4.3 圆周运动及其运用(必修2)
- 格式:doc
- 大小:1.56 MB
- 文档页数:7
高中物理必修二圆周运动知识点总结
嘿,同学们!今天咱们要来聊聊高中物理必修二里超有意思的圆周运动知识点呀!
你想想看,那转来转去的摩天轮,不就是圆周运动的一个超级明显的例
子嘛!就像我们在学习圆周运动的线速度。
线速度是什么呢?简单说,就是物体沿着圆周运动的快慢呀!好比你骑着自行车绕着一个圆形广场转,那你的速度不就是线速度嘛,你骑得越快,线速度就越大呀!这不难理解吧?
还有角速度呢!角速度就像是摩天轮转一圈所用的时间差不多的概念哦。
你瞧,摩天轮转得快的时候,角速度就大,转得慢的时候,角速度就小咯。
这不就明白了嘛!
向心力可是个很重要的家伙呀!没有它,那些做圆周运动的东西不就飞
出去啦?就像你甩动一个系着绳子的小球,要是没有向心力拉着,小球不就飞走了嘛。
记得老师做那个实验的时候,大家都看得超认真呢!
离心力呢,和向心力相反,但也是存在的哦!哎呀,就好比你坐旋转木马,转得快了,你是不是感觉要被甩出去呀,那就是离心力在“捣乱”呢!
在这些知识点里,是不是超级有趣呀!我们学习这些可不只是为了考试哦,以后生活中很多地方都能用得到呢!你想想,那些赛车弯道,工程师们肯定都考虑了圆周运动的知识呀,不然车怎么能安全快速地通过弯道呢。
所以呀,好好学这些知识,真的超级有用呢!同学们,一起把圆周运动知识点牢牢掌握呀,加油!。
高一必修2《第二章 圆周运动》知识要点一、圆周运动01.定义:物体的运动轨迹是圆周的运动,叫做圆周运动。
02.条件:物体受到向心力的作用 向心力始终与速度方向垂直,沿半径指向圆心。
03.特点:⑴、物体上各点围绕某点(即圆心)或某一轴线转动⑵、瞬时速度方向时刻改变——圆周运动是一种变速运动⑶、运动轨迹(或相对起点的位移)具有重复性(周期性)二、匀速圆周运动01.定义:运动速度大小恒定的圆周运动,叫做匀速圆周运动。
(有多种定义) 02.描述物理量设R 为圆周运动的轨道半径,φ为半径转过的圆心角,N 为圆周运动的圈数。
⑴.线速度:V=t S =TR π2 =R ω 单位:m/s ⑵.角速度:ω=t ϕ=Tπ2=2n π 单位:rad/s ⑶.周期:T=ωπ2=n1 单位:s ⑷.转速:n=tN 单位:r/s 或r/min 03.匀速圆周运动的特点:F (或a )和V 的大小、ω、T 、n 恒定不变,但F (或a )和V 的方向时刻改变。
04.特性:同一转动物体上各点的角速度相同 ★:传动装置中,两转动物体边缘上各处的线速度大小相等。
三、向心力01.定义:使物体做圆周运动的力,叫做向心力。
02.特点:是效果力,不是性质力,方向时刻改变。
03.作用:只改变V 的方向,不改变V 的大小。
04.大小:F==ma 2ϖmr =r V m 2=ϖmV =224T mr π=mr n 224π 注意:⑴当m 、V 不变时,F ∝r1 ;⑵当m 、ω不变时,F ∝r 05.方向:总是沿半径指向圆心06.来源:来源于某一个力或某一个力的分力或某几个力的合力四、向心加速度01.定义:由向心力产生的加速度,叫做向心加速度。
02.大小:a=2ϖr =r V 2=ϖV =r T 224π =r n 224π 注意:⑴当V 不变时,a ∝r1 ;⑵当ω不变时,a ∝r 03.方向:总是沿半径指向圆心04.意义:反映V 方向改变的快慢五、分析和解决匀速圆周运动问题的步骤01.明确研究对象,确定圆心位置及半径大小;02.对研究对象进行受力分析03.找出向心力的来源及大小;04.代入向心力公式列出方程05.结合其它条件列出相关方程;06.解联合方程组,求出所求物理量。
物理必修二圆周运动知识点总结一、圆周运动的基本概念定义:质点以某点为圆心,半径为r在圆周上运动,其轨迹是圆周或圆弧的运动称为圆周运动。
圆周运动是曲线运动的一种,因此它一定是变速运动。
分类:圆周运动可分为匀速圆周运动和变速圆周运动。
匀速圆周运动指的是线速度大小处处相等的圆周运动,尽管线速度大小不变,但由于方向时刻改变,因此匀速圆周运动仍然是变速运动。
二、描述圆周运动的物理量线速度:描述质点沿圆周运动的快慢的物理量,其方向是质点在圆周上某点的切线方向。
在匀速圆周运动中,线速度大小不变,但方向时刻改变。
角速度:描述质点绕圆心转动的快慢的物理量,是矢量,其方向用右手螺旋定则确定。
在匀速圆周运动中,角速度大小和方向都不变。
周期和频率:周期是质点完成一次圆周运动所需的时间,频率是周期的倒数,表示单位时间内完成圆周运动的次数。
在匀速圆周运动中,周期和频率都不变。
向心力:使质点沿圆周运动的力,方向始终指向圆心。
向心力的大小与线速度、角速度和半径有关,其作用是改变质点的速度方向,使质点能够持续沿圆周运动。
三、圆周运动的规律和应用牛顿第二定律在圆周运动中的应用:通过向心力表达式,可以推导出圆周运动的线速度、角速度、周期等物理量之间的关系。
圆周运动在日常生活和科技领域中的应用:例如电动机转子、车轮、皮带轮等的运动都是圆周运动。
此外,人造卫星、行星运动等天体运动也可以视为圆周运动。
四、离心运动做圆周运动的物体,由于惯性,总有沿着切线方向飞去的倾向。
一旦受力突然消失或合力不足以提供所需的向心力时,物体就会做离心运动。
以上是物理必修二中关于圆周运动的主要知识点总结。
这些知识点是理解和分析圆周运动的基础,对于后续学习物理的其他部分以及应用物理知识解决实际问题具有重要意义。
匀速圆周运动专题从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。
(一)基础知识1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。
所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。
2. 质点做匀速圆周运动的条件(1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。
合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。
3. 向心力有关说明向心力是一种效果力。
任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。
做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。
(二)解决圆周运动问题的步骤1. 确定研究对象;2. 确定圆心、半径、向心加速度方向;3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向;4. 根据向心力公式,列牛顿第二定律方程求解。
基本规律:径向合外力提供向心力(三)常见问题及处理要点1. 皮带传动问题例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A. a点与b点的线速度大小相等B. a点与b点的角速度大小相等C. a点与c点的线速度大小相等D. a点与d点的向心加速度大小相等图1解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向心加速度,由,,所以,故,D 正确。
物理必修二圆周运动的公式定律和二级结论的总结圆周运动公式
1、v(线速度)=S/t=2πr/T=ωr=2πrf(S代表弧长,t代表时间,r代表半径)。
2、q(角速度)=θ/t=2π/T=2πn(θ表示角度或者弧度)。
3、T(周期)=2πr/v=2π/ω。
4、n(转速)=1/T=v/2πr=ω/2π。
5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2。
6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2。
7、vmax(过最高点时的最小速度)=√gr(无杆支撑)。
2圆周运动的特点
匀速圆周运动的特点:轨迹是圆,角速度,周期,线速度的大小(注:因为线速度是矢量,"线速度"大小是不变的,而方向时时在变化)和向心加速度的大小不变,且向心加速度方向总是指向圆心。
线速度定义:质点沿圆周运动通过的弧长ΔL与所用的时间Δt 的比值叫做线速度,或者角速度与半径的乘积。
线速度的物理意义:描述质点沿圆周运动的快慢,是矢量。
角速度的定义:半径转过的弧度(弧度制:360°=2π)与所用时间t的比值。
(匀速圆周运动中角速度恒定)
周期的定义:作匀速圆周运动的物体,转过一周所用的时间。
转速的定义:作匀速圆周运动的物体,单位时间所转过的圈数。
《圆周运动》知识全解【教学目标】1.认识圆周运动、匀速圆周运动的特点,了解描述圆周运动快慢的基本思路,了解转速和周期的意义。
2.理解线速度的物理意义,知道匀速圆周运动中线速度的方向。
3.理解角速度的物理意义,掌握线速度和角速度的关系。
4.能在具体的情境中确定线速度和角速度。
【内容解析】1.线速度物体做匀速圆周运动时,通过的弧长△l 与时间△t 的比值就是线速度的大小。
即lv t ∆=∆。
(1)线速度是物体做圆周运动的瞬时速度。
(2)线速度是矢量,它既有大小,也有方向,线速度的方向在圆周各点的切线方向上。
(3)质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
(4)匀速圆周运动的线速度的方向在不断变化,因此,它是一种变速运动,这里的“匀速”是指速率不变。
2.角速度(1)角速度是描述物体绕圆心转动快慢的物理量。
(2)角速度等于时间△t 和在这段时间内转过的角△θ的比值,即θωt =△△。
(3)对某一确定的匀速圆周运动而言,角速度ω是恒定的,角速度单位的写法rad/s 。
3.周期做匀速圆周运动的物体,转过一周所用的时间叫周期(T )。
4.线速度、角速度、周期间的关系由△θ=ω△t ,△l =v △t , l rθ∆∆=联立解出:v =ωr(1)当v 一定时,ω与r 成反比。
(2)当ω一定时,v 与r 成正比。
(3)当r 一定时,v 与ω成正比。
【知识总结】1.匀速圆周运动是变速运动,所说的“匀速”是指速度的大小不变。
2.线速度:(1)物理意义:描述质点沿圆周运动的快慢。
(2)定义:质点做圆周运动通过的弧长△l 和所用时间△t 的比值叫做线速度。
(3)大小:v=△l/△t ,单位:m/s (△l 是弧长,而非位移)。
(4)当选取的时间△t 很小很小时(趋近零),弧长△l 就等于物体在t 时刻的位移,定义式中的v ,就是直线运动中学过的瞬时速度了。
(5)方向:线速度是矢量,方向在圆周各点的切线上。
高一必修2圆周运动知识点圆周运动是物体围绕一个固定点做规律性的运动。
在高一必修2的物理学习中,圆周运动是一个重要的知识点。
本文将介绍圆周运动的基本定义、相关公式和重要特点。
一、基本概念圆周运动是指物体沿着一个固定半径的圆形轨道做匀速或变速运动的现象。
在圆周运动中,物体的轨迹是一个圆,而物体的速度向量则与物体运动的轨迹垂直。
二、相关公式1. 弧长公式弧长(s)是圆周上两点之间的弧所对应的圆心角(θ)与半径(r)的乘积。
弧长公式可表示为 s = rθ,其中,s的单位是米(m),θ的单位是弧度(rad),r的单位是米(m)。
2. 角速度公式角速度(ω)是一个物体单位时间内绕着固定点旋转的角度。
角速度公式可表示为ω = Δθ/Δt,其中,Δθ表示角度的变化量,Δt 表示时间的变化量。
角速度的单位是弧度/秒(rad/s)。
3. 周期公式周期(T)是一个物体绕着固定点做一次完整圆周运动所需的时间。
周期公式可表示为T = 2π/ω,其中,π是一个数学常数,约等于3.14。
周期的单位是秒(s)。
三、重要特点1. 圆周运动的速度是变化的在圆周运动中,物体的速度大小是保持不变的,因为物体匀速地绕着圆周运动。
然而,物体的速度方向是随着时间而不断变化的。
2. 圆周运动的加速度圆周运动的加速度(a)是指物体改变速度的大小和方向。
在圆周运动中,加速度的大小等于速度大小的变化率乘以速度向心的方向。
加速度的方向指向圆心。
3. 圆周运动的向心力圆周运动的向心力(F)是使物体朝向圆心运动的力。
向心力的大小等于质量(m)与加速度(a)的乘积,即 F = m * a。
向心力的方向也指向圆心。
总结:在高一必修2的物理学习中,圆周运动是一个重要的知识点。
本文介绍了圆周运动的基本定义、相关公式和重要特点。
通过学习圆周运动,我们可以理解圆周运动中速度的变化、加速度的产生以及向心力的作用。
掌握圆周运动的知识,有助于我们理解和解决与圆周运动相关的物理问题。
⾼⼀物理必修2圆周运动知识点归纳 圆周运动是⾼考的重点内容和命题频率最⾼的知识点。
下⾯店铺给⼤家带来⾼⼀物理必修2圆周运动知识点,希望对你有帮助。
⾼⼀物理必修2圆周运动知识点 ⼀、考点理解 1、关于匀速圆周运动 (1)条件:①物体在圆周上运动;②任意相等的时间⾥通过的圆弧长度相等。
(2)性质:匀速圆周运动是加速度变化(⼤⼩不变⽽⽅向不断变化)的变加速运动。
(3)匀速圆周运动的向⼼⼒: ①是按⼒的作⽤效果来命名的⼒,它不是具有确定性质的某种⼒,相反,任何性质的⼒都可以作为向⼼⼒。
例如,⼩铁块在匀速转动的圆盘上保持相对静⽌的原因是,静摩擦⼒充当向⼼⼒,若圆盘是光滑的,就必须⽤线细拴住⼩铁块,才能保证⼩铁块同圆盘⼀起做匀速转动,这时向⼼⼒是由细线的拉⼒提供。
②向⼼⼒的作⽤效果是改变线速度的⽅向。
做匀速圆周运动的物体所受的合外⼒即为向⼼⼒,它是产⽣向⼼加速度的原因,其⽅向⼀定指向圆⼼,是变化的(线速度⼤⼩变化的⾮匀速圆周运动的物体所受的合外⼒不指向圆⼼,它既要改变速度⽅向,同时也改变速度的⼤⼩,即产⽣法向加速度和切向加速度)。
③向⼼⼒可以是某⼏个⼒的合⼒,也可以是某个⼒的分⼒。
例如,⽤细绳拴着质量为m的物体,在竖直平⾯内做圆周运动到最低点时,其向⼼⼒由绳的拉⼒和重⼒(F向 = T拉 - mg)两个⼒的合⼒充当。
⽽在圆锥摆运动中,⼩球做匀速圆周运动的向⼼⼒则是由重⼒的分⼒(F向= mg*tanθ),其中θ为摆线与竖直轴的夹⾓)充当,因此决不能在受⼒分析时沿圆⼼⽅向多加⼀个向⼼⼒。
④物体做匀速圆周运动所需向⼼⼒⼤⼩可以表⽰为: F = ma = mv^2/r = mrω^2 = mr*4π^2/(T^2) 2、描述圆周运动的物理量 (1)线速度:v = s/t(s是物体在时间t内通过的圆弧长),⽅向沿圆弧上该点处的切线⽅向。
描述了物体沿圆弧运动的快慢程度。
(2)⾓速度:ω = θ/t(θ是物体在时间t内绕圆⼼转过的⾓度),描述了物体绕圆⼼转动的快慢程度。
第3节 圆周运动及其运用【考纲知识梳理】一、描述圆周运动的物理量及其相互关系1、定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2、描述圆周运动的物理量: (1)线速度:①线速度的大小等于质点作匀速圆周运动时通过的弧长跟通过这段弧长所用时间的比值。
ts v =②线速度的方向就是在圆周该点的切线方向上。
③线速度的定义与第二章速度的定义,从字面上看似乎是不同的,实质上并没有差别,因为圆周运动中线速度的概念是瞬时速度的概念。
在匀速圆周运动中,速度的大小不变,平均速率与瞬时速率相等,那么,弧长与对应时间的比值,在数值上就反映了瞬时速度的大小。
(2)角速度:①角速度是描述圆周运动的特有概念。
角速度的定义为:连接运动物体和圆心的半径转过的角度跟所用时间的比,叫做匀速圆周运动的角速度。
tϕω=②在国际单位中,角速度的单位是弧度每秒,符号是s rad /。
要特别指出提,只有角速度以s rad /为单位时,才有ωr v =的关系。
(3)周期①周期:做匀速圆周运动的物体运动一周所用的时间叫做周期。
②转速:所谓转速,是指做匀速圆周运动的物体每秒转过的圈数。
当转速的单位为s r /时,它和角速度的关系为n πω2=;当转速的单位为min /r 时,它和角速度的关系为602n πω=。
(4)向心力①向心力的方向总是与物体运动的方向垂直,总是沿着半径指赂圆心。
向心力的作用只是改变速度的方向。
②向心力的大小为2ωmr F =或rvmF 2=(5)向心加速度①定义:做圆周运动的物体,在向心力的作用下产生的指向圆心的加速度,叫做向心加速度。
②向心加速度的大小为2ωr a =或rva 2=二、匀速圆周运动与非匀速圆周运动 1、匀速圆周运动(1)特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的.(2).性质:是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动.(3).加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力.(4)质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直且指向圆心. 2、非匀速圆周运动(1)非匀速圆周运动的物体,不仅线速度大小、方向时刻在改变,而且加速度的大小、方向也时刻在改变,是变加速曲线运动(注:匀速圆周运动也是变加速运动).非匀速圆周运动的合力一般不指向圆心,非匀速圆周运动所受的合外力产生两个效果. (2)半径方向的分力:产生向心加速度而改变速度方向. (3)切线方向的分力:产生切线方向加速度而改变速度大小.故利用公式求圆周上某一点的向心力和向心加速度的大小,必须用该点的瞬时速度值. 三、离心运动与向心运动1.定义:做圆周运动的物体,在所受外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。
高中物理第二章匀速圆周运动3 圆周运动的实例分析教案2 教科版必修2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理第二章匀速圆周运动3 圆周运动的实例分析教案2 教科版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理第二章匀速圆周运动3 圆周运动的实例分析教案2 教科版必修2的全部内容。
第3节 圆周运动的实例分析一、探究并设计适合本节教学的教法、学法: 1、设计教法:(1)情景导学法:引入新课教学中创设问题情境,激发学习兴趣,调动学生的内在学习动力,促使学生积极主动学习;(2)目标导学法:让在学生在学前明确学习目标,学有方向,才能有的放矢,促使学生积极探索、发现;(3)实验演示法:学生通过参与实验操作、讨论分析实验现象,推理其内在的本质;(4)比较法:通过新旧对比,启发学生认识并获得新知等.最大限度地调动学生积极参与教学活动。
充分体现“教师主导,学生主体”的教学原则。
本节课采用了演示法和讲授法相结合的启发式综合教学方法。
教师边演示边让学生分折解题思路,充分调动学生的积极性和主动性. 2、设计学法:观察法,归纳法,阅读法,推理法 。
教学生用较简单的器材做实验,以发挥实验效益,提高教学效果的方法.通过设疑,启发学生思考.二、设计教学流程:三、具体教学过程设计:创设情景:(教学PPT 录像)在日常生活中有很多圆周运动的实例:骑自行车转弯,汽车、创设情景,激发学生学习兴趣和热情复习圆周运动的基本知识,为后面小球过最高点条件分析作铺垫明确圆周运动的解题思路,进一步加深对向心力的概念理解通过实例分析,进一步理解向心力的来源可以是一个力或几个力的合力汽车过拱桥,培养学生阅读和自学能力,知道向心力公式也适用变速圆周运动 O进一步熟练向心力来源分析,为后面绳子过最高点问题作铺堑 绳系小球过最高点及过山车过最高点的条件进行比较分析课后小结火车转弯等都是圆周运动或圆周运动的一部分,这些运动的向心力的来源是什么?这节课我们就来讨论在具体的问题中向心力的来源?实例分析一(匀速圆周运动):1、小球在光滑水平面上做匀速圆周运动。
第3节圆周运动及其运用(1)【自主学习】一、描述匀速圆周运动的物理量1.概念:线速度、角速度、周期、转速、向心力、向心加速度,比较如表所示:二、匀速圆周运动和非匀速圆周运动1.匀速圆周运动(1)定义:线速度_________的圆周运动.(2)性质:向心加速度大小_____,方向总是_________的变加速曲线运动.(3)质点做匀速圆周运动的条件合力______不变,方向始终与速度方向______且指向圆心. 2.非匀速圆周运动(1)定义:线速度大小、方向均__________的圆周运动. (2)合力的作用.①合力沿速度方向的分量F t 产生切向加速度,F t =ma t ,它只改变速度的______. ②合力沿半径方向的分量F n 产生向心加速度,F n =ma n ,它只改变速度的______. 三、离心运动和近心运动 1.离心运动(1)定义:做_________的物体,在所受合外力突然消失或不足以提供圆周运动所需________的情况下,所做的逐渐远离圆心的运动.(2)本质:做圆周运动的物体,由于本身的______,总有沿着圆周__________飞出去的倾向. (3)受力特点.①当F=m ω2r 时,物体做__________运动; ②当F=0时,物体沿______方向飞出;③当F<m ω2r 时,物体逐渐______圆心,做离心运动. 2.近心运动当提供向心力的合外力大于做圆周运动所需向心力时,即F>m ω2r,物体将逐渐______圆心,做近心运动. 【考点分析】考点一 水平面内的匀速圆周运动1.在分析传动装置的物理量时,要抓住不等量和相等量的关系,表现为:(1)同一转轴的各点角速度ω相同,而线速度v =ωR 与半径R 成正比,向心加速度大小a =Rω2与半径r 成正比.(2)当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相等,由ω=vR 可知,ω与R 成反比,由a =v 2R 可知,a 与R 成反比.1.匀速圆周运动属于( )A.匀速运动B.匀加速运动C.加速度不变的曲线运动D.加速度变化的曲线运动 2.关于做匀速圆周运动物体的线速度、角速度、周期之间的关系,下列说法正确的是 ( ). A .线速度大的角速度一定大 B .线速度大的周期一定小C.角速度大的半径一定小D.角速度大的周期一定小3.(双选)一个环绕中心线AB以一定的角速度转动,P、Q为环上两点,位置如图所示,下列说法正确的是()A.P、Q两点的角速度相等B.P、Q两点的线速度相等C.P、Q两点的角速度之比为3∶1D.P、Q两点的线速度之比为3∶14.(2012·济宁联考)如图所示,两轮用皮带传动,皮带不打滑,图中有A、B、C三点,这三点所在处半径r A>r B=r C,则这三点的向心加速度a A、a B、a C的关系是() A.a A=a B=a C B.a C>a A>a BC.a C<a A<a B D.a C=a B>a A5.雨天的野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴,行驶时感觉很“沉重”。
如果将自行车后轮撑起,使后轮离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来。
如图所示,图中a、b、c、d为后轮轮胎边缘上的四个特殊位置,则()A.泥巴在图中a、c位置的向心加速度大于b、d位置的向心加速度B.泥巴在图中的b、d位置时最容易被甩下来C.泥巴在图中的c位置时最容易被甩下来D.泥巴在图中的a位置时最容易被甩下来2.用动力学方法解决圆周运动中的问题(1)向心力的来源.向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.(2)向心力的确定.①确定圆周运动的轨道所在的平面,确定圆心的位置.②分析物体的受力情况,找出所有的力,沿半径方向指向圆心的合力就是向心力.(3)解决圆周运动问题的主要步骤.①审清题意,确定研究对象;②分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等;③分析物体的受力情况,画出受力示意图,确定向心力的来源;④根据牛顿运动定律及向心力公式列方程;⑤求解、讨论.6.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,图K11-1为雪橇受到的牵引力F及滑动摩擦力F1的示意图(O为圆心),其中正确的是()A B C D7.如图所示,物块P 置于水平转盘上随转盘一起运动,图中c 沿半径指向圆心,a 与c 垂直,下列说法正确的是( )A .当转盘匀速转动时,P 受摩擦力方向为a 方向B .当转盘减速转动时,P 受摩擦力方向可能为b 方向C .当转盘加速转动时,P 受摩擦力方向可能为c 方向D .当转盘减速转动时,P 受摩擦力方向可能为d 方向 8.(2012·兰州模拟)上海磁悬浮线路的最大转弯处半径达到8 000 m ,近距离用肉眼看几乎是一条直线,而转弯处最小半径也达到1 300 m .一个质量为50 kg 的乘客坐在车上以360 km/h 不变速率随车驶过半径2 500 m 弯道,下列说法错误的是( )A .乘客受到的向心力大小约为200 NB .乘客受到来自车厢的力大小约为200 NC .乘客受到来自车厢的力大小约为539 ND .弯道半径设计特别大可以使乘客在转弯时更舒适 9.(双选)铁路转弯处的弯道半径r 是根据地形设计的.弯道处要求外轨比内轨高,其内外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说法正确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越大 10. (双选)如图所示,两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内做匀速圆周运动,则它们的 ( ).A .周期相同B .线速度的大小相等C .角速度的大小相等D .向心加速度的大小相等 11.无缝钢管的制作原理如图所示,竖直平面内,管状模型置于两个支承轮上,支承轮转动时通过摩擦力带动管状模型转动,铁水注入管状模型后,由于离心作用,紧紧地覆盖在模型的内壁上,冷却后就得到无缝纲管.已知管状模型内壁半径R ,则下列说法正确的是( )A .铁水是由于受到离心力的作用才覆盖在模型内壁上B .模型各个方向上受到的铁水的作用力相同C .若最上部的铁水恰好不离开模型内壁,此时仅重力提供向心力D .管状模型转动的角速度ω最大为gR12.如图3所示是一个玩具陀螺,a 、b 和c 是陀螺表面上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .a 、b 和c 三点的线速度大小相等B .b 、c 两点的线速度始终相同C .b 、c 两点的角速度比a 的大D .b 、c 两点的加速度比a 点的大第3节 圆周运动及其运用(2)考点二 竖直面内圆周运动问题分析物体在竖直面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并有“最大”、“最小”、“刚好”等词语,常有两种模型——轻绳模型和轻杆模型,分析比较如下:1.2012·常州模拟一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方L2处钉有一颗钉子,如图所示,将悬线沿水平方向拉直无初速释放后,当悬线碰到钉子后的瞬间,下列说法错误的是( )A .小球线速度没有变化B .小球的角速度突然增大到原来的2倍C .小球的向心加速度突然增大到原来的2倍D .悬线对小球的拉力突然增大到原来的2倍2. (双选)如图所示,质量为m 的小球在竖直平面内的光滑圆环轨道上做圆周运动.圆环半径为R ,小球经过圆环最高点时刚好不脱离圆环,则其通过最高点时( ). A .小球对圆环的压力大小等于mg B .小球受到的向心力等于0C.小球的线速度大小等于gRD.小球的向心加速度大小等于g3.(双选)乘坐游乐园的过山车时,质量为m的人随车在竖直平面内沿圆周轨道运动,下列说法正确的是()A.车在最高点时,人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去B.人在最高点时,对座位仍可能产生压力,但压力一定小于mgC.人在最低点时,处于超重状态D.人在最低点时,对座位的压力大于mg4.(双选)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R,小球半径为r,则下列说法中正确的是( )A.小球通过最高点时的最小速度B.小球通过最高点时的最小速度vmin=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力5.如图所示,长为L的轻杆一端固定质量为m的小球,另一端有固定转轴O。
现使小球在竖直平面内做圆周运动。
P为圆周轨道的最高点。
若小球通过圆周轨道最低点时的速度大小为92gL,则以下判断正确的是()A.小球不能到达P点B.小球到达P点时的速度小于gLC.小球能到达P点,但在P点不会受到轻杆的弹力D.小球能到达P点,且在P点受到轻杆向下的弹力6. (2012·江西五校联考)如图4-3-39所示,用长为L的轻绳把一个小铁球悬挂在高2L的O点处,小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,则有( )A.小铁球在运动过程中轻绳的拉力最大为5mgB.小铁球在运动过程中轻绳的拉力最小为mgC.若运动中轻绳断开,则小铁球落到地面时的速度大小为7gLD.若小铁球运动到最低点轻绳断开,则小铁球落到地面时的水平位移为2L7. (2013德阳市一诊)山地滑雪是人们喜爱的一项体育运动,一滑雪道ABC的底部是一段半径为R的圆弧,圆弧的末端C的切线沿水平方向,从C点到地面之间是一悬崖峭壁,如图所示.已知AC间的高度差为h,运动员连同滑雪装备总质量为m,开始时运动员从A点由静止下滑,滑到C点后被水平抛出,运动员经过时间t落到了峭壁下面的水平地面上,不计空气阻力和雪道的摩擦阻力(重力加速度为g),求:(1)运动员到达C点所受雪道的支持力的大小;(2)运动员落地前瞬间的速度大小.。