干涉仪校准培训讲义
- 格式:ppt
- 大小:413.50 KB
- 文档页数:5
仪器校准培训资料仪器校准培训资料1.量规仪器校准之基本观念1、校准之⽬的1.1维持量规仪器的“准确度”避免检测时之误判。
1.2可以追溯⼀个共同的基准,减少产品检测争议。
2、何谓“校准”?(或“计量”或“校正”)2.1定义:使⽤校正标准件对“量规仪器”进⾏测试(与调整)以了解其“准确度”之⾏为称为“仪器校准”。
3、校准之作业区分i.绝对校正i.——以物理上的定律与特性所发展出来的原级标准直接对“被校件量规仪器”进⾏校正ii.——通常国家计划实验室多属此类ii.⽐对校正i.——将校正合格后精密度较⾼量程较⼤的仪器或标准对“待校件”加以量测,或⽐较,以显⽰误差值。
ii.——⼜分有“标准件校正法”及“标准件与限度样品”校正法两种。
iii.——通常各⼯业⼚商所进⾏之校正多属此类。
2.基本名词与定义1、准确度 (Accutacy)2、---- 重复量测的数据平均值与真值或基准值之差异3、精密度(Precision)i.---- 同⼀量具重复测时,其量测数据门之差异程度3、稳定性(Stability/或飘移Drift)---- 在某⼀时间量测标准件之平均值与下⼀次时间量测标准件之平均值差异4、重复性---- 同⼀量测者,使⽤同⼀量具,多次量测同⼀产品之同⼀特性,所得之量测值分布5、再现性(或再⽣性)---- 不同量测者,使⽤同⼀量具,多次量测同⼀产品之同⼀特性,所有量测平均值之差异(最⼤减最⼩)6、线性(Linearity)---- 在量具之预期的⼯作范围(量程)内偏移值的差值7.2 总不确定度U t=U s(系统不确定度)+U R(随机不确定度)7.3 系统不确定度来⾃:7.3.1 量具仪器本⾝之精密度或最⼩刻度7.3.2⼈员之操作因素,或观测因素7.3.3环境影响因素7.3.4仪器之“稳定性”与“灵敏度”。
7.3.5追溯校正基准之差异7.4 随机不确定度7.5 校准实验室之量测报告表⽰法为:Y+U t8、企业如何决定其量规仪器之合格允差---- 关系式:U s(仪器最⼩刻度)≤(仪器合格允差范围) ≤U t ≤(产品公司范围)⼀、哪些量规仪器需要校正?1、ISO9001条⽂中即明⽂规定[检验、量测与试验设备(包括软件)应建⽴并维持控制,校准和维修的⽂件化程序]2.需要校正者2.1 ⽤于产品之检验、量测或试验设备,以判定品质的仪器量规或软件。
迈克尔逊干涉仪的调整和使用一、教学目的(1) 了解迈克尔逊干涉仪的原理结构,学习调节和使用方法。
(2) 观察等倾,等厚干涉现象。
(3) 测量He-Ne 激光波长。
二、教学重点(1) 迈克尔逊干涉仪的原理和结构 (2) 迈克尔逊干涉仪的调节和使用方法 (3) 迈克尔逊干涉仪的应用三、课堂提问(1) 什么是非定域干涉?(2) 迈克尔逊干涉仪是怎样实现非定域干涉的? (3) 非定域干涉条纹和牛顿环的相同和不同之处是什么?四、实验仪器补偿板微调手轮 He -Ne 激光器迈克尔逊干涉仪分光板固定反射镜移动反射镜粗调手轮光阑孔观察屏读数窗五、实验原理图1是迈克尔逊干涉仪的光路原理图。
光源上一点发出的光线射到半透明层K 上被分为两部分光线“1”和“2”。
光线“2”射到M 2上被反射回来后,透过G 1到达E 处;光线“1”透过G 2射到M 1,被M 1反射回来后再透过G 2射到K 上,反射到达E 处。
这两条光线是由一条光线分出来的,故它们是相干光。
光线“1”也可看作是从M 1在半透明层中的虚像M 1ˊ反射来的。
在研究干涉时,M 1ˊ与M 1是等效的。
调整迈克尔逊干涉仪,使之产生的干涉现象可以等效为M 1ˊ与M 2之间的空气薄膜产生的薄膜干涉。
用凸透镜会聚的激光束是一个很好的点光源,它向空间发射球面波,从反射后可看成由两个光源发出的(见图2),至屏的距离分别为点光源S从反射至屏的光程,21 M M 和21S S 和′)(21S S 或)(1211G M M G 和或和21S S 和′的距离为M 1ˊ和M 2之间距离的二倍,d 图2 非定域干涉M 1图1 迈克尔逊干涉仪即2d 。
虚光源发出的球面波在它们相遇的空间处处相干,这种干涉是非定域干涉。
如果把屏垂直于21S S 和′21S S 和′的连线放置,则我们可以看到一组同心圆,圆心就是连线与屏的交点。
如图2,由到屏上的任一点A,两光线的程差21S S 和′21S S ′L 可得:δcos 2d L = (1) 由式(1)可知:(1)当0=δ 时程差最大,即圆心E 点所对应的干涉级别最高。
激光干涉仪检测与调整过程7.1 检测前工作7.1.1 检测前应该设置什么参数、检测程序怎么生成?一、目标位置:当选择目标位置以进行机床轴的校准时,目标位置通常应横跨该轴的工作区域。
下面我们以目标为从0到450MM,并使间隔为30MM为间距如图所示:在软件中如下设置目标:选择目标点中的等距定义目标,如下图所示图1 →图2接着弹出如图2的窗口接着我们在内部设置数据如图三所示图3到这里的时候我们将目标点设置完毕,接下来我们要上生成。
二、生成检测程序:激光干涉仪在检测的时候时按照我们在第一步设定的目标点运动的,即从0到450MM每30MM为一个点,因此机床在运动的时候必须和软件设置的一致,所以我们必须生成检测程序。
程序的生成方法图下:选择定义工具栏下的零件程序下的产生按键,如下图所示:图1 →图2在弹出的窗口中输入文件名,并且选择程的序存放路径按保存,会弹出下图:图1 →图2在图1中需要我们选择的为:数控系统的型号。
我们针对我们当前检测机床的数控系统型号作正确的选择,接着弹出图2的窗口,这个窗口要求我们填写与程序相关的数据,我们如下图所示填写:程序号:0001轴名为:Y运行次数为:3选择方向为:双向暂停周期为:4秒越程为:4.0000毫米零件程序类型:线性进给量:1500 ;轴方式为:普通名词解释:程序号:该程序的序号轴名:待校准轴的名称这里记住是大写运行次数:我们希望该程序运行多少次选择方向:在轴上行走的方向时一来一回的间隔点还是只去这样走回时不走暂停周期:等待软件记录数据的时间,这里要根据电脑的性能作调整越程:这里是为了消除方向间隙而设置的,一般选择默认,也可以自行设置零件程序类型:选择运行的方式,因为我们是走直线的所以我们选择线性进给量:机床运动的速度到这里的时候我们已经完成了程序的生成,我们使用文本格式打开文件可以看到程序如下:一定能用得上,所以我们统一使用以下修改过的程序作为标准:机床,但它在系统中的适应度比较强。
用迈克尔逊干涉仪测量液体的折射率
《用迈克尔逊干涉仪测量液体的折射率》
实验提要
实验课题及任务
《用迈克尔逊干涉仪测量液体的折射率》实验课题任务是:根据液体的折射率比空气大,当一个光路中加有液体时,其光程差'l 会发生改变,根据这一的光学现象和给定的仪器,设计出实验方案,测定水的折射率。
学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测量液体的折射率》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。
设计要求
⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。
⑵根据实验用的测量仪器,设计出实验方法和实验步骤,要具有可操作性。
⑶用最小二乘法求出水的折射率n。
⑷实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。
实验仪器
改装过迈克尔逊干涉仪、专用水槽及配件、激光器。
提交整体设计方案时间
学生自选题后2~3周内完成实验整体设计方案并提交。
提交整体设计方案,要求用纸质版供教师修改。
参考文献
彭剑辉周烈生迈克尔逊干涉仪测量液体的折射率及仪器调节方法[J]《光学技术》1998.1。
第一章:为何使用干涉仪做检测1-1干涉度量学第一章为什么要使用干涉仪检测首先我们要先了解,什么是干涉度量学?所谓干涉度量学是指利用光干涉的效应来量测特定物理量的方法, 也就是说藉由观察干涉条纹的变化, 来量测出待测物的特征1-2何谓干涉仪干涉仪是什么? 一般来说, 只要是利用光干涉的原理来量测的仪器便可以称为干涉仪, 但是干涉仪的种类众多且多变化, 因此本课程中将针对最为外界常用之种类作介绍1-3干涉仪之优缺点干涉仪的优点及缺点第一高精度以光学组件来说, 因为组件的微小变化均会严重改变原有的光学质量,因此必须要有非常精确的量测仪器, 干涉仪具有精度非常高的优点, 最高可达1/100的波长甚至到1/1000的波长, 波长是指干涉仪中使用光源的波长值.举例来说:一般干涉仪的波长为632.8( nm ),而632.8的百分之一约为6个(nm) , 目前的奈米科技是在这个尺度, 甚至有些更好的干涉仪可以到0.6个(nm ),从此可以看出干涉仪的精度有多好了第二章:非球面玻璃模造的原理第二. 非接触式量测另一种量测用的轮廓仪是使用接触式的量测方式, 即使目前已可以微调接触的力量, 但对于表面较脆弱的被量测物是否真的完全不会造成损害则仍无法确定.而当用干涉仪量测时, 是把光照射到被量测的物体上, 所以干涉仪上的探针也就是光, 并不会对物体表面照成任何伤害第三使用探针来量测时无法一次量测所有的面积, 而可能必需分很多扫瞄线去量测, 相对来说, 干涉仪的量测速度就非常快了, 可能几秒钟就量完了, 而不需要等待几个小时的时间.第四则是干涉仪的缺点, 一个操作员在会使用干涉仪却不太清楚干涉仪的使用限制、条件及原理的时候, 可能会量测到不是他所要的东西, 而且, 因为干涉仪是用光线量测, 在调整上也会花费多的时间, 可能量测结果只要花几秒钟, 但事前的调整却要花费几十分钟甚至数个小时.第二章:干涉仪工作原理2-1光干涉2-1.1为何光有干涉现象干涉仪工作原理我们是用干涉仪量测, 所以先要了解什么是光干涉? 为什么光有干涉现象?光的干涉现象有二个原因, 第一光像是波一样, 具有波的特性, 我们在丢一块小石子在池塘中, 就会看到很多涟漪向外扩散传播, 这就是波, 而光就可以用波来描述. 第二波的迭加原理, 我们之所以能够看到干涉条纹的明暗变化, 就是因为迭加原理所造成的,这是二个造成光干涉现象的基本条件除此之外, 偏振光的特性, 是否同相位的特性也是造成光干涉现象的条件.2-1-2由迭加原理说明干涉现象由迭加原理说明干涉现象:1. 破坏性干涉如上图所示, 假设蓝色波的最高值与红色波的最低值在同一位置时, 其相加数值为0, 所以当蓝色及红色二个波一起出现的时候, 迭加起来就会变成中间的黑线, 因为光具有波的特性, 所以如果2个波长彼此正好相差一半的波长时, 也就是相位差π时, 画面就会呈现全亮或全暗而完全看不到条纹, 以上图来看因为蓝色波的最高点到红色波的最高点距离相差π, 此时我们就称做破坏性干涉2. 建设性干涉如下图所示,假设蓝色波与红色波的最高值在同一位置时,其相加数值就是2,当蓝色波与红色波完全重迭在一起时, 迭加起来就会变成较高的黑线, 当我们肉眼看到时, 黑线的最高点就会变亮, 最低点则较暗, 而会有明暗的线条变化, 我们就称做建设性干涉当蓝色波与红色波的相加数值为0~2以内时, 波长会较为平缓, 就会产生灰阶的渐层条纹变化了.2-1-3干涉条纹之定量描述对建设性干涉而言, 2个波的差异需满足公式: opt ical path(n*d)=mλ optical path是光程差, 光程差是指2个波的差异,当2道光从A点跑到B点时, 距离为d及d', 因此有一道波跑了nd, 另一道波跑了nd' 那么2道光的差异为n(d'-d), 也可以变成nd2'.如果nd2'为波长λ的整数倍时, 就会有明暗的条纹变化, 也就是建设性干涉而相反的当nd2'刚好为二分之一波长的技术倍时便产生破坏性干涉条纹,公式为:optical path(n*d)=mλ/22-1-4双光束干涉之数学描述双光束干涉之数学描述:假设2道光做干涉,这两到光的光强度分别为I1,I2,那么当这两道光产生干涉时便符合上述的公式.其中:I1+I2为干涉条纹的DC项,根号(I1I2)为干涉条纹的振幅大小,最后Cos(Delta)为相位项,其中Delta扁是前面所提到的光程差.所以当光程差变化时,可以知道干涉条纹也会随着变化2-2如何判断干涉条纹2-2-1干涉条纹种类那么我们如何判断干涉条纹?因为我们不是随时随地都可以方便的使用干涉仪并藉由计算机来分析, 所以我们必须用肉眼来判断, 这也是最快最方便的方式.干涉条纹的种类有2种:第一个是等厚度干涉条纹, 在等厚度干涉条纹中明暗的条纹会呈现等间隔的情形, 而且每个相邻的条纹代表相同的厚度间隔.假设横线为标准面, 斜线为一个斜率固定的待测面, 当光线打过来的时候会产生折射现象, 我们在第一个射入点做一条与标准面平行的虚线, 在待测面会有光a反射回去, 在标准面时也会有光b反射回去从图可以看出光线a及b所通过的路径是不同的,而当光程差恰为波长的整数倍时,就可以看到相同间隔的干涉条纹第二个是等倾度干涉条纹, 是由相同角度的光线所形成的干涉条纹, P1这一点有一个干涉条纹, 它的来源是由4条实线所造成的, 而这4条实线对这个物体表面来说, 则是同一个角度的光所造成的, 因为物体为圆形, 所以会造成对称的效果.而4条虚线则是由另一个角度的光所造成的, 并进而产生P2点的一个干涉条纹.因此由同样角度光线形成的干涉条纹我们就称为等倾度干涉条纹,不过在实际的应用上, 等厚度干涉条纹与等倾度干涉条纹是可能同时出现的.2-2-2-1 干涉条纹判断应用实例一干涉条纹判断应用实例:应用一:表面平整性-如果我们想从干涉图了解物体表面的平整性好不好, 可以在干涉图上画一个以中心为准的十字线, 数数看从中心点起, 在X方向上的条纹数及Y方向上的条纹数量有几个,这个量在光学工厂中是最常使用的, 当我们要求师父磨一个镜片时, 就可以告知我们对表面平整性的需求, 在X方向与Y方向上的误差范围容忍度是多少.从图上来看, X方向上有1个条纹, Y方向上则有3个条纹, 也就是说, 这个待测的组件, 在X方向与Y方向上的变化程度不一样, 这个变化程度就定义为表面平整性Surface irregularity同时差异量最大的地方我们定义为: POWER, 也就是Y方向的3, 而irregularity是看X方向与Y方向上的差异量, 也就是2, 所以从上图的干涉条纹我们可以知道待测物的Power为3、irregularity 为2 那到底什么是POWER, 什么是irregularity ?假设我们看的组件是眼镜的镜片, 从侧面看, 当有光打过来时镜片会聚焦, 不同的弯曲量聚焦的程度就会不一样, 我们称为放大率, , 而面的弯曲程度就定义为POWER. 而在镜片上的X方向与Y方向的弯曲程度会可能不同, 也就是说POWER不一样, 我们就称为Surface irregularity, 现在我们已经知道这个干涉图条纹的表示为3/2, 那么这个数字是代表多少? 他的单位就是波长, 一般的雷射为632.8( )波长, 3/2 的3是指3个波长, 2是指2个波长, 在光学组件的计算之中通常是以波长来表示的.2-2-2-2 干涉条纹判断应用实例一在前面提到在干涉仪量测中多用波长作为单位所以我们还要注意到使用的干涉仪波长是多少假设同一镜片, 由A厂商使用λ=500的干涉仪, 判读数据为3/2, B厂商使用λ=600的干涉仪, 判读数据也是3/2,那么使用500λ干涉仪的A厂商所判读的数据必定是较好的, 因为波长愈短的, 转换为数据时也会相对较小, 所以除了判读干涉图的数据之外, 还要注意干涉所使用的波长是否和要求相符才能得到最正确的结果.2-2-2-3 干涉条纹判断应用实例一接下来的例子, 我们要看的一样是POWER和irregularity我们可以从图A来判读POWER和irregularity 是多少?加上十字坐标之后, X方向上有2.5个条纹, Y方向上则有1.5个条纹, 所以这个镜片的最大弯曲量是2.5, X与Y的差距量是1, 但是这个干涉图的结果却不是 2.5/1当X方向与Y方向待测面的弯曲方向相同时, irregularity为2者相减, 但X方向与Y方向待测面的弯曲方向不同时, irregularity则为两者相加.当X方向与Y方向待测面的弯曲方向相同时, POWER取最大值, 但X方向与Y方向待测面的弯曲方向不同时,POWER相减.所以从这个图来判读的irregularity为1.5+2.5=4, X方向与Y方向可以视为同一个面, 所以POWER是2.5-1.5=1, 因此, 我们必须先知道所量测的是什么物体, 否则所求得的数据也有可能是错误的.2-2-2-4 干涉条纹判断应用实例一接下来我们来看看几种常见的干涉条纹:我们要注意的一件事是, 在这些图中的干涉条纹都是由待测物和一个标准平面比较所造成的,一旦比较条纹变了, 所造成的条纹也会全部改变, 而且相对应的状况也会完全不同.左侧Without tilt为: 当没有倾斜效应进来的时候, 不同的待测面所产生的条纹变化右侧With tilt则是: 当倾斜效应进来的时候, 不同的待测面所产生的条纹变化当待测面为为平面时1或是2, Without tilt 会看不到条纹当待测面为弯曲面3时, Without tilt 会呈现边缘较密, 间距不等的同心圆条纹当待测面是球面4时, Without tilt 则会呈现间距较为相等的同心圆条纹假设标准面为平面, 3的待测物形状可能为双曲线或椭球, 所以厚度变化较为剧烈, 4的待测物则可能为球面或接近球面的形状,所以在做干涉仪量测, 想判断干涉条纹的形状时, 必须先了解待测物体的形状, 或者是由干涉条纹的形状, 来判断待测物体2-2-2-5 干涉条纹判断应用实例二因为干涉条纹会随着参考面的不同而不同, 所以当我想知道待测面的形状时, 就必须先知道标准面的形状是什么?现在我们以同一形状的待测物-凸透镜为例当待测物为一个球面, 而参考面为一标准平面时,其干涉条纹可能为一同心圆分布, 但若参考面改为标准曲率之球面时,其干涉条纹则可能成为直线分布,发生同一待侧面却有不同干涉条纹分布的原因, 在于干涉条纹所看到的是待侧面与参考面之间的差异,因此, 如果要判断哪一个干涉条纹的待测物是球面, 就必须先了解, 量测时所参考的参考是什么?才能正确藉由干涉条纹判断出待测之面形.第三章:干涉仪种类3-1 Newton Interferometer干涉仪的种类非常的多, 在这里所介绍的是五种最常见的干涉仪.第1个是Newton Interferometer牛顿干涉仪左边的Quasimonochromatic point source是一个几近单波长的点光源, Quasimonochromatic 为单波长的意思, point source是点光源.点光源经过透镜变成平行光后, 打到下方椭圆形待测物上, 这个待测物可能为透镜之类的物体, 待测物下方的平面Optical flat 则是参考面, 通常做为参考面的平整度, 也就是Surface irregularity, 必须要1/10λ以上, 分母愈大就表示其平整度愈3-2 Michelson Interferometer第2个是麦克森干涉仪Michelson Interferometer.当麦克森干涉仪和牛顿干涉仪做比较时, 会发现它并不是一个点光源, 光源有些散开, 光线在经过第一块镜片之后透过中间的分光镜O, 使得一部份的光反射到反射镜M2再反射回分光镜O, 而一部份的光则穿透补偿片C, 到达反射镜M1之后才反射回分光镜O合成同一道光, 并且将结果打到D(Detector)上, 因此我们就可以在Detector上看到一圈一圈的条纹, 也就是干涉图A了. 所以麦克森干涉仪通常用来量测距离的变化当我们要量测距离时, 只要先量测出原来的干涉条纹A之后, 再将反射镜M2往后移, 量测出干涉条纹B, 然后就可以从条纹A~B的变化算出距离3-3 Fizeau Interferometer (一)第3个是斐洛干涉仪Fizeau Interferometer是目前一般最常见的干涉仪, 也是架构最简单, 量测最方便的一种.左上方的laser becm 雷射光源, 雷射光源是非常好的单波长光源, 经过中间的几道程序之后, 在经过Reference flat 参考面时, 部份光被反射, 部份光则穿透至flat under fest待测面上后再反射回去, 因此我们看到的结果是参考面与待测面的差异, 当参考面不同时, 所测出的待测面条纹也会不同.这种干涉仪的缺点是: 容易受风向、震动、与空气变化等的外力影响, 必须放在密闭室内的防震桌上, 才能清楚看到干涉条纹, 所以又称为非共路径干涉仪.3-3 Fizeau Interferometer (二)Fizeau Interferometer这2种是由2家有名的仪器公司制造的斐洛干涉仪左图是ZYGO公司所制造的斐洛干涉仪,而右图则是VEECO公司的斐洛干涉仪,一般光学公司在采购较好的干涉仪设备时, 通常是以这2家公司的仪器为采购标准.3-4 Mach-Zehnder Interferometer第4个是Mach-Zehnder 干涉仪左下方的光源Extended source, 为一与麦克森干涉仪相似的扩展光源, 光源经过第一个Beam-splitter之后分为二道, 各别经过一片Mirror反射镜, 再经过第二个Beam-splitter合成一道光之后, 将结果打到Detector上.因为中间分为二道光源的关系, 在空间及距离上可以做较大的调整, 所以比较适合量测体积大或穿透性大的物体, 例如: 我们可以用来量测大面积的玻璃.将待测物放在路径上的第一个Beam-splitter与Mirror反射镜之间, 我们就可以看到路径A、路径B与待测物之间的差异.这也是一个非共路径干涉仪, 它的缺点是: 容易受空气变化等的外力影响,优点是: 可以量测体积或面积较大的物体.3-6 Twyman-Green Interferometer第5个是Twyman-Green 干涉仪Twyman-Green 干涉仪和麦克森干涉仪很相似.当一道光源进来, 经过BEAM EXPANDER将光源变得比较大束后, 经由中间的BEAMSPLITTER 分为二道光, 反射回来之后再回到侦测器,上每种干涉仪都有各自不同的应用范围、方向和限制.第四章:实际检测方法4-1可应用范围干涉仪可以应用的范围:1. 是表面的形状2. 是曲率测试3. 是表面平整度或表粗糙度4. 可以量测玻璃二侧的面是否够平整5. 角度测试, 有些光学组件是有角度的, 可藉此量测其准度6. 应力测试, 例如眼镜或相机镜头, 当必须以其它对象夹住玻璃时, 可以测试该玻璃的变形量.4-2 干涉仪应用于液晶投影机组件检验那么干涉仪到底应用在那些液晶投影机组件的检验:例如: X-cube是液晶投影机中把RGB三个色光合在一起的重要组件, 我们有几种检测它的方式:第1 是量测表面平整性:我们使用的是WYKO 6000的斐洛干涉仪, 仪器的前面标准参考面, 光源由参考面打到待测物的第一个面时会反射, 我们看到的是它的差异度, 也因此可以量测出待测面的表面平整度.并由计算机直接判读出正确的数据结果.如果我们拿一张不透光的白纸遮住其中一边的光, 那么被遮住的部份就不会再有光从下方出现, 而只显示出一部份的反射条纹.第2 是量测内反射面的平整度:光源由参考面打到待测物的第一个面时会反射,但是也可以打进待测物里面, 经由反射的过程再反射回参考面,也就是就, 使用同一个架构可以量测到物体的二面, 那么要知道我们量测的到底是哪一个面? 如果我们拿一张不透光的白纸遮住其中一边的光, 那么被遮住的部份就不会再有光从下方出现, 但会显示出没被遮住的部份反射条纹, 那么所测得的就是表面平整度. 而内反射的光源是由上方打入待测物中, 再经由反射从下方出来, 所以如果我们拿一张不透光的白纸遮住上方的光, 那么就不会再有光从下方出现, 这样就能得知目前所量测的是内反射面平整度了.第3 是量测内反射面的角度误差:这是X-cube的侧面图, 理论上都会尽量要求达到接近90度, 所以我们也可以用干涉仪来量测内反射面的角度误差第4 量测穿透波面的平整度:光在投影机中必须是穿透的, 如果X-cube有一些瑕疵的话, 显示出来的影像就会不漂亮, 所以就必须量测其穿透波的平整度.当光源从上方打出来, 透过待测物打到标准反射镜片时, 再反射回去, 如果待测物的放置位置是平整的, 那么每一道光都会循原来的途径反射回去, 可能会分不清楚到底是哪一个面所产生的干涉条纹. 这时可以调整待测物平台的倾斜度, 使部份光不会进到干涉仪中, 那么就可以很清楚的看到干涉条纹了.Aperture:In television optics, it is the effective diameter of the lens that controls the amount of light reaching the photoconductive or photo emitting image pickup sensorANSI Lumens:ANSI stands for American National Standards Institute. It is a standard for measuring light output. Different lamps play a role on light output. Halogen lamps appear dimmer than anothermetal-halide, even if the two units have the same ANSI lumen rating. Type of LCD technology (active matrix TFT, Poly-Si, passive), type of overall technology (LCD vs. DLP vs. CRT), contrast ratios, among other factors can also affect the end result.ASAP原名为Advanced System Analysis Program,为美国BRO (Breault Research Organization) 公司研发的一套专业光学仿真软件,它可以帮助使用者仿真真实之光学系统,以达到最实际之光学分析结果Dichroic:A mirror or lens that reflects or refracts selective wavelengths of light. Typically used in projector light engines to separate the lamps "white" light into red, green, and blue lightDigital Light Processing (DLP):The commercial name for this technology from Texas Instruments (TI):F-number (f/#)f/# is the ratio of the effictive focal length of an optical system to its clear aperture. For example, a 50mm effictive focal length lens system with a clear aperture of 25mm is f/2.Focal Length (FL)Regarding optical elements and systems: effective focal length (EFL) - Distance from the principle plane to the focal point; front focal length (FFL) - Distance from the vertex of the first lens to the front (left) focal point; back focal length (BFL) - Distance from the vertex of the last lens to the back (right) focal point.LCD:LCD stands for liquid crystal display and comes in many forms, sizes, and resolutions. Its primary purpose is to present a digital image for viewing. A common use of LCDs is as a display on a notebook computerPanel:Also known as a projection panel, LCD projection panel, or plate. The panel is the predecessor of today's projectorsProjector:A projector is a device that integrates a light source, optics system, electronics and display(s) for the purpose of projecting an image from a computer or video device onto a wall or screen for large image viewing.TFT:Thin Film TransistorZoom Lens:A lens with a variable focal length providing the ability to adjust the size of the image on a screen by adjusting the zoom lens, instead of having to move the projector closer or further. ZEMAX:是一套综合性的光学设计软件。
实验3.14 迈克尔逊干涉仪的调整与使用实验简介迈克尔逊干涉仪是一种分振幅的双光束干涉测量仪器,是美国科学家迈克尔逊(A.A.Michelson)于1881年设计制造的一种精密干涉测量仪器,可用于测量光波波长、折射率、物体的厚度及微小长度变化等,其精度可与光的波长比拟。
迈克尔逊干涉仪在历史发展史上起了很大的作用,迈克尔逊及其合作者曾用此仪器做了“以太漂移”实验、用光波波长标定米尺长度、推断光谱精细结构三项著名实验,第一项实验解决了当时关于“以太”的争论,为爱因斯坦建立狭义相对论奠定了基础,第二项实现了长度单位的标准化(用镉红光作为光源标定标准米尺长度,建立了以光波为基准的绝对长度标准),第三项工作研究了光源干涉条纹可见度随光程差变化的规律,并以此推断光谱。
迈克尔逊和莫雷因在这方面的杰出成就获得了1907年诺贝尔物理学奖。
迈干仪结构简单、光路直观、精度高,其调整和使用具有典型性,根据迈克尔逊干涉仪基本原理发展的精密干涉测量仪器已经广泛应用于生产和科研领域。
因此,了解它的基本结构,掌握其使用方法很有必要。
实验目的1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法2、学会观察非定域干涉、等倾干涉、等厚干涉及白光干涉条纹3、学会用迈克尔逊干涉仪测量激光波长及钠光双线波长差实验原理1、迈克尔逊干涉仪的结构及工作原理迈干仪由分光镜1G 、补偿板2G 、两反射镜1M 、2M 和观察屏E 组成,分光镜的后表面镀有半透半反射膜,将入射光分成两束,一束透射光1,一束反射光2,这两束光分别被1M 、2M 反射后,经半透半反射膜的反射和透射在观察屏上相遇,由于这两束光是相干光,在屏上干涉产生干涉条纹,其光路如上图所示。
‘2M 是2M 被分光镜反射所成的像,光束1和光束2之间的干涉等效于1M 、‘2M 之间空气膜产生的干涉。
补偿板是一个与分光镜平行放置且材料、厚度完全相同的玻璃板,其作用是补偿两束光使得两束光在玻璃中的光程相等。
实验3.14 迈克尔逊干涉仪的调整与使用实验简介迈克尔逊干涉仪是一种分振幅的双光束干涉测量仪器,是美国科学家迈克尔逊(A.A.Michelson)于1881年设计制造的一种精密干涉测量仪器,可用于测量光波波长、折射率、物体的厚度及微小长度变化等,其精度可与光的波长比拟。
迈克尔逊干涉仪在历史发展史上起了很大的作用,迈克尔逊及其合作者曾用此仪器做了“以太漂移”实验、用光波波长标定米尺长度、推断光谱精细结构三项著名实验,第一项实验解决了当时关于“以太”的争论,为爱因斯坦建立狭义相对论奠定了基础,第二项实现了长度单位的标准化(用镉红光作为光源标定标准米尺长度,建立了以光波为基准的绝对长度标准),第三项工作研究了光源干涉条纹可见度随光程差变化的规律,并以此推断光谱。
迈克尔逊和莫雷因在这方面的杰出成就获得了1907年诺贝尔物理学奖。
迈干仪结构简单、光路直观、精度高,其调整和使用具有典型性,根据迈克尔逊干涉仪基本原理发展的精密干涉测量仪器已经广泛应用于生产和科研领域。
因此,了解它的基本结构,掌握其使用方法很有必要。
实验目的1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法2、学会观察非定域干涉、等倾干涉、等厚干涉及白光干涉条纹3、学会用迈克尔逊干涉仪测量激光波长及钠光双线波长差实验原理1、迈克尔逊干涉仪的结构及工作原理迈干仪由分光镜1G 、补偿板2G 、两反射镜1M 、2M 和观察屏E 组成,分光镜的后表面镀有半透半反射膜,将入射光分成两束,一束透射光1,一束反射光2,这两束光分别被1M 、2M 反射后,经半透半反射膜的反射和透射在观察屏上相遇,由于这两束光是相干光,在屏上干涉产生干涉条纹,其光路如上图所示。
‘2M 是2M 被分光镜反射所成的像,光束1和光束2之间的干涉等效于1M 、‘2M 之间空气膜产生的干涉。
补偿板是一个与分光镜平行放置且材料、厚度完全相同的玻璃板,其作用是补偿两束光使得两束光在玻璃中的光程相等。
第一章、前言—、本次我们主要研究:如何检测机床的螺距误差。
因此我们主要的任务在于:1.应该使用什么仪器进行测量2.怎么使用测量仪器3.怎么进行数据分析4.怎么将测量所得的数据输入对应的数控系统二、根据第一点的要求,我们选择的仪器为:Renishaw激光器测量系统.此仪器检测的范围包括:1.线性测量2.角度测量3.平面度测量4.直线度测量5.垂直度测量6.平行度测量线性测量:是激光器最常见的一种测量。
激光器系统会比较轴位置数显上的读数位置与激光器系统测量的实际位置,以测量线性定位精度及重复性。
三、根据第二点的解释,线性测量正符合我们检测螺距误差的要求。
因此,我们此次使用的检测方法——线性测量。
总结以上我们的核心在于:如何操作Renishaw激光器测量系统结合线性测量的方法进行检测.之后将检测得到的数据进行分析.最后将分析得到的数据存放到数控系统中。
这样做的目的在于一:是高机床的精度。
-1 -A-/r- -^― .Trt".弟一早、2.1什么是螺距误差?基础知识开环和半闭环数控机床的定位精度主要取决于高精度的滚珠丝杠。
但丝杠总有—定螺距误差,因此在加工过程中会造成零件的外形轮廓偏差。
由上面的原因可以得知:螺距误差是指由螺距累积误差引起的常值系统性定位误差。
2.2为什么要检测螺距i 吴差?根据2.1节,检测螺距误差是为了减少加工过程中造成零件的外形轮廓偏差,即提高机床的精度。
2.3怎么检测螺距误差?(1)安装高精度位移检测装置。
(2)编制简单的程序,在整个行程中顺序定位于一些位置点上。
所选点的数目及距离则受数控系统的限制。
(3)记录运动到这些点的实际精确位置。
(4)将各点处的误差标出,形成不同指令位置处的误差表。
(5)多次测量.取平均值。
(6)将该表输入数控系统,数控系统将按此表进行补偿。
2.4什么是增量型误差、绝对型误差?①增量型误差增量型i吴差是指:以被补偿轴上相邻两个补偿点间的误差差值为依据来进行补偿②绝对型误差绝对型是误差是指:以被补偿轴上各个补偿点的绝对误差值为依据来进行补偿2.5螺距误差补偿的原理是什么?螺距误差补偿的基本原理就是将数控机床某轴上的指令位置与高精度位置测量系统所测得的实际位置相比较•计算出在数控加工全行程上的误差分布曲线,再将误差以表格的形式输入数控系统中。
迈克尔孙干涉仪(2013.9更新)1881年美国物理学家迈克尔孙(A.A.Michelson)为测量光速,依据分振幅产生双光束实现干涉的原理精心设计了这种干涉测量装置。
迈克尔孙和莫雷(Morey)用此一起完成了在相对论研究中有重要意义的“以太”漂移实验。
迈克尔孙干涉仪设计精巧、应用广泛,许多现代干涉仪都是由它衍生发展出来的。
本实验的目的是了解迈克尔孙干涉仪的原理、结构和调节方法,观察非定域干涉条纹,测量氦氖激光的波长,并增强对条纹可见度和时间相干性的认识。
实验原理1.迈克尔孙干涉仪的结构和原理迈克尔孙干涉仪的原理图如图3.1.1-1所示,A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1和M2后各有几个小螺丝可调节其方位。
光源S发出的光射向A板而分成(1)、(2)两束光,这两束光又经M1和M2反射,分别通过A的两表面射向观察处O,相遇而发生干涉,B作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2与A板的距离决定。
由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。
从O处向A处观察,除看到M1镜外,还可通过A的半反射膜看到M2的虚像M’2,M1与M2镜所引起的干涉,显然与M1、M’2引起的干涉等效,M1和M’2形成了空气“薄膜”,因M’2不是实物,故可方便地改变薄膜的厚度(即M1和M’2的距离),甚至可以使M1和M’2重叠和相交,在某一镜面前还可根据需要放置其他被研究的物体,这些都为其广泛的应用提供了方便。
2.点光源产生的非定域干涉一个点光源S发出的光束经干涉仪的等效薄膜表面M1和M’2反射后,相当于由两个虚光源S1、S 2发出的相干光束(图3.1.1-2)。
若原来空气膜厚度(即M 1和M ’2之间的距离)为h ,则两个虚光源S 1和S 2之间的距离为2h ,显然只要M 1和M ’2(即M 2)足够大,在点光源同侧的任一点P 上,总能有S 1和S 2的相干光线相交,从而在P 点处可观察到干涉现象,因而这种干涉是非定域的。