人工神经网络基础
- 格式:ppt
- 大小:356.00 KB
- 文档页数:54
人工神经网络的基本原理和应用概述人工神经网络是一种受到人脑神经元启发的计算模型。
它由许多高度互连的处理单元(神经元)组成,这些神经元之间通过连接强度(权值)相互通信。
人工神经网络能够通过学习和训练,自动调整权值和拓扑结构,从而实现某种特定任务。
基本原理人工神经网络的基本原理是模拟生物神经元的工作方式。
每个神经元接收一组输入信号,并根据这些输入信号的权值和激活函数的输出,产生一个输出信号。
这个输出信号又可以作为其他神经元的输入信号,从而实现信息的传递和处理。
人工神经网络通常由多层神经元组成,包括输入层、隐藏层和输出层。
输入层接收外部输入信号,隐藏层和输出层对输入信号进行处理和转换。
隐藏层和输出层之间的连接强度(权值)通过训练过程进行学习和调整,以实现预期的输出结果。
应用领域人工神经网络在各个领域都有广泛的应用,包括但不限于以下几个方面:1.图像识别–人工神经网络可用于图像识别任务,如人脸识别、物体识别等。
通过训练大量图像数据,神经网络可以学习到图像中的特征,并通过对输入图像进行处理,达到准确分类和识别的目的。
2.自然语言处理–人工神经网络在自然语言处理方面也有着广泛的应用。
它可以用于语音识别、情感分析、机器翻译等任务。
通过训练大量文本数据,神经网络可以学习到单词和语义之间的关联,从而实现对自然语言的理解和处理。
3.预测和分类–人工神经网络可以通过训练历史数据,对未来事件进行预测。
例如,它可以用于股票市场预测、天气预报等领域。
此外,神经网络还可用于数据分类,如垃圾邮件过滤、疾病诊断等任务。
4.控制与优化–人工神经网络在控制与优化领域也有着广泛应用。
它可以用于自动驾驶车辆、工业生产优化、智能电网调度等控制系统中,通过学习和训练,实现自动控制和优化的目标。
优势与挑战人工神经网络相比传统的算法有一些明显的优势,但同时也面临一些挑战。
优势•并行处理能力:神经网络的并行处理能力可以加快训练和推理的速度。
•自适应学习:神经网络可以通过训练和反馈机制,自动学习和调整权值,适应输入数据的变化。
第四章随机型神经网络1、随机型神经网络的基本思想对于BP神经网络和Hopfield神经网络的网络误差容易陷入局部极小值,而达不到全局最小点,主要原因为:结构上:存在着输入与输出之间的非线性函数关系,从而使网络误差或能量函数所构成的空间是一个含有多极点的非线性空间;算法上:网络的误差或能量函数只能按单方向减小而不能有丝毫的上升趋势。
对于第一点,是为保证网络具有非线性映射能力而必不可少的。
解决网络收敛问题的途径就只能从第二点入手,即不但让网络的误差或能量函数向减小的方向变化,而且,还可按某种方式向增大的方向变化,目的是使网络有可能跳出局部极小值而向全局最小点收敛。
这就是随机型神经网络算法的基本思想。
2、模拟退火算法在模拟退火算法中,有两点是算法的关键:①控制参数T;②能量由低向高变化的可能性。
这两点必须结合起来考虑,当T大时,可能性也大,T小时,可能性也小,把“可能性”当作参数T的函数。
“可能性”用数学模型来表示就是概率。
由此可以得到模拟退火算法如下:上式表明:在模拟退火算法中,某神经元的输出不象Hopfield 算法中那样,是由以内部状态Hi 为输入的非线性函数的输出(阶跃函数)所决定的,而是由Hi 为变量的概率(1)Hi P 或(0)Hi P 所决定的。
不同的Hi 对应不同的概率(1)Hi P 或(0)Hi P 来决定输出为兴奋或者抑制。
反复进行网络的状态更新,且更新次数N 足够大以后,网络某状态出现的概率将服从分布:式中,Ei 为状态{ui}所对应的网络能量。
这一概率分布就是Boltzmann分布。
式中的Z是为使分布归一化而设置的常数(网络所有状态的能量之和为常数)。
由这分布可以看出:状态的能量越小,这一状态出现的概率就越大。
这是Boltzmann分布的一大特点,即“最小能量状态以最大的概率出现”。
3、Boltzmann机20世纪80年代,Hinton、Ackley和Sejnowski等以模拟退火思想为基础,对Hopfield网络模型引入了随机机制,提出了一种统计神经网络模型-Boltzman 机。
第一章前向神经网络一、感知器1、感知器网络结构设网络输入模式向量为:对应的输出为:连接权向量为:2、感知器的学习➢初始化连接权向量及输出单元的阈值赋予(-1,+1)区间内的随机值,一般为较小的随机非零值。
➢连接权的修正每个输入模式作如下计算:(a)计算网络输出:(b)计算输出层单元希望输出与实际输出y之间的误差:(c)修正各单元与输出层之间的连接权与阈值:➢对m个输入模式重复步骤,直到误差k d(k=1,2,…,m)趋于零或小于预先给定的误差限ε。
3、感知器的图形解释➢整个学习和记忆过程,就是根据实际输出与希望输出之间的误差调整参数w 和θ,即调整截割平面的空间位置使之不断移动,直到它能将两类模式恰当划分的过程。
➢学习过程可看作是由式决定的n维超平面不断向正确划分输入模式的位置移动的过程。
4、感知器的局限性➢两层感知器只能解决线性可分问题➢增强分类能力的唯一出路是采用多层网络,即在输入及输出层之间加上隐层构成多层前馈网络。
➢Kolmogorov理论经过严格的数学证明:双隐层感知器足以解决任何复杂的分类问题。
➢简单的感知器学习过程已不能用于多层感知器,必须改进学习过程。
二、BP 神经网络 1、反向传播神经网络1) 误差逆传播神经网络是一种具有三层或三层以上的阶层型神经网络: ➢ 上、下层之间各神经元实现全连接,即下层的每一个单元与上层的每个单元都实现权连接;➢ 而每层各神经元之间无连接; ➢ 网络按有监督的方式进行学习。
2)➢ 当一对学习模式提供给网络后,神经元的激活值,从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入响应。
➢ 在这之后,按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,最后回到输入层,故得名“误差逆传播算法”。
➢ 随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断上升。
2、梯度下降法1)梯度法是一种对某个准则函数的迭代寻优算法。
人工神经网络基本原理人工神经网络(Artificial Neural Network,简称ANN)是一种模拟生物神经系统的计算模型,通过神经元之间的连接和传递信息的方式来进行计算和学习。
它由大量的人工神经元(Artificial Neuron)组成,每个人工神经元可以接收多个输入,经过激活函数的处理后,产生一个输出。
这些神经元之间通过权重来调整信息的传递强度和方向,从而实现信息的处理和模式的学习。
下面是人工神经网络的基本原理和工作过程。
1.人工神经元的结构和工作原理人工神经元是人工神经网络的基本组成单位,它模拟了生物神经元的结构和功能。
一个人工神经元接收多个输入信号,每个输入信号通过一个权重进行加权,然后通过激活函数进行处理,最终产生一个输出信号。
人工神经元的结构可以表示为:y = f(Σ(w_i * x_i) + b),其中y表示输出信号,x_i表示输入信号,w_i表示对应的权重,b表示偏置,f表示激活函数。
常用的激活函数有Sigmoid函数、ReLU函数等。
2.前向传播和反向传播在人工神经网络中,信息的传递分为两个过程:前向传播(Forward Propagation)和反向传播(Backward Propagation)。
(1)前向传播:在前向传播过程中,输入数据通过一层一层的神经元,从输入层传递到输出层。
每个神经元接收到上一层神经元的输出信号,并经过激活函数的处理产生一个新的输出信号。
这个过程可以理解为信息的正向流动。
通过多次的前向传播,人工神经网络可以对输入数据进行非线性的处理和抽象表示。
(2)反向传播:在反向传播过程中,首先计算输出层的误差,然后反向计算隐藏层和输入层的误差,并通过调整权重和偏置来减小误差。
这一过程可以看作是信息的反向流动。
反向传播使用梯度下降法来进行权重和偏置的更新,目的是将网络的输出尽可能地接近目标输出,从而实现训练和学习的目标。
3.神经网络的学习和训练神经网络的学习和训练是通过调整神经元之间的连接权重和偏置来实现的。