均质边坡准三维安全系数实用计算曲线
- 格式:pdf
- 大小:1.06 MB
- 文档页数:8
均质坡设计最小安全系数的非圆弧曲线搜寻法张年学;盛祝平;祁生文【摘要】挖方边坡设计的目标是确定设计安全系数下的坡角和坡高,设计边坡是安全系数大于1的稳定边坡,不存在滑面,搜索的目的是寻找与设计安全系数相等的最小剪应比(面).提出一种非常简单的指数型曲线搜索法,可搜索存在地下水的均质坡设计最小安全系数与其相应的坡角或坡高.从坡肩向外,进行等步长点搜索通过坡趾的曲线族.在每一点、指数由1逐渐增大变动指数曲线,对曲线与坡面线间的坡体进行条分,把每个条块底面抗剪强度与剪应力分解为水平与垂直分力,根据平行力系可移动原理,求各条块抗剪强度与剪应力的水平分力与垂直分力的合力,然后计算该曲线剪应比面的抗剪强度与剪应力,得到该剪应比面的剪应比,逐点对剪应比大小进行比较,搜索出曲线族的最小剪应比,直到通过某点的指数曲线的最小剪应比等于设计安全系数为止.通过3个算例与其他方法计算结果进行对比,表明这一方法的有效性具有实用价值,提出边坡设计应以最小安全系数为主要参照标准.%The goal of design for an excavated slope is to determine a slope angle and a slope height within a design value of safety factor.Therefore,the purpose of searching for the potential slip surface is to find out a plane where the minimum ratio of shear resistance and force occurs under the design value of safety factor.This paper presents a very simple exponential curve searching method.It can be used to search for the minimum value of safety factor in a slope with groundwater and determine the corresponding slope angle and height.The curve searching starts from the slope shoulder.The searching continues along the upper slope at an equal interval and generates a family of curves going through the slope toe and the specifiedpoint on the upper slope as the power continues to increase from 1.They can be treated as potential shear surfaces,which will allow us to delineate a potential sliding body.The sliding body is then divided into a number of vertical slices so that shear forces and shear resistance and their horizontal and vertical components of forces can be calculated for eachslice.According to parallelogram law of forces,one can find the resultant force from the horizontal and vertical components of forces from all the slices and the resultant strength in a similar way.By comparing the shear strength and shear force along this sliding surface,one can obtain the ratio of the shear resistance and shear force.By comparing the ratios between those potential sliding surfaces,a minimum ratio can be found for each family of curves.The searching continues until the minimum ratio is equal to the design factor of safety.For comparison we use the Sarma method to calculate the minimum safety factor of the slope body delineated by the exponential curve searching method.Three case studies are used to demonstrate the applicability of the exponential curve searching method in comparison with other methods.At the end we recommend that the minimum safety factor be used as a major standard guideline for slope design.【期刊名称】《工程地质学报》【年(卷),期】2018(026)001【总页数】8页(P241-248)【关键词】均质坡;最小安全系数;剪应比;非圆弧曲线;搜索【作者】张年学;盛祝平;祁生文【作者单位】中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室北京 100029;德州农工大学埃尔帕索农业生命科学研究中心,德州,美国79927;中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室北京 100029【正文语种】中文【中图分类】P642.220 引言均质坡是工程建设中经常遇到的一种边坡。
边坡安全系数计算及稳定性分析方法作者:范昊来源:《价值工程》2019年第19期摘要:本文主要研究边坡稳定的初步预测问题,利用MATLAB软件完成以下工作:①考虑影响边坡稳定的6个内在因素参数,采用多元二项式回归中的完全二次法进行拟合,并对该拟合的多项式进行验算,验算结果表明:在实际工程中,可以根据边坡的土体力学参数快速直接计算边坡的安全系数。
②理论上,边坡安全时,边坡安全系数大于1;边坡破坏时,边坡安全系数小于1。
针对与理论相反的实际工程情况,运用可拓学原理、层次分析法建立边坡稳定性评价指标体系,提出边坡稳定综合权重判断法:当权值总和>0,安全系数>1,综合指标>1.5时,边坡处于稳定状态。
该计算方法具有较广泛的适用性,可为类似问题提供借鉴。
Abstract: This paper mainly studies the slope stability of preliminary forecast problems, using MATLAB software to complete the following work:①considering the six internal factors that affect slope stability parameters, adopt completely secondary method of multivariate binomial regression fitting, and the fitting polynomial calculation, calculation results show that in the practical engineering, can according to the mechanical parameters of the soil of rapid calculation of the slope safety factor directly.②For slope safety factor greater than 1, slope failure; when the slope safetycoefficient is less than 1 and the slope is stable, the ethnics principle and analytic hierarchy process are used to establish the slope stability evaluation index system, and the comprehensive weight judgment method for slope stability is proposed: when the weight sum is more than 0, the safety coefficient is more than 1, and the comprehensive index is more than 1.5, the slope is in a stable state. This method has wide applicability and can be used for reference for similar problems.關键词:完全二项式拟合;边坡安全系数;层次分析法;综合权重Key words: complete binomial fitting;slope safety coefficient;analytic hierarchyprocess;comprehensive weights0; 引言边坡是自然或人工形成的斜坡,是人类工程和经济活动中最普遍的地质地貌环境。
2023年土木工程师(岩土)(二合一)考试练习试题及答案1.根据下列描述判断,哪一选项的土体属于残积土?()A. 原始沉积的未经搬运的土体B. 岩石风化成土状留在原地的土体C. 经搬运沉积后保留原基本特征,且夹砂、砾、黏土的土体D. 岩石风化成土状经冲刷或崩塌在坡底沉积的土体【答案】: B【解析】:根据《岩土工程勘察规范》(GB 50021—2001)(2009年版)第6.9.1条规定,岩石在风化营力作用下,其结构、成分和性质已产生不同程度的变异,应定名为风化岩。
已完全风化成土而未经搬运的应定名为残积土。
2.某柱下单桩为钻孔灌注桩,桩径为800mm,桩长为15m,桩顶入土深度为2.0m,桩顶竖向力设计值为2200kN,桩端极限阻力标准值为1200kN,桩侧极限阻力标准值为2000kN,由于承载力验算不满足要求,故改为扩底桩,扩底段高度为 2.0m,桩端土为砂土,则扩底桩端直径宜为()mm。
A. 896B. 978C. 1000D. 1352【答案】: D3.建筑场地回填土料的击实试验结果为:最佳含水量22%,最大干密度1.65/cm3,如施工质量检测得到的含水量为23%,重度为18kN/m3,则填土的压实系数最接近下列哪个选项?()(重力加速度取10m/s2)A. 0.85B. 0.89C. 0.92D. 0.95【答案】: B【解析】:在工程实践中,应用最优含水量控制填土的施工,用最大干重度γdmax来检查施工的质量,将填土现场的γd与室内试验γdmax之比称为压实系数K。
又γdmax=ρd·g=16.59(kN/m3)γd=γ/(1+ω)=14.63(kN/m3)故压实系数为K=14.63/16.59=0.88。
4.按《建筑地基基础设计规范》(GB 50007—2011)的规定,在抗震设防区,除岩石地基外,天然地基上高层建筑筏形基础埋深不宜小于()。
A. 建筑物高度的1/15B. 建筑物宽度的1/15C. 建筑物高度的1/18D. 建筑物宽度的1/18【答案】: A【解析】:根据《建筑地基基础设计规范》(GB 50007—2011)第5.1.4条规定,在抗震设防区,除岩石地基外,天然地基上的箱形和筏形基础其埋置深度不宜小于建筑物高度的1/15;桩箱或桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的1/18。
边坡稳定安全系数及其与土性参数及失效概率关系研究康海贵;李炜【期刊名称】《大连理工大学学报》【年(卷),期】2008(48)6【摘要】借助土性参数,对边坡稳定性分析两大评价体系(安全系数法与可靠指标法)的联系及差异性进行了对比分析.对于简单均质土坡的圆弧形滑裂面,利用积分思想推导了有、无被动土体两种情况下安全系数的精确解析表达式.其中,视被动土体的贡献为减少滑动力矩,采用分段圆弧法推导.以该解析式为基础,利用土体粘聚力与容重的比值将这两个变量归一为变量Hc,以纯黏性土、均质边坡不同坡角时的确定性模型为对象,深入研究了不同的确定性模型情况下,Hc的概率分布类型、均值变化与边坡稳定安全系数的关系及变异特征对边坡失效概率和可靠指标的影响作用等.结果表明:土性参数变异性较强时,安全系数法作为一种定值方法,可能会做出严重背离实际的评判,而可靠指标法则更为科学合理;Hc为正态分布或对数正态分布时,其平均值及变异系数的不同取值会对失效概率(及可靠指标)的计算值以及失效概率(及可靠指标)与安全系数关系曲线中的交汇点位置产生明显的影响.【总页数】7页(P856-862)【作者】康海贵;李炜【作者单位】大连理工大学,海岸和近海工程国家重点实验室,辽宁,大连,116024;大连理工大学,海岸和近海工程国家重点实验室,辽宁,大连,116024【正文语种】中文【中图分类】TU457【相关文献】1.公路边坡稳定安全系数的参数敏感性分析 [J], 王斌;张力2.土性参数对边坡稳定性的影响研究 [J], 易绍基;黄英;韩玲;刘壮添3.黄土边坡的稳定性计算参数对边坡稳定性安全系数的影响研究 [J], 赵永虎;刘高;魏蒙恩;罗泽华;陈龙飞4.斜坡安全系数概率分布的参数估计与假设检验 [J], 尹建桥;罗文强5.概率模型含模糊分布参数时的模糊失效概率计算方法 [J], 郭书祥;吕震宙因版权原因,仅展示原文概要,查看原文内容请购买。
三维边坡稳定分析1.概念三维边坡是指边坡在水平面和垂直面上均存在变化的边坡,即具有多个坡面。
它的稳定性分析相较于二维边坡复杂得多,需要考虑不同方向上的抗滑力和剪切力。
三维边坡稳定性分析的目的是确定边坡的最大可行坡度和最终稳定的坡度。
2.方法解析方法是通过数学模型和分析方法来求解边坡的稳定性。
常用的解析方法有悬臂梁法、影响面法、位移法等。
这些方法可以通过建立合适的边坡稳定性方程,结合土体参数和边界条件来计算边坡的稳定性。
数值方法是通过数值模拟和计算机仿真来求解边坡的稳定性。
常用的数值方法有有限元法、有限差分法和边界元法等。
这些方法可以通过建立边坡的数值模型,离散化土体的力学特性,以数值的方式求解边坡的稳定性。
3.实例以水电站边坡为例,对其进行三维边坡稳定性分析。
首先,要获取边坡的地质和土力参数。
通过地质勘探,了解边坡的构造、岩性、断层情况等。
然后,对采样得到的土样进行室内试验,获得重要的土力参数,如抗剪强度、内摩擦角和孔隙比等。
接下来,根据边坡的几何形状,建立三维边坡的数学模型。
模型可以使用CAD软件进行绘制,并将边坡分割成许多较小的单元或网格。
然后,对边坡进行边界条件和约束条件的设定。
边界条件包括边坡表面的支承和自重等。
约束条件包括边坡顶部和底部的约束条件。
接着,进行数值模拟。
将土的本构模型和边界条件输入数值软件中,并设置合适的计算参数。
通过迭代计算,得到边坡不同荷载下的应力和变形分布。
最后,根据荷载和应力分布结果,使用稳定性评价指标(如安全系数)来判断边坡的稳定性。
如果边坡的安全系数大于1,则边坡是稳定的;如果小于1,则需要考虑采取稳定措施。
总结起来,三维边坡稳定性分析是一项重要的工程任务。
通过合适的方法和实例分析,可以为边坡的设计和施工提供可行性和安全性的评估依据。
边坡稳定性分析计算书----------------------------------------------------------------------------------------------------------------------------- 计算项目:边坡稳定安全性等级为三级,最小安全系数取1.25,最大坡高取7米。
计算软件采用理正边坡稳定性分析系统6.0(网络版)----------------------------------------------------------------------------------------------------------------------------- [计算简图][控制参数]:采用规范: 建筑边坡工程技术规范(50330--2002)计算目标: 安全系数计算滑裂面形状: 直线滑动法地震烈度: 8 度水平地震系数: 0.200地震作用综合系数: 0.250地震作用重要性系数: 0.900地震力作用位置: 质心处水平加速度分布类型:矩形[坡面信息]坡面线段数 4坡面线号水平投影(m) 竖直投影(m) 超载数1 3.000 3.000 02 2.500 0.000 03 4.000 4.000 04 15.000 0.000 1超载1 距离1.000(m) 宽6.000(m) 荷载(20.00--20.00kPa) 270.00(度)[土层信息]上部土层数 1层号层厚重度饱和重度粘结强度孔隙水压(m) (kN/m3) (kN/m3) (kpa) 力系数1 20.000 16.000 ---- 120.000 ---层号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 8.000 15.000 ---- ----层号十字板? 强度增十字板羲? 强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---================================================================ 下部土层数 1层号层厚重度饱和重度粘结强度孔隙水压(m) (kN/m3) (kN/m3) (kpa) 力系数1 20.000 16.000 ---- 120.000 ---层号粘聚力内摩擦角水下粘聚水下内摩(kPa) (度) 力(kPa) 擦角(度)1 8.000 15.000 ---- ----层号十字板? 强度增十字板羲? 强度增长系(kPa) 长系数下值(kPa) 数水下值1 --- --- --- ---不考虑水的作用[计算条件]稳定计算目标: 自动搜索最危险滑裂面自动搜索时Y坐标增量: 0.500(m)自动搜索时角度的增量: 1.000(度)破裂面的最小角度: 10.000(度)破裂面的最大角度: 50.000(度)------------------------------------------------------------------------ 计算结果:------------------------------------------------------------------------ [计算结果图]最不利破裂面:定位高度: 0.000(m)破裂面仰角: 23.000(度)安全系数 = 1.267起始x 终止x Ci 謎条重浮力水平地震力渗透力附加力X 附加力Y 下滑力抗滑力竖向地震力 (m) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)---------------------------------------------------------------------------------------0.000 3.000 8.000 15.000 41.44 0.00 1.86 0.00 0.00 0.00 17.91 36.10 0.003.000 5.500 8.000 15.000 47.84 0.00 2.15 0.00 0.00 0.00 20.67 33.30 0.005.500 9.500 8.000 15.000 116.25 0.00 5.23 0.00 0.00 0.00 50.24 62.89 0.009.500 16.491 8.000 15.000 165.96 0.00 7.47 0.00 0.00 119.82 118.54 130.46 0.00总的下滑力 = 207.360(kN)总的抗滑力 = 262.753(kN)土体部分下滑力 = 207.360(kN)土体部分抗滑力 = 262.753(kN)筋带在直线轴向产生的抗滑力 = 0.000(kN)筋带在直线法向产生的抗滑力= 0.000(kN)。
计算书目录1理正边坡稳定分析成果1.1Ⅰ-Ⅰ剖面------------------------------------------------------------------------1.1.1计算项目:Ⅰ-Ⅰ土坡稳定(工况1-一般气象条件+土体自重)------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.015计算结果: 剩余下滑力 = -0.942(kN)本块下滑力角度 = 328.833(度)[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.000计算结果: 剩余下滑力 = -21.855(kN)本块下滑力角度 = 328.833(度)------------------------------------------------------------------------ 1.1.2计算项目:Ⅰ-Ⅰ土坡稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法考虑渗透力作用不考虑边坡外侧静水压力[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 0.851计算结果: 剩余下滑力 = 0.478(kN) 本块下滑力角度 = 328.833(度)[计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.000计算结果: 剩余下滑力 = 250.877(kN) 本块下滑力角度 = 328.833(度) ------------------------------------------------------------------------ 1.1.3计算项目:Ⅰ-Ⅰ加固土坡稳定(工况1-一般气象条件+土体自重)------------------------------------------------------------------------ [计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]坡面线段数 12坡面线号水平投影(m) 竖直投影(m) 超载数1 0.381 2.947 02 3.791 0.000 03 3.561 2.049 04 2.136 1.229 05 4.855 2.794 06 3.829 2.203 07 4.060 0.935 08 7.920 2.844 09 3.572 1.995 010 3.813 1.233 011 0.452 0.377 012 5.858 5.284 0[土层信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号(kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法不考虑渗透力作用不考虑边坡外侧静水压力[滑面信息]滑面线段数 9 滑面线起始点坐标: (0.000,0.000)滑动面线号水平投影(m) 竖直投影(m) 矢高(m) 粘聚力(kPa) 内摩擦角(度)1 1.941 -1.174 0.000 ---- ----2 3.130 -1.112 0.000 ---- ----3 4.056 -0.190 0.000 ---- ----4 5.735 0.940 0.000 ---- ----5 6.100 2.515 0.000 ---- ----6 8.547 5.978 0.000 ---- ----7 7.060 6.740 0.000 ---- ----8 6.000 6.740 0.000 ---- ----9 6.000 10.570 0.000 ---- ----[筋带信息]采用锚杆锚杆道数: 10筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa)1 3.00 3.60 15.00 25.00 720.00 3.00 0.41 400.002 4.60 3.60 15.00 25.00 720.00 3.00 0.41 400.003 6.20 3.60 15.00 25.00 720.00 3.00 0.41 400.004 7.80 3.60 15.00 25.00 720.00 3.00 0.41 400.005 9.40 3.60 12.00 25.00 720.00 3.00 0.41 400.006 11.00 3.60 12.00 25.00 720.00 3.00 0.41 400.007 12.60 3.60 12.00 25.00 720.00 3.00 0.41 400.008 14.20 3.60 12.00 25.00 720.00 3.00 0.41 400.009 15.80 3.60 12.00 25.00 720.00 3.00 0.41 400.0010 17.40 3.60 12.00 25.00 720.00 3.00 0.41 400.00 [计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.640计算结果: 剩余下滑力 = -6.276(kN) 本块下滑力角度 = 328.833(度)------------------------------------------------------------------------1.1.4计算项目:Ⅰ-Ⅰ加固土坡(仅考虑锚杆)稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------[计算简图][控制参数]:采用规范: 通用方法计算目标: 剩余下滑力计算不考虑地震[坡面信息]坡面线段数 12坡面线号水平投影(m) 竖直投影(m) 超载数1 0.381 2.947 02 3.791 0.000 03 3.561 2.049 04 2.136 1.229 05 4.855 2.794 06 3.829 2.203 07 4.060 0.935 08 7.920 2.844 09 3.572 1.995 010 3.813 1.233 011 0.452 0.377 012 5.858 5.284 0[土层信息]不同土性区域数 4区号重度饱和重度粘聚力内摩擦角全孔压节点编号 (kN/m3) (kN/m3) (kPa) (度) 系数1 19.300 19.960 25.000 20.000 ---2 19.300 20.000 15.000 18.000 ---3 17.800 18.230 15.000 12.000 ---4 25.800 26.300 24440.000 21.150 ---[水面信息]采用总应力法不考虑渗透力作用不考虑边坡外侧静水压力[滑面信息]滑面线段数 9 滑面线起始点坐标: (0.000,0.000)滑动面线号水平投影(m) 竖直投影(m) 矢高(m) 粘聚力(kPa) 内摩擦角(度)1 1.941 -1.174 0.000 ---- ----2 3.130 -1.112 0.000 ---- ----3 4.056 -0.190 0.000 ---- ----4 5.735 0.940 0.000 ---- ----5 6.100 2.515 0.000 ---- ----6 8.547 5.978 0.000 ---- ----7 7.060 6.740 0.000 ---- ----8 6.000 6.740 0.000 ---- ----9 6.000 10.570 0.000 ---- ----[筋带信息] 采用锚杆锚杆道数: 10筋带号距地面水平间距总长度倾角材料抗拉锚固段锚固段粘结强高度(m) (m) (m) (度) 力(kN) 长度(m) 周长(m) 度(kPa)1 3.00 3.60 15.00 25.00 100.00 3.00 0.41 400.002 4.60 3.60 15.00 25.00 100.00 3.00 0.41 400.003 6.20 3.60 15.00 25.00 100.00 3.00 0.41 400.004 7.80 3.60 15.00 25.00 100.00 3.00 0.41 400.005 9.40 3.60 12.00 25.00 100.00 3.00 0.41 400.006 11.00 3.60 12.00 25.00 100.00 3.00 0.41 400.007 12.60 3.60 12.00 25.00 100.00 3.00 0.41 400.008 14.20 3.60 12.00 25.00 100.00 3.00 0.41 400.009 15.80 3.60 12.00 25.00 100.00 3.00 0.41 400.0010 17.40 3.60 12.00 25.00 100.00 3.00 0.41 400.00 [计算条件]剩余下滑力计算目标: 计算剩余下滑力剩余下滑力计算时的安全系数: 1.250计算结果: 剩余下滑力 = 38.597(kN) 本块下滑力角度 = 328.833(度))------------------------------------------------------------------------1.1.5抗滑动桩验算------------------------------------------------------------------------原始条件:墙身尺寸:桩总长: 12.000(m)嵌入深度: 6.000(m)截面形状: 圆桩桩径: 0.200(m)桩间距: 0.600(m)嵌入段土层数: 1桩底支承条件: 铰接计算方法: M法土层序号土层厚(m) 重度(kN/m3) M(MN/m4) 1 50.000 25.800 20.000初始弹性系数A: 0.000(MN/m3)初始弹性系数A1: 0.000(MN/m3)桩前滑动土层厚: 6.000(m)桩顶锚索水平刚度: 1.000(MN/m)物理参数:桩混凝土强度等级: C25桩纵筋:I12.6桩纵筋级别: A3桩最大抵抗弯矩:19.22 kNm(安全系数1.25)桩最大抗剪力:561.1 kN(安全系数1.25)坡线与滑坡推力:参数名称参数值推力分布类型矩形桩后剩余下滑力水平分力 45.000(kN/m)桩后剩余抗滑力水平分力 0.000(kN/m)滑坡推力作用情况[桩身所受推力计算]假定荷载矩形分布:桩后: 上部=4.500(kN/m) 下部=4.500(kN/m)桩前: 上部=0.000(kN/m) 下部=0.000(kN/m)桩前分布长度=6.000(m)桩身内力计算计算方法: m 法内侧最大弯矩 = 18.797(kN-m) 距离桩顶 6.720(m)外侧最大弯矩 = 19.281(kN-m) 距离桩顶 2.640(m)最大剪力 = 17.968(kN) 距离桩顶 6.000(m)桩顶位移 = 44(mm)锚索水平拉力 = 14.432(kN)------------------------------------------------------------------------1.1.6计算项目:Ⅰ-Ⅰ加固土坡(锚杆+抗滑桩)稳定(工况2-久雨(暴雨)+土体自重)------------------------------------------------------------------------Ⅰ-Ⅰ加固土坡稳定性验算注:利用理正边坡稳定分析软件计算时,将抗滑桩所承担的抗滑力以锚杆力的形式施加。
求解边坡稳定安全系数两种方法的比较摘要:目前,边坡稳定性分析主要有刚体极限平衡法和有限元强度折减法,本文就理论基础、安全系数的定义及优缺点对以上两种方法进行了简要评述。
基于极限平衡法的发展起来的各种方法物理意义简单,便于计算,但是需要许多假设。
有限元强度折减法不需要假设,可以直接搜索临界滑动面并求出相应的安全系数,同时考虑了岩土体的弹塑性和边坡的破坏失稳过程。
通过对两种方法的认识比较,给岩土边坡工作者设计施工提供一定的参考价值。
关键词:边坡稳定性;极限平衡法;有限元法;安全系数引言边坡稳定分析是一个非常复杂的问题,从20世纪50年代以来,许多专家学者致力于这一研究,因此边坡稳定分析的内容十分丰富。
总体上来说,边坡稳定分析方法可分为两大类:定性分析方法和定量分析方法。
定性分析方法主要是通过工程地质勘探,可以综合考虑影响边坡稳定性的多种因素,对边坡岩土体的性质及演化史、影响边坡稳定性的主要因素、可能的变形破坏方式及失稳的力学机制等进行分析,从而给出边坡稳定性评价的定性说明和解释。
然而,人们更关心的是如何定量表示边坡的稳定性,即边坡稳定性分析的计算方法,定量方法将影响边坡稳定的各种因素都作为确定的量来考虑,通常以计算稳定安全系数为基础。
边坡稳定分析的定量方法有很多种,如条分法、数值分析方法、可靠度方法和模糊数学方法等[1-3]。
目前,边坡稳定分析方法中,人们较为熟知且广泛应用的有条分法和有限元方法。
条分法在边坡稳定分析中最早使用,因其力学模型概念清楚、简单实用,故广泛应用于实际工程中,已经逐渐成为边坡稳定分析的成熟方法。
随着计算机技术的发展,数值分析方法在工程领域应用越来越成熟,有限元方法考虑了土体的非线性应力-应变关系,同时弥补了条分法的不足,近年来有限元方法得到了极大的发展。
[4-6]刚体极限平衡法刚体极限平衡法是人们提出的最早的一类方法,是边坡分析的经典方法,只需要少许力学参数就能提供便于设计应用的稳定性指标即安全系数。
1.边坡稳定性定性分析坡率法按照《建筑边坡工程技术规范》(GB50330-2002)表12.2.2,Ⅲ类微风化岩质边坡的坡率允许值为1:0.5~1:0.75,按1:0.5的高值比较,对应的坡率为63°,按1:0.75的低值比较,对应的坡率为53°,可研设计的终了台阶坡面角均为55°,接近规范规定的允许值的低值,远小于规范规定允许值的高值。
该边坡的坡率允许值理应按规定的低值确定,故可研设计的终了台阶坡面角接近正常值,即边坡处于稳定状态。
2.边坡稳定性定量计算(1)计算方法由于破坏形式主要为沿外倾结构面造成平面、楔形剪切破坏,按《建筑边坡工程技术规范》(GB50330—2002)中推荐的方法,采用赤平极射投影及极限平衡法分别对《铜陵上峰水泥股份有限公司铜陵县小冲矿区水泥配料用砂页岩矿开采终了平面图》提供的1-1'、I-I'线剖面(见图1-1)南北侧、东西侧边坡分别进行稳定性计算,安全系数取1.35。
图1-1 1-1'线开采终了剖面图(2)计算参数的选取计算参数的选取主要依据室内物理力学试验、并结合经验参数值进行反算。
计算参数综合取值见表1-1、表1-2、表1-3、表1-4。
(3)计算1)赤平极射投影①南北侧边坡赤平极射投影以Ⅲ类微风化白云岩为崩滑体,层面、构造裂隙面为潜在滑动面,呈平面或楔形崩滑。
计算结果见图1-1、图片1-2:a.北侧边坡岩质边坡赤平投影:图1-2 北侧边坡岩质边坡赤平投影表1-1 Ⅲ类岩体计算条件b.南侧边坡岩质边坡赤平投影:图1-3 南侧边坡岩质边坡赤平投影表1-2 Ⅲ类岩体计算条件从赤平投影计结果中可以看出,南侧边坡虽然存在顺向结构面(层面),但没有滑动的可能;北侧边坡结构面倾向坡外,故对边坡稳定无影响。
②东西侧边坡赤平极射投影以Ⅲ类微风化白云岩为崩滑体,层面、构造裂隙面为潜在滑动面,呈平面或楔形崩滑。
计算结果见图片1-6、图片1-7:图1-4 I-I'线开采终了剖面图a.西侧边坡岩质边坡赤平投影:图1-4 西侧边坡岩质边坡赤平投影表1-3 Ⅲ类岩体计算条件c.东侧边坡岩质边坡赤平投影:图1-4 东侧边坡岩质边坡赤平投影表1-4 Ⅲ类岩体计算条件从赤平投影计结果中可以看出,西侧边坡由于存在节理切割边坡,有近于直立走向,有滑动的可能;东侧边坡结构面也存在节理切割边坡,有近于直立走向,有滑动的可能。