空间中直线与平面之间的位置关系
- 格式:pdf
- 大小:889.04 KB
- 文档页数:9
空间中直线与平面、平面与平面之间的位置关系【知识梳理】1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号暗示a⊂αa∩α=A a∥α图形暗示2.两个平面的位置关系位置关系图示暗示法公共点个数两平面平行α∥β没有公共点两平面相交α∩β=l 有无数个公共点(在一条直线上)【常考题型】题型一、直线与平面的位置关系【例1】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为()A.0个B.1个C.2个D.3个[解析]对于①,直线a在平面α外包孕两种情况:a∥α或a与α相交,∴a和α纷歧定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a纷歧定平行于α.∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行.∴③说法正确.[答案] B【类题通法】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.【对点训练】1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条必然与这个平面平行.A.0 B.1C.2 D.3解析:选C①正确;②错误,如图1所示,l1∥m,而m⊂α,l1⊂α;③正确,如图2所示,在正方体ABCD-A1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C.题型二、平面与平面的位置关系【例2】(1)平面α内有无数条直线与平面β平行,问α∥β是否正确,为什么?(2)平面α内的所有直线与平面β都平行,问α∥β是否正确,为什么?[解](1)不正确.如图所示,设α∩β=l,则在平面α内与l平行的直线可以有无数条:a1,a2,…,a n,…,它们是一组平行线,这时a1,a2,…,a n,…与平面β都平行(因为a1,a2,…,a n,…与平面β无交点),但此时α与β不平行,α∩β=l.(2)正确.平面α内所有直线与平面β平行,则平面α与平面β无交点,符合平面与平面平行的定义.【类题通法】两个平面的位置关系同平面内两条直线的位置关系类似,可以从有无公共点区分:如果两个平面有一个公共点,那么由公理3可知,这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面互相平行.这样我们可以得出两个平面的位置关系:①平行——没有公共点;②相交——有且只有一条公共直线.若平面α与β平行,记作α∥β;若平面α与β相交,且交线为l,记作α∩β=l.【对点训练】2.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有________组互相平行的面.与其中一个侧面相交的面共有________个.解析:六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共有8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.答案:4 63.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解:∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.【练习反馈】1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.如图所示,用符号语言可暗示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行4.经过平面外两点可作该平面的平行平面的个数是________.解析:若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在独一的平面与已知平面平行.答案:0或15.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c∥a.。
直线与平面的关系及应用一、直线与平面的空间位置关系公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
1. 线面平行定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
拓展:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
2. 线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
二、空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1. 两条直线平行定义:在同一平面内,不相交的两条直线互相平行。
判定定理:(1)如果两直线同时平行于第三条直线,那么这两条直线平行(2)如果两直线同时垂直于同一个平面,那么这两条直线平行性质定理: 两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
拓展:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
平面和直线的位置关系
平面和直线是几何学中常见的基本图形,它们在空间中的位置关系有以下几种情况:
1. 直线在平面内:当一条直线完全位于一个平面内时,我们称这条直线在这个平面内。
这种情况下,直线与平面有唯一的交点,也就是直线的一个端点与平面的一个点重合。
2. 直线与平面相交:当一条直线与一个平面有交点时,我们称这条直线与这个平面相交。
这种情况下,直线与平面有无限多个交点,交点的数量取决于直线与平面的相对位置。
3. 直线与平面平行:当一条直线与一个平面没有交点且与平面上任意一条直线的夹角为零时,我们称这条直线与这个平面平行。
这种情况下,直线与平面之间没有交点。
4. 直线与平面垂直:当一条直线与一个平面上的任意一条直线的夹角为90度时,我们称这条直线与这个平面垂直。
这种情况下,直线与平面有唯一的交点,交点位于直线与平面的垂线上。
总之,平面和直线的位置关系有多种情况,要根据具体的情况来判断它们之间的
关系。
在实际应用中,我们需要根据需要来选择适当的位置关系,以便更好地解决问题。
2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、空间中直线与平面的位置关系 1.直线与平面的位置关系直线与平面的位置关系有且只有___________种: ①直线在平面内——有___________个公共点; ②直线与平面相交——有且只有一个公共点; ③___________——没有公共点. 学*科网 直线与平面相交或平行的情况统称为___________. 2.直线与平面的位置关系的符号表示和图形表示3.直线和平面位置关系的分类 (1)按公共点个数分类:⎧⎪⎨⎪⎩直线和平面相交—有且只有一个公共点直线和平面平行—没有公共点直线在平面内—有无数个公共点 (2)按是否平行分类:⎧⎪⎧⎨⎨⎪⎩⎩直线与平面平行直线与平面相交直线与平面不平行直线在平面内 (3)按直线是否在平面内分类:⎧⎪⎧⎨⎨⎪⎩⎩直线在平面内直线和平面相交直线不在平面内(直线在平面外)直线和平面平行二、平面与平面之间的位置关系 1.两个平面之间的位置关系两个平面之间的位置关系有且只有以下两种: (1)两个平面平行——没有公共点;(2)两个平面相交——有___________条公共直线. 2.两个平面之间的位置关系的图形表示和符号表示3.两个平行平面的画法画两个平行平面时,要注意使表示平面的两个平行四边形的对应边平行,且把这两个平行四边形上下放置.K 知识参考答案:一、1.三 无数 直线与平面平行 直线在平面外 二、 1.一K—重点了解空间中直线与平面、平面与平面的位置关系K—难点会用图形语言、符号语言表示直线与平面、平面与平面之间的位置关系K—易错对概念理解不透彻致误1.直线与平面的位置关系空间直线与平面位置关系的分类是解决问题的突破口,这类判断问题,常用分类讨论的方法解决.【例1】若直线a α,则下列结论中成立的个数是①α内的所有直线与a异面;②α内的直线与a都相交;③α内存在唯一的直线与a平行;④α内不存在与a 平行的直线A.0 B.1C.2 D.3【名师点睛】判断一个命题是否正确要善于找出空间模型(长方体是常用的空间模型),另外,考虑问题要全面,即注意发散思维.2.平面与平面的位置关系判断两平面之间的位置关系时,可把自然语言转化为图形语言,搞清图形间的相对位置是确定的还是可变的,借助于空间想象能力,确定平面间的位置关系.【例2】已知α,β是两个不重合的平面,下面说法正确的是A.平面α内有两条直线a,b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β【答案】D【解析】不能保证α,β无公共点.如图:故A、B选项错误.当a∥α,a∥β时,α与β可能相交.如图:故C选项错误.平面α内所有直线都与平面β平行,说明α,β一定无公共点,则α∥β.故D选项正确.【名师点睛】两个平面之间的位置关系有且只有两种:平行和相交.判断两个平面之间的位置关系的主要依据是两个平面之间有没有公共点.解题时要善于将自然语言或符号语言转换成图形语言,借助空间图形作出判断.【例3】如果在两个平面内分别有一条直线,这两条直线互相平行,那么两个平面的位置关系是A.平行B.相交C.平行或相交D.不确定【答案】C【解析】如图,在正方体ABCD-A1B1C1D1中,AB⊂平面ABCD,C1D1⊂平面A1B1C1D1,C1D1⊂平面CDD1C1,AB∥C1D1,但平面ABCD∥平面A1B1C1D1,平面ABCD与平面CDD1C1相交.3.对直线与平面相交的概念理解不透彻致误【例4】已知:直线a∥b,a∩平面α=P,求证:直线b与平面α相交.【错解】如图,因为a∥b,所以a,b确定一个平面,设该平面为β.因为a∩平面α=P,所以P∈a,P∈α,所以P∈β,即点P为平面α与β的一个公共点,由此可知α与β相交于过点P的一条直线,记为c,即α∩β=c.在平面β内,a∥b,a∩c=P.由平面几何知识可得b与c也相交,设b∩c=Q,则Q∈b,Q∈c.因为c⊂α,所以Q∈α,所以直线b与平面α相交.【错因分析】错解中对直线与平面相交的概念理解不透彻,误认为直线和平面相交就是直线和平面有一个公共点.【名师点睛】直线与平面相交,要求直线与平面有且只有一个公共点,即直线与平面有一个公共点且直线不在平面内,也就是直线既不与平面平行,又不在平面内.1.已知直线与直线垂直,,则与的位置关系是A.//B.C.相交D.以上都有可能2.如果空间的三个平面两两相交,那么A.不可能只有两条交线B.必相交于一点C.必相交于一条直线D.必相交于三条平行线3.已知平面α内有无数条直线都与平面β平行,那么 A .α∥β B .α与β相交 C .α与β重合D .α∥β或α与β相交4.若直线a 不平行于平面α,则下列结论成立的是A .α内的所有直线均与a 异面B .α内不存在与a 平行的直线C .α内直线均与a 相交D .直线a 与平面α有公共点 5.以下命题(其中a b ,表示直线,α表示平面): ①若∥a b ,b α⊂,则∥a α; ②若∥a α,b α⊂,则∥a b ; ③若∥a b ,∥b α,则∥a α. 其中正确命题的个数是A .0B .1C .2D .36.若M ∈平面α,M ∈平面β,则不同平面α与β的位置关系是 . 7.如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,试判断: (1)AM 所在的直线与平面ABCD 的位置关系; (2)CN 所在的直线与平面ABCD 的位置关系; (3)AM 所在的直线与平面CDD 1C 1的位置关系; (4)CN 所在的直线与平面CDD 1C 1的位置关系.8.三个平面,,αβγ,如果,,∥a b αβγαγβ==,且直线,∥c c b β⊂.(1)判断c 与α的位置关系,并说明理由; (2)判断c 与a 的位置关系,并说明理由.9.若a ,b 是异面直线,且a ∥平面α,则b 与α的位置关系是 A .∥b α B .相交C .b α⊂D .b α⊂、相交或平行 10.已知平面α和直线l ,则在平面α内至少有一条直线与直线lA .平行B .垂直C .相交D .以上都有可能11.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.(填序号)12.如图所示,1111ABCD A B C D -是正方体,在图①中E ,F 分别是11D C ,1B B 的中点,画出图①、②中有阴影的平面与平面ABCD 的交线,并给出证明.1 2 3 4 5 9 10 DADDADB3.【答案】D【解析】如图,设α∩β=l ,则在α内与l 平行的直线可以有无数条a 1,a 2,…,a n ,…,它们是一组平行线.这时a 1,a 2,…,a n ,…与平面β都平行,但此时α∩β=l.另外也有可能αβ∥.故选D.4.【答案】D【解析】直线a 不平行于平面α,则a 在α内或a 与α相交,故A 错; 当a α⊂时,在平面α内存在与a 平行的直线,故B 错;α内的直线可能与a 平行或异面,故C 错;显然D 正确. 5.【答案】A【解析】若∥a b ,b α⊂,则∥a α或a α⊂,故①不正确; 若∥a α,b α⊂,则∥a b 或,a b 异面,故②不正确; 若∥a b ,∥b α,则∥a α或a α⊂,故③不正确.故选A . 6.【答案】相交【解析】由公理3知,α与β相交.7.【解析】(1)AM 所在的直线与平面ABCD 相交.(2)CN所在的直线与平面ABCD相交.(3)AM所在的直线与平面CDD1C1平行.(4)CN所在的直线与平面CDD1C1相交.9.【答案】D【解析】三种情况如图(1),(2),(3).10.【答案】B【解析】若直线l与平面α相交,则在平面α内不存在直线与直线l平行,故A错误;若直线l∥平面α,则在平面α内不存在直线与l相交,故C错误;对于直线l与平面α相交,直线l与平面α平行,直线l在平面α内三种位置关系,在平面α内至少有一条直线与直线l垂直,故选B.11.【答案】①【解析】如图,三点A、B、C可能在α的同侧,也可能在α两侧,其中真命题是①.证明:在图①中,因为直线EN ∥BF ,所以、、、B N E F 四点共面,又2EN BF ,因此EF 与BN 相交,设交点为M .因为M ∈EF ,且M ∈NB ,而EF ⊂平面AEF ,NB ⊂平面ABCD ,所以M 是平面ABCD 与平面AEF 的公共点.又因为点A 是平面AEF 和平面ABCD 的公共点,故AM 为两平面的交线. 在图②中,C 1M 在平面11CDD C 内,因此与DC 的延长线相交,设交点为M ,则点M 为平面11A C B 与平面ABCD 的公共点,又点B 也是这两个平面的公共点,因此直线BM 是两平面的交线.学!科网。
空间中直线与平面之间的位置关系文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]空间中直线与平面之间的位置关系知识点一 直线与平面的位置关系1、直线和平面平行的定义如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行。
2、直线与平面位置关系的分类(1)直线与平面位置关系可归纳为(2)在直线和平面的位置关系中,直线和平面平行,直线和平面相交统称直线在平面外,我们用记号α⊄a 来表示a ∥α和A a =α 这两种情形.(3)直线与平面位置关系的图形画法:①画直线a 在平面α内时,表示直线α的直线段只能在表示平面α的平行四边形内,而不能有部分在这个平行四边形之外,这是因为这个用来表示平面的平行四边形的四周应是无限延伸而没有边界的,因而这条直线不可能有某部分在某外;②在画直线a 与平面α相交时,表示直线a 的线段必须有部分在表示平面a 的平行四边形之外,这样既能与表示直线在平面内区分开来,又具有较强的立体感;③画直线与平面平行时,最直观的画法是用来表示直线的线在用来表示平面的平行四边形之外,且与某一边平行。
例1、下列命题中正确的命题的个数为 。
①如果一条直线与一平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一平面相交,那么这条直线与平面内的无数条直线垂直;③过平面外一点有且只有一条直线与平画平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面。
变式1、下列说法中正确的是 。
①直线l平行于平面α内无数条直线,则lααααbα⊂答案:B⊂bαα⊂变式3、若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直线与平面相交.例2、若两条相交直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.解:如图5,另一条直线与平面α的位置关系是在平面内或与平面相交.图5用符号语言表示为:若a∩b=A,b⊂α,则a⊂α或a∩α=A.变式1、若两条异面直线中的一条在平面α内,讨论另一条直线与平面α的位置关系.分析:如图6,另一条直线与平面α的位置关系是与平面平行或与平面相交.图6用符号语言表示为:若a与b异面,a⊂α,则b∥α或b∩α=A.例3、若直线a不平行于平面α,且a⊄α,则下列结论成立的是( )A.α内的所有直线与a异面B.α内的直线与a都相交C.α内存在唯一的直线与a平行D.α内不存在与a平行的直线分析:如图7,若直线a不平行于平面α,且a⊄α,则a与平面α相交.图7例如直线A′B与平面ABCD相交,直线AB、CD在平面ABCD内,直线AB与直线A′B 相交,直线CD 与直线A′B 异面,所以A 、B 都不正确;平面ABCD内不存在与a 平行的直线,所以应选D.变式1、不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,以下三个命题:①△ABC 中至少有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC中只可能有一条边与α相交. 其中真命题是_____________.分析:如图8,三点A 、B 、C 可能在α的同侧,也可能在α两侧,图8其中真命题是①.变式2、若直线a ⊄α,则下列结论中成立的个数是( )(1)α内的所有直线与a 异面 (2)α内的直线与a 都相交 (3)α内存在唯一的直线与a平行 (4)α内不存在与a 平行的直线分析:∵直线a ⊄α,∴a ∥α或a∩α=A.如图9,显然(1)(2)(3)(4)都有反例,所以应选A.图9答案:A.知识点二 直线与平面平行1、直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线与平面的位置关系与判定直线与平面的位置关系是几何学中的一个重要概念,研究直线和平面之间的相互关系不仅有助于我们理解几何图形的性质,还有助于解决实际应用问题。
本文将介绍直线与平面的位置关系的概念和判定方法。
一、概念在三维空间中,直线是由无限多个点组成的,而平面是由无限多个直线组成的。
直线与平面的位置关系主要有以下三种情况:1. 直线在平面上当直线上的所有点都在平面上时,我们说该直线在平面上。
直线与平面的交点数目可以是无穷多个,也可以是有限个。
2. 直线与平面相交当直线与平面只有一个交点时,我们说该直线与平面相交。
直线与平面相交可以是垂直相交,也可以是斜交。
3. 直线与平面平行当直线上的所有点都不在平面上,且直线与平面之间没有交点时,我们说该直线与平面平行。
平行关系意味着直线与平面之间的距离相等。
二、判定方法判定直线与平面的位置关系有多种方法,下面将介绍几种常见的判定方法。
1. 平面点法式平面点法式是判断直线与平面关系的一种常用方法。
设平面的方程为ax + by + cz + d = 0,其中a、b、c为平面的法向量分量,x、y、z为平面上任意一点的坐标,d为常数。
若直线的方向向量与平面的法向量垂直,则直线与平面平行;若直线的方向向量与平面的法向量不垂直,则直线与平面相交。
2. 三点确定一平面法三点确定一平面法是另一种判定直线与平面关系的方法。
设直线上的两点坐标为P1(x1, y1, z1)和P2(x2, y2, z2),平面上一点坐标为P0(x0, y0, z0)。
将P1、P2和P0的坐标代入平面的方程,若等式成立,则直线在平面上;若等式不成立,则直线与平面平行或相交。
3. 直线方向向量在平面法向量上的投影为零设直线的方向向量为n(x, y, z),平面的法向量为m(a, b, c),则直线与平面平行的条件是n·m = 0,其中·表示向量的内积运算。
若n·m ≠ 0,则直线与平面相交。
空间中直线与平面之间的位置关系知识点一直线与平面的位置关系1、 直线和平而平行的定义如杲一条亶线和一个平而没有公共点,那么这条直线和这个平而平行。
2、 直线与平面位置关系的分类(1) 直线与平而位昼关系可归纳为(玄线和平面平行①按公共点个数分类:直线和平面不平行「直线在平面内②按是否在平面内分类[直线不在平面内 (2) 在直线和平面的位宜关系中,亶线和平面平行,直线和平面相交统称亶线在平而外,我们用记号"U Q 来表示all a 和dp|a = A 这两种情形•⑶宜线与平而位蜀关系的图形画法:① 画直线a 在平而a 内时,裘示亶线a 的直线段只能在表示平而a 的平行四边形内,而 不能有部分在这个平行四边形之外,这爱因为这个用来丧示平面的平行四边形的四周应曼无 限延伸而没有边界的,闵而这条直线不可能有某部分在某外;② 在画宜线a 与平而&相交时,表示直线;1的线段必须有部分在表示平而a 的平行四边 形之外,这样吒能与丧示亶线在平面內区分开来,又具有较强的立体感;③ 画亶线与平面平行时,晟克观的画法是用来裘示熨线的线在用来表示平而的平行四边形之 外,且与某一边平行。
例1、下列命題中正确的命•題的个数为 ______ o① 如果一条直线与一平而平行,那么这条直线与平面内的任意一条直线平行;②如栗一 条亶线与一平面相交,那么这条直线与平而內的无數条宜线垂直;③过平而外一点有且只有 一条宜线与平画平行;④一条直线上有两点到一个平而的距离相等,则这条克线平行于这个 平面。
炎式1、下列说法中正确的是 ______ O① 直线/平行于平面a 內无數条直线,则〃/a ;② 若宜线Q 在平面a 外,则a//a ;③ 若直线a//b,直线bua,则a//a ;宜线和平面相交 宜线在平面内宜线和平面相交直线和平面平行④若直线a//b,直线bug 那么直线2就平行于平面a內的无數条宜线。
变式2、下列命题中正确的个数是()①若直线1上有无数个点不在平而a内,则l//a②若直线1与平而a平行,则1与平而a内的任蕙一条直线都平行③如杲两条平行直线中的一条与一个平而平行,那么另一条也与这个平而平行④若直线1与平而Ot平行,则1与平而0C内的任意一条直线都没有公共点A.OB.lC.2D.3分析:如图2,图2我们借助长方体模型,AA,所在直线有无数点在平面ABCD外,但AA,所在直线与平面ABCP相交,所以命题①不正确;A IB I所在直线平行于平面ABCD, 显然不平行于BD,所以命題②不正确;所在直线平行于平面ABCP,但直线ABU平面ABCP.所以命题③不正确;1与平面0C平行,则1与a无公共点,1与平面«內所有直线都没有公共点,所以命题④正确. 卷案:B萸式3、若直线1上有两个点到平而oc的距离相等,讨论直线1与平而oc的位置关系.0 3解:直线1与平而oc的位亘关系有两种悄况(如图3),直线与平而平行或賣线与平而相交. 例2、若两条相交直线中的一条在平面工內,讨论另一条直线与平而oc的位置关系.用符号语言表示为:若arib=A,bC:a,R>] aCZa或aAa=A.变式1、若两条异面直线中的一条在平而oc内,讨论另一条直线与平面oc的位虽关系.用符号语言表示为:若a与b异而则b//工或bAa=A.例3、若直线狄不平行于平而oc,且 y 则下列结论成立的是() A.a 内的所有直线与n 异而 B.oc 內的宜线与久都相交例如直线X B 与平而ABCD 相交,恵线AB 、CD 在平而ABCP 内,直线AB 与直线?/ B 相交,賣线CD 与直线工B 异面,所以A. B 都不正确;平面ABCP 內不存在与a 平行的 直线,所以应选D ・ 变式1.不在同一条直线上的三点A 、B 、C 到平而oc 的距离相等,且Aga,以下三个命题: ①AABC 中至少有一条边平行于oc;②AABC 中至多有两边平行于oc ;③ZLABC 中只可能有一条边与oo 相交.其中真命题畏 _______________ .其中真命题是①.萸式2、若賣线aCa,则下列结论中成立的个数是( (1) 00内的所有直线与a 异面 ⑵a 內的賣线与a 都相交 內不存在与次平行的直线A.OB.lC.2D.3分析:丁 直线 a (Za,/.a // a 或 ap|a=A.如图9,显然⑴⑵⑶(4)都有反例,所以应选A.咎案:A.知识点二直线与平面平行1、直线与平面平行的判定龙理:如杲平而外一条直线和这个平面内的一条直线平行,那么 这条直线和这个平而平行。
直线与平面的位置关系判断直线与平面的位置关系是几何学中重要的内容之一,通过判断直线与平面的位置关系可以帮助我们解决许多实际问题。
在本文中,我们将介绍判断直线与平面的位置关系的方法和几个实际应用案例。
一、直线在平面上的位置关系判断直线与平面的位置关系判断可以分为三种情况:直线与平面相交、直线在平面上、直线与平面平行。
1. 直线与平面相交当直线与平面有一个或多个交点时,我们可以判断直线与平面相交。
相交的情况下,可以进一步判断直线与平面的交点数目。
2. 直线在平面上当直线的每一个点都在平面上时,我们可以判断直线在平面上。
直线在平面上的情况下,可以进一步判断直线与平面的位置关系。
3. 直线与平面平行当直线上的所有点都不在平面上,并且直线与平面的方向向量垂直时,我们可以判断直线与平面平行。
直线与平面平行的情况下,可以进一步判断直线与平面之间的距离。
二、直线与平面位置关系判断的应用直线与平面的位置关系判断在实际应用中有许多重要的应用。
以下是几个典型的应用案例。
1. 三维图形的绘制在三维图形的绘制中,判断直线与平面的位置关系可以帮助我们确定直线的投影位置,从而绘制出更加准确的三维图形。
2. 汽车设计与航空设计汽车设计与航空设计中,直线与平面的位置关系判断可以帮助工程师确定车身与机翼的位置关系,从而优化车辆的气动性能和安全性能。
3. 建筑设计与土木工程在建筑设计与土木工程中,直线与平面的位置关系判断可以帮助建筑师和工程师确定建筑物与地面的位置关系,从而确保建筑物的稳定性和安全性。
4. 光学设计在光学设计中,直线与平面的位置关系判断可以帮助光学工程师确定光线的传输路径,从而设计出更加高效和精确的光学系统。
总结:直线与平面的位置关系判断是几何学中的重要内容,通过合理的判断可以帮助我们解决许多实际问题。
在本文中,我们介绍了直线与平面相交、直线在平面上以及直线与平面平行的判断方法,并且给出了几个应用案例。
直线与平面的位置关系判断在各个领域都有重要的应用,希望本文能为读者提供一些帮助。
空间解析几何基础直线与平面的位置关系直线与平面是空间解析几何中的基本图形,它们在空间中的位置关系是解析几何的核心内容之一。
本文将介绍直线与平面的位置关系,包括直线与平面的相交、平行以及垂直关系。
一、直线与平面的相交关系直线与平面可以有不同的相交情况,主要包括直线与平面相交于一点、直线与平面相交于一条直线和直线与平面相交于两条直线三种情况。
1. 直线与平面相交于一点当一条直线与一个平面相交于一个点时,我们称这条直线与该平面相交于一点。
该点既属于直线,也属于平面。
直线与平面相交于一点的情况比较常见,可以用许多实际生活中的例子来说明,比如一根针穿过一张纸的情况。
2. 直线与平面相交于一条直线当一条直线与一个平面相交于一条直线时,我们称这条直线与该平面相交于一条直线。
这种情况可能出现在直线与平面平行的情况下,例如一根笔放在桌子上的情况。
3. 直线与平面相交于两条直线当一条直线与一个平面相交于两条直线时,我们称这条直线与该平面相交于两条直线。
这种情况比较特殊,不太容易在实际生活中找到例子。
二、直线与平面的平行关系直线与平面的平行关系是指直线与平面在空间中没有任何交点的情况。
直线与平面平行的条件是直线上的任意一点到平面的距离等于直线上另一点到该平面的距离,也可以说直线的方向向量与平面的法向量平行。
例如,一根笔放在桌子上时,笔看起来与桌面平行。
三、直线与平面的垂直关系直线与平面的垂直关系是指直线与平面在空间中相互垂直的情况。
直线与平面垂直的条件是直线上的向量与平面上的向量垂直,也可以说直线的方向向量与平面的法向量垂直。
例如,一个立着的直角梯子放在地上时,梯子与地面垂直。
总结:直线与平面是空间解析几何中的基本图形,它们在空间中的位置关系有相交关系、平行关系和垂直关系。
相交关系包括相交于一点、相交于一条直线和相交于两条直线三种情况,平行关系是指直线与平面没有任何交点,垂直关系是指直线与平面相互垂直。
理解直线与平面的位置关系对于解析几何的学习非常重要,它们的性质和应用将在进一步的学习中得到深入探讨。