5离散型随机变量及其分布律
- 格式:ppt
- 大小:549.50 KB
- 文档页数:9
5.离散型随机变量及其分布律【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第二章第§2离散型随机变量及其分布律【教材分析】:概率论考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统计规律性,由此,就把随机试验的每一个可能的结果与一个实数联系起来。
随机变量正是为了适应这种需要而引进的,随机变量的引入有助于我们应用微积分等数学工具,把研究深入,一维离散型随机变量是随机变量中最简单最基本的一种。
【学情分析】:1、知识经验分析学生已经学习了概率的意义及概率的公理化定义,学习了事件的关系及运算,掌握了概率的基本计算方法。
2、学习能力分析学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。
【教学目标】:1、知识与技能:了解离散型随机变量的分布律,会求某些简单的离散型随机变量的分布律列;掌握伯努利试验及两点分布,2、过程与方法由本节内容的特点,教学中采用启发式教学法,通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。
3、情感态度与价值观通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学“零距离”,从而激发学生学习数学的热情。
【教学重点、难点】:重点:掌握离散型随机变量的概念及其分布律、性质,理解伯努利试验,两点分布。
难点:伯努利试验,两点分布。
【教学方法】:讲授法 启发式教学法 【教学课时】:1个课时 【教学过程】:一、问题引入(离散型随机变量的概念)例1:观察掷一个骰子出现的点数。
随机变量 X 的可能值是 :1, 2, 3, 4, 5, 6。
例2若随机变量 X 记为 “连续射击, 直至命中时的射击次数”, 则 X 的可能值是: 1,2,3,.例3 设某射手每次射击打中目标的概率是0.8,现该射手射了30次,则随机变量 X 记为“击中目标的次数”,则 X 的所有可能取值为:0,1,2,3,,30.定义 有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。