少?「分析」第三大约数有点大,那我们可以先求出第三小的约数,12345678987654321的第二大约数是多少?从上面的分析知,可以通过枚举的方法逐对写出一个数的所有约数, 从而可就算出它的约数个数.但是对很大的数,例如 20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用枚举可知 72共12个约数,分别为1、72; 2、36; 3、24; 4、18;6、12; 8、9.因为72的约数能整除72,而72的所有质因数也都能整除 72,所以对72进 行质因数分解,有: 72 23 32,那么72的所有约数应当由若干个 2与若干个3构成.显 然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的约数共4 3 12个,见下表(注意20 1、30 1 ):从72的这个例子,我们可以总结出计算约数个数的一个简单做法:今天,我们来学习数论中再根据它计算第三大的约数.约数个数等于指数加再相乘例题2.下列各数分别有多少个约数?23, 64, 75, 225,720.「分析」熟练掌握约数个数的计算公式即可.下列各数分别有多少个约数?18, 47, 243, 196, 450.例题3. 3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?「分析」约数既然能整除3600 ,那说明约数一定包含在3600的因数中•我们知道4 2 23600 2 3 5,那么3600的所有约数一定是由若干个2、若干个3和若干个5组成的.如果约数是3的倍数,那么它至少要含有多少个3?3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个约数,根据上面关于约数个数的知识我们可以知道,有奇数个约数的数一定是平方数,有偶数个约数的数一定不是平方数.前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .7222122231 02 03 0320301 21 302 22304 23 308 31 20 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?722212223前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .1 02 03 0320301 21 302 22304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122230 01 02 03 0前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .30 20 301 21 302 22 304 23 308 3120 31 3 21 31 6 2231 12 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?7222122231 02 03 032030121 3022230423 308前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数, 所以平方数有奇数个约数, 根据上面关于约数个数的知识 我们可以知道, 有.奇.数.个.约.数.的.数.一.定.是.平.方.数. , 有.偶.数.个.约.数.的.数.一.定.不.是.平.方.数. .3120 313 21 316 22 3112 23 3124 3220 32 92132 1822 32 36233272约数个数等于指数加1 再相乘例题 2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」 熟练掌握约数个数的计算公式即可. 练 习 2下列各数分别有多少个约数?18, 47, 243, 196, 450.例题 3.3600 有多少个约数?其中有多少个是 3的倍数?有多少个是 4 的倍数?有多少个不 是 6 的倍数? 「分析」 约数既然能整除 3600,那说明约数一定包含在 3600 的因数中.我们知道 4223600 24 32 52,那么 3600 的所有约数一定是由若干个 2、若干个 3和若干个 5组成的.如 果约数是 3 的倍数,那么它至少要含有多少个 3?练 习 33456 共有多少个约数?其中有多少个是3 的倍数?有多少个是4 的倍数?有多少个不是 6 的倍数?。
五年级数学倍数与约数在学习数学的过程中,我们会遇到很多与倍数和约数相关的概念和问题。
倍数和约数是数学中非常基础而重要的概念,对于我们理解数的性质和运算有着至关重要的作用。
今天,我们就来深入了解一下五年级数学中的倍数与约数。
一、倍数的概念和性质倍数是指一个数可以被另一个数整除,而整除的结果为整数。
举个例子,我们以数列1、2、3、4、5、6……为例,如果一个数能被2整除,那么我们就称它是2的倍数。
同样地,如果一个数能被3整除,那么我们就称它是3的倍数。
倍数的概念是相对的,对于每个数来说,它都有自己的倍数。
比如,对于数1来说,它的倍数是1、2、3、4、5……;对于数2来说,它的倍数是2、4、6、8、10……。
对于倍数的性质,我们可以总结如下:1. 每个数都是自己的倍数,即任何数都可以被自己整除。
2. 倍数可以是正数、负数或零。
3. 对于一个数来说,它的倍数是无穷多的,因为我们可以不断地乘以任意整数来得到更多的倍数。
二、约数的概念和性质约数是指能够整除某个数的数,也可以说是某个数的因数。
举个例子,对于数12来说,它的约数有1、2、3、4、6、12。
因为这些数都能够整除12,而且整除的结果为整数。
对于约数的概念来说,我们需要注意以下几点:1. 每个数都有自己的约数,且1和数本身都是它的约数。
2. 约数是正数,因为负数和零不能整除正数。
3. 对于一个数来说,它的约数的个数是有限的。
比如数12的约数有1、2、3、4、6、12,共计6个。
三、倍数和约数的关系倍数和约数是密切相关的概念。
一个数的倍数必然是它的约数的整数倍,而一个数的约数必然是它的倍数的因数。
举个例子,对于数12来说,它的倍数有12、24、36,而它的约数有1、2、3、4、6、12。
我们可以发现,约数1乘以12等于12本身,这说明12的约数1是12的倍数;同样地,约数2乘以6等于12本身,这说明12的约数2是12的倍数。
倍数和约数在解决实际问题中有着广泛的应用。
四约数与倍数(A)_____ 年级______ 班姓名___________ 得分______一、填空题1 . 28的所有约数之和是 ______ .2. 用105个大小相同的正方形拼成一个长方形,有________ 中不同的拼法•3. 一个两位数,十位数字减个位数字的差是28的约数,十位数字与个位数字的积是24.这个两位数是______ .4. 李老师带领一班学生去种树,学生恰好被平均分成四个小组,总共种树667棵,如果师生每人种的棵数一样多,那么这个班共有学生_____ 人.5. 两个自然数的和是50,它们的最大公约数是5,则这两个数的差是________ .6. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给 _____ 小朋友,每个小朋友得梨_______ 个,桔 _____ 个.7. 一块长48厘米、宽42厘米的布,不浪费边角料,能剪出最大的正方形布片_____ 块.8. 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(不余料)__ 块.9. 张师傅以1元钱3个苹果的价格买苹果若干个,又以2元钱5个苹果的价格将这些苹果卖出,如果他要赚得10元钱利润,那么他必须卖出苹果_____ 个.10. 含有6个约数的两位数有______ 个.11. 写出小于20的三个自然数,使它们的最大公约数是1,但两两均不互质,请问有多少组这种解?12. 和为1111的四个自然数,它们的最大公约数最大能够是多少?13. 狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳4丄米,黄鼠狼每次跳2-米,2 4它们每秒钟都只跳一次.比赛途中,从起点开始每隔12-米设有一个陷井,当它们8之中有一个掉进陷井时,另一个跳了多少米?14. 已知a与b的最大公约数是12, a与c的最小公倍数是300,b与c的最小公倍数也是300,那么满足上述条件的自然数a, b, c共有多少组?(例如:a=12、b=300、c=300,与a=300、b=12、c=300是不同的两个自然数组)--------------------------- 答案 -------------------------------------------- 答案:1. 5628的约数有1,2,4,7,14,28,它们的和为1+2+4+7+14+28=56.2. 4因为105 的约数有1,3,5,7,15,21,35,105 能拼成的长方形的长与宽分别是105和1,35和3,21与5,15与7.所以能拼成4种不同的长方形.3. 64因为28=2 2 7,所以28的约数有6个:1,2,4,7,14,28. 在数字0,1,2,…,9 中,只有6与4之积,或者8与3之积是24,又6-4=2,8-3=5.故符合题目要求的两位数仅有64.4. 28因为667=23 29, 所以这班师生每人种的棵数只能是667 的约数:1,23,29,667. 显然,每人种667棵是不可能的.当每人种29棵树时,全班人数应是23-1=22,但22不能被4整除,不可能.当每人种23棵树时,全班人数应是29-1=28,且28恰好是4的倍数,符合题目要求.当每人种 1 棵树时, 全班人数应是667-1=666, 但666 不能被 4 整除, 不可能. 所以, 一班共有28 名学生.5. 40 或20两个自然数的和是50,最大公约数是5,这两个自然数可能是5和45,15 和35,它们的差分别为(45-5=)40,(35-15=)20, 所以应填40或20.[注]这里的关键是依最大公约数是5的条件,将50分拆为两数之和:50=5+45=15+35.6. 36,1,3.要把梨36个、桔子108个分给若干个小朋友,要求每人所得的梨数、桔子相等,小朋友的人数一定是36的约数,又要是108的约数,即一定是36和108 的公约数.因为要求最多可分给多少个小朋友,可知小朋友的人数是36和108的最大公约数.36 和108的最大公约数是36,也就是可分给36个小朋友.每个小朋友可分得梨: 36 36=1( 只)每个小朋友可分得桔子: 108 36=3( 只)所以,最多可分得36个小朋友,每个小朋友可分得梨1只,桔子3只.7. 56剪出的正方形布片的边长能分别整除长方形的长48厘米及宽42厘米,所以它是48 与42的公约数,题目又要求剪出的正方形最大, 故正方形的边长是48与42 的最大公约数.因为48=2 2 2 2 3,42=2 3 7,所以48与42的最大公约数是 6.这样,最大正方形的边长是6厘米.由此可按如下方法来剪:长边每排剪8块,宽边可剪7 块,共可剪(48 6) (42 6)=8 7=56(块)正方形布片.8. 200根据没有余料的条件可知长、宽和高分别能被正方体的棱长整除, 即正方体的棱长是1 80,45和1 8的公约数.为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数.180,45 和18的最大公约数是9,所以正方体的棱长是9厘米.这样,长180厘米可公成20段,宽45厘米可分成5段,高18厘米可分成2段.这根木料共分割成(180 9) (45 9) (18 9)=200块棱长是9厘米的正方体.9. 150根据3与5的最小公倍数是 1 5,张老师傅以5元钱买进15个苹果,又以6元钱卖出15个苹果,这样,他15个苹果进与出获利1元.所以他获利10元必须卖出150个苹果.10. 16含有6个约数的数,它的质因数有以下两种情况:一是有5个相同的质因数连乘;二是有两个不同的质因数其中一个需连乘两次,如果用M表示含有6个约数的数,用a和b表示M的质因数,那么M a5或M a2 b因为M是两位数,所以M= a5只有一种可能M=25,而M= a2 b就有以下15种情况:M223,M225,M227,M2211,M2213,M2217,M2219, M2223, M322,M325,M327,M3211,M522,M523,M722.所以,含有6个约数的两位数共有15+1=16(个)11. 三个数都不是质数,至少是两个质数的乘积,两两之间的最大公约数只能分别是2,3和5,这种自然数有6,10,15和12,10,15及18,10,15三组.12. 四个数的最大公约数必须能整除这四个数的和,也就是说它们的最大公约数应该是1111的约数.将1111作质因数分解,得1111=11 101最大公约数不可能是1111,其次最大可能数是101.若为101,则将这四个数分别除以101,所得商的和应为11.现有1+2+3+5=11,即存在着下面四个数101,101 2,101 3,101 5,它们的和恰好是101 (1+2+3+5)=101 11=1111,它们的最大公约数为101.所以101为所求.13. 黄鼠狼掉进陷井时已跳的行程应该是2-与123的“最小公倍数” 99,4 8 4qq 11 1 3即跳了99 ^=9次掉进陷井,狐狸掉进陷井时已跳的行程应该是41和123的4 4 2 8“最小公倍数” 99,即跳了99 -=11次掉进陷井.2 2 2经过比较可知,黄鼠狼先掉进陷井,这时狐狸已跳的行程是14- 9=40.5(米).14. 先将12、300分别进行质因数分解:12=2 2 3300=2 2 3 52(1)确定a的值.依题意a只能取12或12 5(=60)或12 25(=300). ⑵确定b的值.当a=12时,b可取12,或12 5,或12 25;当a=60,300时,b都只能取12.所以,满足条件的a、b共有5组:ra=12 r a=12 r a=12 r a=60 j a=300[b=12, I b=60, I b=300, 1 b=12, t b=12.(3)确定a, b, c的组数.对于上面a、b的每种取值,依题意,c均有6个不同的值:2 2 2 2 2 2 2 25,5 2, 5 2,5 3, 5 2 3, 5 2 3, 即卩25, 50, 100, 75, 150, 300.所以满足条件的自然数a、b、c共有5 6=30 (组)。
学科教师辅导讲义知识梳理一、约数和倍数的定义整数A能被整数B整除,A叫做B的倍数,B就叫做A的约数(在自然数的范围内)。
如:2和6是12的约数,12是2的倍数,12也是6的倍数;18的约数有1、18、2、9、3、6。
注意:①一个数的约数个数是有限的,一个数的倍数有无数个。
②任何数都有最小的约数1,最大的约数本身,最小的倍数也是本身。
③一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
④因数和约数的区别:约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。
如果数a与数b 相乘的积是数c,a与b都是c的因数。
二、 2、3和5倍数的特征2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数5的倍数的数特征是个位是0或53的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数三、质数与合数(1)只有1和本身两个因数的数叫做质数(或素数)(2)除了1和本身外还有其它因数的数叫做合数(3)1既不是质数,也不是合数(4)100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(5)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
记作[2,3]=6。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
注意:最大公约数×最小公倍数=两数的乘积,即(a,b)×[a,b]=a×b。
第20讲最小公倍数團教学目标掌握倍数和最小公倍数的概念,最小公倍数的求法;圈会利用最小公倍数解决实际问题知识梳理、约数和倍数的定义整数A能被整数B整除,A叫做B的倍数,B就叫做A的约数(在自然数的范围内)。
女口:2和6是12的约数,12是2的倍数,12也是6的倍数;18 的约数有1、18、2、9、3、6。
注意:①一个数的约数个数是有限的,一个数的倍数有无数个。
②任何数都有最小的约数1,最大的约数本身,最小的倍数也是本身。
③一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。
④因数和约数的区别:约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。
如果数a与数b相乘的积是数c,a与b都是c的因数。
二、2、3和5倍数的特征2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数5的倍数的数特征是个位是0或53的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数三、质数与合数(1)只有1和本身两个因数的数叫做质数(或素数)(2)除了1和本身外还有其它因数的数叫做合数(3)1既不是质数,也不是合数(4)100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(5)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,女口2 的倍数有2、4、6、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
记作[2,3]=6。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
1. 五年级奥数约数与倍数(二)学生版2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识, 例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系; (2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以知识点拨 教学目标5-4-2.约数与倍数(二)n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
【精编范文】小学奥数数论问题知识总结:约数和倍数-范文模板
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
小学奥数数论问题知识总结:约数和倍数
导语:“奥数”是奥林匹克数学竞赛的简称。
学习奥数可以锻炼思维,是
大有好处的。
以下是小编为大家精心整理的小学奥数数论问题知识总结:约数
和倍数,欢迎大家参考!
约数和倍数
约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,
叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最
大公约数乘以m。
例如:
12的约数有1、2、3、4、6、12;18的约数有:1、2、3、6、9、18;
那么12和18的公约数有:1、2、3、6;
那么12和18最大的公约数是:6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
五年级奥数约数与倍数Prepared on 21 November 2021理解记忆理论部分-☆星级☆约数和倍数;若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
☆公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
☆最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、1218的约数有:1、2、3、6、9、18那么12和18的公约数有:1、2、3、6那么12和18最大的公约数是:6记作(12,18)=6☆求最大公约数的基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
思维方法巩固训练部分-☆星级■经验规律总结:通过举例观察两个数的最大公约数与它们的和、差、积之间的关系。
1.求(26,78)、(196,165)、(55,84,141)2.两个自然数的和是88,最大公约数是8,求这两个数。
3.两个自然数的积是384,最大公约数是8,求这两个数。
4.已知两数的和是104055,这两个数的最大公约数是6937,求这两个数。
5.若两个数的积是5766,它们的最大公约数是31,求这两个数。
6.有男同学27人,女同学18人,一起去划船(每条船不超过6人),要保证每条船上男女同学都分别相等,应该租几条船?7.把一张长120厘米,宽80厘米的长方形的纸裁成同样大小的正方形(纸无剩余),至少能裁多少张?8.9.把长132厘米,宽60厘米,厚36厘米的木料,锯成尽可能大的同样的大小的正方体,求锯成的正方体的棱长与锯成的块数。
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
3、约数与倍数一、填空:1、5184的全部约数有个,所有约数的和是。
2、区教委为表彰优秀教师,教师节那天,买来了菊花168支,玫瑰花252支,康乃馨210支。
如果要使每束花中三种花的支数彼此相等,用这些鲜花最多可以表彰______位优秀教师,每束花共有______支。
3、学校要选拔三名运动员参加区田径比赛,选出的这三位运动员的年龄刚好一个比一个大一岁。
体育老师还告诉大家,这三个运动员年龄的最小公倍数是1092。
那么这三个人中年龄最大的是岁。
4、化肥厂包装车间对化肥进行包装,需要经过:扎编织袋、装化肥入袋、缝袋口、搬运4道工序。
每人每小时能扎编织袋24个,或装化肥36袋,或缝袋口18只,或搬运化肥16袋。
这个车间至少要名工人才能进行合理分工。
5、炼化公司的文化广场上有一些五彩缤纷的“烟花”彩灯。
有一座“烟花”彩灯上装有100支彩色灯管,这些灯管的亮暗变化十分有趣,这100个灯管按1~100编号,它们的亮暗变化规律是:第一秒全部变亮,第二秒凡编号为2的倍数灯由亮变暗,第三秒凡编号为3的倍数的灯改变原来的亮暗状态(亮的变暗,暗的变亮);…………………………第100秒100倍数的灯改变原来的亮暗状态。
问第100秒时,亮着的灯管有个。
6、王斌每隔7天去图书馆借一次书,李兴每隔10天去借一次书,陈军每隔15天去借一次书。
已知4月20日他们在一起借书,那么离4月20日最近的是_______月______日,他们三人又在同一天借书。
7、如图是一个小区街道的示意图,街道在B、C处拐弯,现要在街道一侧等距离地装上路灯,并要求在路的两端和拐弯处各装一盏路灯,这条街道最少要装_______盏路灯。
8、有4个自然数,它们的和是1067,这四个数的公约数最大可以是_________。
二、解答题:9、甲、乙两位同学写了两个数给老师看,老师看后告诉大家:甲、乙写的是两个不互质的自然数,甲写的数除以9,乙写的数除以10后,不改变这两个数的最大公约数,甲、乙写的两个数的最小公倍数是180。
理解记忆理论部分-☆星级☆约数和倍数;若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
☆公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
☆最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:12的约数有1、2、3、4、6、1218的约数有:1、2、3、6、9、18那么12和18的公约数有:1、2、3、6那么12和18最大的公约数是:6记作(12,18)=6☆求最大公约数的基本方法:1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
思维方法巩固训练部分-☆星级■经验规律总结:通过举例观察两个数的最大公约数与它们的和、差、积之间的关系。
1.求(26,78)、(196,165)、(55,84,141)2.两个自然数的和是88,最大公约数是8,求这两个数。
3.两个自然数的积是384,最大公约数是8,求这两个数。
4.已知两数的和是104055,这两个数的最大公约数是6937,求这两个数。
5.若两个数的积是5766,它们的最大公约数是31,求这两个数。
6.有男同学27人,女同学18人,一起去划船(每条船不超过6人),要保证每条船上男女同学都分别相等,应该租几条船7.把一张长120厘米,宽80厘米的长方形的纸裁成同样大小的正方形(纸无剩余),至少能裁多少张8.把长132厘米,宽60厘米,厚36厘米的木料,锯成尽可能大的同样的大小的正方体,求锯成的正方体的棱长与锯成的块数。
9.四个互不相同的自然数的积是370,求这四个数及它们的最大公约数。
五年级数学技巧如何利用倍数和约数进行运算数学是一门需要灵活运用技巧的学科,而对于五年级的学生来说,学习数学技巧对于他们的数学成绩提升至关重要。
其中,倍数和约数是数学中常用的概念和方法,可以帮助学生更加快捷地进行运算。
本文将针对五年级数学技巧如何利用倍数和约数进行运算进行论述,希望能为学生们在数学学习中提供一些帮助和指导。
一、倍数倍数是数学中常用的概念,可以用来解决整数之间的运算问题。
在进行倍数运算时,我们需要清楚地了解倍数的定义和性质。
1.1 倍数的定义倍数是指一个数与另一个数相乘所得的结果。
例如,6是3的倍数,因为3 × 2 = 6。
在数学中,我们用符号“∈”表示倍数的关系,即a ∈ b表示b是a的倍数。
1.2 倍数的性质倍数具有以下几个性质:(1)零是任何数的倍数,即0 ∈ a;(2)任何数是其自身的倍数,即a ∈ a;(3)如果a ∈ b,且b ∈ c,则a ∈ c。
以上是关于倍数的基本定义和性质,掌握了这些,我们就可以利用倍数来进行运算。
二、约数约数也是数学中重要的概念之一,它与倍数密切相关,能够帮助我们更好地理解数与数之间的关系。
在运用约数进行运算时,我们需要了解约数的含义以及其用处。
2.1 约数的定义约数是指一个数能够整除另一个数的整数。
例如,2是4的约数,因为4 ÷ 2 = 2。
在数学中,我们用符号“∣”表示约数的关系,即a ∣ b 表示b能够被a整除。
2.2 约数的用处约数在数学运算中有多种用途,包括:(1)判断一个数是否是另一个数的因子;(2)判断多个数之间是否存在公因数或公倍数;(3)将一个大数分解为若干个小数相乘;(4)求最大公约数和最小公倍数等。
通过灵活运用约数,我们可以更加迅速地进行数学运算,并解决一些复杂的问题。
三、利用倍数和约数进行运算的技巧在学习了倍数和约数的概念和性质之后,我们可以探索一些利用倍数和约数进行运算的技巧,以提高运算效率。
3.1 利用倍数进行乘法和除法运算当我们进行乘法运算时,可以利用倍数的关系,将一个数乘以另一个数的倍数来简化运算。
小学五年级数学重要知识归纳倍数与约数的求解与应用数学是一门重要的学科,在小学五年级阶段,学生开始学习更复杂的数学概念和技巧。
其中,倍数和约数是数学中的基本概念,对于培养学生的逻辑思维和问题解决能力非常重要。
本文将对小学五年级数学中的倍数和约数进行归纳总结,并探讨其求解与应用。
一、倍数倍数是指一个数可以被另一个数整除得到的结果。
例如,数1是任何数的倍数,而数2、3、4、5、6等就是某些数的倍数。
在小学五年级,学生要学会找到一个数的倍数,并利用倍数解决问题。
1.1 常见倍数常见倍数是指在数学学习中经常遇到的特殊倍数。
例如,10的倍数是10、20、30、40等;100的倍数是100、200、300等。
熟记这些常见倍数有助于学生在计算时更加快速和准确。
1.2 求解倍数为了求解一个数的倍数,可以通过连续地加这个数来得到。
例如,要求解2的倍数,可以不断地加2,得到2、4、6、8等数。
类似地,要求解3的倍数,可以不断地加3,得到3、6、9、12等数。
学生需要通过判断和计算来找到一个数的倍数。
1.3 倍数的应用倍数在数学中有广泛的应用。
在整数运算中,倍数可以用于判断两个数的关系,例如判断一个数是否为另一个数的倍数,或者判断两个数是否有公倍数。
二、约数约数是指一个数可以被另一个数整除得到的结果。
例如,数1是任何数的约数,而数2、3、4、5、6等就是某些数的约数。
在小学五年级,学生要学会找到一个数的约数,并利用约数解决问题。
2.1 求解约数为了求解一个数的约数,可以通过试除法来得到。
试除法是将这个数从2开始依次除以各个自然数,在除法过程中观察是否有余数为0的情况。
如果有,则表示这个自然数是这个数的约数。
例如,要求解20的约数,可以对20进行试除,得到1、2、4、5、10、20等数。
学生需要通过判断和计算来找到一个数的约数。
2.2 约数的应用约数在数学中也有广泛的应用。
在分数运算中,约数可以用于化简分数,例如将分数的分子和分母同时除以最大公约数,达到简化分数的目的。
年 级五年级 学 科 奥数 版 本 通用版 课程标题 约数和倍数(二)在整除的应用当中,最大公约数和最小公倍数的应用最为广泛,也是最重要的部分。
这类题目中往往不直接指出是求最大公约数还是最小公倍数,学生最容易混淆,只有对这类题目的条件和问题作出全面的分析后,才能发现题中数量之间关系的实质,才能正确找到解决问题的途径。
一、判断法则:如果题目已知总体,求部分,一般用最大公约数解题,先求出总体的最大公约数,再依题意解答;如果题目已知部分,求总体,一般用最小公倍数解题,先求出部分的最小公倍数,再依题意解答。
求最小公倍数和最大公约数的应用题,解题方法比较独特。
当某些题中所求的数并非正好是已知数的最小公倍数或最大公约数时,我们可以通过“增加一部分”或“减少一部分”的方法,使问题转换成已知数的最小公倍数或最大公约数,从而求出结果。
二、在上节课中我们通过例题简单介绍了求约数个数的方法,本节课来解释这种方法:一般地,对自然数n 进行分解质因数,设n 可以分解为 n =k 32k x x x x αααα⨯⨯⨯⨯ 3211,其中k x x x 、、、 21是不同的质数,k ααα、、、 21是正整数,则形如m =k 32k x x x x ββββ⨯⨯⨯⨯ 3211的数都是n 的约数,其中1β可取11+α个值:0、1、2、…、1α;2β可取12+α个值:0、1、2、…、2α;…;k β可取1+k α个值:0、1、2、…、k α。
根据乘法原理,n 的约数的个数共有(11+α)×(12+α)×…×(1+k α)。
例1 长180厘米,宽45厘米,高18厘米的木料,能锯成尽可能大的正方体木块(无余料)_________块。
分析与解:根据“无余料”这一条件,可知长、宽和高分别能被正方体的棱长整除,即正方体的棱长是180、45和18的公约数。
为了使正方体木块尽可能大,正方体的棱长应是180、45和18的最大公约数。
理解记忆理论部分-☆星级
☆约数和倍数;若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
☆公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数
的最大公约数。
☆
1
2
3
4
18
那么
那么
=6
☆
1
2、短除法:先找公有的约数,然后相乘。
3、辗转相除法:每一次都用除数和余数相除,
能够整除的那个余数,就是所求的最大公
约数。
思维方法巩固训练部分-☆星级
■经验规律总结:通过举例观察两个数的最大公约数与它们的和、差、积之间的关系。
1.求(26,78)、(196,165)、(55,84,141)
2.两个自然数的和是88,最大公约数是8,求这两个数。
3.两个自然数的积是384,最大公约数是8,求这两个数。
4.已知两数的和是104055,这两个数的最大公约数是6937,求这两个数。
,至
厘米的木
,求这四
级
数的公倍数;其中最小的一个,叫做这几个
数的最小公倍数。
例如:12的倍数有:12、24、36、48……
18的倍数有:18、36、54、72……
12和18的公倍数有:36、72、108……
12和18最小的公倍数是36,记作[12,18]=36
1
☆最小公倍数的性质:
1、几个数的任意公倍数都是它们最小公倍数
的倍数。
2、两个数最大公约数与最小公倍数的乘积等
于这两个数的乘积。
☆基本方法:1、短除法求最小公倍数;2、分解质因数的方法
思
■
11.
12.
13.
14.
15.
16.
这两个两位数是多少?
17.两个两位数的最小公倍数是84,这两个数相加的和是26,这两个数分别是多少?
18.两个两位数相乘的积是2016,它们的最大公约数是6,这两个两位数各是多少?
19.两个两位数的最小公倍数是252,它们的最大公约数是6,这两个两位数各是多少?20.某工厂加工配套的机器零件,要经过三道工序,第一道工序平均每人每小时做20件,第二道工序平均每人每小时做16件,第三道工序平均每人每小时做24件,现在有1332名工人,每道工序各安排多少人才合理?
21.两个两位数的和是70,它们的最大公约数是7,这两个两位数的最小公倍数是多少?
思维方法拓展训练部分-☆☆星级
天,如果
78
,求这个
12
28.100以内约数个数最多有几个?约数个数最多的数有哪些?
29.三个连续自然数的最小公倍数是168,这三个数的和是多少?
30.四个连续自然数的和是54,那么这四个数最小公倍数的十分之一是多少?
31.有一个数在700到800之间,用15、18、24去除,都不能整除,如果在这个数上加1,
2
就能同时被15、18、24整除,这个数是多
少?
32.一个数乘以2是4的倍数,乘以3是9的倍数,乘以4是16的倍数,乘以5是25的
倍数,乘以6是36的倍数,乘以7是49的
倍数,乘以8是64的倍数。
那么这个数最
小是多少?
33.
3。