湖南省长沙市重点中学2014届高三数学第三次月考 文 湘教版
- 格式:doc
- 大小:267.10 KB
- 文档页数:8
2014年湖南省某校高考数学三模试卷(文科)一、单项选择题(本大题共10个小题,每小题5分,共50分)1. 已知集合A={3, a2},B={0, 1, a+1},若A∩B={1},则A∪B=()A {0, 1, 3}B {0, 1, 2, 3}C {0, 2, 3}D {0, 1, 3, 4}2. 下列说法中,不正确的是()A “|x|=|y|”是“x=y”的必要不充分条件B 命题p:∀x∈R,sinx≤1,则¬p:∃x∈R,sinx>1C 命题“若x,y都是偶数,则x+y是偶数”的否命题是“若x,y不是偶数,则x+y不是偶数” D 命题p:所有有理数都是实数,q:正数的对数都是负数,则(¬p)∨(¬q)为真命题3. 冬日,某饮料店的日销售收入y(百元)与当天的平均气温x(∘C)之间有下列5组样本数据:根据散点图可以看出,这组样本数据具有线性相关关系,则其回归方程可能是()A ŷ=x+2.6B ŷ=−x+2.6C ŷ=x+2.8D ŷ=−x+2.84. 执行如图所示的程序框图,若输入x=3,计算机输出的y值为13,则图中①处的关系式可以是()A y=x3B y=x−3C y=3xD y=3−x5. 设等差数列{a n}的前n项和为S n,若a1=1,a2+a4=10,则使S n>527成立n的最小值是()A 16B 17C 22D 236. 若抛物线y2=ax经过不等式组{x−y−2≥0,x+2y−8≤0,y≥1表示的平面区域,则抛物线焦点的横坐标的取值范围是()A [124, 14] B [112, 12] C [16, 1] D [14, 32]7. 如图,将边长为2的正方形ABCD沿对角线BD折起得到一个三棱锥C−ABD,已知该三棱锥的正视图与俯视图如图所示,则其侧视图的面积为()A 1B 2C √3D 2√38. 如图,在矩形ABCD中,AB=3,过点A向∠BAD所在区域等可能任作一条射线AP,已知事件“射线AP与线段BC有公共点”发生的概率为13,则BC边的长为()A 1B √3C 3D 3√39. 设F 1、F 2分别为双曲线x 2a 2−y 2b 2=1(a, b >0)的左、右焦点,动点P 满足PF 1→⋅PF 2→=0,若直线l:3x −4y −10=0与点P 的轨迹有且只有一个公共点,则下列结论正确的是( ) A a 2+b 2=2 B a 2−b 2=2 C a 2+b 2=4 D a 2−b 2=410. 已知定义在(0, +∞)上的函数f(x)满足:对任意正实数a ,b ,都有f(ab)=f(a)+f(b)−2,且当x >1时恒有f(x)<2,则下列结论正确的是( )A f(x)在(0, +∞)上是减函数B f(x)在(0, +∞)上是增函数C f(x)在(0, 1)上是减函数,在(1, +∞)上是增函数D f(x)在(0, 1)上是增函数,在(1, +∞)上是减函数二、填空题(本大题共5个小题,每小题5分,共25分)11. 已知z 为纯虚数,且满足(2−i)z =4−bi ,则实数b =________.12. 已知圆C 的极坐标方程为ρ=2cosθ,直线l 的参数方程为{x =5−√3ty =t (t 为参数),设A ,B 分别为圆C 和直线l 上的动点,则|AB|的最小值为________.13. 如图,已知|OA →|−1,|OB →|=2,∠AOB =∠BOC =60∘,若OC →=λOA →+OB →,则λ=________.14.如图,在△ABC 中,D 为BC 边上一点,已知AB =6,AD =5,CD =2,B =30∘,∠ADB 为锐角,则: (1)sin∠ADB =________; (2)AC 边的长为________.15. 设x 1=2t +i t−1×2t−1+i t−2×2t−2+i t−3×2t−3+...i 2×22+i 1×21+i 0×20. x 2=2t +i 0×2t−1+i t−1×2t−2+i t−2×2t−3+...+i 3×22+i 2×21+i 1×20. x 3=2t +i 1×2t−1+i 0×2t−2+i t−1×2t−3+...+i 4×22+i 3×21+i 2×20.x 4=2t +i 2×2t−1+i 1×2t−2+i 0×2t−3+i t−1×2t−4+...+i 5×22+i 4×21+i 3×20,… 以此类推构造无穷数列{x n },其中i t =0或l(k =0, 1, 2,…,t −1, t ∈N ∗),若x 1=110,则 (1)x 2=________.(2)满足x n =x 1(n ∈N ∗, n ≥2)的n 的最小值为________.三、解答题(共6小题,共75分,解答应写出文字说明、证明过程或演算步骤)16. 已知函数f(x)=√3sin2ωx +6cos 2ωx −3(ω>0)在一个周期内的图象如图所示,其中A 为图象的最高点,B 、C 为图象与轴的交点,且△ABC 为正三角形. (1)求ω的值; (2)若f(x 0)=6√35,且x 0∈(23, 83),求f(x 0+1)的值.17.今年5月,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估,将各连锁店的评估分数按[60, 70],[70, 80],[80, 90],[90, 100]分成4组,其频率分布直方图如图所示,集团公司还依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示:(1)估计该商业集团各连锁店评估得分的众数和平均数;(2)从评估分数不少于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.18. 如图,四棱锥P−ABCD的底面是边长为2的正方形,PD⊥底面ABCD,PD=CD,E为PB的中点.(1)求异面直线PA与DE所成的角;(2)在底边AD上是否存在一点F,使EF⊥平面PBC?证明你的结论.19. 某地区电力成本为0.3元/kw⋅ℎ,上年度居民用电单价为0.8元/kw⋅ℎ,用电总量为akw⋅ℎ(a为正常数),本年度计划将居民用电单价适当下调,且下调后单价不低于0.5元/kw⋅ℎ,不高于0.7元/kw⋅ℎ.经测算,若将居民用电单价下调为x元/kw⋅ℎ,则本年度居民用电总量比上年度增加0.2ax−0.4kw⋅ℎ.(1)当用电单价下调为多少时,电力部门本年度的收益最低?(精确到0.01元/kw⋅ℎ,参考数据:√2≈1.414)(2)若保证电力部门本年度的收益比上年度增长20%以上,求下调用电单价的定价范围.20. 如图,设椭圆中心在原点,焦点在x轴上,A、B分别为椭圆的左、右顶点,F为椭圆的右焦点,已知椭圆的离心率e=√32,且AF→⋅BF→=−1.(1)求椭圆的标准方程;(2)若存在斜率不为零的直线l与椭圆相交于C、D两点,且使得△ACD的重心在y轴右侧,求直线l在x轴上的截距m的取值范围.21. 已知函数f(x)=1x+1.(1)设g(x)=f(x)⋅1nx,判断函数g(x)在(0, +∞)上是否存在极大值,并说明理由.(2)如图,曲线y=f(x)在点Q(0, 1)处的切线与x轴交于点P1,过点P1作x轴的垂线交曲线于点Q1;曲线在点Q1处的切线与x轴交于点P2,过点P2作x轴的垂线交曲线于点Q2;依次重复上述过程得到点列:P1,P2,P3,…,P n(n∈N∗),设点P n的坐标为(a n, 0),求数列{a n}的通项公式,并证明:1a1+1a2+...+1a n≥32−12n.2014年湖南省某校高考数学三模试卷(文科)答案1. B2. C3. D4. C5. D6. A7. A8. B9. C10. A11. −812. 113. −214. 分别为:35,3√5.15. 87、7.16. 解:(1)函数f(x)=√3sin2ωx+6cos2ωx−3=√3sin2ωx+3cos2ωx=2√3sin(2ωx+π3).由于△ABC为正三角形,故高线的长为2√3,故边长为BC=4,故周期为8,即2π2ω=8,求得ω=π8.(2)由以上可得,f(x)=2√3sin(π4x+π3),由f(x0)=2√3sin(π4x0+π3)=6√35,可得sin(π4x0+π3)=35.结合x0∈(23, 83),可得π4x0+π3∈(π2, π),∴ cos(π4x0+π3)=−45.求f(x0+1)=2√3sin[π4(x0+1)+π3]=2√3sin[(π4x0+π3)+π4]=2√3[sin(π4x0+π3)cosπ4+cos(π4x0+π3)sinπ4]=2√3(35×√22−45×√22]=−√65.17. 解:(1)∵ 最高小矩形下底边的中点值为75,∴ 估计评估得分的众数为75;∵ 从左至右第一、三、四个小矩形的面积分别为0.28,0.16,0.08,∴ 第二个小矩形的面积为1−0.28−0.16−0.08=0.48;∴ x¯=65×0.28+75×0.48+85×0.16+95×0.08=75.4,即估计该商业集团各连锁店评估得分的平均数为75.4;(2)∵ A等级的频数为25×0.08=2,B等级的频数为25×0.16=4,∴ 从6家连锁店中任选2家,共有6×52=15种选法,其中选1家A等级和1家B等级的选法有2×4=8种,选2家A等级的选法有1种,∴ P=8+115=35,即至少选一家A等级的概率是35.18. 解:(1)取AB的中点G,连结EG、DG,∵ E是PB的中点,∴ EG // PA,∴ ∠DEG为所求的角,由已知得BD=2√2,PD=2,则PB=2√3,∴ DE=12PB=√3,又EG=12PA=√2,DG=√AD2+AG2=√5,∴ DG2=DE2+EG2,∴ ∠DEG=90∘,∴ 异面直线PA与DE所成角为90∘.(2)存在点F为AD的中点,使EF⊥平面PBC.证明如下:取PC的中点H,连结DH,EH,∵ PD=CD,∴ DH⊥PC,①∵ PD⊥底面ABCD,∴ PD⊥BC,∵ 底面ABCD是正方形,∴ CD⊥BC,∴ BC⊥平面PCD,∴ BC⊥DH.②结合①②知DH⊥平面PBC,∵ E,F分别是PB、AD的中点,∴ FD= // 12BC,EH= // 12BC,∴ FD= // EH,∴ 四边形EFDH 是平行四边形,∴ EF // DH , ∴ EF ⊥平面PBC .19. 解:(1)设电力部门本年度的收益为y 元,则y =(a +0.2a x−0.4)(x −0.3),x ∈[0.5, 0.7],∴ y =[(x −0.4)+0.02x−0.4+0.3]a ≥(2√0.02+0.3)a , 当且仅当x −0.4=0.02x−0.4,即x =0.4+0.1×√2≈0.54时取等号,故用电单价下调为0.54元/kw ⋅ℎ时,电力部门本年度的收益最低; (2)令(a +0.2ax−0.4)(x −0.3)>0,5a(1+20%),即x 2−1.1x +0.3>0, ∴ x <0.5或x >0.6, ∵ 0.5≤x ≤0.7, ∴ 0.6<x ≤0.7,∴ 下调用电单价的定价范围是(0.6, 0.7].20. 解:(1)设椭圆的标准方程为:x 2a 2+y 2b 2=1(a >b >0). A(−a, 0),B(a, 0),F(c, 0). AF →=(c +a, 0),BF →=(c −a, 0). ∵ AF →⋅BF →=−1,∴ c 2−a 2=−1, 又ca =√32,a 2=b 2+c 2,联立解得b 2=1,a 2=4,c 2=3. ∴ 椭圆的标准方程为x 24+y 2=1.(2)设直线l 的方程为x =ty +m ,联立{x 2+4y 2=4x =ty +m ,化为(t 2+4)y 2+2mty +m 2−4=0, 设C(x 1, y 1),D(x 2, y 2),则y 1+y 2=−2mt t 2+4.∵ △ACD 的重心在y 轴右侧, ∴x 1+x 2−23>0,即x 1+x 2>2,∴ t(y 1+y 2)+2m >2, ∴−2mt 2t 2+4+2m >2,即4m >t 2+4.∵ 直线l 与椭圆相交,则△=4m 2t 2−4(m 2−4)(t 2+4)>0,化为t 2+4>m 2, ∴ 4m >m 2,解得0<m <4,又t 2≥0,∴ 4m >t 2+4≥4,解得m >1, ∴ m 的取值范围是(1, 4).21. 解:(1)g(x)=f(x)⋅1nx =lnxx+1(x >0),g′(x)=1(x+1)2(x+1x−lnx).设ℎ(x)=x+1x −lnx =1+1x−lnx .ℎ′(x)=−1x 2−1x=−1+x x 2<0,∴ ℎ(x)在(0, +∞)上单调递减, ∵ ℎ(e)=1e >0,ℎ(e 2)=1e 2−1<0,∴ ℎ(x)在区间(e, e 2)内存在唯一零点,即存在x 0∈(e,e 2),使得ℎ(x 0)=0.∴ 当0<x <x 0时,ℎ(x)>0,从而g′(x)>0;当x >x 0s 时,ℎ(x)<0,从而g′(x)<0. ∴ g(x)在区间(0, x 0)上是增函数,在区间(x 0, +∞)上是减函数, ∴ x 0为函数g(x)的极大值点.故函数g(x)在(0, +∞)上存在极大值. (2)∵ f′(x)=−1(x+1)2,则f′(0)=−1,∴ 切线QP 1的方程为:y =−x +1.令y =0,则x =1. ∴ a 1=1.由已知可得Q n−1(a n−1,1a n−1+1),则切线Q n−1P n 的方程为y −1a n−1+1=−1(a n−1+1)2(x −a n−1).令y =0,则x =2a n−1+1,∴ a n =2a n−1+1(n ≥2).∵ a n +1=2(a n−1+1)(n ≥2),则数列{a n +1}是首项为2,公比为2的等比数列. ∴ a n +1=2n ,即a n =2n −1.因此∑1ain i=1=1+122−1+⋯+12n −1≥1+122+...+12n =1+14(1−12n−1)1−12=32−12n .。
湖南师大附中2014届高三第三次月考试题高三语文(满分150分)本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
其中第Ⅰ卷第三、四大题为选考题,其它题为必考题。
第Ⅰ卷阅读题(70分)甲必考题一、现代文阅读(9分,每小题3分) 阅读下面的文字,完成1–3题王维的“名大家”明清诗论中对王维“名大家”的特殊定位不仅是介乎“大家”和“名家”之间的调和性观点,更是王维诗歌的独特成就在传统诗学批评标准之下的特殊境遇之写照。
中国历代诗学在评定一流大诗人的具体标准上存在着一些细微差异,但基本要求一致,即人格高尚、才大力雄、超越时代、泽被后世。
其中,道德标准是成为伟大作家的首要条件,古今中外概莫能外。
“伟大”不仅取决于文学艺术作品本身所表现出的审美价值和思想意义,还取决于作家本人在为人行事方面的崇高和磊落。
杜甫得到“诗圣”的桂冠和普遍的尊奉主要就出于这种观念,所谓“论诗者观其大节而已”。
同样,王维被主流诗学排除在“大家”之外的首要原因也就是其气节人格不够符合儒家正统思想。
王维笃信佛教,不是“醇儒”,所谓“耽禅味而忘诗教,此《三百篇》之罪人矣”。
“陷贼”事件又于大节有亏,宋人对王维的指摘就是典型论调。
而王维的拥护者为了提升王维的地位,首先做的就是强化王维诗歌的伦理道德色彩。
如推尊王维为唐诗正宗的赵殿成在《王右丞诗笺注.序》中努力为王维“陷贼“事件辩诬,强调王维的立身大节以及其诗中”有得于古者诗教之旨”和“温柔敦厚”的一面,都是为了确立王维一流“大家”的诗歌地位。
兼容并蓄,富于学力,气骨沉雄,也是取得“大家”资格的必备条件。
这从宋人以杜甫的“集大成”作为“入圣”的重要条件亦可见出,明代诗学的“格调派”也是以此推尊李、杜为“大家”。
王维之所以“大家不足”,主要是其诗歌表现出的自然情韵与主流诗学倡导的学养和骨力之间的差距。
由于重学力格调,轻自然情韵的思想在诗学传统中长期居于主导地位,代表王维诗歌艺术特色的山水短章向来被视为诗歌正统之外的“一偏”,以至于清初王士祯为了抬高王维的地位,也要强调王维诗歌中的“沉着痛快”。
长沙四县一市2013届3月联考数学(文)试题注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答。
答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
全卷满 分150分,考试时间120分钟。
参考公式:用最小二乘法求线性回归方程系数公式 1221ˆni ii n i i x y nx y b xnx ==-⋅=-∑∑,ˆay bx =- 方差∑=+=n i i x n x n s 1222)(1 方差公式:2222121()()()n s x x x x x x n ⎡⎤=-+-++-⎣⎦如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共45分)一、选择题(本大题共9小题,每小题5分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设集合{02}A x x =<<,集合2{log 0}B x x =>,则A B 等于A .{}|2x x <B .{}|x x >0C .{}|02x x <<D .{}|12x x << 2. 复数21i-化简的结果为 A .1i + B .1i -+C . 1i -D .1i --3. 向量(3,4),(,2)x ==a b , 若||⋅=a b a ,则实数x 的值为A .1-B .12- C .13- D .1 4. 如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA 1⊥面A 1B 1C 1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的侧视图面积为A .B .C .D .5. 右图是函数)sin(ϕω+=x A y 在一个周期内的图象,此函数的解析式可为A .)32sin(2π+=x y B .)322sin(2π+=x y C .)32sin(2π-=xy D .)32sin(2π-=x y 6. 已知点1(4,0)F -、2(4,0)F ,曲线上的动点P 到1F 、2F 的距离之差为6,则该曲线的方程为A .221(3)97y x y -=≥ B. 22197y x -= C. 221(3)97x y x -=≥ D. 22197x y -= 7.已知2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(.若对任意]3,1[1-∈x ,总存在]2,0[2∈x ,使得)()(21x g x f ≥成立,则实数m 的取值范围是A .),8[∞+-B .⎪⎭⎫⎢⎣⎡∞+-,43C .⎪⎭⎫⎢⎣⎡∞+,41 D .),1[∞+ 8. 关于x 的方程02cos cos cos 22=--C B A x x 有一个根为1,则△ABC 中一定有 A .A B = B .B C = C .A C = D .2A B π+=9. 设函数()y f x =在区间(,)a b 的导函数为'(),'()f x f x 在区间(,)a b 的导函数为''()f x 若在区间(,)a b 上''()0f x <恒成立,则称函数()f x 在区间(,)a b 上为“凸函数”,已知432113()1262f x x mx x =--,若对任意的实数m 满足||2m ≤时,函数()f x 在区间 (,)a b 上为“凸函数”,则b a -的最大值为A .4B .3C .2D .1第Ⅱ卷(非选择题 共105分)二:填空题:(本大题共6小题,每小题5分,共30分,把答案填在答题卡中对应题号的横线上。
湖南省四校2014届高三上学期第三次联考 文科数学第Ⅰ卷(共45分)一、选择题:本大题共9个小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2}U =--,集合{1,1,2}A =-,{1,1}B =-,则)(B CA U为( )A .{1,2}B .{1}C 。
{2}D .{1,1}-2.“x=3”是“x 2=9”的( )(A)充分而不必要的条件 (B)必要而不充分的条件(C )充要条件 (D )既不充分也不必要的条件 【答案】A 【解析】试题分析:当3=x 时有92=x ,当92=x 时3±=x ,故3=x 是92=x 的充分不必要条件,选A 。
考点:充要条件3.下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .21y x=-+B .lg ||y x =C .1y x= D .xy e -=【答案】A 【解析】4.在各项都为正数的等比数列}{na 中,首项为3,前3项和为21,则3a等于( )A .15B .12C .9D .65。
已知函数()()()40,40.x x x f x x x x +<⎧⎪=⎨-≥⎪⎩,, 则函数()f x 的零点个数为( )A .1B .2C .3D .4 【答案】C 【解析】试题分析:当0<x ,由0)4(=+x x 得4-=x ;当0≥x ,由0)4(=-x x 解得4,0==x x ,故共有3个零点,选C .考点:1.分段函数;2.函数的零点6.已知函数y=f (x )的图象如图所示,则函数y=f (|x|)的图象为( )A .B .C .D .【答案】B 【解析】试题分析:根据函数图像的对称变换可知,函数y=f (|x|)的图象是保留y 轴右侧的图像,然后把右侧图像沿y 轴翻折后得到,故选B.考点:函数图像的变换7.在ABC ∆中, ︒=∠120A ,1AB AC ⋅=-,则||BC 的最小值是()A 、2B 、2C 、6D 、68.奇函数)(x f 在区间]1,1[-上是增函数,且1)1(-=-f ,当]1,1[-∈x 时,函数12)(2+-≤at t x f 对一切]1,1[-∈a 恒成立,则实数t 的取值范围是( )22.≤≤-t A22.≥-≤t t B 或 20.≥≤t t C 或022.=≥-≤t t t D 或或考点:1.函数的单调性; 2。
2014届高三第三次月考数学试题卷时间:120分钟 满分150分 2013.11.17第 I 卷一、选择题(每小题5分,共50分)1. 已知函数()()lg 1f x x =-的定义域为M ,函数1y x=的定义域为N ,则M N =( ) A. {}10x x x <≠且 B . {}10x x x ≤≠且 C. {}1x x > D. {}1x x ≤2.若“m x <”是“2)2014)(2013(>--x x ”的充分不必要条件,则m 的最大值是( ) A . 2011 B. 2012 C. 2013 D. 20143. 已知函数x n x m x f cos sin 2)(-=,直线3π=x 是函数)(x f 图像的一条对称轴,则=mn( ) A.B. 3C. 332-D. 334. 如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边长均为1,则该几何体的表面积为 ( )A .21+B .222+C .13D .22+5. 已知复数Z 1 23sin 23cos i +=和复数Z 2 37sin 53sin i +=,则Z 1·Z 2 ( )A .i 2321+ B .i 2123+ C .i 2321- D .i 2123- 6. ABC ∆中,60,A A ∠=︒∠的平分线AD 交边BC 于D ,已知3=AB ,且1()3AD AC AB R λλ=+∈,则AD 的长为( )A .1 BC .D .37.袋中标号为1,2,3,4的四只球,四人从中各取一只,其中甲不取1号球,乙不取2号球,丙不取3号球,丁不取4号球的概率为( ) A.41 B. 83 C. 2411 D. 2423 8. 若函数()y f x =图像上的任意一点P 的坐标(,)x y 满足条件|| ||y x ≥,则称函数()f x 具有性质S ,那么下列函数中具有性质S 的是 ( )A .()1xf x e =- B .()ln(1)f x x =+ C .()sin f x x = D .()tan f x x =9. 已知直线AB 与抛物线24y x =交于,A B 两点,M 为AB 的中点,C 为抛物线上一个动点,若0C 满足00min{}C A C B CA CB ∙=∙,则下列一定成立的是( )。
湖南省长沙市重点中学2014届高三数学第八次月考试题 理 湘教版1.设集合{}{}2,ln ,,A x B x y ==,假设{}0A B ⋂=,如此y 的值为A .0B .1C .eD .2 答案:A2.复数12iz i -=的虚部是( )(A) 1 (B)-1 (C)2 〔D 〕-2 答案:B3.如下命题中的假命题是〔 〕A.0,32x xx ∀>>B.()0,,1x x e x∀∈+∞>+C.()0000,,sin x x x ∃∈+∞<D.00,lg 0x R x ∃∈<答案:C4.某厂生产A 、B 、C 三种型号的产品,产品数量之比为3:2:4,现用分层抽样的方法抽取一个样本容量为180的样本,如此样本中B 型号的产品的数量为 (A)20 (B)40 (C)60 (D)80 答案:B5.函数()y f x x =+是偶函数,且(2)1,f =如此(2)f -= 〔A 〕1- 〔B 〕1 〔C 〕5- 〔D 〕5 答案:D6.设a 、b 都是非零向量,如下四个条件中,一定能使0||||a ba b +=成立的是A .13a b=- B .//a b C .2a b = D .a b ⊥ 答案:A7.四棱锥P ABCD -的三视图如下列图,如此此四棱锥的四个侧面的面积中最大的是侧视图俯视图A .3 B.C .6D .8【答案】C .8.现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,假设其他商品的相对顺序不变,如此不同调整方法的种数是( ) A .420 B .560C .840 D .22809.椭圆方程为22221(0)x y a b a b +=>>,A 、B 分别是椭圆长轴的两个端点,M 、N 是椭圆上关于x轴对称的两点,直线,AM BN 的斜率分别为12,k k ,假设1214k k ⋅=,如此椭圆的离心率为.(A) 21 (B) 31 (C)33 〔D〕10.不等式222y axy x +-≤0对于任意]2,1[∈x 与]3,1[∈y 恒成立,如此实数a 的取值范围是〔 〕A .a ≤22B .a ≥22C .a ≥311D .a ≥29答案:D11.〔几何证明选讲〕如图,AB 是⊙O 的一条弦,点P 为AB 上一点,PC OP ⊥,PC 交⊙O 于C ,假设4AP =,2PB =,如此PC的长是AB COP12.〔极坐标系与参数方程选讲〕参数方程⎪⎪⎩⎪⎪⎨⎧-=+=--)(21)(21t t t t e e y e e x 中当t 为参数时,化为普通方程为__122=-y x _〔x )1≥_. 13.〔不等式选讲〕假设正数a ,b ,c 满足a +b +c =1,如此13a +2+13b +2+13c +2的最小值为 1.14.10cos()4πθ+=-,(0,)2πθ∈,如此sin(2)3πθ-=10334+. 【答案】15.定义某种运算⊗,b a S ⊗=的运算原理如右图所示. 设)3()0()(x x x x f ⊗-⊗=.如此=)3(f __-3____;()f x 在区间[]3,3-上的最小值为___-12___.16.数列{}n a 满足)(221++∈-=N n a a n n ,且ba b a a a ,(,20121==>2〕如此=201121a a a 4422--a b 〔用a,b 表示〕17.在ABC ∆中,三内角A ,B ,C 所对的边分别是a ,b ,c ,且c a C b -=2cos 2. 〔Ⅰ〕求角B 的大小;〔Ⅱ〕假设C A sin sin 的取值范围.解〔Ⅰ〕由余弦定理可得:c a ab c b a b -=-+⋅222222,即ac b c a =-+222, ∴212cos 222=-+=ac b c a B ,由),0(π∈B 得3π=B . 〔Ⅱ〕由3π=B 得,A C -=32π,∴A A A A A C A 2sin 21cos sin 23)32sin(sin sin sin +=-=π41)62sin(21412cos 412sin 43+-=+-=πA A A .∵)32,0(π∈A , ∴)67,6(62πππ-∈-A ,∴1)62sin(21≤-<-πA ,∴C A sin sin 的取值范围为]43,0(.18.某班甲、乙两名学同参加100米达标训练,在一样条件下两人10次训练的成绩(单位:秒)如下:(1)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.(2)后来经过对甲、乙两位同学的屡次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.解 (1)设事件A 为:甲的成绩低于12.8,事件B 为:乙的成绩低于12.8, 如此甲、乙两人成绩至少有一个低于12.8秒的概率为 P =1-P(A )(B )=1-410×510=45.………………5分(2)设甲同学的成绩为x ,乙同学的成绩为y ,如此|x -y|<0.8,得-0.8+x<y<0.8+x.………………8分如图阴影局部面积即为3×3-2.2×2.2=4.16,………………9分 如此P(|x -y|<0.8)=P(-0.8+x<y<0.8+x)=4.163×3=104225.…………12分19.在如下列图的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF=90º, AD= 2,AB=AF=2EF =1,点P 在棱DF 上.〔1〕假设P 是DF 的中点, 求异面直线BE 与CP 所成角的余弦值; 〔2〕假设二面角D-AP-C 6PF 的长度.解析:〔1〕因为∠BAF=90º,所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD= AB , 所以AF ⊥平面ABCD ,因为四边形ABCD 为矩形, 所以以A 为坐标原点,AB ,AD ,AF 分别PF EDCAB为x ,y ,z 轴,建立如下列图空间直角坐标系O xyz -.所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,2,0)C . 所以 1(,0,1)2BE =-,1(1,1,)2CP =--, 所以4cos ,||||BE CP BE CP BE CP ⋅<>==⋅,即异面直线BE 与CP 所成角的余弦值为. ----6分〔2〕因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)AP t t =-,(1,2,0)AC =, 所以 平面APC 的法向量为222(2,1,)t n t-=-,所以,121212||cos ,||||(n n n n n n ⋅<>===⋅-解得23t =,或2t =〔舍〕. 所以||PF =. -------------------------12分 20.某地决定重新选址建设新城区,同时对旧城区进展拆除.旧城区的住房总面积为64a 2m ,每年拆除的数量一样;新城区计划第一年建设住房面积a 2m ,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加a 2m .设第n (1,N n n ≥∈且)年新城区的住房总面积为n a 2m ,该地的住房总面积为n b 2m .〔1〕求{}n a 的通项公式;〔2〕假设每年拆除4a 2m ,比拟与n b的大小.解析:⑴设第n 年新城区的住房建设面积为n λ2m ,如此当14n ≤≤时,12n na λ-= 当5n ≥时,(4)n n a λ=+.所以, 当14n ≤≤时,(21)nn a a =-当5n ≥时,2489(4)n a a a a a a n a =+++++++…29222n n a +-=故2(21)(14),922(5).2n n a n a n n a n ⎧-≤≤⎪=⎨+-≥⎪⎩ ……6分⑵13n ≤≤时,11(21)n n a a ++=-,(21)644n n b a a na =-+-,显然有1n n a b +< ……7分4n = 时,1524n a a a +==,463n b b a ==,此时1n n a b +<. ……8分 516n ≤≤ 时,2111122n n n a a ++-=,29226442n n n b a a na+-=+- 10分1(559)n n a b n a +-=-. ……11分所以,511n ≤≤时,1n n a b +<;1216n ≤≤时,1n n a b +>.17n ≥时,显然1n n a b +>故当111n ≤≤时,1n n a b +<;当 12n ≥时,1n n a b +>. 13分21.椭圆2222:1(0)x y C a b a b +=>>的离心率为,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点(3,0)M 的直线与椭圆C 相交于两点,A B 〔1〕求椭圆C 的方程;〔2〕设P 为椭圆上一点,且满足〔O 为坐标原点〕,当3||<AB 时,求实数t 的取值范围.解〔1〕由2c e a ==,所以2234c a =,所以22224,3a b c b ==所以222214x y b b += …… 1分 又由过焦点且垂直于长轴的直线被椭圆截得的弦长为221b a =所以1b = …… 3分所以2214x y += …… 4分〔2〕设1122(,),(,),(,)A x yB x y P x y设:(3)AB y k x =-与椭圆联立得整理得2222(14)243640k x k x k +-+-= 24222416(91)(14)0k k k ∆=--+>得215k <2212122224364,1414k k x x x x k k -+=⋅=++ …… 6分 1212(,)(,)OA OB x x y y t x y +=++=121()x x x t=+=2224(14)k t k + []12122116()()6(14)k y y y k x x k t t t k -=+=+-=+由点P 在椭圆上得22222(24)(14)k t k ++22221444(14)k t k =+22236(14)k t k =+ …… 8分又由12AB x =-<, 所以2212(1)()3k x x +-<221212(1)()43k x x x x ⎡⎤++-<⎣⎦2(1)k +242222244(364)(14)14k k k k ⎡⎤--⎢⎥++⎣⎦3<22(81)(1613)0k k -+>所以221810,8k k ->>…… 11分所以21185k << 由22236(14)k t k =+得 222236991414k t k k ==-++所以234t <<,所以2t -<<2t << …… 13分22.函数2()(0)f x x ax a =-≠,()ln g x x =,()f x 图象与x 轴异于原点的交点M 处的切线为1l ,(1)g x -与x 轴的交点N 处的切线为2l , 并且1l 与2l 平行.〔1〕实数t ∈R ,求[]ln ,1,u x x x e =∈的取值范围与函数[][()+],1,y f xg x t x e =∈的最小值〔用t表示〕;〔2〕令()()'()F x g x g x =+,给定1212,(1,),x x x x ∈+∞<,对于两个大于1的正数βα,,存在实数满足:21)1(x m mx -+=α,21)1(mx x m +-=β,并且使得不等式12|()()||()()|F F F x F x αβ-<-恒成立,求实数的取值范围.解:()y f x =图象与x 轴异于原点的交点(,0)M a ,'()2f x x a =-(1)ln(1)y g x x =-=-图象与x 轴的交点(2,0)N ,1'(1)1g x x -=-由题意可得12l l k k =,即1a =,∴2(),f x x x =-,………2分 〔1〕2[()+][ln +](ln +)y f xg x t x x t x x t ==-=22(ln )(21)(ln )x x t x x t t +-+-…4分 令ln u x x =,在 []1,x e ∈时,'ln 10u x =+>,∴ln u x x =在[]1,e 单调递增,0,u e ≤≤………3分22(21)y u t u t t =+-+-图象的对称轴122tu -=,抛物线开口向上当1202t u -=≤即12t ≥时,2min 0|u y y t t ===-②当122t u e -=≥即122e t -≤时,22min |(21)u e y y e t e t t ===+-+- ③当1202t e -<<即12122e t -<<时, 22min 12212121|()(21)224tu t t y y t t t -=--==+-+-=-…………6分1(3)()()'()ln F x g x g x x x =+=+,22111'()0x F x x x x-=-=≥1x ≥得 所以()F x 在区间(1,)+∞上单调递增……………………7分∴1x ≥当时,F F x ≥>()(1)0 ①当(0,1)m ∈时,有12111(1)(1)mx m x mx m x x α=+->+-=,12222(1)(1)mx m x mx m x x α=+-<+-=,得,同理,∴ 由)(x f 的单调性知0<1()()F x F α<、2()()F F x β<从而有12|()()||()()|F F F x F x αβ-<-,符合题设. ………………9分②当0m ≤时,12222(1)(1)mx m x mx m x x α=+-≥+-=,12111(1)(1)m x mx m x mx x β=-+≤-+=,由)(x f 的单调性知 0<12()()()()F F x F x F βα≤<≤,∴12|()()||()()|F F F x F x αβ-≥-,与题设不符……………11分③当1m ≥时,同理可得12,x x αβ≤≥,得12|()()||()()|F F F x F x αβ-≥-,与题设不符. …………12分∴综合①、②、③得(0,1)m ∈……………13分。
2014届高三上学期第三次月考试卷数学理一.选择题1.已知复数z 满足z (1+i )=i ,则复数z 为( A )B .1122i - C .1+i D .1-i2. 幂函数y =f (x )的图像经过点(4,12),则f (14)的值为( B )A .1B .2C .3D .43. 已知随机变量ξ服从正态分布2(4,)N σ,若(8)0.4P ξ>=,则(0)P ξ<= A .0.3 B .0.4 C .0.6 D .0.7 答案:B4. 下列有关命题的说法正确的是 ( D ) A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”.B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“∃,R x ∈使得210x x ++<”的否定是:“对∀,R x ∈ 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.5. 已知函数2()sin 22cos 1f x x x =+-,将()f x 的图象上各点的横坐标缩短为原来的12倍,纵坐标不变,再将所得图象向右平移4π个单位,得到函数()y g x =的图象,则函数()y g x =的解析式为( C )A .()g x x =B .()g x x.()g x x = 6.如右图所示,,,A B C 是圆O 上的三点,CO 的延长线与线段AB交于圆内一点D ,若OC xOA yOB =+,则( C ) A .01x y <+< B .1x y +>C .1x y +<-D .10x y -<+<7.已知函数2()|6|f x x =-,若0a b <<,且()()f a f b =,则2a b 的最小值是( A )(A )-16 (B)-12 (C) -10 (D) -88.设函数y =f (x )在(-∞,∞+)内有定义,对于给定的正数k ,定义函数:()()k f x f x k ⎧=⎨⎩(())(())f x k f x k ≤>,取函数f (x )=2-x -e -x,若对任意的x ∈(-∞,∞+),恒有f k (x )=f (x ),则( D )A. k 的最大值为2B. k 的最小值为2C. k 的最大值为1D. k 的最小值为1二.填空题(一)选做题(从9—11题中任选两道题作答。
2014届高三上学期第三次月考试卷英语试题本试卷分为四个部分,包括听力理解、语言知识运用、阅读和书面表达。
考试结束后,将答题卷和答题卡一并交回。
时量120分钟。
满分150分。
PARTⅠLISTENING COMPREHENSION (30 marks)PART ONE LISTENING COMPREHENSIONSECTION ADirections: In this section you’ll hear 6 conversations between 2 speakers. For each conversation, there are several questions and each question is followed be three choices. Listen to the conversations carefully and then answer the questions by making the corresponding letter (A, B, or C) on the question booklet.You will hear each conversation TWICE.EXAMPLE:When will the magazine probably arrive?A. WednesdayB. ThursdayC. FridayThe answer is B.Questions 1 and 2 are based on Conversation 1. You now have 10 seconds to read the questions. Conversation 11. Where is Eric now?A. WashingtonB. ChinaC. France2. According to the conversation, what is Eric’s aunt?A. A teacher.B. A doctor.C. A manager.Conversation 23. Where does the conversation most probably take place?A. At the post office.B. In a flower shop.C. In a gift shop4. What does the woman buy at last?A. A postcard.B. A hat.C. Some food.Conversation 35. What is the relationship between the two speakers?A. Policeman and driver.B. Salesman and customer.C. Employer and employee.6. How much was the woman made to pay in all?A. $35.B. $50.C. $65.Conversation 47.What time does the train leave and arrive?A. It leaves at 5: 15 and arrives at 7: 20 tomorrowB. It leaves at 5: 00 and arrives at 7: 10 tomorrow.C. It leaves at 5: 00 and arrives at 7: 10 at night.8. What is she going there for?A. To spend her holiday.B. To see her friends.C. To meet her parents.9. Which of the three can be TRUE?A. Lucy’s parents will arrive in Beijing at 7: 10 a.m.B. Lucy’s parents aren’t going with her to the station.C. Lucy’s parents are going to see her off.Conversation 510. What is the man looking for?A. The police station.B. A drugstore.C. The nearest post office.11. Where is the nearest post office?A. Across townB. Next to a drugstore.C. About 4 blocks away.12. What does the woman suggest that the man buy?A. A police report.B. A guidebook.C. Anything at a drugstore.Conversation 613. Which museum will they go to?A. The art museum.B. The children’s museum.C. The history museum.14. Who is Henry?A. Jim’s brother.B. The woman’s husband.C. The woman’s father.15. How will they go to the museum?A. On foot.B. By bus.C. By carSECTION BDirections: in this section, you will hear a mini-talk. Listen carefully and then fill in the numbered blanks with the information you’ve got. Fill in each blank with NO MORE THAN 3 WORDS.You will hear the mini-talk TWICE.PARTⅡLAGUAGE KNOWLEDGE (45 marks)Section A (15 marks)Directions: For each of the following unfinished sentences there are four choices marked A, B, C and D. Choose the one that best completes the sentence.21. The women carrying babies and luggage, come in first, ________?A. will youB. will theyC. don’t theyD. don’t you22. One more week, ________ we will accomplish the task.A. orB. andC. ifD. so that23. The farm as well as its neighboring hills we once spent so much time on ________ on a new look as recently as last year.A. having takenB. is takenC. takingD. has taken24. The rich, for ________ money was not a problem, wanted to buy the whole building in this area if possible.A. theirB. hisC. whomD. whose25. There were two rooms in the house, _________ served as a kitchen.A. the smaller one of whichB. the smaller oneC. the smaller of themD. and the smaller one of which26. You can use a large plastic bottle, with its top________, as a pot to grow young plants in.A. cutting offB. cut offC. to cut offD. being cut off27. The only criterion for including a paper in this kind of books ________ its high quotability(引用). We don't want anything that few experts lay their eyes on.A. hasB. haveC. isD. are28. No sooner ________ finished watching that programme about those extinct species, than she decided to join the Wildlife Conservation Organization.A. he finishedB. has he finishedC. did he finishD. had he finished29. ________ the extraordinary beauty of Changling is the Ling’en Palace, known for its simple design and painted ceiling.A. AddingB. Adding toC. AddedD. Added to30. During the game, the coach looked ________ he had eaten a lemon, probably because he knew his team was playing poorly.A. in thatB. in caseC. as thoughD. even though31. When the Americans objected to this, the British would not compromise, but ________ control over their American colonies instead, taking away many of their rights, and ________soldiers there in order to make sure that the people would obey them.A. increase; stationingB. increasing; stationC. increased; stationingD. increased; stationed32. The students invited to the Halloween party may dress________ they please.A. whateverB. whereverC. wheneverD. however33. In the experiment, we are often waken up twice a night and asked what we ________.A. have been dreamingB. had dreamtC. are dreamingD. will dream34. I________ no to his conditions, and I________ such trouble now.A. could say;wouldn't be inB. could have said;wouldn't be inC. could say;wouldn't have been inD. could have said;wouldn't have been in35. Did you take enough money with you? —No, I needed ________ I thought I would.A. no so much asB. as much asC. much more thanD. much less thanSection B (18 marks)Directions: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in the blank with the word or phrase that best fits the context.In June 2008, when looking at my appointment book, I found I had only two customers all month. Starting my speech pathology (病理学) practice in 2000, I gradually grew the business to 13 employees. However, by last year, people weren’t paying for 36 treatment the way they had been, for the insurance companies were tightening their belts. Therefore, I 37 my own pay by 20% in order not to let anyone go. My husband Brian, who had been working in military intelligence for 20 years 38 staying home with our kids, tried to rejoin the workforce.We’ve always been interested in food safety and in 39 the kids where their food comes from. We prefer fresh vegetables from small farms. I had 40 chickens while growing up in nearby Little Rock city. So we wondered 41 we began developing farming.We started with two pigs. When a local farmer 42 we breed laying hens because there was a market for fresh eggs, we finally reached an agreement. Brian built cages with wheels so that we could move our chickens around on fresh grass 43 our seven acres of land, and we bought more animals. It was scary and 44 . What should we do if no one bought anything?But people did purchase. The local farmer took 45 to sell to his costumers, and today he buys about 30 dozen a week from us. At farmers’ market, we sell out completely, earning $300 to $500 a day. In the following year, the farm should gross about $40,000. To my 46 , the children assisted us, which is 47 because we have to take care of 570 laying hens and 300 chickens. On the farm, we not only enjoy happy life but also experience physically well-pleasing work, which I’m grateful for.36. A. expression B. body C. behavior D. speech37. A. cut B. gave C. lost D. sat38. A. as B. until C. before D. after39. A. praising B. encouraging C. educating D. understanding40. A. bought B. cooked C. observed D. raised41. A. as if B. even if C. only if D. what if42. A. asked B. insisted C. ordered D. complained43. A. through B. across C. over D. above44. A. cheerful B. stressful C. powerful D. hopeful45. A. hens B. pigs C. vegetables D. eggs46. A. satisfaction B. sadness C. regret D. anger47. A enjoyable B. important C. skillful D. difficultSection C (12 marks)Directions: Complete the following passage by filling in each blank with one word that best fits the context.From October 1 to 3, around 3.8 million out-of-town tourists flooded to Shanghai over the 48 three days of the National Day holiday. Nanjing Road and the Bund remained 49 most popular spots with locals and tourists alike. Nanjing Road Pedestrian Street attracted 5.8 million tourists, 50 3.2 million were recorded at the Bund.The city is expected to receive 8 million tourists by Monday, the last day of the weeklong holiday break. 51 ensure the safety of pedestrians crossing streets to reach the Bund, 4, 000 police officers were sent to the area. From 4:30pm to 11pm, 52 stood in line at the sides of zebra crossings, keeping vehicles and pedestrians 53 . Across the Huangpu River, the Oriental Pearl TV Tower took measures to limit numbers. Even so, visitors 54 wanted to get to the top of the city landmark had to queue for four hours. 55 can imagine what it will be like in this city next year.PART ⅢREADI NG COMPREHENTION (30 marks)Directions: Read the following three passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage.AThe 1800s saw many firsts, including the invention of the bicycle and ready-to-eat cereal. Another interesting event also debuted(首次登场)in the 1800s. In 1888, the world’s first beauty contest was held in Spa, Belgium. Though little is known about that first competition, the idea caught on. Today, beauty contests can be found in countries from Argentina to Zambia.Most people agree that the business of beauty contests began in America. In 1921, local businessmen in Atlantic City, New Jersey, wanted summer tourists to stay longer. So they came up with the idea of beauty pageant. The pageant was successful, and 100,000 tourists stayed to see the first “Miss America”crowned.After a few years, the annual event no longer focused only on girl’s beauty. A talent competition was added in 1938. And not long after that, college scholarships became the official contest prize. These were just the beginning of the changes for the beauty contest industry.From the mid-to late-20th century, beauty contests began popping up everywhere. In 1951, the Miss World Pageant got its start in London. Over time, this contest has changed its focus from beauty alone to beauty and intelligence. Miss Universe began in 1952, Miss International in 1960 and Miss Earth in 2001. Today, these still are considered the four most famous international beauty contests.Through the years, controversy has surrounded beauty contests. Many people have objected to women competing in swimsuits as it only calls attention to one’s looks. Outside pressure and changes in society, therefore, brought about changes in the beauty contest world. Today, women are judged on areas other than just appearance. These include intelligence, speaking ability, poise and talent.The women who compete in the pageants are often asked why they do it. Many say it’s because the contests build their confidence and public speaking skills and offer scholarships. Today, millions of women worldwide compete for these very reasons.56. What would be the best title for the passage?A. The origin of beauty contestsB. A look at beauty contestsC. Famous international beauty contestsD. The success of beauty contests57. Where was the first beauty contest in the world held?A. In BelgiumB. In AmericaC. In EnglandD. In Argentina58. According to the passage, the beauty contest in New Jersey in 1921 was held to ________.A. find out who was the most beautiful girlB. promote local tourism developmentC. attract tourists to settle in Atlantic CityD. spread the idea of Miss America59. The underlined phrase “popping up” in the fourth paragraph probably means _________.A. succeedingB. holdingC. appearingD. forming60. What is the fifth paragraph mainly about?A. Argument about beauty contestsB. Changes in women’s clothesC. What women compete forD. How women are judgedBHidden Valley and a handful of other "culture camps" serving families with children from overseas reflect the huge rise in the number of foreign adoptions, from 7,093 in 1990 to 15,774 last year. After cutting through many troublesome procedures, due to different customs and cultures, parents often come home to find a new dilemma(进退两难的窘境). "At first you think, 'I need a child'," says Sandy Lachter of Washington, D.C., who with her husband, Steve, adopted Amelia, 5, from China in 1995. "Then you think, 'What does the child need?'"The culture camps give families a place to find answers to those kinds of questions. Most grew out of local support groups; Hidden Valley was started last year by the Boston chapter of Families with Children from China, which includes 650 families. While parents address weighty issues like how to raise kids in a mixed-race family, their children just have fun riding horses, singing Chinese songs or making scallion pancakes.The camp is a continuation of language and dance classes many of the kids attend during the year. "When we rented out a theater for 'Mulan,' it was packed," says Stephen Chen of Boston, whose adopted daughter Lindsay is 4. Classes in Chinese language, art and calligraphy are taught by experts, like Renne Lu of the Greater Boston Chinese Cultural Center. "Our mission is to preserve the heritage," Lu says.Kids who are veteran(经验丰富的)campers say the experience helps them understand their complex heritage. Sixteen-year-old Alex was born in India and adopted by Kathy and David Brinton of Boulder, Colo., when he was 7. "I went through a stage where I hated India, hated everything about it," he says. "You just couldn't mention India to me." But after six sessions at the East India Colorado Heritage Camp, held at Snow Mountain Ranch in Estes Park, Colo., he hopes to travel to India after he graduates from high school next year.Camp can be a learning experience for the whole family. Whitney Ning, 23, a counselor for four years, says the Korea Heritage Camp helped her become closer to her parents. "They were hesitant at first," she says, "but when they saw how much it meant to me, they became very supportive." Sometimes the most direct route around the world is across a campfire.61. Why do American parents come to Hidden Valley?A. It has a large gathering of adopted children.B. Parents want to find a place to exchange their ideas.C. It can ensure the adopted kids as well as their parents a learning experience.D. It is a very good place for relaxation.62. Which of the following is NOT the advantage of the culture camp?A. It well reflects the increasing foreign adoptions.B. Parents can find the answers to their questions in raising the adopted children.C. Children can learn a lot in culture camp.D. It helps the adopted children have a better understanding of their complex heritage.63. What is Alex's attitude toward India now?A. Strong disapproval.B. Much interest.C. Slight dislike.D. Enthusiastic support.64. The underlined sentence of the last paragraph most probably means _________.A. Through this camp the adopted kids knew better about American culture .B. If the adopted kids want to travel around the world, camping is the best choice.C. Through the camp the adopted kids can know better about Chinese culture.D. The camp helped adopted kids know more about their original culture, thus making the mixed-race family closer.65. What can we infer from the passage?A. Foreign adoption is a common phenomenon in America.B. Children can do whatever they want to do in the culture camp.C. Both parents and their adopted children can benefit from the culture camp.D. Children can receive best education in the culture camp.CAgricultural scientists are working to develop crop plants that use less water than those now grown. Almost sixty percent of the world's freshwater withdrawals from rivers, lakes and other water resources go towards irrigating fields. Scientists are using biotechnology as well as traditional breeding(繁殖)methods to develop water-saving crops to feed a growing world.Thomas Tommy Carter is a plant scientist in North Carolina working for the Agricultural Research Service in the United States Department of Agriculture. He leads Team Drought, a group of researchers at five universities. They have been using conventional breeding methods to develop soybeans that can grow well under dry conditions. Tommy started working on drought- resistant soybeans in 1981.His research has taken him as far as China, where soybeans have been grown for thousands of years.“Farmers in the United States, however, have grown soybeans for only about a century”Tommy Carter says, “the soybeans they grow are for the most part genetically similar.”More differences could better protect crops against climate changes that can reduce production. Those changes include water shortages which could result from global warming. The Agriculture Department has a soybean germplasm(胚种)collection, a collection of genetic material passed from one generation to the next. Members of Team Drought studied more than 2,500 examples from the collection. They looked at those from Asia and searched for germplasms that could keep plants from weakening and wilting during hot, dry summers in the United States.Tommy says they found only five, but these slow wilting lines can produce more than normal soybeans under drought conditions; the team is now doing field tests. The first breeding line is expected to be released next year for use by private seed companies and public soybean breeders.Scientists are also working on other plants that either use less water or use it better or both.66. Why can the soybeans in Asia do better under drought conditions?A. soybeans have been grown in Asia for thousands of yearsB. the germplasms are different from those in American soybeansC. Americans have been growing soybeans for a centuryD. the water shortage in Asia is much more serious than that in the US67. What are farming scientists doing to ensure feeding a growing world?A. they are using latest irrigating technology to increase the production.B. They are planting soybean germplasms in other countries.C. They are importing more drought-resistant soybeans from China.D. They are combining different ways to produce anti-drought crops.68. What can we learn from the passage?A. Team Drought is a group of scientists at five universities.B. Soybeans have been grown for a much longer time in China than in the United States.C. Germplasms have been found to keep 2,500 plants from weakening an d wilting during hot, dry summers.D. The first breeding line has produced more than normal soybeans under drought conditions.69. What will the writer most probably write about next?A. Other crop plants that use less water.B. The conclusion that less water is needed for soybeans.C. More information about Tommy Carter's new soybeans.D. The reasons why climate changes have taken place.70. What is the main idea of the passage?A. Conventional methods of plants breedingB. Efforts to develop crops which use less waterC. The history of soybean growing in ChinaD. What some scientists are doing to change the climatePART ⅣWRITING (45 marks)Section A (10 marks)Directions: Read the following passage. Fill in the numbered blankets by using the information from the passage. Write NO MORE THAN THREE WORDS for each answer.Sister-city relationship is the relationship between different communities from different countries, which is beneficial to both sides. Often these partnerships are based on special projects or exchanges. People share their knowledge in areas like education, government, business or technology.Under this relationship, people can learn from each other and then solve problems together. They can also share an interest in other cultures as well as increase international understanding and friendship through educational, cultural and humanitarian activities. Citizen diplomats(外交官) could help build peace, too.Building sister-city relationships was one of the ideas put forward by President Eisenhower. On September 11 and 12, 1956, he established the program, the “People-to-People” program, at a White House conference.Soon, establishing sister-city relationship became very popular. Today, it is involved with programs in 134 countries. 700 American communities have partnerships with almost 1,800communities in other countries. Atlanta, Georgia, for example, has 18 sister-city partnerships. One is with Brussels, Belgium. Another is with Lagos, Nigeria. These two relationships have existed for more than thirty years. The areas they involve include economic development and trade. Within the past fifteen years, more American cities have created partnerships in developing countries. Projects have involved water quality, health care and good government. In Africa, projects might also deal with AIDS and HIV.Some sister-city relationships are fifty years old. And now th ere are even “cyber sister cities”—partnerships created over the Internet. They mainly develop their economy and culture. There are more than 100 cities developing this kind of relationship.Section B (10 marks)Directions: Read the following passage. Answer the questions according to the information given in the passage and required words limit. Write your answers on your answer sheet.As a young man, Al was a skilled artist, a potter. He had a wife and two fine sons. One night, his older son developed a severe stomachache. Thinking it was only some common intestinal(肠的)disorder, neither Al nor his wife took the condition very seriously. But the disease was actually acute appendicitis (阑尾炎), and the boy died suddenly that night.Knowing the death could have been prevented if he had only realized the seriousness of the situation, Al's emotional health declined under the enormous burden of his guilt. To make matters worse his wife left him a short time later, leaving him alone with his six-year-old younger son. The hurt and pain of the two situations were more than Al could handle, and he became an alcoholic.As the alcoholism progressed, Al began to lose everything he possessed —his home, his land, his art objects, everything. Eventually Al died alone in a San Francisco motel room.When I heard of Al's death, I thought, “What a complete failure!” “What a totally wasted life”.As time went by, I began to re-evaluate my earlier harsh judgment. You see, I knew Al's now adult son, Ernie. He is one of the kindest, most caring, most loving men I have ever known. I watched Ernie with his children and saw the free flow of love between them. I knew that kindness and caring had to come from somewhere.I hadn't heard Ernie talk much about his father. One day I worked up my courage to ask him. "I'm really puzzled by something," I said. "I know your father was basically the only one to raise you. What on earth did he do so that you became such a special person?"Ernie sat quietly and reflected for a few moments. Then he said, "From my earliest memories as a child until I left home at 18, Al came into my room every night, gave me a kiss and said, 'I love you, son.'"Tears came to my eyes as I realized what a fool I had been to judge Al as a failure. He had not left any material possessions behind, but he had been a kind loving father, and he left behind one of the finest, most giving man I have ever known.81. Why was Al in guilt? (no more than 12 words)_____________________________________________________________________ 82. Where did Al die? (no more than 5words)_____________________________________________________________________ 83. What made Al addicted to alcohol? (no more than 10 words)_____________________________________________________________________ 84. What did Al’s son Ernie learn from his father? (no more than 11 words)_____________________________________________________________________Section C (25 marks)Directions: Write an English composition according to the instructions given below in Chinese.假如你是李华。
湖南省四校2013-2014学年高三上学期第三次联考文科数学试卷(带word 解析)第I 卷(选择题)1.设全集{2,1,0,1,2}U =--,集合{1,1,2}A =-,{1,1}B =-,则)(B C A U 为( ) A .{1,2} B .{1} C.{2} D .{1,1}- 【答案】C 【解析】试题分析:因为{2,0,2}=-U C B ,故{2}= U A C B ,选C.考点:集合的运算2.“x=3”是“x 2=9”的( )(A )充分而不必要的条件 (B )必要而不充分的条件 (C )充要条件 (D )既不充分也不必要的条件 【答案】A 【解析】试题分析:当3=x 时有92=x ,当92=x 时3±=x ,故3=x 是92=x 的充分不必要条件,选A. 考点:充要条件3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .21y x =-+ B .lg ||y x = C .1y x= D .x y e -= 【答案】A 【解析】试题分析:因函数1y x=是奇函数,A 、B 中的函数是偶函数,xy e -=为非奇非偶函数,且21y x =-+在(0,+∞)上单调递减,lg ||y x =在(0,+∞)上单调递增,故选A. 考点:1.函数的奇偶性;2.函数的单调性4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为21,则3a 等于( ) A .15 B .12 C .9 D .6 【答案】B 【解析】试题分析:设公比为)0(>q q ,由213332=++q q ,解得2=q ,故122323=⨯=a ,选B.考点:等比数列的通项公式及求和公式5.已知函数()()()40,40.x x x f x x x x +<⎧⎪=⎨-≥⎪⎩,, 则函数()f x 的零点个数为( )A .1B .2C .3D .4【答案】C【解析】试题分析:当0<x ,由0)4(=+x x 得4-=x ;当0≥x ,由0)4(=-x x 解得4,0==x x ,故共有3个零点,选C .考点:1.分段函数;2.函数的零点6.已知函数y=f (x )的图象如图所示,则函数y=f (|x|)的图象为( )A .B .C .D . 【答案】B 【解析】试题分析:根据函数图像的对称变换可知,函数y=f (|x|)的图象是保留y 轴右侧的图像,然后把右侧图像沿y 轴翻折后得到,故选B. 考点:函数图像的变换7.在ABC ∆中, ︒=∠120A ,1AB AC ⋅=- ,则||BC的最小值是( )A 、B 、2CD 、6 【答案】C 【解析】试题分析:由AB AC ⋅=-考点:1.向量的数量积;2.余弦定理;3.基本不等式8.奇函数)(x f 在区间]1,1[-上是增函数,且1)1(-=-f ,当]1,1[-∈x 时,函数12)(2+-≤at t x f 对一切]1,1[-∈a 恒成立,则实数t 的取值范围是 ( )A.22t -≤≤B.22t t ≤-≥或C.02t t ≤≥或D.220t t t ≤-≥=或或 【答案】D 【解析】试题分析:奇函数f (x )在[-1,1]上是增函数,且f (-1)=-1,在[-1,1]最大值是1,∴1≤t 2-2at+1,当t=0时显然成立,当t ≠0时,则t 2-2at ≥0成立,又a ∈[-1,1],令g (a )=2at-t 2,a ∈[-1,1],当t >0时,g (a )是减函数,故令g (1)≥0,解得t ≥2,当t <0时,g (a )是增函数,故令g (-1)≥0,解得t ≤-2,综上知,t ≥2或t ≤-2或t=0.选D.考点:1.函数的单调性;2.函数的奇偶性;3.函数恒成立问题的应用 9.若关于x 的不等式02<-+c ax x 的解集为{|21}x x -<<,且函数223cx mx ax y +++=在区间)1,21(上不是单调函数,则实数m 的取值范围为 ( ) A.)3,3(-- B.]3,3[--C.),3()2,(+∞--∞D.),3(]2,(+∞---∞ 【答案】A【解析】试题分析:由不等式02<-+c ax x 的解集为{|21}x x -<<可得02=-+c ax x 的两根为1,2-,故可求得2,1==c a ,所以由函数123+++=x mx x y 在)1,21(上不是单调函数,可知0123'2=++=mx x y 在)1,21(有解,当在)1,21(有一解时有0)123)(143(<++++m m 解得472-<<-m ,当在)1,21(有两解时有⎪⎩⎪⎨⎧>-=∆<-<012413212m m 解得33-<<-m ,综上可得)3,3(--∈m ,故选A 考点:1.函数的单调性;2.函数的零点;3.一元二次不等式的解集第II 卷(非选择题)10.函数()f x =的定义域为 . 【答案】(0,6] 【解析】试题分析:由0log 216≥-x 且0>x 得:]6,0(∈x . 考点:函数定义域的求法11.已知函数1,0,()0,0,(),0x x f x x g x x ->⎧⎪==⎨⎪<⎩是奇函数,则(2)g -的值是 .【答案】1- 【解析】试题分析:当0<x 时0>-x ,又)(x f 是奇函数,则1)1()()(+=---=--=x x x f x g ,所以112)2(-=+-=-g .考点:1.函数的奇偶性;2.分段函数的解析式求法 12.设ααsin 212sin -=,(,)2παπ∈,则α2cos 的值是____ . 【答案】87- 【解析】试题分析:由ααsin 212sin -=可得:41cos -=α,所以871)41(21c o s 22c o s 22-=--⨯=-=αα.考点:倍角公式13.曲线21xy xe x =++在点(0,1)处的切线方程为 . 【答案】31y x =+ 【解析】试题分析:由2'++=xx xe e y ,得32|'00=+===e y k x ,所以所求点(0,1)处的切线方程为:)0(31-=-x y ,即31y x =+. 考点:利用导函数处理曲线的切线方程14.如图,在ABC ∆中,已知点D 在BC 边上,AC AD ⊥,23,322sin ==∠AB BAC , 3=AD , 则BD 的长为 .【答案】3 【解析】试题分析:sin sin()cos 2BAC BAD BAD π∠=∠+=∠=,∴根据余弦定理可得222cos 2AB AD BD BAD AB AD +-∠=∙,2223BD ∴==. 考点:1.余弦定理;2.诱导公式15.设定义域为R 的函数)(x f 满足下列条件:对任意0)()(,=-+∈x f x f R x ,且对任意],1[,21a x x ∈)1(>a ,当12x x >时,有21()()0f x f x >>.给出下列四个结论:①)0()(f a f >②)()21(a f af >+ ③)3()131(->+-f aaf ④)()131(a f a a f ->+- 其中所有的正确结论的序号是____________.【答案】①②④ 【解析】01)1()(1312>+-=--+-a a a a a,a a a->+-∴131,1143113≥+-=+->∴aa a a a a a +-<-∴131,由奇函数的对称性知:)()131(a f a af ->+-,④对.0133>->a ,但a a +-113,3③不对,故正确的为①②④.考点:1.函数的单调性;2.函数的奇偶性16.已知向量22,cos )m x x =+ ,(1,2cos )n x =,设函数x f ⋅=)(,x ∈R .(1)求)(x f 的最小正周期与最大值;(2)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,若ABC b A f ∆==,1,4)(的面积为23,求a 的值. 【答案】(Ⅰ))(x f 的最小正周期为π,最大值为5;(Ⅱ)3=a【解析】试题分析:(Ⅰ)先由向量的数量积坐标运算,得到函数)(x f 2sin(2)36x π=++,从而确定函数的最小正周期和最大值;(Ⅱ)先由已知条件及(Ⅰ)中所求的解析式可得21)62sin(=+πA ,解得3π=A ,再由面积为23得23sin 21=A bc 从而解得2=c ,由余弦定理得3=a .此题主要是考查三角恒等变换和解三解形.试题解析:(1)2()222cos f x m n x x =⋅=++2分2sin(2)36x π=++ 4分∴ )(x f 的最小正周期为22π=T =π, 5分)(x f 的最大值为5. 6分 (2)由4)(=A f 得,43)62sin(2=++πA ,即 21)62sin(=+πA , ∵ π<<A 0, ∴6562ππ=+A , ∴ 3π=A 8分又23sin 21=A bc , 即2343=c , ∴ 2=c 10分 由余弦定理得,32121241cos 2222=⨯⨯⨯-+=-+=A bc c b a ∴3=a 考点:1.三角恒等变换;2.余弦定理的应用17.已知函数bx ax x f ++=21)(()0≠a 是奇函数,并且函数)(x f 的图像经过点(1,3),(1)求实数b a ,的值;(2)求函数)(x f 的值域.【答案】(1)0,2==b a ; (2)函数)(x f 的值域为(][)+∞⋃-∞-,2222, 【解析】试题分析:(1)由奇函数的定义可知)()(x f x f -=-,结合解析式可求0=b ,又由函数)(x f 的图像经过点(1,3),代入解析式可求得得2=a ;(2)由(1)知()01221)(2≠+=+=x xx x x x f ,从而可由分类讨论的思想,分0>x 和0<x 两种情况对函数的值域进行讨论,利用基本不等式可得函数)(x f 的值域为(][)+∞⋃-∞-,2222,.本题注意分类讨论的思想方法的应用,易错点是基本不等式运用时的条件容易忽略.试题解析:(1) 函数bx axx f ++=21)(是奇函数,则)()(x f x f -=-()0,,0,1122=∴--=+-∴≠++-=+--+∴b b x b x a bx ax b x x a (3分)又函数)(x f 的图像经过点(1,3),,0,311,3)1(==++∴=∴b baf ∴a=2 (6分)(2)由(1)知()01221)(2≠+=+=x xx x x x f (7分)当0>x 时,,2212212=⋅≥+x x x x 当且仅当,12xx = 即22=x 时取等号 (10分) 当0<x 时,()()2212,2212212-≤+∴=-⋅-≥-+-xx x x x x 当且仅当,1)2(xx -=-即22-=x 时取等号 (11分) 综上可知函数)(x f 的值域为(][)+∞⋃-∞-,2222, (12分) 考点:1.函数解析式的求法;2.函数的值域的求法;3.基本不等式的应用18.如图所示,PA ⊥平面ABCD ,四边形ABCD 为正方形,且2PA AD =,E F G H 、、、分别是线段PA PD CD BC 、、、的中点.(Ⅰ)求证://BC 平面EFG ; (Ⅱ)求证:DH ⊥平面AEG ;(Ⅲ)求三棱锥E AFG -与四棱锥P ABCD -的体积比.【答案】(Ⅰ)见解析; (Ⅱ)见解析;(Ⅲ)三棱锥E AFG -与四棱锥P ABCD -的体积比161【解析】 试题分析:(Ⅰ)通过证明AD EF //,AD BC //,从而有BC EF //,然后由直线和平面平行的判定定理可得//BC 平面EFG ;(Ⅱ)利用直线和平面垂直的性质定理可得AE ⊥DH ,再证DH ⊥AG ,由直线和平面垂直的判定定理可得DH ⊥平面AEG ;(Ⅲ)由已知可得13E AF G G AEFA E FV V S G D --==⋅,13P ABCD ABCD V S PA -=⋅,所以111321163AEF E AFG P ABCDABCD S GD AE EF GDV V AB AD PA S PA --⋅⋅⋅===⋅⋅⋅,此问注意直线和平面关系的运用和体积的转化.试题解析:(Ⅰ),E F 分别为,PA PD 中点,所以AD ∥EF ,∵BC ∥AD, ,∴BC ∥EF ....2分EFG EF EFG BC 平面平面⊂⊄,BC ∴∥平面EFG ............4分(Ⅱ)∵PA ⊥平面ABCD ,∴PA ⊥DH ,即 AE ⊥DH .......... ∵△ADG ≌△DCH ,∴∠HDC=∠DAG ,∠AGD+∠DAG=90° ∴∠AGD+∠HDC=90° ∴DH ⊥AG又∵AE ∩AG=A ,∴DH ⊥平面AEG ............8分(Ⅲ)由PA ⊥平面ABCD ,得PA CD ⊥,又CD AD ⊥,所以CD ⊥平面PAD , 所以13E AFG G AEF AEF V V S GD --==⋅, 又13P ABCD ABCD V S PA -=⋅ 所以111321163AEF E AFG P ABCD ABCD S GD AE EF GDV V AB AD PA S PA --⋅⋅⋅===⋅⋅⋅ .........12分 考点:1.直线和平面平行的判定;2.直线和平面垂直的判定;3.三棱锥的体积求法 19.张林在李明的农场附近建了一个小型工厂,由于工厂生产须占用农场的部分资源,因此李明每年向张林索赔以弥补经济损失并获得一定净收入.工厂在不赔付农场的情况下,工厂的年利润x (元)与年产量t (吨)满足函数关系t x 2000=.若工厂每生产一吨产品必须赔付农场s 元(以下称s 为赔付价格).(Ⅰ)将工厂的年利润w (元)表示为年产量t (吨)的函数,并求出工厂获得最大利润的年产量;(Ⅱ)若农场每年受工厂生产影响的经济损失金额2002.0t y =(元),在工厂按照获得最大利润的产量进行生产的前提下,农场要在索赔中获得最大净收入,应向张林的工厂要求赔付价格s 是多少?【答案】(Ⅰ)年利润st t w -=2000(0≥t ),取得最大年利润的年产量21000⎪⎭⎫ ⎝⎛=s t ;(Ⅱ)20=s .【解析】试题分析:(Ⅰ)根据题意易得工厂的实际年利润为:st t w -=2000(0≥t ),从而可看作是t 的二次函数,求出当21000⎪⎭⎫ ⎝⎛=s t 时,w 取得最大值;(Ⅱ)根据题设可知农场净收入为v 元时2002.0t st v -=,将21000⎪⎭⎫⎝⎛=s t 代入上式,得:432100021000s s v ⨯-=,利用导函数可得函数的单调性,从而确定在20=s 时,v 取得最大值.试题解析:(Ⅰ)工厂的实际年利润为:st t w -=2000(0≥t ). 3分s s t s st t w 221000)1000(2000+--=-=, 当21000⎪⎭⎫⎝⎛=s t 时,w 取得最大值.所以工厂取得最大年利润的年产量21000⎪⎭⎫⎝⎛=s t (吨). 6分 (Ⅱ)设农场净收入为v 元,则2002.0t st v -=.将21000⎪⎭⎫ ⎝⎛=s t 代入上式,得:432100021000ss v ⨯-=. 8分 又23232551000810001000(8000)s v s s s ⨯-'=-+= 令0='v ,得20=s .当20<s 时,0>'v ;当20>s 时,0<'v , 所以20=s 时,v 取得最大值.因此李明向张林要求赔付价格20=s (元/吨)时,获最大净收入. 13分 考点:1.函数解析式和定义域;2.函数模型的应用;3.函数最值的求法20.高三某班有两个数学课外兴趣小组,第一组有2名男生,2名女生,第二组有3名男生,2名女生.现在班主任老师要从第一组选出2人,从第二组选出1人,请他们在班会上和全班同学分享学习心得.(Ⅰ)求选出的3人均是男生的概率;(Ⅱ)求选出的3人中有男生也有女生的概率. 【答案】(Ⅰ)110;(Ⅱ)56【解析】 试题分析:(Ⅰ)先列举出从第一组选出2人,从第二组选出1人的所有基本事件共有30种,然后从中可数出选出的3人均是男生的共有3种,故可得101303==P ;(Ⅱ)由(Ⅰ)所列举的事件可知“选出的3个人有男生也有女生”的事件有25种,所以选出的3人中有男生也有女生的概率为255306==P . 试题解析:(Ⅰ)记第一组的4人分别为1212,,,A A a a ;第二组的5人分别为12312,,,,B B B b b 1分设“从第一组选出2人,从第二组选出1人”组成的基本事件空间为Ω,则1211221231211221111211311111212112212312112221121221321{(,,),(,,),(,,),(,,),(,,),(,,),(,,)(,,)(,,)(,,)(,,),(,,),(,,),(,,),(,,),(,,)(,,)(,,)(,A A B A A B A A B A A b A A b A a B A a B A a B A a b A a b A a B A a BA aB A a b A a b A a B A a B A a B A a Ω=1212221222223221222121122,)(,,),(,,)(,,)(,,)(,,)(,,),(,,)(,,)b A a b A a B A a B A a B A a b A a b a a B a a B123121122(,,)(,,)(,,)}a a B a a b a a b 共有30种. 4分设“选出的3人均是男生”为事件A ,则事件A 含有3个基本事件 6分31()3010P A ∴==,所以选出的3人均是男生的概率为110 8分(Ⅱ)设“选出的3个人有男生也有女生”为事件B ,则事件B 含有25个基本事件, 10分653025)(==∴B P ,所以选出的3人中有男生也有女生的概率为56. 13分 考点:古典概率的求法21.设二次函数()2f x mx nx t =++的图像过原点,()33(0)g x ax bx x =+->,(),()f x g x 的导函数为()//,()f x g x ,且()//00,(1)2f f =-=-,()),1(1g f =()//1(1).f g =(1)求函数()f x ,()g x 的解析式; (2)求())()(x g x f x F -=的极小值;(3)是否存在实常数k 和m ,使得()m kx x f +≥和()?m kx x g +≤若存在,求出k 和m 的值;若不存在,说明理由.【答案】(1)2()f x x =,()353(0)=-+->g x x x x ;(2)()x F 的极小值为()01=F ;(3)存在这样的实常数k 和m ,且,2=k 1-=m 【解析】试题分析:(1)由二次函数()2f x mx nx t =++的图像过原点可求0=t ,从而()'2=+f x mx n ,由()'00,'(1)2=-=-f f 可解得0,1n m ==,从而得2()f x x =;由()),1(1g f =()'1'(1)=f g 可解得.5,1=-=b a从而得()353(0)=-+->g x x x x ;(2)由题可知())0(3523>+-+=x x x x x F ,通过导函数可得)(x F 的单调性,从而可得()x F 的极小值为()01=F ;(3)根据题意可知,只须证明)(x f 和)(x g 的函数图像在切线的两侧即可,故求出函数()x f 在公共点(1,1)的切线方程12-=x y ,只须验证:⎩⎨⎧-≤-≥12)(12)(x x g x x f ,从而找到实数存在这样的实常数k 和m ,且,2=k 1-=m .试题解析:(1)由已知得()/0,2t fx mx n ==+, 则()//00,(1)22f n f m n ==-=-+=-,从而0,1n m ==,∴2()f x x = ()x x f 2/=,()b ax x g +=2/3。
2014届高三上学期第三次月考试卷数学文(时量:120分钟 满分:150分)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡对应位置.1.下列函数中,在其定义域内既是奇函数又是减函数的是A .e x y =B .3y x =-C .sin2y x =D .x y ln -=2.下列命题中,假命题为( ) A .∀x ∈R,012>++x xB .存在四边相等的四边形不.是正方形 C .若x ,y ∈R ,且x +y >2,则x ,y 至少有一个大于1 D .a +b =0的充要条件是ab=-13.执行下面的框图,若输出结果为3,则可输入的实数x 值的个数为A .1B .2C .3D .44.如图, 积中最大的是A .1B C .2D .5.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为A.9万件B.11万件C.12万件D.13万件 6.下面关于复数21z i=-+的四个结论,正确的是 ①2=z ②i z 22= ③i z +1的共轭复数为④1-的虚部为z A .①② B .②③C .②④D .③④7.若直线1:+=kx y l 被圆032:22=--+x y x C 截得的弦最短,则直线l 的方程是 A.0=xB.1=yC.01=-+y xD.01=+-y x8.已知非负实数b a ,满足1≤+b a ,则关于x 的一元二次方程022=++b ax x 有实根的概 率是 A.31B.21C.61 D.32 9.已知ABC ∆是边长为2的正三角形,B 为线段EF 的中点,且3=EF ,则AF AC AE AB ⋅+⋅的取值范围是A.[]3,0B. []6,3C. []9,6D. []9,3 答案:BDCBA CDAD二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上.10.为了研究性别不同的高中学生是否爱好某项运动,运用22⨯列联表进行独立性检验,经 计算8.72=K ,则所得到的统计学结论是:有______的把握认为“爱好该项运动与性别 有关”. 附:11.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的参数方程为1x y t ⎧=⎪⎨=+⎪⎩t 为参数),曲线2C 的极坐标方程为34sin 2=⎪⎭⎫ ⎝⎛-πθρ,则1C 与2C交点在直角坐标系中的坐标为___________.12.在ABC ∆中,若2,60,a B b =∠=︒=,则BC 边上的高等于 .13.已知双曲线22214x y m m -=+的右焦点到其渐进线的距离为22,则此双曲线的离心率为 __________.14.设集合(){}(){}≠+-≤=-≥=B A a x y y x B x y y x A ,|,,1|,¢. (Ⅰ)实数a 的取值范围是 ; (Ⅱ)当3=a 时,若()x y A B ∈,,则y x +2的最大值是 .15已知集合{}n a a a A ,,,21 =,其中)(),2,1(A l n n i R a i >≤≤∈表示和)1(n j i a a j i ≤<≤+中所有不同值的个数.(Ⅰ)若集合{}16,8,4,2=A ,则________)(=A l ; (Ⅱ)当108=n 时,)(A l 的最小值为____________.答案:10.99﹪11.()5,213.5 14.(Ⅰ)[)+∞,1(Ⅱ)5 15.(Ⅰ)6(Ⅱ)213.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分) 已知函数()0,016sin )(>>+⎪⎭⎫⎝⎛-=ωπωA x A x f 的最大值为3,其图像相邻两条对称轴之间的距离为2π. (Ⅰ)求函数)(x f 的解析式; (Ⅱ)设5112,2,0=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∈απαf ,求αcos 的值.解:(1)∵函数f(x)的最大值为3,∴A +1=3,即A =2,∵函数图像的相邻两条对称轴之间的距离为π2,∴最小正周期T =π,∴ω=2,故函数f(x)的解析式为y =2sin(2x -π6)+1. 6分(2)∵f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=511,即sin ⎝⎛⎭⎫α-π6=53, ∵0<α<π2,∴-π6<α-π6<π3,∴1033466cos cos ,546cos -=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-==⎪⎭⎫⎝⎛-ππααπα所以. 12分17. (本小题满分12分)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒 后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单 位是毫克/100毫升),当8020≤≤Q 时,为“酒后驾车”;当80>Q 时,为“醉酒驾车”. 某市公安局交通管理部门于2013年11月的某天晚上8点至11点在该市区解放路某处设点 进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽 血检测后所得结果画出的频率分布直方图(其中140≥Q 的人数计入140120<≤Q 人数之 内).(Ⅰ)求此次拦查中“醉酒驾车”的人数;(Ⅱ)从违法驾车的60人中按“酒后驾车”和“醉酒驾车”利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取2人,求2人中其中1人为“酒后驾车”另1人为“醉酒驾车”的概率.解:(Ⅰ) (0.0032+0.0043+0.0050)×20=0.25,0.25×60=15,所以此次拦查中“醉酒驾车”的人数为15人. 6分(Ⅱ)由分层抽样方法可知抽取的8人中“酒后驾车”的有6人,记为)6,,2,1( =i A i , “醉酒驾车”的有2人,记为)2,1(=j B j . 9分 所以从8人中任取2人共有()() 3121,A A A A 等281234567=++++++种,2人中其 中1人为“酒后驾车”另1人为“醉酒驾车”共有()()() 122111,,,B A B A B A 等1226=⨯种, 因此所求的概率为732826=⨯=P 12分18.(本小题满分12分)已知在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点. (Ⅰ)求异面直线CC 1和AB 的距离;(Ⅱ)若AB 1⊥A 1C ,求二面角A 1-CD -B 1的平面角的余弦值.解:(1)因AC =BC ,D 为AB 的中点,故CD ⊥AB .又直三棱柱中,CC 1⊥面ABC ,故CC 1⊥CD ,所以异面直线CC 1和AB 的距离为CD =BC 2-BD 2= 5. 5分(2)由CD ⊥AB ,CD ⊥BB 1,故CD ⊥面A 1ABB 1,从而CD ⊥DA 1,CD ⊥DB 1,故∠A 1DB 1为所求的二面角A 1-CD -B 1的平面角. 8分又CD ⊥1AB ,AB 1⊥A 1C ,所以AB 1⊥平面D A AB DC A 111, 从而,从而∠A 1AB 1,∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A ,因此AA 1AD =A 1B 1AA 1,得AA 21=AD ·A 1B 1=8.从而A 1D =AA 21+AD 2=23,B 1D =A 1D =23, 所以在△A 1DB 1中,由余弦定理得cos ∠A 1DB 1=A 1D 2+DB 21-A 1B 212·A 1D ·DB 1=13. 12分19.(本小题满分13分)设n S 为数列{}n a 的前n 项和,且有,4,3,2,3,211==+=-n n S S a S n n(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n a 是单调递增数列,求a 的取值范围.解(Ⅰ)当2≥n 时,由已知213n n S S n -+= … ① 于是213(1)n n S S n ++=+ …② 由②-①得163n n a a n ++=+ …… ③ 于是2169n n a a n +++=+ …… ④ 由④-③得26n n a a +-= …… ⑤上式表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列. 4分 又由①有2112S S +=,所以2122a a =-,由③有3215a a +=,4321a a +=,所以332a a =+,4182a a =-. 所以226(1)k a a k =+-()()*∈-+-=Nk k a 16212,,1a a =2136(1)k a a k +=+-()()*∈-++=N k k a 1623. 8分(Ⅱ)数列{}n a 是单调递增数列12a a ⇔<且22122k k k a a a ++<<对任意的k ∈N *成立.12a a ⇔<且2346(1)6(1)6(1)a k a k a k +-<+-<+- 1234a a a a ⇔<<<9151223218244a a a a a ⇔<-<+<-⇔<<. 所以a 的取值范围是.41549<<a 13分20.(本小题满分13分) 已知R a ∈,函数()a x x x f -=)(.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)求函数)(x f 在区间[]2,1上的最小值. 解(Ⅰ)函数的定义域为),0[+∞.xa x x xa x x f 232)(-=+-='①当0≤a 时,)0(0)(≠>'x x f ,所以.),0[)(上为增函数在+∞x f②当0>a 时,当0)(,3;0)(,30>'><'<≤x f ax x f a x 时当时. 故上为增函数在上为减函数在),3[,)3,0[)(+∞aa x f . 6分(Ⅱ)(1)当0≤a 时,由(Ⅰ)知 a f f x f -==1)1(,,]2,1[)(min 所以上为增函数在;(2) 当0>a 时, ①当6≥a 时,32a≤, 由(Ⅰ)知 ()a f f x f -==22)2(,,]2,1[)(min 所以上为减函数在;②当63<<a 时,231<<a, 由(Ⅰ)知,,]2,3(,)3,1[)(所以上为增函数在上为减函数在a a x f 32)3(min aa a f f -==③当30≤<a 时,13≤a, 由(Ⅰ)知 a f f x f -==1)1(,,]2,1[)(min 所以上为增函数在; 综上所述,()⎪⎪⎩⎪⎪⎨⎧≥-<<-≤-=时当时当时当6,2263,323,1mina a a a a a a f 13分21.(本小题满分13分)已知曲线1C 上任意一点M 到直线4:=x l 的距离是它到点()0,1F 距离的2倍;曲线2C 是以原点为顶点,F 为焦点的抛物线. (Ⅰ)求1C ,2C 的方程;(Ⅱ)过F 作两条互相垂直的直线21,l l ,其中1l 与1C 相交于点B A ,,2l 与2C 相交于点D C ,,求四边形ACBD 面积的取值范围.解(Ⅰ)设),(y x M ,则由题意有()41222-=+-x y x ,化简得:13422=+y x . 故1C 的方程为13422=+y x ,易知2C 的方程为x y 42=. 4分 (Ⅱ)由题意可设2l 的方程为1+=ky x ,代入x y 42=得0442=--ky y , 设()()2211,,,y x D y x C ,则k y y 421=+,所以)1(44)(1122121+=++=+++=+=k y y k x x DF CF CD . 7分因为21l l ⊥,故可设1l 的方程为)1(--=x k y ,代入13422=+y x 得()01248342222=-+-+k x k x k ,设()()4433,,,y x B y x A ,则3482243+=+k k x x , 所以()()()()34112214421421224343++=+-=-+-=+=k k x x x x BF AF AB . 10分 故四边形ACBD 的面积为()⎪⎭⎫⎝⎛++=⎪⎭⎫ ⎝⎛+-+-=-=++=⋅=212321411423142434124212222s s t t t t k k CD AB S (314,112≥-=≥+=t s k t 其中)设[)单调递增,在,故则∞+>-=-='≥+=3)(0111)(),3(1)(222s f ss s s f s s s s f ,因此 82313232123=⎪⎭⎫⎝⎛++≥⎪⎭⎫ ⎝⎛++=s s S ,当且仅当3=s 即0=k 等号成立. 故四边形ACBD 面积的取值范围为[)+∞,8. 13分。
下期高三年级第三次月考 文科数学试题(问卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
第一部分 选择题(共50分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知集合{}{}|1,|21x M x x N x =<=>,则M N =( )A 、∅B 、{}|0x x <C 、{}|1x x <D 、{}|01x x <<2.若复数(5sin 3)(5cos 4)z i θθ=-+-是纯虚数,则tan θ的值为A .43B .34-C .34D .3344-或3、已知数列{}n a 是等比数列,且118a =,41a =-,则{}n a 的公比q 为( )A 、-2B 、-12C 、2D 、124、 已知1sin()23πα+=,则cos(2)πα+的值为( )A 、79-B 、79C 、29D 、23-5、已知p :211<x ,q :2x >,则p 是q 的( ) A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件6、已知281(0,0)x y x y +=>>,则x y +的最小值为( )A .12B .14C .16D .187、如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,12,A A AC ==1,BC AB = )A 、 2B 、 4C 、D、8、曲线y x =在4x π=处的切线方程是( )(9.s.5.uA 、404x y π+--= B 、404x y π-++= C 、404x y π++-= D 、404x y π+++=9.设,x y ∈R ,向量()()()4,2,,1,1,-===y x ,且//,⊥=+( )A10、若在区间(-1,1)内任取实数a ,在区间(0,1)内任取实数b ,则直线0=-by ax 与圆1)2()1(22=-+-y x 相交的概率为( )A 、83B 、165C 、85D 、163第二部分 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,满分25分. 11、函数)1(log 23x x y ++-=的定义域为12、执行如图所示的程序框图, 输出的S 值为 。
湖南省长沙市重点中学2014届高三第八次月考数学理 2014.4.1.设集合{}{}2,ln ,,A x B x y ==,若{}0A B ⋂=,则y 的值为 A .0 B .1 C .e D .2 答案:A 2.复数12iz i-=的虚部是( ) (A) 1 (B)-1 (C)2 (D )-2答案:B3.下列命题中的假命题是( ) A.0,32xxx ∀>>B.()0,,1xx e x ∀∈+∞>+C.()0000,,sin x x x ∃∈+∞<D.00,lg 0x R x ∃∈<答案:C4.某厂生产A 、B 、C 三种型号的产品,产品数量之比为3:2:4,现用分层抽样的方法抽取一个样本容量为180的样本,则样本中B 型号的产品的数量为(A)20 (B)40 (C)60 (D)80 答案:B5.已知函数()y f x x =+是偶函数,且(2)1,f =则(2)f -=(A )1- (B )1 (C )5- (D )5 答案:D6.设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是 .1a b =- B .//a b C .2a b = D .a b ⊥答案:A7.已知四棱锥P ABCD -的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是侧视图俯视图2222正视图334A .3 B.C .6D .8【答案】C .8.现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是( )A .420B .560C .840D .22809.已知椭圆方程为22221(0)x y a b a b+=>>,A 、B 分别是椭圆长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线,AM BN 的斜率分别为12,k k ,若1214k k ⋅=,则椭圆的离心率为 . (A)21 (B) 31 (C)3310.不等式222y axy x +-≤0对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是( )A .a ≤22B .a ≥22C .a≥311答案:D11.(几何证明选讲)如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =,则PC AB COP12.(极坐标系与参数方程选讲)参数方程⎪⎪⎩⎪⎪⎨⎧-=+=--)(21)(21t t t t e e y e e x 中当t 为参数时,化为普通方程为__122=-y x _(x )1≥_. 13.(不等式选讲)若正数a ,b ,c 满足a +b +c =1,则13a +2+13b +2+13c +2的最小值为14.已知cos()4πθ+=(0,)2πθ∈,则sin(2)3πθ-=【答案】15.定义某种运算⊗,b a S ⊗=的运算原理如右图所示.设)3()0()(x x x x f ⊗-⊗=.则=)3(f __-3____;()f x 在区间[]3,3-上的最小值为___-12___.16.已知数)(2+∈N n ,且b a b a a a ,(,20121==>2)则201121a a a (用a,b 表示)17.在ABC ∆中,三内角A ,B ,C 所对的边分别是a ,b ,c ,且c a C b -=2cos 2. (Ⅰ)求角B 的大小;(Ⅱ)若C A sin sin 的取值范围. 解(Ⅰ)由余弦定理可得:c a abc b a b -=-+⋅222222,即ac b c a =-+222, ∴212cos 222=-+=ac b c a B ,由),0(π∈B 得3π=B . (Ⅱ)由3π=B 得,A C -=32π, ∴ A A A A A C A 2sin 21cos sin 23)32sin(sin sin sin +=-=π41)62sin(21412cos 412sin 43+-=+-=πA A A . ∵ )32,0(π∈A , ∴ )67,6(62πππ-∈-A , ∴ 1)62sin(21≤-<-πA , ∴ C A sin sin 的取值范围为]43,0(.18.某班甲、乙两名学同参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:12.8秒差的概率.(2)后来经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5 ]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.解 (1)设事件A 为:甲的成绩低于12.8,事件B 为:乙的成绩低于12.8, 则甲、乙两人成绩至少有一个低于12.8秒的概率为P =1-P (A )(B )=1-410×510=45. ………………5分(2)设甲同学的成绩为x ,乙同学的成绩为y ,则|x -y |<0.8, 得-0.8+x <y <0.8+x . ………………8分如图阴影部分面积即为3×3-2.2×2.2=4.16, ………………9分则P (|x -y |<0.8)=P (-0.8+x <y <0.8+x )=4.163×3=104225.…………12分19.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(1)若P 是DF 的中点, 求异面直线BE 与CP 所成角的余弦值; (2)若二面角D -AP -C PF 的长度.PFE解析:(1)因为∠BAF=90º,所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD= AB , 所以AF ⊥平面ABCD ,因为四边形ABCD 为矩形, 所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -. 所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,2,0)C .所以 1(,0,1)2BE =-,1(1,1,)2CP =--,所以4cos ,||||BE CP BE CP BE CP ⋅<>==⋅,即异面直线BE 与CP 所成角的余弦值为. ----6分 (2)因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)AP t t =-,(1,2,0)AC =, 所以 平面APC 的法向量为222(2,1,)t nt-=-, 所以,121212||cos ,||||n n n n n n ⋅<>===⋅解得23t =,或2t =(舍). 所以||PF =. -------------------------12分 20.某地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64a 2m ,每年拆除的数量相同;新城区计划第一年建设住房面积a 2m ,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加a 2m .设第n (1,N n n ≥∈且)年新城区的住房总面积为n a 2m ,该地的住房总面积为n b 2m .(1)求{}n a 的通项公式;(2)若每年拆除4a 2m ,比较+1n a 与n b 的大小.解析:⑴设第n 年新城区的住房建设面积为n λ2m ,则当14n ≤≤时,12n n a λ-= 当5n ≥时,(4)n n a λ=+. 所以, 当14n ≤≤时,(21)n n a a =-当5n ≥时,2489(4)n a a a a a a n a =+++++++ (2922)2n n a +-=故2(21)(14),922(5).2n n a n a n n a n ⎧-≤≤⎪=⎨+-≥⎪⎩ ……6分⑵13n ≤≤时,11(21)n n a a ++=-,(21)644n n b a a na =-+-,显然有1n n a b +< ……7分4n = 时,1524n a a a +==,463n b b a ==,此时1n n a b +<. ……8分 516n ≤≤ 时,2111122n n n a a ++-=,29226442n n n b a a na +-=+- 10分1(559)n n a b n a +-=-. ……11分所以,511n ≤≤时,1n n a b +<;1216n ≤≤时,1n n a b +>.17n ≥时,显然1n n a b +> 故当111n ≤≤时,1n n a b +<;当 12n ≥时,1n n a b +>. 13分21.已知椭圆2222:1(0)x y C a b a b+=>>,过焦点且垂直于长轴的直线被椭圆截得的弦长为1,过点(3,0)M 的直线与椭圆C 相交于两点,A B (1)求椭圆C 的方程;(2)设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当3||<AB 时,求实数t 的取值范围.解(1)由已知c e a ==,所以2234c a =,所以22224,3a b c b ==所以222214x y b b += …… 1分又由过焦点且垂直于长轴的直线被椭圆截得的弦长为221b a=所以1b = …… 3分所以2214x y += …… 4分 (2)设1122(,),(,),(,)A x y B x y P x y 设:(3)AB y k x =-与椭圆联立得22(3)14y k x x y =-⎧⎪⎨+=⎪⎩ 整理得2222(14)243640k x k x k +-+-= 24222416(91)(14)0k k k ∆=--+>得215k < 2212122224364,1414k k x x x x k k -+=⋅=++ …… 6分1212(,)(,)OA OB x x y y t x y +=++= 121()x x x t =+=2224(14)k t k +[]12122116()()6(14)ky y y k x x k t t t k -=+=+-=+由点P 在椭圆上得22222(24)(14)k t k ++22221444(14)k t k =+22236(14)k t k =+ …… 8分又由2AB x =-<, 所以2212(1)()3k x x +-<221212(1)()43k x x x x ⎡⎤++-<⎣⎦2(1)k +242222244(364)(14)14k k k k ⎡⎤--⎢⎥++⎣⎦3< 22(81)(1613)0k k -+>所以221810,8k k ->> …… 11分所以21185k << 由22236(14)k t k =+得222236991414k t k k ==-++所以234t <<,所以2t -<<2t << …… 13分22.已知函数2()(0)f x x ax a =-≠,()ln g x x =,()f x 图象与x 轴异于原点的交点M 处的切线为1l ,(1)g x -与x 轴的交点N 处的切线为2l , 并且1l 与2l 平行.(1)已知实数t∈R,求[]ln ,1,u x x x e =∈的取值范围及函数[][()+],1,y f xg x t x e =∈的最小值(用t 表示);(2)令()()'()F x g x g x =+,给定1212,(1,),x x x x ∈+∞<,对于两个大于1的正数βα,,存在实数m 满足:21)1(x m mx -+=α,21)1(mx x m +-=β,并且使得不等式12|()()||()()|F F F x F x αβ-<-恒成立,求实数m 的取值范围.解: ()y f x =图象与x 轴异于原点的交点(,0)M a ,'()2f x x a =-(1)ln(1)y g x x =-=-图象与x 轴的交点(2,0)N ,1'(1)1g x x -=- 由题意可得12l l k k =,即1a =, ∴2(),f x x x =-, ………2分(1)2[()+][ln +](ln +)y f xg x t x x t x x t ==-=22(ln )(21)(ln )x x t x x t t +-+-…4分 令ln u x x =,在 []1,x e ∈时,'ln 10u x =+>,∴ln u x x =在[]1,e 单调递增,0,u e ≤≤ ………3分22(21)y u t u t t =+-+-图象的对称轴122tu -=,抛物线开口向上 ① 当1202t u -=≤即12t ≥时,2min 0|u y y t t ===- ②当122t u e -=≥即122et -≤时,22min |(21)u e y y e t e t t ===+-+- ③当1202t e -<<即12122e t -<<时,22min 12212121|()(21)224t u t t y y t t t -=--==+-+-=- …………6分1(3)()()'()ln F x g x g x x x =+=+,22111'()0x F x x x x-=-=≥1x ≥得所以()F x 在区间(1,)+∞上单调递增 ……………………7分∴1x ≥当时,F F x ≥>()(1)0 ①当(0,1)m ∈时,有12111(1)(1)mx m x mx m x x α=+->+-=,12222(1)(1)mx m x mx m x x α=+-<+-=, 得12(,)x x α∈,同理12(,)x x β∈,∴ 由)(x f 的单调性知 0<1()()F x F α<、2()()F F x β<从而有12|()()||()()|F F F x F x αβ-<-,符合题设. ………………9分 ②当0m ≤时,12222(1)(1)mx m x mx m x x α=+-≥+-=,12111(1)(1)m x mx m x mx x β=-+≤-+=,由)(x f 的单调性知 0<12()()()()F F x F x F βα≤<≤,∴12|()()||()()|F F F x F x αβ-≥-,与题设不符 ……………11分③当1m ≥时,同理可得12,x x αβ≤≥,得12|()()||()()|F F F x F x αβ-≥-,与题设不符. …………12分∴综合①、②、③得(0,1)m ∈ ……………13分。
湖南省长沙市重点中学2014届高三第七次月考数学理试题考试时间:120分钟 满分:150分一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合要求的。
1、若集合{1234}A =,,,,{2478}{1,3,4,5,9}B C ==,,,,,则集合()A B C 等于( D )A. {2,4}B. {1,2,3,4}C. {2,4,7,8}D. {1,3,4}2、复数i z +=31,i z -=12,则复数12z z 在复平面内对应的点位于( A ) A .第一象限B .第二象限C .第三象限D .第四象限3、若向量(12)=,a ,(3,4)-b =,则()()⋅a b a +b 等于( B ) A.20 B.(10,30)- C.54D.(8,24)-4、若3tan 4α=,且sin cot 0αα⋅<,则sin α等于(A ) A. 35- B. 35C. 45-D. 455、已知命题1,:;25sin ,:2>++∈∀=∈∃x x R x q x R x p 都有命题使R ,.01:;25sin ,:2>++∈∀=∈∃x x R x q x R x p 都有命题使01:5sin ,:2>++∀=∈∃x x q x R x p 都有命题使,.0,:;25sin ,:2+∀=∈∃x x x q x R x p 都有命题使给出下列结论:①命题“q p ∧”是真命题 ②命题“q p ⌝∧”是假命题③命题“q p ∨⌝”是真命题 ④命题“q p ⌝∨⌝”是假命题 其中正确的是( B )A .②④B .②③C .③④D .①②③6. 分配4名水暖工去3个不同的居民家里检查暖气管道. 要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有(C )A. 34A 种B. 3133A A 种 C. 2343C A 种D. 113433C C A 种7、设F 1,F 2是椭圆1649422=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则21F PF ∆的面积为 ( D )A .4B .24C .22D . 6 8、若nxx )1(+展开式的二项式系数之和为64,则展开式的常数项为( B ) A .10 B .20C .30D .1209、数列{}n a 满足2113,1()2n n n a a a a n N ++==-+∈,则122014111m a a a =+++的整数部分是( )BA. 0B. 1C. 2D. 310、在平面直角坐标系中,(){}(){}22,1,,4,0,340A x y xy B x y x y x y =+≤=≤≥-≥则()()(){}12121122,,,,,,P x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为( )D A .6 B .6π+ C .12π+ D .18π+二.填空题:共25分。
(考试范围:高考全部内容)本试题卷包括选择题、填空题和解答题三部分,共21题,时量120分钟,满分150分.一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,,x y R i ∈为虚数单位,且1xi y i -=-+,则(1)x yi +-的值是( B ).2A .2B i - .4C - .2D i 2.已知集合1{|0,},A x x x R x=-=∈则满足{1,0,1}A B =-的集合B 个数是 ( C ).2A .3B .4C .8D3.1a =-是直线1:0l ax y +=与直线2:20l x ay ++=平行的 ( A ).A 充分不必要条件 B.必要不充分条件.C 充要条件 D.既不充分也不必要条件4.若向量,,a b c 满足a //b ,且0b c ⋅=,则a b c +⋅=()( D ) .4A .3B .2C .0D5.函数()sin(),()(0,||)2f x x x R πωϕωϕ=+∈><的部分图像如图所示,如果12,(,)63x x ππ∈-,且12()()f x f x =,则12()2x x f += ( D )1.2A 2.2B 3.2C .1D6. 已知下列四个命题,其中真命题的序号是 ( D )① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直; ② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直; ④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直;.A ①② .B ②③ .C ②④ .D ③④7.函数 2()4xf x x e =- 零点的个数 ( D ).A 不存在 .B 有一个 .C 有两个 .D 有三个8.设函数(2),2()1()1,22x k x x f x x -≥⎧⎪=⎨-<⎪⎩,()n a f n =,若数列{}n a 是单调递减数列,则实数k 的取值范围为( C ).(,2)A -∞ 13.(,]8B -∞ 7.(,)4C -∞ 13.[28D ,) 9. 函数()y f x =是定义在R 上的增函数,函数(2014)y f x =-的图象关于点(2014,0)对称.若实数,x y 满足不等式22(6)(824)0f x x f y y -+-+<,则22x y +的取值范围是 ( C ).A (0,16) .B (0,36) .C (16,36) .D (0,)+∞二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卡中对应题号后的横线上。
湖南省长沙市重点中学 2014届高三上学期第四次月考试卷理科数学 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1。
已知集合1{|0,},A x x x R x=-=∈则满足{1,0,1}A B =-的集合B 个数是( ).2A .3B .4C .8D2。
1a =是直线1:0l ax y +=与直线2:20l x ay ++=平行的( ).A 充分不必要条件B.必要不充分条件 .C 充要条件D.既不充分也不必要条件3。
若非零向量,,a b c 满足a //b ,且0b c ⋅=,则a b c +⋅=()( ) .4A .3B .2C .0D 【答案】D【解析】试题分析:非零向量a //b ,若所以存在实数λ使得a b λ=.又 0b c ⋅=,所以()(1)0a b c b c λ+⋅=+⋅=。
考点:共线向量基本定理、向量的数量积4.已知函数:22(),()2,()log xf x xg xh x x ===,当(4,)a ∈+∞时,下列选项正确的是( ) A 。
()()()f a g a h a >> B.()()()g a f a h a >> C 。
()()()g a h a f a >> D 。
()()()f a h a g a >>5。
已知平面α外不共线的三点C B A ,,到αα的距离都相等,则正确的结论是( )A.平面ABC 必平行于αB.平面ABC 必与α相交C 。
平面ABC 必不垂直于α D.存在△ABC 的一条中位线平行于α或在α内6。
已知抛物线32+-=x y 上存在关于直线0=+y x 对称的相异两点B A ,,则AB 等于( )A3 B4 C 23D24【答案】C 【解析】试题分析:设0(,)A x y ,因为B A ,关于直线0=+y x 对称,所以0(,)B y x --。
湖南省四校2014届高三上学期第三次联考理科数学 第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
全集,R U =},086|{},21|{2<+-=>-=x xx B x x A 则=⋂B A C U )(()A .)4,1[-B 。
)3,2( C 。
]3,2(D 。
)4,1(-2.已知命题R x p ∈∃0:,022020≤++x x ,则p ⌝为 ( )A.022,0200>++∈∃x x R xB.022,0200<++∈∃x x R xC.022,0200≤++∈∀x x R x D 。
022,0200>++∈∀x x R x3.在ΔABC 中,角A 、B 、C 所对的对边长分别为a 、b 、c ,sinA 、sinB 、sinC 成等比数列,且c= 2a ,则cosB 的值为( )A 。
41 B 。
43C 。
42D.324。
设函数⎪⎩⎪⎨⎧<-≥-=)2(1)21()2()2()(x x x a x f x是R 上的单调递减函数,则实数a 的取值范围为( )A .(—∞,2)B .(—∞,813]C .(0,2)D .[813,2)5。
函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期是π,若其图像向右平移3π个单位后得到的函数为奇函数,则函数()f x 的图像( )A 。
关于点,012π⎛⎫⎪⎝⎭对称 B 。
关于直线12x π=对称C.关于点5,012π⎛⎫ ⎪⎝⎭对称 D.关于直线512x π=对称 【答案】D【解析】6。
已知函数)(x f 是),(+∞-∞上的偶函数,若对于0≥x ,都有)()2(x f x f -=+,且当)2,0[∈x 时,)1(log)(2+=x x f ,则=+-)2012()2011(f f ( )A .1-B .3log 12+- C . 3log 12+ D .17.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A)25 (B )26(C )27 (D )42∠BCA 为钝角,其中BC=2,BC 边上的高为32,PC ⊥底面ABC ,且PC=2,由以上条件可知,∠PCA 为直角,最长的棱为PA 或AB ,在直角三角形PAC 中,由勾股定理得,PA=52124422=++=+AC PC ,在钝角三角形ABC 中,AB=72)32()2(22=+BC 。
湖南省十三校2014届高三3月第一次联考数学(文)试题总分:150分 时量:120分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应位置. 1.下列四个命题中,正确的是A .{0}∈RB .{|x x ⊂≤C .{|x x ≤D .{|x x ≤2.从编号为1~50的50枚最新研制的某种型号的弹道导弹中随机抽取5枚来进行发射试验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取的5枚导弹的编号可能是 A .5,10,15,20,25 B .3,13,23,33,43 C .1,2,3,4,5 D .2,4,6, 16 ,32 3.设全集为R ,集合A=11x x ⎧⎫≤⎨⎬⎩⎭,则R A =ð A .{|01}x x << B .{|01}x x <≤ C .{|01}x x ≤<D .{|10}x x ≥<或x4.“m=-1"是“直线mx+(2m -l )y+2=0与直线3x+my+3=0垂直”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.下列有关命题说法正确的是A .命题“若x 2 =1,则x=1"的否命题为“若x 2 =1,则1x ≠"B .命题“x ∃∈R ,x 2+x -1<0"的否定是“x ∀∈R ,x 2+x -1>0"C .命题“若x=y ,则sinx=siny 2的逆否命题为假命题D .若“p 或q”为真命题,则p ,q 中至少有一个为真命题 6.已知集合A={x|2X 2-x -3<0},B=113x x y gx ⎧-⎫=⎨⎬+⎩⎭,在区间(-3,3)上任取一实数x ,则“x A B ∈I "的概率为 A .14B .18C .13D .1127.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则该几何体的体积是 A .64 B .48 C .643D .168.已知A ,B 是单位圆上的动点,且,单位圆的圆心是O ,则OA uu r ·AB uuu r =A .BC .32-D .329.已知函数f (x=sin x+ cos x ,g (x )=2sin x ,动直线x=t 与f (x )、g (x )的图象分别交于点P 、Q ,则|PQ|的取值范围是A .[0,1]B .[0]C .[0,2]D .[1]10.已知函数f (x )=22,01(1),0x x x n x x ⎧-+≤⎨+>⎩,若|f (x )| ≥ax ,则a 的取值范围是A .(-∞,0]B .(-∞,1]C .[-2, 1]D .[-2, 0]二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.11.201411i i +⎛⎫= ⎪-⎝⎭。
2014届高三上学期第三次月考试卷数学文
(时量:120分钟 满分:150分)
一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一
项是符合题目要求的,请将所选答案填在答题卡对应位置.
1.下列函数中,在其定义域内既是奇函数又是减函数的是
A .e x y =
B .3y x =-
C .sin 2y x =
D .x y ln -= 2.下列命题中,假命题为( ) A .∀x ∈R,012>++x x
B .存在四边相等的四边形不.
是正方形 C .若x ,y ∈R ,且x +y >2,则x ,y 至少有一个大于1
D .a +b =0的充要条件是a b
=-1
3.执行下面的框图,若输出结果为3,则可输入的实数x 值的个数为
A .1
B .2
C .3
D .4
4.如图, 积中最大的是
A .1
B
C .2
D .5.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为
31812343
y x x =-+-,则使该生产厂家获得最大年利润的年产量为 A.9万件 B.11万件 C.12万件 D.13万件
6.下面关于复数21z i
=-+的四个结论,正确的是 ①2=z ②i z 22= ③i z +1的共轭复数为
④1-的虚部为z A .①② B .②③ C .②④ D .③④
7.若直线1:+=kx y l 被圆032:22=--+x y x C 截得的弦最短,则直线l 的方程是
A.0=x
B.1=y
C.01=-+y x
D.01=+-y x
8.已知非负实数b a ,满足1≤+b a ,则关于x 的一元二次方程02
2=++b ax x 有实根的概 率是 A.
31 B.21 C.61 D.3
2 9.已知ABC ∆是边长为2的正三角形,B 为线段EF 的中点,且3=EF ,则 AF AC AE AB ⋅+⋅的取值范围是
A.[]3,0
B. []6,3
C. []9,6
D. []9,3
答案:BDCBA CDAD
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上.
10.为了研究性别不同的高中学生是否爱好某项运动,运用22⨯列联表进行独立性检验,经 计算8.72
=K ,则所得到的统计学结论是:有______的把握认为“爱好该项运动与性别 有关”. 附:
11.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的
参数方程为1
x y t ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的极坐标方程为34sin 2=⎪⎭⎫ ⎝⎛-πθρ,则1C 与2C 交点在直角坐标系中的坐标为___________.
12.在ABC ∆中,若2,60,a B b =∠=︒=,则BC 边上的高等于 .
13.已知双曲线22
214
x y m m -=+的右焦点到其渐进线的距离为22,则此双曲线的离心率为 __________.
14.设集合(){}(){}≠+-≤=-≥=B A a x y y x B x y y x A ,|,,1|,¢.
(Ⅰ)实数a 的取值范围是 ;
(Ⅱ)当3=a 时,若()x y A
B ∈,,则y x +2的最大值是 .
15已知集合{}n a a a A ,,,21 =,其中)(),2,1(A l n n i R a i >≤≤∈表示和
)1(n j i a a j i ≤<≤+中所有不同值的个数.
(Ⅰ)若集合{}16,8,4,2=A ,则________)(=A l ;
(Ⅱ)当108=n 时,)(A l 的最小值为____________.
答案:10.99﹪11.()5,2 13.5 14.(Ⅰ)[)+∞,1(Ⅱ)5 15.(Ⅰ)6(Ⅱ)213.
三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16. (本小题满分12分) 已知函数()0,016sin )(>>+⎪⎭⎫ ⎝⎛-
=ωπωA x A x f 的最大值为3,其图像相邻两条对称轴之间的距离为2
π. (Ⅰ)求函数)(x f 的解析式; (Ⅱ)设5
112,2,0=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∈απαf ,求αcos 的值.
解:(1)∵函数f(x)的最大值为3,∴A +1=3,即A =2,
∵函数图像的相邻两条对称轴之间的距离为π2
,∴最小正周期T =π,∴ω=2, 故函数f(x)的解析式为y =2sin(2x -π6
)+1. 6分 (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝ ⎛⎭⎪⎫α-π6+1=5
11,即sin ⎝ ⎛⎭⎪⎫α-π6=53, ∵0<α<π2,∴-π6<α-π6<π3
, ∴1033466cos cos ,546cos -=⎥⎦
⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-==⎪⎭⎫ ⎝⎛
-ππααπα所以. 12分
17. (本小题满分12分)。