周炳坤激光原理课后习题答案
- 格式:doc
- 大小:1.64 MB
- 文档页数:44
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
《激光原理》习题解答作者:周炳琨等 国防工业出版社 第五版解答人:广东海洋大学理学院光电科学系 石友彬(2008年修正版)习题解答说明:习题解答参考蓝信鉅的激光技术、陈家璧版激光原理及应用等,在此对上述作者表示敬意! 本章习题是在我系前外聘教授郭振华习题解答基础上汇总而成,在此表示衷心感谢。
1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136)ccυυνν-+=110υλν=由以上两个式子联立可得:0λυυλ⨯+-=C C代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。
证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。
在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。
以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫ ⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 120 显然,光强是以频率cυν⋅2为频率周期变化的。
周炳琨激光原理第二章习题解答(完整版)1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M 1→M 2→M 1,初始坐标为⎪⎪⎭⎫ ⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫ ⎝⎛θ11r =T ⎪⎪⎭⎫⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r 而对称共焦腔,R 1=R 2=L 则A=1-2R L 2=-1 B=2L ⎪⎪⎭⎫⎝⎛-2R L 1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0 D=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=-1 所以,T=⎪⎪⎭⎫ ⎝⎛--1001故,⎪⎪⎭⎫⎝⎛θ22r =⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0<g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L(a 对平凹腔:R 2=∞,则g 2=1,0<1-1R L<1,即0<L<R 1 (b)对双凹腔:0<g 1•g 2<1, 0<⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1 LR >1,L R >2或L R <1L R <2且LR R >+21(c)对凹凸腔:R 1=1R ,R 2=-2R ,0<⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系cL c ==∆τν1又因为γνλλ∆=∆,0λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=ννλλ∆=∆=c L 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则 功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λν z H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b为波尔兹曼常数,T 为热力学温度。
《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即 c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为 0γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=0ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即: TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b 为波尔兹曼常数,T 为热力学温度。
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
第四章 电磁场和物质的共振相互作用习题(缺7)1.解:根据多普勒效应,有ccz z /1/10υυυυ-+=则ccc c cc z z z z /1/1/1/1/0υυλυυυυλ+-=+-== 当c z 1.0=υ时,nm 4.5721≈λ 当c z 4.0=υ时,nm 3.4142≈λ 当c z 8.0=υ时,nm 9.2103≈λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为:这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)v cνν'=+2(1)(1)(12)vv v c c cνννν'''=+=+≈+因而光屏P 上的总光场为:光强正比于电场振幅的平方,所以P 上面的光强为:它是t 的周期函数,单位时间内的变化次数为:由上式可得在dt 时间内屏上光强亮暗变化的次数为:(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S :式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
周炳琨激光原理第二章习题解答(完整版)1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜M 1→M 2→M 1,初始坐标为⎪⎪⎭⎫ ⎝⎛θ00r ,往返一次后坐标变为⎪⎪⎭⎫ ⎝⎛θ11r =T ⎪⎪⎭⎫⎝⎛θ00r ,往返两次后坐标变为⎪⎪⎭⎫⎝⎛θ22r =T •T ⎪⎪⎭⎫ ⎝⎛θ00r 而对称共焦腔,R 1=R 2=L 则A=1-2R L 2=-1 B=2L ⎪⎪⎭⎫⎝⎛-2R L 1=0 C=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+121R L 21R 2R 2=0 D=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--211R L 21R L 21R L 2=-1 所以,T=⎪⎪⎭⎫ ⎝⎛--1001故,⎪⎪⎭⎫⎝⎛θ22r =⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛--1001⎪⎪⎭⎫ ⎝⎛θ00r =⎪⎪⎭⎫⎝⎛θ00r 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔的稳定性条件为0<g 1•g 2<1,其中g 1=1-1R L ,g 2=1-2R L(a 对平凹腔:R 2=∞,则g 2=1,0<1-1R L<1,即0<L<R 1 (b)对双凹腔:0<g 1•g 2<1, 0<⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1 LR >1,L R >2或L R <1L R <2且LR R >+21(c)对凹凸腔:R 1=1R ,R 2=-2R ,0<⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-21R L 1R L 1<1,L R >1且LR R <-||213.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
第五章 激光振荡特性1、证明: 由谐振腔内光强的连续性,有:I =I 'ηη''=⇒'⋅'=⋅⇒C N CNV N V N 谐振腔内总光子数 )(l L S N NSl -'+=Φ)(l L NS NSl -'+=ηη ηηη/])([l l L NS +-'=η/L NS '= , 其中)(l L l L -'+='ηηRNSl C n dt d τησΦ-∆=Φ21 R L NS NSl C n dt dN L S ητηση'-∆='21 , CL R δτ'=L CNL l CN n dt dN '-'∆=δσ212.长度为10cm 的红宝石棒置于长度为20cm 的光谐振腔中,红宝石谱线的自发辐射寿命3410s s τ-≈⨯,均匀加宽线宽为5210MHz ⨯。
光腔单程损耗0.2δ=。
求(1)阈值反转粒子数t n ∆;(2)当光泵激励产生反转粒子数 1.2t n n ∆=∆时,有多少个纵模可以振荡(红宝石折射率为 解:(1) 阈值反转粒子数为:222212112337217344210 1.764100.2 cm 10(694.310) 4.0610cm H s t n l l πνητδδσλπ----∆∆==⨯⨯⨯⨯⨯⨯=⨯⨯=⨯(2) 按照题意 1.2m t g g =,若振荡带宽为osc ν∆,则应该有22221.222H t t osc H g g ννν∆⎛⎫ ⎪⎝⎭=∆∆⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭ 由上式可以得到108.9410Hz osc H νν∆==⨯相邻纵模频率间隔为10831022( 1.76())2(10 1.7610) 5.4310Hzq c c l l L l ν⨯∆==='⨯+-⨯+=⨯ 所以1088.9410164.65.4310osc q νν∆⨯==∆⨯ 所以有164~165个纵模可以起振。
2023激光原理第6版(周炳坤著)课后答案下载2023激光原理第6版(周炳坤著)课后答案下载
内容主要包括光和物质作用经典理论、速率方程理论、光学谐振腔理论,以及对连续激光器工作特性的分析。
对激光放大器、激光器性能改善技术也做了简要介绍。
《激光原理》可作为高校激光原理课程的`教材,也可供从事激光工作的研究人员、技术人员以及高校有关专业的研究生参考。
激光原理第6版(周炳坤著):内容简介
第1章激光概论
第2章光和物质的近共振相互作用
第3章速率方程理论
第4章光学谐振腔理论
第5章连续激光器的工作特性
附录A常用物理常数表
附录B激光大事记及在国内发展足迹
激光原理第6版(周炳坤著):目录
点击此处下载激光原理第6版(周炳坤著)课后答案。
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时:故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1232112211010*******0d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
周炳琨激光原理第二章习题解答(完整版)1、试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证明:设从镜MMM,初始坐标为,往返一次后坐标变为=T,往返两次后坐标变为=TT 而对称共焦腔,R=R=L则A=1=1 B=2L=0C==0 D==1所以,T=故,== 即,两次往返后自行闭合。
2.试求平凹、双凹、凹凸共轴球面镜腔得稳定性条件。
解:共轴球面腔得稳定性条件为0<gg<1,其中g=1 ,g=1(a对平凹腔:R=,则g=1,0<1<1,即0<L<R(b)对双凹腔:0<gg<1, 0<<1,或且(c)对凹凸腔:R=,R=,0<<1,且3.激光器得谐振腔由一面曲率半径为1m得凸面镜与曲率半径为2m得凹面镜组成,工作物质长0、5m,其折射率为1、52,求腔长L在什么范围内就是稳定腔。
解:由图可见有工作物质时光得单程传播有效腔长减小为无工作物质时得?由0<<1,得则4、图2、1所示三镜环形腔,已知,试画出其等效透镜序列图,并求球面镜得曲率半径在什么范围内该腔就是稳定腔。
图示环形强为非共轴球面镜腔。
在这种情况下,对于在由光轴组成得平面内传输得子午光线,式(2、2、7)中得,对于在与此垂直得平面内传输得弧矢光线,,为光轴与球面镜法线得夹角。
解:透镜序列图为该三镜环形腔得往返矩阵为:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=D C B A 10L 11f 1-0110L 11f 1-0110L 11001T由稳定腔得条件:,得:或。
若为子午光线,由则或若为弧矢光线,由,则或5.有一方形孔径共焦腔氦氖激光器,L =30cm,d=2a=0、12cm,,镜得反射率为,,其她损耗以每程0、003估计。
此激光器能否作单模运转?如果想在共焦镜面附近加一个方形小孔阑来选择,小孔边长应为多大?试根据图2、5、5作一大略得估计、氦氖增益由公式计算。
《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λλ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=0ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。
2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。
由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:TK E E T k h f f n n b b )(ex p ex p 121212--=-=ν (统计权重21f f =) 其中1231038062.1--⨯=JK k b为波尔兹曼常数,T为热力学温度。
(a)()()99.01038062.110626.6exp exp 1233412=⨯⋅⨯⨯⋅⨯-=-=---Tk J s J T k h n n b νν (b) ()()2112334121038.11038062.110626.6ex p ex p ----⨯=⨯⋅⨯⨯⋅⨯-=-=Tk J cs J T k h n n b λν (c) ()K n nk cs J n n k h T b b 31234121026.6ln 10626.6ln ⨯=⨯⨯⋅⨯-=⨯-=-λν 4 在红宝石调Q 激光器中,有可能将几乎全部3+r C 离子激发到激光上能级并产生激光巨脉冲。
设红宝石棒直径为1cm ,长度为7.5cm ,3+r C 离子浓度为319102-⨯cm ,巨脉冲宽度为10ns ,求激光的最大能量输出和脉冲功率。
解答:红宝石调Q 激光器在反转能级间可产生两个频率的受激跃迁,这两个跃迁几率分别是47%和53%,其中几率占53%的跃迁在竞争中可以形成694.3nm 的激光,因此,我们可以把激发到高能级上的粒子数看成是整个激发到高能级的3+r C 粒子数的一半(事实上红宝石激光器只有一半的激发粒子对激光有贡献)。
设红宝石棒长为L ,直径为d ,体积为V ,3+r C 总数为N ,3+r C 粒子的浓度为n ,巨脉冲的时间宽度为τ,则3+r C 离子总数为:42Ld n V n N π⨯=⨯=根据前面分析部分,只有N/2个粒子能发射激光,因此,整个发出的脉冲能量为:=⨯=⨯=νπνh nLd h N E 822脉冲功率是单位时间内输出的能量,即===τνπτ82h nLd EP 解答完毕。
5 试证明,由于自发辐射,原子在2E 能级的平均寿命为211A s =τ。
证明如下:根据自发辐射的定义可以知道,高能级上单位时间粒子数减少的量,等于低能级在单位时间内粒子数的增加。
即:spdt dn dt dn ⎪⎭⎫⎝⎛-=212 ---------------① (其中等式左边表示单位时间内高能级上粒子数的变化,高能级粒子数随时间减少。
右边的表示低能级上单位时间内接纳的从高能级上自发辐射下来的粒子数。
)再根据自发辐射跃迁几率公式:221211n dt dn A ⨯=,把22121n A dt dn sp=⎪⎭⎫⎝⎛代入①式,得到:2212n A dtdn -=对时间进行积分,得到:()t A n n 21202ex p -= (其中2n 随时间变化,20n 为开始时候的高能级具有的粒子数。
)按照能级寿命的定义,当1202-=e n n 时,定义能量减少到这个程度的时间为能级寿命,用字母s τ表示。
因此,121=sA τ,即: 211A s =τ证明完毕6 某一分子的能级E 4到三个较低能级E 1 E 2 和E 3的自发跃迁几率分别为A 43=5*107s -1, A 42=1*107s -1, A 41=3*107s -1,试求该分子E 4能级的自发辐射寿命τ4。
若τ1=5*10-7s ,τ2=6*10-9s ,τ3=1*10-8s ,在对E 4连续激发且达到稳态时,试求相应能级上的粒子数比值n 1/n 4, n 2/n 4和n 3/n 4,并说明这时候在哪两个能级间实现了集居数解: (1)由题意可知E 4上的粒子向低能级自发跃迁几率A4为:sA A A A 77774342414109103101105⨯=⨯+⨯+⨯=++=-1则该分子E 4能级的自发辐射寿命:s A 8744101.110911-⨯=⨯==τ 结论:如果能级u 发生跃迁的下能级不止1条,能级u 向其中第i 条自发跃迁的几率为A ui 则能级u 的自发辐射寿命为:∑=iuiN A1τ(2)对E 4连续激发并达到稳态,则有:04321=∆=∆=∆=∆n n n n414111A n n =τ,424221A n n =τ,434331A n n =τ(上述三个等式的物理意义是:在只考虑高能级自发辐射和E 1能级只与E 4能级间有受激吸收过程,见图)宏观上表现为各能级的粒子数没有变化 由题意可得: 414111A n n =τ,则151051037714141=⨯⨯⨯==--τA n n同理:06.01061019724242=⨯⨯⨯==--τA n n ,5.01011058734343=⨯⨯⨯==--τA n n 进一步可求得: 25021=n n ,12.032=n n由以上可知:在 E 2和E 4;E 3和E 4;E 2和E 3能级间发生了粒子数反转.7 证明,当每个模式内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。
4证明如下:按照普朗克黑体辐射公式,在热平衡条件下,能量平均分配到每一个可以存在的模上,即γλγh n Tk h h E b ⋅=-=1ex p(n 为频率为γ的模式内的平均光子数)由上式可以得到:1ex p 1-⋅==Tk h h E n b γγ又根据黑体辐射公式:n c h T k h T k h ch b b ==-⇒-⨯=333381exp 11exp 18γπργγγπργγ 根据爱因斯坦辐射系数之间的关系式2121338B A ch =γπ和受激辐射跃迁几率公式γρ2121B W =,则可以推导出以下公式:212121212121338A W A B B A c h n ====γγγρργπρ如果模内的平均光子数(n )大于1,即 12121>=A W n ,则受激辐射跃迁几率大于自发辐射跃迁几率,即辐射光中受激辐射占优势。
证明完毕8 一质地均匀的材料对光的吸收系数为101.0-mm ,光通过10cm 长的该材料后,出射光强为入射光强的百分之几?如果一束光通过长度为1M 地均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
解答:设进入材料前的光强为0I ,经过z 距离后的光强为()z I ,根据损耗系数()()z I dz z dI 1⨯-=α的定义,可以得到:()()z I z I α-=ex p 0则出射光强与入射光强的百分比为:()()()%8.36%100%100ex p %10010001.001=⨯=⨯-=⨯=⨯--mm mm z e z I z I k α根据小信号增益系数的概念:()()z I dzz dI g 10⨯=,在小信号增益的情况下,上式可通过积分得到()()()()14000000001093.610002ln lnln exp exp --⨯====⇒=⇒=⇒=mm z I z I g I z I z g I z I z g z g I z I解答完毕。
《激光原理》习题解答第二章习题解答1 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限次,而且两次往返即自行闭合. 证明如下:(共焦腔的定义——两个反射镜的焦点重合的共轴球面腔为共焦腔。
共焦腔分为实共焦腔和虚共焦腔。
公共焦点在腔内的共 焦腔是实共焦腔,反之是虚共焦腔。
两个反射镜曲率相等的共焦腔称为对称共焦腔,可以证明,对称共焦腔是实双凹腔。
)根据以上一系列定义,我们取具对称共焦腔为例来证明。
设两个凹镜的曲率半径分别是1R 和2R ,腔长为L ,根据对称共焦腔特点可知: L R R R ===21因此,一次往返转换矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫⎝⎛--=⎥⎦⎤⎢⎣⎡=211121222121221221221R L R L R L R L R R R L L R L D C B A T 把条件L R R R ===21带入到转换矩阵T ,得到:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1001D C B A T 共轴球面腔的稳定判别式子()1211<+<-D A如果()121-=+D A 或者()121=+D A ,则谐振腔是临界腔,是否是稳定腔要根据情况来定。
本题中 ,因此可以断定是介稳腔(临界腔),下面证明对称共焦腔在近轴光线条件下属于稳定腔。
经过两个往返的转换矩阵式2T ,⎥⎦⎤⎢⎣⎡=10012T 坐标转换公式为:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡1111112221001θθθθr r r T r 其中等式左边的坐标和角度为经过两次往返后的坐标,通过上边的式子可以看出,光线经过两次往返后回到光线的出发点,即形成了封闭,因此得到近轴光线经过两次往返形成闭合,对称共焦腔是稳定腔。