第一节导数的概念
- 格式:ppt
- 大小:1.47 MB
- 文档页数:41
第一节:导数的概念与几何意义课时1.导数的概念一.知识梳理 1.平均变化率一般地,函数()f x 在区间[]12,x x 上的平均变化率为:2121()()f x f x x x --,如果函数的自变量的“增量”为x ∆,且21x x x ∆=-,相应的函数值的“增量”为y ∆,21()()y f x f x ∆=-,则函数()f x 从1x 到2x 的平均变化率为2121()()f x f x y x x x -∆=∆- 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势.即递增或递减幅度的大小. 2. 导数的概念(瞬时变化率)(1)函数()f x 在0x x =处瞬时变化率是()()0000limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作()0f x '或0|x x y =',()()()00000lim limx x f x x f x yf x x x∆→∆→+∆-∆'=∆∆= 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率. (2)求导数值的一般步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③求极限,得导数:00000()()'()lim limx x f x x f x yf x x x∆→∆→+∆-∆==∆∆. 二.典例分析 例1.函数()31f x x =-+在区间[]1,2-上的平均变化率为( )A .3B .2C .2-D .3-【解析】由题,函数()31f x x =-+在区间[]1,2-上的平均变化率为()()()()()332111213213f f -+-⎡⎤-⎣⎦-+--==---,故选:D 例2.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数()21s t t t =++表示,则该物体在1t =s 时的瞬时速度为( )A .0m/sB .1m/sC .2m/sD .3m/s【解析】该物体在时间段[]1,1t +∆上的平均速度为()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆,当Δt 无限趋近于0时,3t +∆无限趋近于3,即该物体在1t =s 时的瞬时速度为3m/s .故选:D变式3.(2022·全国·高二单元测试)设函数()1f x ax =+,若()12f '=,则=a ( ) A .2B .2-C .3D .3-【解析】∵()()()()()0111111limlim x x f x f a x a f a x x∆→∆→+∆-∆++-+'===∆∆,且()12f '=,∴2a =. 例4.已知函数()243f x ax ax b =-+,()11f '=,()12f =,求实数a ,b 的值. 【解析】()()()0111lim x f x f f x ∆→+∆-'=∆()()20441133lim x a x a x b a a b x∆→⎛⎫+∆-+∆+--+ ⎪⎝⎭=∆()2002223lim lim 133x x a x a x a x a a x ∆→∆→∆+∆⎛⎫==∆+== ⎪∆⎝⎭,∴32a =.又()4123f a a b =-+=,∴52b =. 故32a =,52b =. 下面的问题主要考察了导数定义深层次的理解例5.(2022·黑龙江·双鸭山一中高二期末)已知()f x 是定义在R 上的可导函数,若(3)(3)lim4x f x f x x∆→-∆-+∆=∆,则()3f '=( )A .0B .2-C .1D .12-【解析】因为0(3)(3)lim1x f x f x x ∆→-∆-+∆=∆,所以0(3)(3)(3)(3)lim x f x f f f x x∆→-∆-+-+∆∆,0(3)(3)(3)(3)limlim 2(3)4x x f x f f x f f x x'-∆→∆→-∆-+∆-=--=-=-∆∆,故()3 2.f '=-故选:B 例6.已知函数()f x 的导函数为(),(2)2f x f -'=-',则0(24)(2)lim x f x f x∆→--∆--=∆( )A .8-B .2-C .2D .8【解析】由导数定义和()22f '-=-,得0(24)(2)(24)(2)lim(4)lim 4(2)84x x f x f f x f f x x∆→∆→--∆----∆--'=-⨯=--=∆-∆.故选:D.三.习题演练习题1.已知函数()f x 的导函数为()f x ',且()15f '=,则()()121lim x f x f x∆→+∆-=∆( ) A .2B .52C .5D .10【解析】因为()15f '=,所以()()()()()012121102121lim 2limx x f x f f xf x f x∆→∆→+∆-=-'=∆+∆=∆,故选:D.习题2.已知函数()21f x x =+,则()()22limx f x f x x∆→+∆--∆=∆( )A .2B .4C .6D .8【解析】因为()21f x x =+,所以()()()()2200222121lim lim x x f x f x x x x x ∆→∆→+∆--∆+∆+--∆-=∆∆ 08lim8x xx∆→∆==∆故选:D习题3.设函数()f x 在=1x 处存在导数为2,则()()11lim3x f x f x∆→+∆-=∆=_______________.【解析】由极限的运算法则结合导函数的定义可得: ()()011lim3x f x f x ∆→+∆-∆=()()0111lim 3x f x f x∆→+∆-∆=()31213f '⨯=.故答案为:23习题4.(2022·重庆市璧山来凤中学校高二阶段练习)已知()0f x m '=,则()()0003limx f x x f x x∆→-∆-=∆_________.【解析】∵()0f x m '=,∴原式()()00Δ03Δ3lim 3Δx f x x f x x →--=-- ()033f x m ='-=-.故答案为:3m -课时2.导数的几何意义一.基本原理1.平均变化率的几何意义——曲线的割线 函数()y f x =的平均变化率2121()()f x f x y x x x -∆=∆-的几何意义是表示连接函数()y f x =图像上两点割线的斜率.如图所示,2121()()A B AB A B y y f x f x yk x x x x x--∆===--∆.这样,平均变化率的正负与割线斜率正负一致.2.导数的几何意义——曲线的切线定义:如图,当点00(,)Q x x y y +∆+∆沿曲线无限接近于点00(,)P x y ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.T 也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.备注:(1)曲线上一点切线的斜率值只与该点的位置有关. (2)切线斜率的本质———函数在0x x =处的导数. (3)曲线的切线的斜率的符号可以刻画函数的增减性. ①若曲线()y f x =在点00(,())P x f x 处的导数不存在,但有切线,则切线与x 轴垂直.②0()0f x '>,切线与x 轴正向夹角为锐角,()f x 瞬时递增;0()0f x '<,切线与x 轴正向夹角为钝角,()f x 瞬时递减;0()0f x '=,切线与x 轴零度角,瞬时无增减.(4)曲线的切线可能和曲线有多个公共点;为什么要用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线?” 过去我们定义圆的切线就是“与圆有且只有一个公共点的直线”,这个定义符合圆、椭圆等一类曲线,那么,能否对任何曲线C 都用“与C 有且只有一个公共点”来定义C 的切线呢?如图的曲线C 是我们熟知的正弦曲线sin y x =的一部分,直线l 2显然与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 有不止一个公共点,但我们可以说直线l 1是曲线C 在点N 处的切线.3. 曲线的切线的求法(导数法)(1)用导数的几何意义求曲线的切线方程的方法步骤: ①求出切点00(,())x f x 的坐标;②求出函数()y f x =在点0x 处的导数0()f x ' ③得切线方程00()()()y f x f x x x '-=- 二.典例分析例1.(2022·全国·高二课时练习)曲线()2f x x=-在点()1,2M -处的切线方程为______.【解析】因为()()2211211f x f x x x x-++∆-+∆==∆∆+∆,当0x ∆→时,()()112f x f x+∆-→∆, 所以()12f '=,即切线的斜率2k =,所以切线方程为()221y x +=-,即240x y --=. 故答案为:240x y --= 例2.2(5)3lim2,(3)32x f x f x →--==-,()f x 在(3,(3))f 处切线方程为( )A .290x y ++=B .290x y +-=C .290x y -++=D .290x y -+-=【解析】由已知,2(5)3lim2,(3)32x f x f x →--==-,令2x x ∆=-,∴()()033lim x f x f x∆→-∆-∆=()()()033lim32x f x f f x ∆→-∆--'==-∆,解()32f '=-,∴()f x 在(3,(3))f 处切线方程为32(3)y x -=--,即290x y +-=.故选:B .例3.(2022·全国·高二课时练习)曲线23y x x =-的一条切线的斜率为1,则切点坐标为________.【解析】设切点坐标为()00,x y ,()()()22200000003323lim lim231x x x x x x x x x x x x k x xx∆→∆→+∆-+∆-+∆-∆+∆===-=∆∆,解得02x =,20262y =-=-.切点为()2,2-. 故答案为:()2,2-.例4.如图,函数()y f x =的图像在点P 处的切线方程是9y x =-+,则()()55f f '+=( )A .-2B .3C .2D .-3【解析】因为函数()y f x =的图像在点P 处的切线方程是9y x =-+,所以()()5594,51f f '=-+==-,所以()()55413f f '+=-=,故选:B.例5.已知函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,则( )A .(4)(2)(2)(4)2f f f f '<'-<B .(4)(2)(4)(2)2f f f f -<<'' C .(4)(2)(2)(4)2f f f f -<<'' D .(4)(2)(4)(2)2f f f f ''-<< 【解析】如图所示,根据导数的几何意义,可得(2)f '表示曲线在A 点处的切线的斜率,即直线1l 的斜率1l k ,(4)f '表示曲线在B 点处的切线的斜率,即直线2l 的斜率2l k ,又由平均变化率的定义,可得(4)(2)2f f -表示过,A B 两点的割线的斜率l k ,结合图象,可得12l l l k k k <<,所以(4)(2)(2)(4)2f f f f '<'-<.故选:A. 题型:过某点的曲线的切线 例6.试求过点(1,3)P -且与曲线2yx 相切的直线的斜率.【解析】设切点坐标为()00,x y ,则有200y x =.因为2200()limlim 2x x y x x x y x x x∆→∆→∆+∆-'===∆∆,所以02k x =.切线方程为()0002y y x x x -=-,将点(1,3)-代入,得02200322x x x --=-,所以200230x x --=,得01x =-或03x =.当01x =-时,2k =-;当03x =时,6k =.所以所求直线的斜率为2-或6.例7.已知函数()32y f x x x ==+-,直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.【解析】设切点为()00,x y ,因为()()()()()3300000022y x x x f x f x x x x x =+-=+++--+∆∆∆-∆()()()20320313x x x x x =+++∆∆∆,所以()2200313x x y x x x ∆∆+∆+∆=+.当x ∆趋于0时,y x∆∆趋于2031x +,即()20031f x x '=+,所以切线方程为()()()320000231y x x x x x -+-=+-,因为切线过原点,所以()()320000231x x x x -+-=-+,所以3022x =-,解得01x =-,所以()14f '-=,故直线l 的方程为4y x =,又()14f -=-,所以切点的坐标为()1,4--.课时3. 复习与习题讲评一.基本原理知识点1(易错点). 在点求切线与过点求切线1. 求曲线在某点(切点))(,(00x f x )处的切线方程的步骤:2.切线过点))(,(11x f x ,求切线的方法:(要理解过某点的含义,切线过某点,这点不一定是切点),求法步骤:①设切点()()00,x f x ,②建立切线方程00()()()y f x f x x x '-=-,③代入点))(,(11x f x 到切线方程中,利用此时切点在切线且在曲线上,即同时满足方程:⎪⎩⎪⎨⎧--==01010'00)()()()(x x x f x f x f x f y解出切点坐标,从而写出切线方程. 知识点2.导函数的概念由函数()f x 在0x x =处求导数的过程可以看到,当时,0()f x '是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ', 即:0()()()limx f x x f x f x y x ∆→+∆-''==∆注:(1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.(2)函数的导数,是指某一区间内任一点x 而言的,也就是函数()f x 的导函数. (3)函数()f x 在点0x 处的导数()f x '就是导函数()f x '在0x x =处的函数值. 在点00(,())x f x 处的切线与过点00(,)x y 的切线的区别.在点00(,())x f x 处的切线是说明点00(,())x f x 为此切线的切点;而过点00(,)x y 的切线,则强调切线是过点00(,)x y ,此点可以是切点,也可以不是切点.因此在求过点00(,)x y 的切线方程时,先应判断点00(,)x y 是否为曲线()f x 上的点,若是则为第一类解法,若不同则必须先在曲线上取一切点11(,())x f x ,求过此切点的切线方程111()()y y f x x x '-=-,再将点00(,)x y 代入,求得切点11(,())x f x 的坐标,进而求过点00(,)x y 的切线方程.知识点3.证明:在定义域R 上,奇函数的导数是偶函数,偶函数的导数是奇函数 二.典例分析例1.曲线()1y f x x ==在点P 处的切线与直线14y x =垂直,则点P 的坐标为______. 【解析】易知曲线在点P 处的切线的斜率为4-,设001,P x x ⎛⎫⎪⎝⎭,因为()()()()00000000111f x x f x x x x x x x xx x x x x x -+∆-+∆-∆===-∆∆∆+∆+∆, 当0x ∆→时,()()00201f x x f x x x +∆-→-∆,所以02011=42x x --⇒=±,则点P 的坐标为1,22⎛⎫ ⎪⎝⎭或1,22⎛⎫-- ⎪⎝⎭. 故答案为:1,22⎛⎫ ⎪⎝⎭或1,22⎛⎫-- ⎪⎝⎭.例2.设函数()f x 在2x =处的导数存在,则()122f '-=( ). A .()()022lim2x f x f x∆→+∆-∆B .()()022lim2x f f x x∆→-+∆∆C .()()022lim 2x f x f x∆→-∆-∆D .()()022lim 2x f f x x∆→--∆∆【解析】因为函数()f x 在2x =处的导数存在,所以()()()()()00222211limlim 2222x x f f x f x f f x x ∆→∆→-+∆+∆-'=-=-∆∆,故B 正确.又∵()()()()()00222211limlim 2222x x f x f f x f f x x ∆→∆→-∆--∆-'=-=-∆-∆,所以C 正确. 故选:BC.例3函数()f x 的定义域为R ,()31f x -为奇函数,且()1f x -的图像关于1x =对称.若曲线()f x 在1x =处的切线斜率为2,则曲线()f x 在2023x =处的切线方程为( ) A .24046y x =-+ B .24046y x =+ C .24046y x =-D .24046y x =--【解析】因为()31f x -为奇函数,即()()3131f x f x --=--, 所以,函数()f x 的图像关于点()1,0-对称,即()()2f x f x --=-,因为()1f x -的图像关于1x =对称,所以()f x 的图像关于0x =对称,即()()=f x f x -, 所以,()()()22f x f x f x --=+=-,所以()()()42f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,所以曲线()f x 在2023x =处的切线斜率等于曲线()f x 在=1x -处的切线斜率,因为曲线()f x 在1x =处的切线斜率为2,图像关于0x =对称,所以,曲线()f x 在=1x -处的切线斜率为2-,因为()()11f f =-,()()11f f -=--,所以()()110f f =-=,所以()()120230f f =-=,所以曲线()f x 在2023x =处的切线方程为()022023y x -=--,即24046y x =-+.故选:A变式2.(2022·陕西安康·高二期末(文))为了评估某种治疗肺炎药物的疗效,有关部门对该药物在人体血管中的药物浓度进行测量.设该药物在人体血管中药物浓度c 与时间t 的关系为()c f t =,甲、乙两人服用该药物后,血管中药物浓度随时间t 变化的关系如下图所示.给出下列四个结论错误的是( )A .在1t 时刻,甲、乙两人血管中的药物浓度相同;B .在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率不同;C .在[]23,t t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同;D .在[]12,t t ,[]23,t t 两个时间段内,甲血管中药物浓度的平均变化率相同.【答案】D【解析】A 选项,根据图象可知,在1t 时刻,甲、乙两人血管中的药物浓度相同,A 选项结论正确.B 选项,根据图象以及导数的知识可知,在2t 时刻,甲、乙两人血管中药物浓度的瞬时变化率不同, B 选项结论正确.C 选项,根据图象可知,在[]23,t t 这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同,C选项结论正确.,t t这个时间段内,甲血管中药物浓度的平均变化率为大于D选项,根据图象可知,在[]12,t t这个时间段内,甲血管中药物浓度的平均变化率在[]23D选项结论错误.故选:D。
第一节 导数的概念及运算 定积分考试要求1.了解导数概念的实际背景.2.理解导数的几何意义.3.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.4.能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数.5.了解定积分的实际背景;了解定积分的基本思想,定积分的概念,微积分基本定理的含义.[知识排查·微点淘金]知识点1 导数的概念一般地,函数y =f (x )在x =x 0处导数的定义,称函数y =f (x )在x =x 0处的瞬时变化率lim x →0_f (x 0+Δx )-f (x 0)Δx=lim x →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim x →0Δy Δx =lim x →0_f (x 0+Δx )-f (x 0)Δx. [微思考]f ′(x )与f ′(x 0)有什么.提示:f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0. 知识点2 导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是:在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).[微思考]直线与曲线只有一个公共点,则该直线一定与曲线相切吗?为什么?提示:不一定.因为直线与曲线的公共点个数不是切线的本质特征,直线与曲线只有一个公共点,不能说明直线就是曲线的切线,反之,直线是曲线的切线,也不能说明直线与曲线有一个公共点,但切点一定是直线与曲线的公共点.[微提醒]1.“过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.“切点”与“公共点”:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.知识点3 求导公式及运算法则 (1)基本初等函数的导数公式 ①c ′=0;②(x α)′=αx α-1(α∈Q 且α≠0); ③(sin x )′=cos_x ; ④(cos x )′=-sin_x ; ⑤(a x )′=a x ·ln_a ; ⑥(e x )′=e x ; ⑦(log a x )′=1x ln a; ⑧(ln x )′=1x .(2)导数的运算法则 ①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )·g (x )-g ′(x )·f (x )g (x )(g (x )≠0). (3)复合函数的求导法则复合函数y =f (g (x ))对自变量的导数等于已知函数对中间变量的导数与中间变量对自变量的导数的乘积.设y =f (u ),u =g (x ),则y ′x =f ′(u )·g ′(x ).知识点4 定积分(1)定积分的概念、几何意义及性质 ①定积分的相关概念在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.②定积分的几何意义y =f (x )所围成的曲边梯形的面积f (x )<0 表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积的相反数f (x )在[a ,b ] 上有正有负表示位于x 轴上方的曲边梯形的面积减去位于x 轴下方的曲边梯形的面积③定积分的三个性质a.⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数);b.⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;c.⎠⎛a b f (x )d x =⎠⎛a b f (x )d x +⎠⎛ab f (x )d x (其中a <c <b ).(2)微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式 .通常记作⎠⎛ab f (x )d x =F (x )|b a =F (b )-F (a ).如果F ′(x )=f (x ),那么称F (x )是f (x )的一个原函数. 常用结论函数f (x )在闭区间[-a ,a ]上连续,则有1.若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x ;2.若f (x )为奇函数,则⎠⎛-aa f (x )d x =0.[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.(×) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).(×) (3)曲线的切线不一定与曲线只有一个公共点.(√) (4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.(×) (6)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .(√)2.(链接教材选修2-2 P 50A 组T 5)定积分⎠⎛-11|x |d x =( )A .1B .2C .3D .4答案:A3.(链接教材选修2-2 P 3例题)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________m/s ,加速度a =________m/s 2.答案:-9.8t +6.5 -9.84.(不会用方程法解导数求值)已知f (x )=x 2+3xf ′(2),则f (2)=________.解析:因为f ′(x )=2x +3f ′(2),令x =2,得f ′(2)=-2,所以f (x )=x 2-6x ,所以f (2)=-8.答案:-85.(混淆在点P 处的切线和过P 点的切线)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则a 的值为________;b 的值为________.解析:y ′=a e x +ln x +1 ∴⎩⎪⎨⎪⎧a e +1=2,a e =2+b ,解得⎩⎪⎨⎪⎧a =1e,b =-1. 答案:1e-1一、基础探究点——导数的运算(题组练透)1.已知f (x )=cos 2x +e 2x ,则f ′(x )=( ) A .-2sin 2x +2e 2x B .sin 2x +e 2x C .2sin 2x +2e 2x D .-sin 2x +e 2x解析:选A 由题意f ′(x )=-sin 2x ·2+e 2x ·2=-2sin 2x +2e 2x ,故选A. 2.已知f (x )=x (2021+ln x ),若f ′(x 0)=2022,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:选B 因为f (x )=x (2021+ln x ), 所以f ′(x )=2021+ln x +1=2022+ln x . 又f ′(x 0)=2022,所以2022+ln x 0=2022,所以x 0=1.故选B.3.(2020·全国卷Ⅲ)设函数f (x )=e x x +a,若f ′(1)=e4,则a =________.解析:由f ′(x )=e x (x +a )-e x (x +a )2,可得f ′(1)=e a (1+a )2=e 4,即a (1+a )2=14,解得a =1.答案:14.若f (x )=x 3+2x -x 2ln x -1x 2,则f ′(x )=________.解析:由已知f (x )=x -ln x +2x -1x 2,∴f ′(x )=1-1x -2x 2+2x 3.答案:1-1x -2x 2+2x31.求函数导数的总原则:先化简解析式,再求导.2.常见形式及具体求导方法连乘形式 先展开化为多项式形式,再求导三角形式 先利用三角函数公式转化为和或差的形式,再求导 分式形式 先化为整式函数或较为简单的分式函数,再求导 根式形式 先化为分数指数幂的形式,再求导 对数形式 先化为和、差形式,再求导复合函数 先确定复合关系,由外向内逐层求导,必要时可换元二、应用探究点——导数的几何意义(多向思维)[典例剖析]思维点1 求曲线的切线方程[例1] (2021·全国甲卷)[一题多解]曲线y =2x -1x +2在点(-1,-3)处的切线方程为______.解析:解法一:y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.解法二:本题可以先将函数转化为y =2(x +2)-5x +2=2-5x +2,再求导数.答案:5x -y +2=0解决这类问题的方法都是根据曲线在点(x 0,y 0)处的切线的斜率k =f ′(x 0),直接求解或结合已知所给的平行或垂直等条件得出关于斜率的等式来求解.解决这类问题的关键是抓住切线的斜率.思维点2 求切点坐标[例2] 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.解析:设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 答案:(e ,e) [拓展变式][变条件]若本例变为:曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.思维点3 由曲线的切线(斜率)求参数值(范围)[例3] (1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( ) A .2 B .-1 C .1D .-2解析:依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a +b =3,3×12+a =k ,k +1=3,解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1.故选C.答案:C(2)若点P 是函数y =e x -e -x -3x ⎝⎛⎭⎫-12≤x ≤12图象上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是________.解析:由导数的几何意义,知k =y ′=e x +e -x -3≥2 e x ·e -x -3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π).又-12≤x ≤12,tan α=k <0,所以α的最小值是3π4.答案:3π4解与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数;①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.思维点4 两曲线的公切线问题[例4] 设x 1为曲线y =-1x (x <0)与y =ln x 的公切线的一个切点横坐标,且x 1<0,则满足m ≥x 1的最小整数m 的值为________.解析:y =-1x (x <0)的导数为y ′=1x 2,y =ln x 的导数为y ′=1x ,设与y =ln x 相切的切点的横坐标为n , 由切线方程y =1n x +ln n -1,以及y =x x 21-2x 1,可得1n =1x 21,ln n -1=-2x 1,消去n ,可得2-x 1=2ln(-x 1)-1,设t =-x 1(t >0),可得2t=2ln t -1,设f (t )=2ln t -1-2t ,可得f (2)=2ln 2-2<0,f (3)=2ln 3-53>0,且f (t )在(2,3)递增,可得2t =2ln t -1的根介于(2,3)之间,即有x 1∈(-3,-2),m ≥x 1恒成立,可得m ≥-2,即m 的最小值为-2. 答案:-2解决两曲线的公切线问题的两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.[学会用活]1.(2020·全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:2x -y =02.(2021·贵阳模拟)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.解析:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0, ∴切点P (x 0,f (x 0))的坐标为(0,0). 答案:(0,0)3.已知直线y =kx -2与曲线y =x ln x 在x =e 处的切线平行,则实数k 的值为________. 解析:由y =x ln x ,得y ′=ln x +1,所以当x =e 时,y ′=ln e +1=2,所以曲线y =x ln x 在x =e 处的切线的斜率为2.又该切线与直线y =kx -2平行,所以k =2.答案:24.(2021·内蒙古包头一模)若曲线f (x )=a ln x (a ∈R )与曲线g (x )=x 在公共点处有共同的切线,则实数a 的值为________.解析:函数f (x )=a ln x 的定义域为(0,+∞),f ′(x )=a x ,g ′(x )=12x ,设曲线f (x )=a ln x与曲线g (x )=x 的公共点为(x 0,y 0),由于在公共点处有共同的切线,∴a x 0=12x 0,解得x 0=4a 2,a >0. 由f (x 0)=g (x 0),可得a ln x 0=x 0.联立⎩⎪⎨⎪⎧x 0=4a 2,a ln x 0=x 0,解得a =e2.答案:e 2三、应用探究点——定积分(多向思维)[典例剖析]思维点1 定积分的计算[例5] 计算:(1)⎠⎛0π(sin x -cos x )d x =________.(2)若f (x )=3+2x -x 2,则⎠⎛13f (x )d x 为______.(3)设f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e](e 为自然对数的底数),则⎠⎛0e f (x )d x 的值为________.解析:(1)⎠⎛0π(sin x -cos x )d x =⎠⎛0πsin x d x -⎠⎛0πcos x d x =2.(2)由y =3+2x -x 2=4-(x -1)2,得(x -1)2+y 2=4(y ≥0),表示以(1,0)为圆心,2为半径的圆在x 轴及其上方的部分,所以⎠⎛133+2x -x 2d x 是圆面积的14.所以⎠⎛133+2x -x 2d x =14·π·22=π.(3)因为f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e],因为⎝⎛⎭⎫13x 3′=x 2, (ln x )′=1x ,所以⎠⎛0e f (x )d x =⎠⎛01x 2d x +⎠⎛1e 1xd x =13+1=43.答案:(1)2 (2)π (3)43应用微积分基本定理计算定积分的步骤1.把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. 2.把定积分用定积分性质变形为求被积函数为上述函数的定积分. 3.分别用求导公式找到一个相应的原函数. 4.利用微积分基本定理求出各个定积分的值. 5.计算原始定积分的值.思维点2 利用定积分求平面图形的面积[例6] [一题多解]由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积为________. 解析:如图所示,联立方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,解得两交点的坐标分别为(2,-2),(8,4). 解法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和,即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =23(2x )32⎪⎪⎪20+⎣⎡⎦⎤13(2x )32-12x 2+4x ⎪⎪⎪82=163+⎝⎛⎭⎫643-263=543=18. 解法二:选取纵坐标y 为积分变量,则图中阴影部分的面积为S =⎠⎛-24⎝⎛⎭⎫y +4-12y 2d y =⎝⎛⎭⎫12y 2+4y -16y 3⎪⎪⎪4-2=18. 答案:18 [拓展变式]1.[变条件]若本例变为:由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________.解析:由⎩⎪⎨⎪⎧y =2x 2,y =-4x -2,解得x =-1,依题意可得,所求的封闭图形的面积为⎠⎛-11(2x 2+4x +2)d x =⎝⎛⎭⎫23x 3+2x 2+2x |1-1=⎝⎛⎭⎫23×13+2×12+2×1-⎣⎡⎦⎤23×(-1)3+2×(-1)2+2×(-1)=163. 答案:1632.[变条件,变结论]若本例变为:设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析:封闭图形如图所示,则⎠⎛0ax d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49. 答案:49利用定积分求平面图形面积的步骤(1)根据题意画出图形.(2)借助图形确定出被积函数,求出交点坐标,确定积分的上、下限. (3)把平面图形的面积表示成若干个定积分的和或差. (4)计算定积分得出答案.[学会用活]5.⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x |e 1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π·22=2π,故答案为2π+1.答案:2π+16.(2021·江西宜春重点高中月考)函数f (x )=⎩⎪⎨⎪⎧x +4,-4≤x <0,4cos x ,0≤x ≤π2的图象与x 轴所围成的封闭图形的面积为________.解析:由题意可得围成的封闭图形的面积 S =⎠⎛-4(x +4)d x +∫π204cos x d x=⎝⎛⎭⎫12x 2+4x |0-4+4sin x |π20 =0-(8-16)+4sin π2-0=12.答案:12限时规范训练 基础夯实练1.定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1解析:选C ⎠⎛01(2x +e x )d x =(x 2+e x )|10=(1+e)-(0+e 0)=e ,故选C.2.(2021·晋南高中联考)函数f (x )=ln 2x -1x 的图象在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线方程为( ) A .y =6x -5 B .y =8x -6 C .y =4x -4D .y =10x -7解析:选A f ⎝⎛⎭⎫12=ln 1-2=-2,因为f ′(x )=1x +1x 2,所以f ′⎝⎛⎭⎫12=6,所以切线方程为y -(-2)=6⎝⎛⎭⎫x -12,即y =6x -5,故选A. 3.已知函数f (x )=(x 2+m )e x (m ∈R )的图象在x =1处的切线的斜率等于e ,且g (x )=f (x )x,则g ′(-1)=( )A.4e B .-4eC.e 4D .-e 4解析:选A 由题意得f ′(x )=2x e x +(x 2+m )e x =(x 2+2x +m )e x ,f ′(1)=(3+m )e ,由题意得(3+m )e =e ,所以m =-2,所以f (x )=(x 2-2)e x .解法一:所以g (x )=f (x )x =⎝⎛⎭⎫x -2x e x ,g ′(x )=⎝⎛⎭⎫1+2x 2e x +⎝⎛⎭⎫x -2x e x ,所以g ′(-1)=4e . 解法二:f ′(x )=(x 2+2x -2)e x ,f (-1)=-1e ,所以f ′(-1)=-3e ,又g ′(x )=xf ′(x )-f (x )x 2,所以g ′(-1)=4e.4.(2021·贵阳市四校联考)直线l 过抛物线E :y 2=4x 的焦点且与x 轴垂直,则直线l 与E 所围成的图形的面积等于( )A .2B .43C.83D .163解析:选C 由题意,得直线l 的方程为x =1,将y 2=4x 化为y =±2x ,由定积分的几何意义,得所求图形的面积为S =2⎠⎛012x d x =4⎠⎛01x 12d x =4×⎝⎛⎭⎫23x 32|10=83×1=83,故选C. 5.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎤0,π3 B .⎣⎡⎭⎫π3,π2 C.⎝⎛⎦⎤π2,2π3D .⎣⎡⎭⎫π3,π解析:选B 根据题意,得f ′(x )≥3,则曲线y =f (x )上任一点的切线的斜率k =tan α≥ 3. 结合正切函数的图象可得α∈⎣⎡⎭⎫π3,π2.故选B.6.已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则a =________,b =________.解析:因为(x 3+ax +b )′=3x 2+a ,所以⎩⎪⎨⎪⎧3×12+a =2,13+a ·1+b =3,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:-1 37.若f (x )=13x 3-12f ′(1)·x 2+x +12,则曲线y =f (x )在点(1,f (1))处的切线方程是________.解析:因为f (x )=13x 3-12f ′(1)x 2+x +12,所以f ′(x )=x 2-f ′(1)x +1,所以f ′(1)=1-f ′(1)+1,所以f ′(1)=1,所以f (1)=13-12+1+12=43,曲线y =f (x )在点(1,f (1))处的切线方程是y -43=x-1,即3x -3y +1=0.答案:3x -3y +1=08.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. 解:(1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1, 又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. 9.(2021·淮南模拟)已知函数f (x )=x 2-ln x . (1)求函数f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎡⎦⎤12,1上?若存在,求出这两点的坐标,若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x,f ′(1)=2-1=1,则所求切线方程为y -1=1·(x -1),即y =x .(2)假设存在两点满足题意,且设切点坐标为(x 1,y 1),(x 2,y 2), 则x 1,x 2∈⎣⎡⎦⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝⎛⎭⎫2x 1-1x 1⎝⎛⎭⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎡⎦⎤12,1上单调递增,函数的值域为[-1,1], 故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎨⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝⎛⎭⎫x 1=-1,x 2=-12舍去, 故存在两点⎝⎛⎭⎫12,ln 2+14,(1,1)满足题意. 综合提升练10.已知直线y =1m 是曲线y =x e x 的一条切线,则实数m 的值为( )A .-1eB .-e C.1eD .e解析:选B 设切点坐标为⎝⎛⎭⎫n ,1m ,对y =x e x 求导,得y ′=(x e x )′=e x +x e x ,若直线y =1m 是曲线y =x e x 的一条切线,则有y ′|x =n =e n +n e n =0,解得n =-1,此时有1m =n e n =-1e ,∴m =-e.故选B.11.(2021·新高考卷Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e bD .0<b <e a解析:选D 解法一:设切点(x 0,y 0),y 0>0,则切线方程为y -b =e x 0(x -a ),由⎩⎪⎨⎪⎧y 0-b =e x 0(x 0-a )y 0=e x 0得e x 0(1-x 0+a )=b ,则由题意知关于x 0的方程e x 0(1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0, 所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,作出函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a ,故选D.解法二:过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a ,故选D.12.(2020·全国卷Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12解析:选D 易知直线l 的斜率存在,设直线l 的方程为y =kx +b ,则|b |k 2+1=55①,设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k =b =12,故直线l 的方程为y =12x +12.13.(2021·开封市模拟考试)已知函数f (x )=mx 3+6mx -2e x ,若曲线y =f (x )在点(0,f (0))处的切线与直线4x +y -2=0平行,则m =________.解析:f ′(x )=3mx 2+6m -2e x ,则f ′(0)=6m -2=-4, 解得m =-13.答案:-1314.(2021·江西五校联考)已知函数f (x )=x +a2x ,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是________.解析:f ′(x )=1-a 2x 2,设切点坐标为⎝⎛⎭⎫x 0,x 0+a 2x 0,则切线方程为y -x 0-a 2x 0=⎝⎛⎭⎫1-a 2x 20(x -x 0),又切线过点(1,0),所以-x 0-a 2x 0=⎝⎛⎭⎫1-a 2x 20(1-x 0),整理得2x 20+2ax 0-a =0,又曲线y =f (x )存在两条过(1,0)点的切线,故方程有两个不等实根,即满足Δ=4a 2-8(-a )>0,解得a >0或a <-2.答案:(-∞,-2)∪(0,+∞)15.(2021·河北六校联考)已知函数f (x )=x ln x -12mx 2(m ∈R ),g (x )=-x +1e x -2e x +e -1e .(1)若函数f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,求m ; (2)证明:在(1)的条件下,对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2)成立. 解:(1)f (x )的定义域为(0,+∞), f ′(x )=ln x +1-mx ,f ′(1)=1-m ,因为f (x )的图象在(1,f (1))处的切线与直线x -y +1=0平行,所以1-m =1,即m =0. (2)证明:在(1)的条件下,f (x )=x ln x ,f ′(x )=ln x +1, 当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减, 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )=x ln x 在x =1e 时取得最小值f ⎝⎛⎭⎫1e =-1e ,所以f (x 1)≥-1e . g (x )=-x +1e x -2e x +e -1e ,则g ′(x )=x e x -2e ,令h (x )=g ′(x )=x e x -2e,x >0,则h ′(x )=1-xe x ,所以当x ∈(0,1)时,h ′(x )>0,h (x )单调递增,当x ∈(1,+∞)时,h ′(x )<0,h (x )单调递减.所以当x >0时,g ′(x )≤g ′(1)=h (1)=-1e,因为g ′(x )≤-1e <0,所以g (x )在(0,+∞)上单调递减,所以g (x 2)<g (0)=-1e.所以对任意x 1,x 2∈(0,+∞),f (x 1)>g (x 2).创新应用练16.已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值;(2)是否存在k,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.解:(1)由已知得f′(x)=3ax2+6x-6a,因为f′(-1)=0,所以3a-6-6a=0,所以a=-2.(2)存在.由已知得,直线m恒过定点(0,9),若直线m是曲线y=g(x)的切线,则设切点为(x0,3x20+6x0+12).因为g′(x0)=6x0+6,所以切线方程为y-(3x20+6x0+12)=(6x0+6)(x-x0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
第二章导数与微分第一节导数概念一、导数的定义 定义:若极限()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆存在,则称函数()y f x =在点0x 处可导,此极限值称为函数()y f x =在点0x 处的导数。
记为: ()0f x '、0x x y ='、0x x dy dx =、()0x x df x dx = (或极限()()lim 000x x f x f x x x →--存在也可)()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆单侧导数:左导数:()()lim 000x f x x f x x-∆→+∆-=∆()()lim 000x x f x f x x x -→--存在,则称左导数存在,记为:()0f x -'。
右导数:()()lim 000x f x x f x x+∆→+∆-=∆()()lim 000x x f x f x x x +→--存在,则称右导数存在,记为:()0f x +'。
【例1】(89一)已知()32f '=,则【例2】(87二)设()f x 在x a =处可导,则(A )()f a '. (B )()2f a '.(C )0. (D )()2f a '.【例3】(89二)设()()()()12f x x x x x n =+++,则()0f '= .(C)可导,但导数不连续. (D)可导,但导数连续.处的(A)左、右导数都存在. (B)左导数存在,但右导数不存在.(C)左导数不存在,但右导数存在.(D)左、右导数都不存在.【例7】(96二)设函数()f x在区间(,)-δδ内有定是()f x的(A)间断点. (B)连续而不可导的点. (C)可导的点,且()00f'=.(D)可导的点,且()00f'≠.【例8】(90三)设函数()f x 对任意的x 均满足等式()()1f x af x +=,且有()0f b '=,其中a 、b 为非零常数,则(A )()f x 在1x =处不可导.(B )()f x 在1x =处可导,且()1f a '=.(C )()f x 在1x =处可导,且()1f b '=.(D )()f x 在1x =处可导,()1f ab '=.二、导数的几何意义和物理意义导数的几何意义: 切线的斜率为:()()tan lim 00x x f x f x k x x →-==-α, ()()00f x f x x x --导数的物理意义:某变量对时间t 的变化率,常见的有速度和加速度。
第三章 导数及其应用第一节 导数的概念与运算基础知识1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率lim →Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim→Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx .f ′(x )与f ′(x 0)的区别与联系f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0.2.导数的几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).曲线y =f (x )在点P (x 0,f (x 0))处的切线是指以P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.3.函数f (x )的导函数称函数f ′(x )=lim →Δ0xf (x +Δx )-f (x )Δx为f (x )的导函数.4.导数的运算(1)几种常见函数的导数①(C )′=0(C 为常数);②(x n )′=nx n -1(n ∈Q *); ③(sin x )′=cos_x ;④(cos x )′=-sin_x ;⑤(e x )′=e x ; ⑥(a x )′=a x ln_a (a >0,a ≠1);⑦(ln x )′=1x ;⑧(log a x )′=1x ln a(a >0,a ≠1). (2)导数的四则运算法则 ①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )[v (x )]2(v (x )≠0).熟记以下结论: (1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x );(4)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.考点一 导数的运算[典例] 求下列函数的导数.(1)y =ln x +1x ;(2)y =(2x +1)·e x ; (3)y =1+x 5x 2;(4)y =x -sin x 2cos x2.[解] (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)y ′=[(2x +1)·e x ]′=(2x +1)′·e x +(2x +1)·(e x )′=2e x +(2x +1)·e x =(2x +3)·e x .(3)∵1+x 5x2=x 35+x -25,∴y ′=⎝ ⎛⎭⎪⎫1+x 5x 2′=(x 35)′+(x -25)′=35x -25-25x -75.(4)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=1-12cos x .[题组训练]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数.(1)y =cos x -sin x ; (2)y =(x +1)(x +2)(x +3); (3)y =ln x x 2+1.解:(1)y ′=(cos x )′-(sin x )′=-sin x -cos x .(2)∵y =(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ·ln x(x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.考点二 导数的几何意义考法(一) 求曲线的切线方程[典例] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D[解题技法]若已知曲线y =f (x )过点P (x 0,y 0),求曲线过点P 的切线方程的方法(1)当点P (x 0,y 0)是切点时,切线方程为y -y 0=f ′(x 0)·(x -x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过点P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 考法(二) 求切点坐标[典例] 曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. [答案] C[解题技法] 求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法(三) 求参数的值(范围)[典例] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.[解析] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a =2在(0,+∞)上有解,a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). [答案] (-∞,2)[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.[题组训练]1.曲线y =e x 在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( )A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B ∵y ′=e x ,令e x =1,得x =0.当x =0时,y =1,∴点A 的坐标为(0,1). 2.设曲线y =a (x -1)-ln x 在点(1,0)处的切线方程为y =2x -2,则a =( )A .0B .1C .2D .3解析:选D ∵y =a (x -1)-ln x ,∴y ′=a -1x ,∴y ′|x =1=a -1.又∵曲线在点(1,0)处的切线方程为y =2x -2, ∴a -1=2,解得a =3.3.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0 解析:选B 因为点(0,-1)不在曲线y =f (x )上,所以设切点坐标为(x 0,y 0).又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧ y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.所以切点坐标为(1,0),所以f ′(1)=1+ln 1=1,所以直线l 的方程为y =x -1,即x -y -1=0.[课时跟踪检测]A 级1.设f (x )=x e x 的导函数为f ′(x ),则f ′(1)的值为( )A .eB .e +1C .2eD .e +2解析:选C 由题意知f (x )=x e x ,所以f ′(x )=e x +x e x ,所以f ′(1)=e +e =2e. 2.曲线y =sin x +e x 在x =0处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y ′=cos x +e x ,∴当x =0时,y ′=2.又∵当x =0时,y =1,∴所求切线方程为y -1=2x ,即2x -y +1=0.3.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.4.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上,所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.5.(2018·合肥第一次教学质量检测)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1,令a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.6.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧ a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).7.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x =-1,∴ex =a ,又-1a·e 0x =-x 0+1,∴x 0=2,a =e 2.答案:e 28.(2019·安徽名校联考)已知函数f (x )=2x -ax 的图象在点(-1,f (-1))处的切线斜率是1,则此切线方程是________.解析:因为f ′(x )=-2x 2-a ,所以f ′(-1)=-2-a =1,所以a =-3,所以f (x )=2x +3x ,所以f (-1)=-5,则所求切线的方程为y +5=x +1,即x -y -4=0. 答案:x -y -4=09.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析:因为y ′=-1-cos xsin 2x ,所以y ′|=2x π=-1,由条件知1a =-1, 所以a =-1. 答案:-110.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.答案: 211.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ; (3)y =cos x ex .解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1,∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e-34.答案:-e-343.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得{ f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.。
第三章 导数及其应用第一节 导数的概念及运算、定积分1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx ❶为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)❷处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).❷曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.(3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.(4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.5.定积分的概念在∫b a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.6.定积分的性质(1)∫b a kf (x )d x =k ∫b a f (x )d x (k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x ; (3)∫b a f (x )d x =∫c a f (x )d x +∫b c f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算.7.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即∫b a f (x )d x =F (x )|ba =F (b )-F (a ).8.定积分的几何意义定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S .①S =∫b a f (x )d x ;②S =-∫b a f (x )d x ;③S =∫c a f (x )d x -∫bc f (x )d x ; ④S =∫b a f (x )d x -∫b a g (x )d x =∫b a [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.二、常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.熟记以下结论:(1)⎝⎛⎭⎫1x ′=-1x 2;(2)(ln|x |)′=1x ; (3)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (4)[af (x )±bg (x )]′=af ′(x )±bg ′(x ). 3.常见被积函数的原函数(1)∫b a c d x =cx |b a ;(2)∫b a x n d x =x n +1n +1|ba (n ≠-1); (3)∫b a sin x d x =-cos x |b a ;(4)∫b a cos x d x =sin x |ba ;(5)∫b a 1x d x =ln|x ||b a ;(6)∫b a e x d x =e x |b a . 考点一 导数的运算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.2.(2019·宜昌联考)已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2B.21-2ln 2C.41-2ln 2D .-2解析:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 解析:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 答案:-24.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x .(4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2 =12x sin(4x +π) =-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .考点二 导数的几何意义及其应用考法(一) 求切线方程[例1] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 法二:∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x .[答案] D考法(二) 求切点坐标[例2] 已知函数f (x )=x ln x 在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0)考法(三) 由曲线的切线(斜率)求参数的值(范围)[例3] (1)(2018·商丘二模)设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围是( )A .[-1,2]B .(3,+∞) C.⎣⎡⎦⎤-23,13 D.⎣⎡⎦⎤-13,23 (2)(2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. [解析] (1)由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1,∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x∈[-2,2],∴3a -2sin x ∈[-2+3a ,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.(2)∵y ′=(ax +a +1)e x , ∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3. [答案] (1)D (2)-3考法(四) 两曲线的公切线问题[例4] 已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.[解析] 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0, ①a =-1x, ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e -34.[答案] -e -34[题组训练]1.曲线y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A.18B.14C.12D .1 解析:选B 因为y ′=2(x +1)2,所以y ′x =0=2,所以曲线在点(0,-1)处的切线方程为y +1=2x ,即y =2x -1,与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,所以与两坐标轴围成的三角形的面积S =12×|-1|×12=14.2.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值为________.解析:由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.答案:13.若一直线与曲线y =ln x 和曲线x 2=ay (a >0)相切于同一点P ,则a 的值为________. 解析:设切点P (x 0,y 0),则由y =ln x ,得y ′=1x,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 20=ay 0,解得a =2e.答案:2e考点三 定积分的运算及应用[题组训练]1. ⎠⎛0π(sin x -cos x )d x =________.解析:⎠⎛0π (sin x -cos x )d x=⎠⎛0πsin x d x -⎠⎛0πcos x d x =-cos x ⎪⎪⎪π0-sin x ⎪⎪⎪π=2. 答案:2 2. ⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π×22=2π,故答案为2π+1.答案:2π+13.由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为____________.解析:法一:画出草图,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x 及⎩⎪⎨⎪⎧x +y =2,y =-13x ,得交点分别为(1,1),(0,0),(3,-1), 所以所求图形的面积S =⎠⎛01⎣⎡⎦⎤ x -⎝⎛⎭⎫-13x d x +⎠⎛13⎣⎡⎦⎤(2-x )-⎝⎛⎭⎫-13x d x =⎠⎛01⎝⎛⎭⎫ x +13x d x +⎠⎛13⎝⎛⎭⎫2-23x d x =⎝ ⎛⎭⎪⎫23x 32+16x 2⎪⎪⎪10+⎝⎛⎭⎫2x -13x 2⎪⎪⎪31 =56+6-13×9-2+13=136.法二:如图所求阴影的面积就是三角形OAB 的面积减去由y 轴,y =x ,y =2-x 围成的曲边三角形的面积,即S =12×2×3-⎠⎛01 (2-x -x )d x=3-⎝ ⎛⎭⎪⎫2x -12x 2-23x 32⎪⎪⎪1=3-⎝⎛⎭⎫2-12-23=136. 答案:1364.一物体在力F (x ) =⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x=0处运动到x =4(单位:m)处,则力F (x )做的功为________J.解析:由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J). 答案:361.正确选用求定积分的4个常用方法 定理法 性质法 几何法 奇偶性法 2.定积分在物理中的2个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[课时跟踪检测]A 级1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.4.(2019·四川名校联考)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选C 设f ′(3),f (3)-f (2),f ′(2)分别表示直线n ,m ,l 的斜率,数形结合知0<f ′(3)<f (3)-f (2)<f ′(2),故选C.5.(2019·玉林模拟)由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13 B.310 C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01 (x -x 2)d x =⎝ ⎛⎭⎪⎫23x 32-13x 3⎪⎪⎪10=13.6.(2018·安庆模拟)设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( )A .0B .1C .2D .3解析:选D ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.7.(2018·延边期中)设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线的斜率k ≥-3,所以切线的倾斜角α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 8.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0 相互垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝⎛⎭⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以1×⎝⎛⎭⎫-a 2=-1,解得a =2. 答案:29.(2019·重庆质检)若曲线y =ln(x +a )的一条切线为y =e x +b ,其中a ,b 为正实数,则a +eb +2的取值范围为________.解析:由y =ln(x +a ),得y ′=1x +a .设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b =a e -2.∵b >0,∴a >2e,∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)10.(2018·烟台期中)设函数F (x )=ln x +ax (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12.答案:⎣⎡⎭⎫12,+∞B 级1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x ⎪⎪⎪10=13+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =-13. 2.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1], x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3 解析:选A ⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12 (x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43. 3.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C 因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列, 所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8, 所以f ′(0)=84=212.4.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2, 设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.5.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 019(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,∴f n (x )的解析式以4为周期重复出现,∵2 019=4×504+3,∴f 2 019(x )=f 3(x )=-sin x -cos x .6.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是( ) A .2 5 B .2 C .2 3D. 3解析:选A 设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在点M 处的切线与直线2x -y +8=0平行时,点M 到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.∵y ′=22x -1,∴22x 0-1=2,解得x 0=1,∴M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0. 答案:y -3=08.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,所以⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)是定值,理由如下:设P (x 0,y 0)为曲线y =f (x )上任一点,由f ′(x )=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0·|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,且此定值为6.9.已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 图象上任意一点A (x 0,y 0)处的切线,问:在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的 x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1(x >0且x ≠1),∴f ′(x )=1x +2a(x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1, ∴f ′⎝⎛⎭⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x (x -1)2. ∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞),无单调递减区间. (2)在区间(1,+∞)上存在唯一一个满足条件的x 0. ∵g (x )=ln x ,∴g ′(x )=1x,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0.②由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0= x 0+1x 0-1.下证在区间(1,+∞)上存在唯一一个满足条件的x 0. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又∵f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,∴结合零点存在性定理,知方程f (x )=0在区间(e ,e 2)上有唯一的实数根,这个根就是所求的唯一满足条件的x 0.第二节导数的简单应用一、基础知识1.函数的单调性与导数的关系在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在❶(a,b)上为减函数.2.函数的极值(1)函数的极小值:;函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0❷,f(a)而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点❸叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)开区间上的单调连续函数无最值.,(1)f′(x)>0(<0)是f(x)在区间(a,b)内单调递增(减)的充分不必要条件.(2)f′(x)≥0(≤0)是f(x)在区间(a,b)内单调递增(减)的必要不充分条件.(3)由f(x)在区间(a,b)内单调递增(减)可得f′(x)≥0(≤0)在该区间内恒成立,而不是f′(x)>0(<0)恒成立,“=”不能少,必要时还需对“=”进行检验.)=0是x0为f(x)的极值点的必要不充分条件.例如,f(x)=x3,f′(0)=0,但xf′(x=0不是极值点.(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.二、常用结论(1)若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.(2)若函数f (x )在开区间(a ,b )内只有一个极值点,则相应的极值一定是函数的最值. (3)极值只能在定义域内取得(不包括端点),最值却可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取. 第一课时 导数与函数的单调性 考点一 求函数的单调区间1.已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上单调递增 B .在(0,+∞)上单调递减 C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 解析:选D 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 2.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________.解析:设幂函数f (x )=x a ,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22a,a =2,所以f (x )=x 2,故g (x )=e x x 2, 则g ′(x )=e x x 2+2e x x =e x (x 2+2x ), 令g ′(x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0). 答案:(-2,0)3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是___________________________________________________________.解析:f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0(x ∈(-π,π)), 解得-π<x <-π2或0<x <π2,即函数f (x )的单调递增区间是⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 考点二 判断含参函数的单调性(2018·全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞), f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0, 当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②当a >2时,令f ′(x )=0, 得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[题组训练]已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性. 解:(1)g ′(x )=1x+2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴, 得g ′(1)=1+2a +b =0,所以b =-2a -1. (2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞), 所以当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 当a >0时,令g ′(x )=0,得x =1或x =12a,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1, 即函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减; 若12a >1,即0<a <12,由g ′(x )>0,得x >12a 或0<x <1, 由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0, 即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减.考点三 根据函数的单调性求参数[典例精析](1)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.(2)若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上单调递减,则a 的取值范围为________.[解析] (1)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 答案:(1)⎣⎡⎦⎤-13,13 (2)⎣⎡⎭⎫-716,0∪(0,+∞)[变式发散]1.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上单调递增”,则a 的取值范围为________.解析:因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,即a ≤1x 2-2x 恒成立,又因为当 x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a ≤-1,即a 的取值范围是(-∞,-1]. 答案:(-∞,-1]2.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上存在单调递减区间”,则a 的取值范围为________.解析:因为h (x )在[1,4]上存在单调递减区间, 所以h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,而当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞). 答案:(-1,0)∪(0,+∞)3.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上不单调”,则a 的取值范围为________.解析:因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x =⎝⎛⎭⎫1x -12-1在(1,4)上有解, 令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716.所以实数a 的取值范围是⎝⎛⎭⎫-1,-716. 答案:⎝⎛⎭⎫-1,-716 [题组训练]1.(2019·渭南质检)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.若函数f (x )在区间[m ,m +1]上单调递增,则m 的取值范围是________.解析:∵f (x )=ax 3+bx 2的图象经过点M (1,4), ∴a +b =4,①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b .由题意可得f ′(1)·⎝⎛⎭⎫-19=-1,即3a +2b =9.② 联立①②两式解得a =1,b =3, ∴f (x )=x 3+3x 2,f ′(x )=3x 2+6x .令f ′(x )=3x 2+6x ≥0,得x ≥0或x ≤-2. ∵函数f (x )在区间[m ,m +1]上单调递增, ∴[m ,m +1]⊆(-∞,-2]∪[0,+∞), ∴m ≥0或m +1≤-2,即m ≥0或m ≤-3. 答案:(-∞,-3]∪[0,+∞)2.已知函数f (x )=3xa -2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a≤3,又a >0, 所以0<a ≤25或a ≥1.答案:⎝⎛⎦⎤0,25∪[1,+∞) [课时跟踪检测]A 级1.下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e x C .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x 在区间⎣⎡⎦⎤12,4上单调递增,则实数c 的取值范围是( ) A .(-∞,2] B .(-∞,4] C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x ,∵函数f (x )在区间⎣⎡⎦⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎡⎦⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎡⎦⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎡⎦⎤12,4恒成立,∵x ∈⎣⎡⎦⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4.4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sin x -x ,设a =f ⎝⎛⎭⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( ) A .b <a <c B .c <a <b C .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解. 设g (x )=2x -e x ,则g ′(x )=2-e x , 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增, 当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间. 解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0; 当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x -e x -1, ∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.B 级1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sin x =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x <0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)4.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号, 所以f (x )在其定义域内单调递增.因为f (a -1)+f (2a 2)≤0, 所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 6.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程; (2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0), 所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x=a +⎝⎛⎭⎫1x -122-14. ①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a 2a >0,且x 2>x 1,故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a 2a <0,F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减. 7.已知函数f (x )=ax -ln x ,g (x )=e ax +2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a的取值范围.解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12,+∞ 时,f ′(x )>0,f (x )单调递增.所以f (x )在x =12处取得极小值,且f ⎝⎛⎭⎫12=1+ln 2,无极大值. (2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax +2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x <0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x <0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝⎛⎭⎫-∞,1a ln ⎝⎛⎭⎫-2a 上单调递减,在⎝⎛⎭⎫1a ln ⎝⎛⎭⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝⎛⎭⎫-2a >0,解得a <-2. 综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).第二课时 导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由.[解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;。
第一节导数的概念及运算高考概览:1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y=f(ax+b)的复合函数)的导数.[知识梳理]1.导数的概念(1)f(x)在x=x0处的导数函数y=f(x)在x=x0处的瞬时变化率是lim Δx→0f(x0+Δx)-f(x0)Δx=limΔx→0ΔyΔx,称其为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x,即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导函数当x变化时,f′(x)称为f(x)的导函数,则f′(x)=y′=limΔx→0 f(x+Δx)-f(x)Δx.2.导数的几何意义函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P (x 0,y 0)处的切线的斜率,过点P 的切线方程为y -y 0=f _′(x 0)(x -x 0).3.基本初等函数的导数公式4.导数运算法则(1)[f (x )±g (x )]′=f _′(x )±g ′(x );(2)[f (x )·g (x )]′=f _′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =f _′(u )u ′(x ),即y 对x 的导数等于y 对u 的导数与u 对x 的导数的积.[辨识巧记]1.三个注意点(1)利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.(2)f ′(x 0)代表函数f (x )在x =x 0处的导数值;[f (x 0)]′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即[f (x 0)]′=0.(3)对含有字母参数的函数要分清哪是变量哪是参数,参数是常量,其导数为零.2.两个结论(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( )(2)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(3)与曲线只有一个公共点的直线一定是曲线的切线.( )(4)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( )[答案] (1)× (2)× (3)× (4)×2.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln2 C .(3x )′=3x ·log 3eD .(x 2cos x )′=-2x sin x [解析] 因为⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2,所以选项A 不正确;因为(log 2x )′=1x ln2,所以选项B 正确;因为(3x )′=3x ln3,所以选项C 不正确;因为(x 2cos x )′=2x cos x -x 2sin x ,所以选项D 不正确.故选B.[答案] B3.(2019·陕西安康模拟)设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( )A .e 2B .e C.ln22 D .ln2 [解析] f ′(x )=1·ln x +x ·1x =ln x +1,由f ′(x 0)=2,得ln x 0+1=2,得x 0=e.故选B. [答案] B4.(2019·商丘二模)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2[解析] 设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0.又y ′=1x +a ,所以y ′|x =x 0=1x 0+a=1,即x 0+a =1.又y 0=ln(x 0+a ),所以y 0=0,则x 0=-1,所以a =2.[答案] B5.(选修2-2P 3例题改编)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________,加速度a =________.[解析] 由导数的物理意义可知,v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8.[答案] -9.8t +6.5 -9.8考点一 导数的基本运算【例1】 求下列各函数的导数:(1)y =(x +1)(x +2)(x +3);(2)y =sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =11-x +11+x; [思路引导] 先化简解析式→再求导[解] (1)y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.(2)由题可得:y =sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x , ∴y ′=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x . (3)y =11-x +11+x =1+x +1-x (1-x )(1+x )=21-x, ∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2.导数的运算要点(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.[对点训练]分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3; (3)y =x -sin x 2cos x 2;(4)y =ln 1+2x .[解] (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x·1x =e x ⎝ ⎛⎭⎪⎫ln x +1x .(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12·11+2x ·(1+2x )′=11+2x. 考点二 导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题的第(1)问中,难度较低,属中、低档题.常见的命题角度有:(1)求切线方程;(2)确定切点坐标;(3)已知切线求参数值或范围.角度1:求切线方程【例2-1】 (1)曲线y =sin x +e x 在点(0,1)处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0(2)曲线y =13x 3+43在点P (2,4)处的切线方程为________.[思路引导] 已知点为切点→求该点处的导数值→利用点斜式求得切线方程[解析] (1)∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′|x =0=cos0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.故选C.(2)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率为k 1=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.[答案] (1)C (2)4x -y -4=0[拓展探究] 若本例(2)中“在点P (2,4)处”改为“过点P (2,4)”,如何求解?[解] 设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为k 2=x 20. ∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.过点P (x 0,y 0)的切线方程的2种求法(1)点P (x 0,y 0)是切点时:第一步:求导数f ′(x );第二步:求切线斜率k =f ′(x 0);第三步:写切线方程为y -y 0=f ′(x 0)(x -x 0).(2)当点P (x 0,y 0)不是切点时可分以下几步完成:第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)·(x -x1);第三步:将点P的坐标(x0,y0)代入切线方程,求出x1;第四步:将x1的值代入方程y-f(x1)=f′(x1)(x-x1),可得过点P(x0,y0)的切线方程.角度2:确定切点坐标【例2-2】曲线y=3ln x+x+2在点P0处的切线方程为4x-y -1=0,则点P0的坐标是()A.(0,1) B.(1,-1)C.(1,3) D.(1,0)[解析]由题意知y′=3x+1=4,解得x=1,则有4×1-y-1=0,解得y=3,所以点P0的坐标是(1,3)故选C.[答案] C已知斜率k,求切点P(x1,f(x1)),即解方程f′(x1)=k,得出横坐标x1,再确定纵坐标.角度3:已知切线求参数值或范围【例2-3】已知直线y=x+1与曲线y=ln(x+a)相切,则a 的值为()A.1 B.2 C.-1 D.-2[思路引导]设出切点坐标→得出方程→求出k[解析]设直线y=x+1与曲线y=ln(x+a)的切点为(x0,y0),则y0=1+x0,y0=ln(x0+a).因为曲线的导函数y′=1x+a,所以y′|x=x0=1x0+a=1,即x0+a=1.又y 0=ln(x 0+a ),所以y 0=0,则x 0=-1,所以a =2.故选B.[答案] B求参数或参数范围的基本方法利用切点的坐标、切线的斜率、切线方程等得到关于参数的方程或者参数满足的不等式,注意不要忽略曲线上横坐标的取值范围及切点既在切线上又在曲线上.[对点训练]1.已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1 D.12[解析] 因为y =x 24-3ln x ,所以y ′=x 2-3x .再由导数的几何意义,令x 2-3x =-12,解得x =2或x =-3(舍去).故选B.[答案] B2.已知点P ⎝ ⎛⎭⎪⎫2018π3,-1在函数f (x )=a cos x 的图象上,则该函数图象在x =3π4处的切线方程是( )A .2x +2y +4-3π2=0B .2x -2y +4-3π2=0C .2x -2y -4-3π2=0D .2x +2y -4-3π2=0[解析] 由点P 在函数f (x )=a cos x 的图象上可得f ⎝ ⎛⎭⎪⎫2018π3=-1,即a cos ⎝ ⎛⎭⎪⎫2018π3=a cos ⎝ ⎛⎭⎪⎫672π+2π3=-a 2=-1,解得a =2.故f (x )=2cos x .所以f ⎝ ⎛⎭⎪⎫3π4=2cos 3π4=-2,f ′(x )=-2sin x . 由导数的几何意义可知,该函数图象在x =3π4处的切线斜率k =f ′⎝ ⎛⎭⎪⎫3π4=-2sin 3π4=- 2. 所以切线方程为y -(-2)=-2⎝ ⎛⎭⎪⎫x -3π4,即2x +y +2-32π4=0,即2x +2y +4-3π2=0.故选A.[答案] A3.(2019·银川一中一模)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围________.[解析][答案] ⎝ ⎛⎭⎪⎫1e ,+∞ 考点三 切线的综合应用【例3】 (2019·宁夏育才中学月考)点P 是曲线y =x 2-ln x 上的任意一点,则点P 到直线y =x -2的最小距离为( )A .1 B.32 C.52 D. 2[思路引导] 求y ′→令y ′=1得切点横坐标 [解析] 由y =x 2-ln x ,得y ′=2x -1x =2x 2-1x ,令y ′=1,则x =1,故曲线y =x 2-ln x 斜率为1的切线的切点横坐标x =1,纵坐标为y =1.切点(1,1)到直线y =x -2的距离d =|-2|2=2为所求.故选D.[答案] D求直线与曲线上点的最短距离,前提是曲线位于直线的同一侧,且曲线也位于与该直线平行的切线的同一侧,然后求切点到直线的距离即可.[对点训练]分别在曲线y =e x 与直线y =e x -1上各取一点M 与N ,则线段MN 长度的最小值为________.[解析] 设曲线y =e x 在某点处的切线为l ,当切线l 与直线y =e x -1平行时,这两条平行直线间的距离就是所求的最小值.因为切线l 与直线y =e x -1平行,故切线l 的斜率为e.由y ′=e x =e ,得x =1.故点(1,e)到直线y =e x -1的距离为线段MN 长度的最小值,其距离为|e -e -1|e 2+1=e 2+1e 2+1. [答案] e 2+1e 2+1纠错系列③——混淆“在某点处的切线”与“过某点的切线” 素养解读:求曲线的切线方程有两种情况:一是求曲线在某点处的切线方程,该点即为切点,只要求出该点的导函数值即斜率;二是求曲线过某点的切线方程,该点不一定是切点,求解时需设出切点.【典例】 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x-9都相切,则a 等于( )A .-1或-2564 B .-1或214 C .-74或-2564 D .-74或7[易错分析] 没有对点(1,0)是否为切点进行分析,误认为是切点而出错.[规范解答] 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.故选A. [答案] A(1)在求曲线的切线方程时,注意两个“说法”,即“求曲线在点P 处的切线方程”和“求曲线过点P 的切线方程”,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.(2)若已知曲线过点P (x 0,y 0),求曲线过点P (x 0,y 0)的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解.[感悟体验]1.求曲线y =x ln x 在点P (e ,e)处的切线方程. [解] ∵y ′=ln x +1,∴切线的斜率k =lne +1=2, ∴所求切线方程为y -e =2(x -e),即2x -y -e =0.2.已知曲线y =13x 3上一点P ⎝⎛⎭⎪⎫2,83,求过点P 的切线方程. [解] ①当P 为切点时,由y ′=⎝⎛⎭⎪⎫13x 3′=x 2,得y ′|x =2=4,即过点P 的切线方程的斜率为4.则所求的切线方程是y -83=4(x -2),即12x -3y -16=0. ②当P 点不是切点时,设切点为Q (x 0,y 0), 则切线方程为y -13x 30=x 20(x -x 0),因为切点过点P ⎝⎛⎭⎪⎫2,83,把P 点的坐标代入以上切线方程,求得x 0=-1或x 0=2(即点P ,舍去),所以切点为Q ⎝ ⎛⎭⎪⎫-1,-13,即所求切线方程为3x -3y +2=0,综上所述,过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.课后跟踪训练(十四)基础巩固练一、选择题1.已知f (x )=13x 3+2xf ′(3)+ln x ,则f ′(3)=( ) A.283 B .-283 C .9 D .-9[解析] 因为f ′(x )=x 2+2f ′(3)+1x ,所以f ′(3)=32+2f ′(3)+13=283+2f ′(3),解得f ′(3)=-283,故选B.[答案] B2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103[解析] 因为f ′(x )=3ax 2+6x ,所以f ′(-1)=3a -6=4,解得a =103.故选D.[答案] D3.函数f (x )=e x ln x 在点(1,f (1))处的切线方程是( ) A .y =2e(x -1) B .y =e x -1 C .y =e(x -1)D .y =x -e[解析] f (1)=0,∵f ′(x )=e x ⎝⎛⎭⎪⎫ln x +1x ,∴f ′(1)=e ,∴切线方程是y =e(x -1).故选C.[答案] C4.(2019·广州市高三调研测试)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为( )A .ln2B .1C .1-ln2D .1+ln2[解析] 由y =x ln x 知y ′=ln x +1,设切线为(x 0,x 0ln x 0),则切点方程为y -y 0ln x 0=(ln x 0+1)(x -x 0),因为切线y =kx -2过定点(0,-2),所以-2-x 0ln x 0=(ln x 0+1)(0-x 0),解得x 0=2,则k =1+ln2,故选D.[答案] D5.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4[解析] 由题图得f (3)=1,k =f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ),∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.故选B.[答案] B 二、填空题6.已知函数f (x )=3x +cos2x +sin2x ,则f ′⎝ ⎛⎭⎪⎫π4=__________.[解析] f ′(x )=3-2sin2x +2cos2x ,∴f ′⎝ ⎛⎭⎪⎫π4=1.[答案] 17.设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.[解析] y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).[答案] (1,1)8.已知直线l 与曲线f (x )=x 2-3x +2+2ln x 相切,则直线l 倾斜角的最小值为________.[解析] 函数的定义域为(0,+∞).由导数的几何意义可知,曲线上任意一点P (x ,y )处的切线l 的斜率为f ′(x )=2x -3+2x ,因为x >0,故2x +2x ≥22x ×2x =4(当且仅当2x =2x ,即x =1时取等号),所以f ′(x )=2x -3+2x ≥4-3=1,即切线l 的斜率的最小值为1,此时直线的倾斜角取得最小值π4.[答案] π4 三、解答题9.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程.[解] (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2), 又切线过点P (x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.10.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.[解] (1)方程7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +bx 2, 于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0), 即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.能力提升练11.(2019·河南开封模拟)函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A .(-∞,2]B .(-∞,2)C .(2,+∞)D .(0,+∞)[解析] 直线2x -y =0的斜率为2,且f ′(x )=1x +a (x >0),令1x +a =2得a =2-1x .因为x >0,则1x >0,所以a <2,故选B.[答案] B12.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( )A .x +4y -2=0B .x -4y +2=0C .4x +2y -1=0D .4x -2y -1=0[解析] y ′=-e x(e x +1)2=-1e x +1e x +2,因为e x >0,所以e x+1e x≥2e x ×1e x =2(当且仅当e x =1e x ,即x =0时取等号),则e x +1e x +2≥4,故y ′=-1e x +1e x +2≥-14且y ′<0,当(x =0时取等号).当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A.[答案] A13.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=________.[解析] ∵函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),∴f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′, ∴f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=4096. [答案] 409614.(2019·安徽淮南一模)已知函数f (x )=x 2-ln x . (1)求函数f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.[解] (1)∵f (1)=1,又f ′(x )=2x -1x , ∴f ′(1)=2-1=1,故所求切线方程为y -1=1×(x -1),即y =x . (2)存在.求解如下:设所求两点分别为(x 1,y 1),(x 2,y 2),x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,∵f ′(x )=2x -1x ,∴由题意得⎝⎛⎭⎪⎫2x 1-1x 1·⎝ ⎛⎭⎪⎫2x 2-1x2=-1. ∵f ′(x )=2x -1x 在⎣⎢⎡⎦⎥⎤12,1上单调递增,∴-1≤2x 1-1x 1≤1,-1≤2x 2-1x 2≤1.又x 1<x 2,∴f ′(x 1)<f ′(x 2),∴⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12(x 1=-1舍),x 2=1⎝⎛⎭⎪⎫x 2=-12舍,∴存在满足题意的两点,其坐标为⎝ ⎛⎭⎪⎫12,ln2+14,(1,1).拓展延伸练15.(2019·黑龙江伊春质检)曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是( )A .2 5B .2C .2 3 D. 3[解析] 设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在M 点处的切线与直线2x -y +8=0平行时,M 点到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.∵y ′=22x -1,∴22x 0-1=2,解得x 0=1,∴M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=25,故选A.[答案] A16.(2018·河南商丘二模)设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围是( )A .[-1,2]B .(3,+∞)C.⎣⎢⎡⎦⎥⎤-23,13 D.⎣⎢⎡⎦⎥⎤-13,23 [解析] 由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1, ∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x ∈[-2,2],∴3a -2sin x ∈[-2+3a,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.故选D. [答案] D。