高速电路设计和信号完整性分析
- 格式:pdf
- 大小:100.30 KB
- 文档页数:1
高速serdes电路结构摘要:一、高速serdes电路概述二、高速serdes电路设计要点1.电源完整性设计2.信号完整性设计3.电磁兼容性设计三、高速serdes电路应用领域四、高速serdes电路未来发展趋势正文:高速serdes电路概述随着科技的快速发展,数据传输速率越来越快,传统的串行通信技术已经无法满足高速数据传输的需求。
于是,高速serdes电路应运而生。
Serdes是Serializer/Deserializer的缩写,即串行器/并行器,它是一种高速串行通信技术。
通过将串行数据转换为并行数据,可以大幅提高数据传输速率。
高速serdes电路设计要点1.电源完整性设计在高速serdes电路设计中,电源完整性(Power Integrity,PI)设计是非常重要的。
电源噪声和供电电压的波动会影响serdes的性能,降低数据传输速率和可靠性。
因此,在进行电源完整性设计时,需要考虑电源系统的稳定性、电源去耦、电源噪声滤波等方面。
2.信号完整性设计信号完整性(Signal Integrity,SI)是高速serdes电路设计的另一个关键要点。
在高速信号传输过程中,信号的波形失真、上升沿和下降沿的振荡以及串扰等问题会影响信号的质量。
为了保证信号的完整性,需要对信号传输路径进行优化,降低信号的阻抗,提高信号的传输能力。
3.电磁兼容性设计电磁兼容性(Electromagnetic Compatibility,EMC)是高速serdes电路设计中需要考虑的另一个因素。
高速信号传输过程中会产生电磁干扰,影响其他电子设备的正常工作。
因此,在设计高速serdes电路时,需要考虑电磁兼容性,采取有效的屏蔽和滤波措施,降低电磁干扰。
高速serdes电路应用领域高速serdes电路广泛应用于各种高速数据传输场景,如数据中心、通信设备、显卡、硬盘等。
在这些应用中,高速serdes电路可以实现高速数据传输,满足设备对数据处理和传输的需求。
第9章高速信号的电源完整性分析在电路设计中,设计好一个高质量的高速PCB板,应该从信号完整性(SI——Signal Integrity)和电源完整性(PI——Power Integrity )两个方面来考虑。
尽管从信号完整性上表现出来的结果较为直接,但是信号参考层的不完整会造成信号回流路径变化多端,从而引起信号质量变差,连带引起了产品的EMI性能变差。
这将直接影响最终PCB板的信号完整性。
因此研究电源完整性是非常必要和重要的。
9.1 电源完整性概述虽然电子设计的发展已经有相当长的历史,但是高速信号是近些年才开始面对的问题,随之出现的电源完整性的许多概念并不为大多数人所了解。
这里,对其中涉及到的一些基本名词做些简单的介绍。
9.1.1 电源完整性的相关概念电源完整性(Power Integrity) :是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
虽然电源完整性是讨论电源供给的稳定性问题,但由于地在实际系统中总是和电源密不可分的,通常把如何减少地平面的噪声也做为电源完整性的一部分讨论。
电源分配网络:电源分配网络的作用就是给系统内所有器件或芯片提供足够的电源,并满足系统对电源稳定性的要求。
同步开关噪声(Simultaneous Switch Noise,简称SSN):是指当器件处于开关状态,产生瞬间变化的电流(di/dt),在经过回流途径上存在的电感时,形成交流压降,从而引起噪声,所以也称为Δi噪声。
同步开关噪声包括电子噪声、地弹噪声、回流噪声、断点噪声等。
它对电源完整性的影响表现为地弹和电源反弹。
地弹噪声:它是同步开关噪声对电源完整性影响的表现之一。
是指芯片上的地参考电压的跳动。
当大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其它元器件的动作。
高速电路中的信号完整性问题许致火(07级信号与信息处理 学号 307081002025)1 信号完整性问题的提出一般来讲,传统的低频电路设计对于电子工程师并不是多么复杂的工作。
因为在低于30MHz的系统中并不要考虑传输线效应等问题,信号特性保持完好使得系统照常能正常工作。
但是随着人们对高速实时信号处理的要求,高频信号对系统的设计带来很大的挑战。
电子工程师不仅要考虑数字性能还得分析高速电路中各种效应对信号原来面目影响的问题。
输入输出的信号受到传输线效应严重的影响是我们严峻的挑战之一。
在低频电路中频率响应对信号影响很小,除非是传输的媒介的长度非常长。
然而伴随着频率的增加,高频效应就显而易见了。
对于一根很短的导线也会受到诸如振玲、串扰、信号反射以及地弹的影响,这些问题严重地损害了信号的质量,也就是导致了信号完整性性能下降。
2 引起信号完整性的原因2.1 传输线效应众所周知,传输线是用于连接发送端与接收段的连接媒介。
传统的比如电信的有线线缆能在相当长的距离范围内有效地传输信号。
但是高速的数字传输系统中,即使对于PCB电路板上的走线也受到传输线效应的影响。
如图1所示,对于不同高频频率的PCB板上的电压分布是不同的。
图 1 PCB在不同频率上的电压波动因为低频电路可以看成是一个没有特性阻抗、电容与电感寄生效应的理想电路。
高速电路中高低电平的快速切换使得电路上的走线要看成是阻抗、电容与电感的组合电路。
其等效电路模型如图2所示。
导线的阻抗是非常重要的概念,一旦传输路径上阻抗不匹配就会导致信号的质量下降。
图 2 传输线等效电路模型由图2的模型可得电报方程:2.2 阻抗不匹配情况信号源输出阻抗(Zs)、传输线上的阻抗(Zo)以及负载的阻抗(ZL)不相等时,我们称该电流阻抗不匹配。
也这是说信号源的能量没有被负载全部吸收,还有一部分能量被反射回信号源方向了。
反射后又被信号源那端反射给负载,除了吸收一部分外,剩下的又被反射回去。
电路设计中的信号完整性SI问题分析与解决引言:在现代电子设备中,信号完整性是一个至关重要的问题。
由于信号的传输速度越来越高,信号完整性问题变得尤为突出。
本文将分析信号完整性(Signal Integrity,简称SI)问题在电路设计中的重要性,并介绍一些常见的SI问题及其解决方法。
一、信号完整性的重要性信号完整性是指在信号传输过程中保持信号波形的准确性和完整性,确保信号的正确传递和解读。
如果信号受到干扰、衰减或失真,可能会导致数据的错误传输或丢失。
这对于各种电子设备,尤其是高速数据传输的系统来说,都是一项极其重要的考虑因素。
二、常见的SI问题1. 反射干扰反射干扰是信号在多个传输线之间传播时产生的一种干扰现象。
当信号到达传输线末端时,一部分信号能够反射回来,与输入信号相叠加,引起波形失真。
这种干扰主要由于阻抗不匹配引起。
2. 串扰干扰串扰干扰是指在多条相邻的传输线上,信号在传输过程中相互影响的现象。
这种干扰主要由于电磁场相互耦合引起,导致信号波形失真,降低信号质量。
3. 时钟抖动时钟抖动是指时钟信号在传输中出现的随机时移现象。
时钟抖动可能导致时序错误,使系统无法正确同步,进而影响整个系统的性能。
三、SI问题的解决方法1. 降低阻抗不匹配为了解决反射干扰问题,可以通过匹配传输线和负载的阻抗,减少信号反射。
采用合适的终端电阻,可以使信号在传输线上的反射最小化。
2. 优化布线方式在设计电路板布线时,应尽量避免传输线之间的相互干扰。
合理安排和分隔传输线的布局,使用屏蔽层和地平面层等技术手段,可有效减少串扰干扰。
3. 使用信号完整性分析工具借助信号完整性分析工具,可以模拟和分析信号在电路板上的传输过程,帮助发现潜在的SI问题。
通过调整设计参数,优化电路板布线,可以提前预防并解决SI问题。
4. 时钟校准技术对于时钟抖动问题,可以采用时钟校准技术来调整时钟信号的时序和相位。
通过使用高精度的时钟源和时钟校准电路,可以有效减少时钟抖动带来的问题。
高速电路设计中信号完整性高分析由于系统时钟频率和上升时间的增长,信号完整性设计变得越来越重要。
不幸的是,绝大多数数字电路设计者并没意识到信号完整性问题的重要性,或者是直到设计的最后阶段才初步认识到。
本篇介绍了高速数字硬件电路设计中信号完整性在通常设计的影响。
这包括特征阻抗控制、终端匹配、电源和地平面、信号布线和串扰等问题。
掌握这些知识,对一个数字电路设计者而言,可以在电路设计的早期,就注意到潜在可能的信号完整性问题,还可以帮助设计则在设计中尽量避免信号完整性对设计性能的影响。
尽管,信号完整性一直以来都是硬件工程师必备的设计经验中的一项,但是在数字电路设计中长期被忽略。
在低速逻辑电路设计时代,由于信号完整性相关的问题很少出现,因此对信号完整性的考虑本认为是浪费效率。
然而近几年随着时钟率和上升时间的增长,信号完整性分析的必要性和设计也在增长。
不幸的是,大多数设计者并没有注意到,而仍然在设计中很少去考虑信号完整性的问题。
现代数字电路可以高达GHz 频率并且上升时间在50ps以内。
在这样的速率下,在PCB设计走线上的疏忽即使是一个英尺,而由此造成的电压、时延和接口问题将不仅仅局限在这一根线上,还将会影响的全板及相邻的板。
这个问题在混合电路中尤为严重。
例如,考虑到在一个系统中有高性能的ADC 到数字化接收模拟信号。
散布在ADC器件的数字输出端口上的能量可能很容易就达到130dB(10,000,000,000,000 倍)比模拟输入端口。
在ADC数字端口上的任何噪声。
设计中的信号完整性并不是什么神秘莫测的过程。
对于在设计的早期意识到可能潜在的问题是很关键的,同时可以有效避免由此在后期造成的问题。
本篇讨论了一些关键的信号完整性挑战及处理他们的方法。
确保信号完整性:1、隔离一块PCB板上的元器件有各种各样的边值(edge rates)和各种噪声差异。
对改善SI最直接的方式就是依据器件的边值和灵敏度,通过PCB板上元器件的物理隔离来实现。
高速数字电路设计中的信号完整性分析在高速数字电路设计中,信号完整性分析是非常重要的一环。
信号完整性分析旨在确保信号在电路中能够准确、稳定地传输,从而避免信号失真或干扰,保证电路的性能和可靠性。
首先,我们需要了解信号完整性分析的基本概念。
信号完整性是指在一个电路中,信号从发送端到接收端能够保持原有的形态和正确的数值。
在高速数字电路设计中,信号往往受到许多因素的影响,如传输线特性、阻抗、反射、串扰等,这些因素都有可能导致信号失真。
因此,对信号完整性的分析和优化至关重要。
在进行信号完整性分析时,我们需要首先考虑传输线的特性。
传输线的特性包括传输速度、阻抗匹配、传输延迟等,这些特性直接影响信号传输的稳定性和速度。
通过对传输线的建模和仿真分析,可以帮助我们了解传输线对信号的影响,从而优化电路设计。
另外,阻抗匹配也是信号完整性分析中的重要内容。
当信号源和负载的阻抗不匹配时,会导致信号的反射和衰减,从而降低信号的质量和稳定性。
因此,在设计电路时,需要确保信号源和负载的阻抗能够有效匹配,以减少信号的失真和干扰。
此外,信号完整性分析还需要考虑信号的传输延迟和时序关系。
在高速数字电路中,信号传输的延迟会对数据的同步和稳定性产生影响。
通过时序分析和延迟优化,可以更好地控制信号的传输速度和有效减少时序误差。
最后,在进行信号完整性分析时,还需要考虑信号的功耗和信噪比。
功耗会影响电路的工作效率和稳定性,信噪比则会影响信号和噪声的比值,从而影响信号的准确性和清晰度。
因此,在设计电路时,需要综合考虑功耗和信噪比等因素,以实现信号的高质量传输。
总的来说,信号完整性分析是保证高速数字电路性能和可靠性的重要步骤。
通过对传输线特性、阻抗匹配、传输延迟、功耗和信噪比等方面的分析和优化,可以更好地保证信号在电路中的准确传输,避免信号失真和干扰,从而提高电路的性能和可靠性。
希望以上内容对您有所帮助。
高速电路设计/信号完整性的一些基本概念1.信号完整性(Signal Integrity):就是指电路系统中信号的质量,如果在要求的时间内,信号能不失真地从源端传送到接收端,我们就称该信号是完整的。
2.传输线(Transmission Line):由两个具有一定长度的导体组成回路的连接我们称之为传输线,有时也被称为延迟线。
3.集总电路(Lumped circuit):在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。
4.分布式系统(Distributed System):实际的电路情况是各种参数分布于电路所在空间的各处,当这种分散性造成的信号延迟时间与信号本身的变化时间相比已不能忽略的时侯,整个信号通道是带有电阻、电容、电感的复杂网络,这就是一个典型的分布参数系统。
5.上升/下降时间(Rise/Fall Time):信号从低电平跳变为高电平所需要的时间,通常是量度上升/下降沿在10%-90%电压幅值之间的持续时间,记为Tr。
6.截止频率(Knee Frequency):这是表征数字电路中集中了大部分能量的频率范围(0.5/Tr),记为Fkn ee,一般认为超过这个频率的能量对数字信号的传输没有任何影响。
7.特征阻抗(Characteristic ImpEDAnce):交流信号在传输线上传播中的每一步遇到不变的瞬间阻抗就被称为特征阻抗,也称为浪涌阻抗,记为Z0。
可以通过传输线上输入电压对输入电流的比率值(V/I)来表示。
8.传输延迟(Propagation delay):指信号在传输线上的传播延时,与线长和信号传播速度有关,记为tP D。
9.微带线(Micro-Strip):指只有一边存在参考平面的传输线。
10.带状线(Strip-Line):指两边都有参考平面的传输线。
11.趋肤效应(Skin effect):指当信号频率提高时,流动电荷会渐渐向传输线的边缘靠近,甚至中间将没有电流通过。
高速通信芯片设计中的信号完整性验证与优化随着数字通信技术的快速发展,高速通信芯片在现代电子设备中扮演着至关重要的角色。
然而,由于高速通信芯片中各种信号的频率较高,信号完整性问题也随之而来。
本文将讨论高速通信芯片设计中的信号完整性验证与优化方法,以确保设计的可靠性和可用性。
1. 信号完整性的重要性在高速通信芯片设计中,信号完整性指的是信号在传输过程中不发生任何损失或干扰的能力。
信号完整性问题可能导致通信误码率的增加、数据传输速率的降低,甚至芯片的故障。
因此,保持信号的完整性对于高速通信芯片设计至关重要。
2. 信号完整性验证方法为了验证信号完整性,可以采用以下方法:2.1 电磁仿真通过使用电磁仿真软件,可以模拟高速信号在芯片布局中的传播路径和电磁相互作用。
这样可以检测到可能导致信号完整性问题的布局布线错误或电磁噪声源,从而及早解决问题。
2.2 时域分析时域分析方法可以检测信号的上升时间、下降时间和波形变化等参数。
通过分析这些参数,可以确定是否存在信号完整性问题,例如反射、串扰或功率崩塌等。
此外,时域分析还可以帮助设计人员优化信号的传输速率和功耗。
2.3 地址布局和电源布局规划在高速通信芯片设计中,地址布局和电源布局对于保持信号完整性至关重要。
合理的地址布局和电源布局可以减少信号间的串扰和互相干扰,从而保持信号的完整性。
通过合理规划地面和电源填充,可以降低电磁噪声的影响,提高信号的传输质量。
3. 信号完整性优化方法为了优化信号完整性,可以采用以下方法:3.1 信号预留在高速通信芯片设计中,为了避免信号超过规定的电气参数范围,可以设置信号预留。
通过预留信号的幅度和时序裕度,可以确保信号在传输过程中有足够的余量,从而避免信号完整性问题的发生。
3.2 电源和地面规划合理的电源和地面规划对于优化信号完整性具有重要意义。
通过增加电源和地面的连接数目和面积,可以降低电源和地面的电阻,从而提高信号的传输质量。
此外,采用分层地面和电源平面也可以减少电磁噪声的干扰。
高速电路设计中的信号完整性分析与布局布线建议在高速电路设计中,信号完整性是一个至关重要的问题,它涉及到数据传输的可靠性和性能。
信号完整性分析与布局布线建议是确保电路正常运行的关键步骤。
本文将介绍高速电路设计中信号完整性的概念、分析方法以及布局布线建议。
首先,我们来了解一下信号完整性的概念。
信号完整性是指当信号在电路中传输时,能够保持其原始形状和幅度,不受噪声、时延和串扰等影响的能力。
对于高速电路来说,信号完整性的保持对于数据的正确传输和系统的稳定性至关重要。
在信号完整性分析中,我们首先需要进行信号完整性的建模和仿真。
建模是指将实际电路抽象成等效电路模型,仿真是指通过数学模型和仿真软件来模拟电路的运行。
常用的建模方法有传输线建模和电源/地面建模。
对于传输线建模,我们可以使用传输线模型来描述信号在电路中的传播,例如时域传输线模型和频域传输线模型。
时域传输线模型主要考虑信号的时域特性,通过考虑电感、电容和电阻等参数来模拟信号在电路中的传播。
而频域传输线模型则主要考虑信号的频域特性,通过考虑传输线的频率响应来模拟信号的传播。
电源/地面建模是指将电源和地面系统抽象为等效电路模型。
在高速电路中,电源和地面是信号传输的两个重要参考。
电源/地面的不稳定性会导致信号完整性的丧失。
因此,准确建模和仿真电源/地面系统对于信号完整性的分析非常重要。
在信号完整性分析中,我们还需要考虑一些与电路相关的参数和现象,例如时延、串扰和抖动等。
时延是指信号从输入到输出之间的延迟时间。
在高速电路中,时延不稳定性会导致信号的失真和时序问题。
串扰是指信号之间由于电磁耦合而产生的干扰。
电路中的布线、地线和电源引脚的位置等都会对串扰产生影响。
抖动是指信号的频率和幅度的不稳定性。
在高速电路中,抖动会导致时钟信号失真和时序错误。
为了保证信号完整性,我们可以根据分析的结果提出一些布局布线的建议。
首先,布局布线时应尽量减少传输线的长度和层间距离,从而降低信号的时延和串扰问题。
高速PCB设计中信号完整性的仿真与分析经验信号完整性是高速PCB设计中非常重要的考虑因素之一,它涉及到信号的传输特性、功率完整性和噪声抑制等方面。
为了确保良好的信号完整性,需要进行仿真和分析,下面将分享一些经验。
首先,进行信号完整性仿真和分析时,通常会使用电磁场仿真软件,如HyperLynx、ADS和Siemens Polarion等。
这些软件提供了强大的仿真工具,可以模拟高速信号在PCB板层间、连线延迟、反射噪声和交叉耦合等方面的特性。
在进行PCB布线之前,可以使用S参数仿真来预测信号传输损耗和延迟。
S参数仿真可以帮助确定适当的信号线宽和间距,以确保信号在传输过程中不会过多地损耗信号强度。
另外,还可以使用时间域仿真来观察信号的时钟偏移、波形畸变和振荡等问题。
在信号完整性分析中,功率完整性也是一个重要的考虑因素。
为了确保功率供应的稳定性,可以使用直流仿真来模拟电流分布和功率供应网络的负载情况。
同时,也需要考虑布线的阻抗匹配和电源降噪等因素,以确保信号传输过程中的稳定性和可靠性。
噪声抑制是信号完整性另一个重要的方面。
在高速PCB设计中,尤其是在高频电路中,信号可能会受到电磁干扰、串扰和反射等干扰。
为了抑制这些噪声,可以使用串扰仿真来分析信号互相之间的干扰程度,并采取相应的补救措施,如增加地线和电源平面或添加层间抑制器等。
此外,还可以通过仿真来评估不同布线方案的性能。
通过对比仿真结果,可以选择性能最佳的布线方案,以实现更好的信号完整性。
除了进行仿真分析,还应根据实际情况对设计进行优化,如合理布局和分隔模块、减少信号线长度、使用合适的信号线层间堆叠等。
总结起来,信号完整性的仿真与分析在高速PCB设计中起着至关重要的作用。
通过运用合适的仿真工具和技术,可以提前检测和解决信号完整性问题,提高PCB设计的可靠性和性能。
同时,也需要结合实际经验和优化措施,确保设计的有效性和可行性。
摘要随着现代电子技术的迅速发展,高速电路的应用范围也在日益扩大,系统时钟频率在迅速提高。
由于上升时间的加快和电路集成度的不断增加,印制电路板的线迹互连和板层特性对系统电气性能的影响越来越突出,引发了很多信号完整性问题。
互连关系在低频电路设计中可视为集总参数,线迹互连和板层特性的影响可以不考虑。
但是,高速电路中的互连线已经成为具有分布参数的传输线,印制电路板材料的介电常数也影响着电路系统的性能,从而出现反射、串扰、和同步开关噪声等信号完整性问题,造成了信号失真、时序混乱、数据错误以及系统误触发等严重的后果。
信号完整性理论的逐步完善为解决这些问题提供了理论依据,而仿真软件的发展则给电路设计者提供了一把利刃。
用基本理论作指导,仿真软件为工具,就可以在产品生产之前尽可能早地发现信号完整性问题隐患,最大限度地减少因为信号完整性问题而导致的产品设计失败的概率,使产品一次开发成功成为可能,大大缩短开发周期,降低开发成本。
论文对高速电路设计中的信号完整性问题作了理论研究与实际仿真。
有以下的基本内容:研究了信号完整性的基本理论,包括高速电路理论、电磁场理论和传输线理论。
用建模的方式分析了反射形成的机理,提出了各种改善反射的端接措施。
研究了电容矩阵与电感矩阵,用来描述串扰;用耦合解释了串扰原理。
介绍了本文的仿真软件Hyperlynx和仿真模型。
在熟练掌握Hyperlynx软件的基础上,对这些内容做了仿真分析:多种情况的反射现象、多种参数对反射的影响、电容矩阵与电感矩阵的求解、耦合电磁场的模拟、各种串扰的分析等。
理论分析与仿真实践都表明:端接技术对改善高速电路中的信号反射效果非常明显;提出的减少串扰的布线策略是可行的;由矩阵可以计算耦合线的串扰。
从而提供了较完备的高速电路反射与串扰的分析策略。
关键词:信号完整性;反射;串扰;端接;仿真AbstractWith the development of modern electronic technology, the range of application is expanding increasingly for high speed circuit, and systematic clock frequency is increasing rapidly.With more quick risetime and the increase of integrated degree of circuit, the line's mutual link of printed circuit board and board layer's property have greater influence on the systematic electrical performance, and caused a lot of signal integrity problems.For the design of low frequency circuit, the mutual link relations can be regard as lumped parameters, and the influence of line's mutual link and board layer's property can be neglected.But the interconnects of the high speed circuit becomes a transmission line with distributed parameters, and the permittivity of the printed circuit board also influences the performance of circuit system. Therefore, a lot of signal integrity problems have appeared, such as reflection, crosstalk and simultaneous switching noise, etc., which cause serious consequences such as signal distortion, out-of-order timing, incorrect data and incorrect trigger of the system.The gradual improvements of the theories in signal integrity provided a theoretical basis for solving these problems, and the development of simulation software provided keen edge to circuit designers.With basic theory as guide and simulation software as tool, we can discover the hidden signal integrity problems earlier before the product made, and the probability of the failure caused by signal integrity problems is reduced at the lowest level. Then it is possible that products can be developed very successfully only one time, and the development period is shortened and the cost is reduced.This paper made a theoretical study and actual simulation as to the signal integrity problems in the design of high speed circuit. The basic contents are as follows: The fundamental theories of signal integrity were studied, including high speed circuit theory, electromagnetic field theory and transmission line theory. The mechanism in forming reflections were analyzed by modeling, and various termination measures for improving reflections were given. Capacitance matrix and inductance matrix were studied, which were used to describe crosstalk; The crosstalk principle was explained by coupling. Simulation software Hyperlynx and simulation models for this paper were introduced. On the basis of mastering Hyperlynx, some contents were simulated and analyzed, that is, various reflection phenomena, the influence on reflection by various parameters, solving capacitance matrix and inductance matrix,simulating coupled electromagnetic field, analyzing various crosstalks, etc. Theoretical analysis and actual simulation indicated that the effects of termination technology are very obvious on improving signal reflection of high-speed circuit; The proposed routing tactics for reducing crosstalks are feasible; crosstalk of coupled lines can be worked out from matrix.Accordingly, more integrated analysis tactics of reflection and crosstalk in high speed circuit were offered.Keywords: signal integrity; reflection; crosstalk; termination; simulation插图索引图 2.1 实际元件的等效模型 (10)图 2.2 实际数字信号波形 (10)图 2.3 接收器中的ESD 钳位保护结构 (11)图 2.4 建立时间和保持时间 (11)图 2.5 小段传输线的集总参数模型 (12)图 2.6 互连中常用的各种均匀传输线的横截面举例 (13)图 2.7 信号传输的电磁场模型 (15)图 2.8 传输线零阶模型 (16)图 2.9 传输线的物理结构与一阶模型 (17)图 2.10 50Ω传输线的两种横截面 (18)图 2.11 三种均匀传输线示意图 (18)图 3.1 输入/输出缓冲器整体结构模型图 (22)图 3.2 输入缓冲器模型 (23)图 3.3 输出缓冲器模型 (23)图 4.1 传输线反射模型 (26)图4.2 与1 V入射信号对应的终端电压值随终端阻抗变化的曲线 (28)图 4.3 有短串接线与无短串接线波形比较 (29)图 4.4 突变长度分别为0.5in,1.0in,2.0in,3.0in时传输线上的反射 (30)图 4.5 短桩线模型及其反射信号与传输信号 (32)图 4.6 传输线远端容性负载的电容量不同时,传输线上的反射信号 (33)图 4.7 传输线中途不同容性负载时,传输线上的终端信号和源端信号 (35)图 4.8 与传输线并联的容性突变的并联阻抗等效图 (36)图4.9 上升时间为50 ps的信号分别通过电感值L=0,5nH的突变 (37)图 4.10 多次反射计算图解 (39)图 4.11 各种阻尼情况下的电路模型 (40)图 4.12 各种阻尼情况下的仿真波形 (41)图 4.13 各种端接方法示意图 (42)图4.14 无终端端接模型及133 MHz时钟信号接收端波形 (43)图 4.15 点对点拓扑结构四种常用的端接方法示意图 (44)图4.16 传输线有和没有源端端接时,其远端的快速上升边的电压信号 (45)图 4.17 传输线具有源端串联电阻时的源端电压波形 (46)图 5.1 串扰中的干扰源与被干扰对象 (47)图 5.2 n 节耦合传输线模型其中一节的等效电路模型 (48)图 5.3 5 条耦合传输线的横截面图 (49)图5.4 使用场求解器工具计算的5条耦合传输线的电磁场分布 (50)图5.5 SPICE电容矩阵元素图 (51)图 5.6 电感矩阵元素图 (52)图 5.7 两条耦合线的等效电路模型 (53)图 5.8 静态线近端的端接电阻两端的容性耦合电压的一般特性 (54)图 5.9 静态线远端的端接电阻两端的容性耦合电压的典型特性 (54)图 5.10 信号沿动态线传输时的感应电流图示 (56)图 5.11 耦合电流仿真波形 (57)图 5.12 差模下的电磁场分布 (58)图 5.13 共模下的电磁场分布 (58)图 5.14 减少并行线长度的走线方式 (59)图 5.15 不同耦合长度的近端串扰电压 (60)图 5.16 远端串扰与上升时间的关系仿真 (61)附表索引表5.1 耦合电流数据比较 (58)第1章绪论1.1信号完整性问题的提出摩尔定律最早给出了电子产品的发展方向――更小、更快、更便宜、研发周期更短。
什么是高速数字信号?高速数字信号由信号的边沿速度决定,一般认为上升时间小于4倍信号传输延迟时可视为高速信号,而高频信号是针对信号频率而言的。
高速电路涉及信号分析、传输线、模拟电路的知识。
错误的概念是:8KHz帧信号为低速信号。
多高的频率才算高速信号?当信号的上升/下降沿时间< 3~6倍信号传输时间时,即认为是高速信号.对于数字电路,关键是看信号的边沿陡峭程度,即信号的上升、下降时间,信号从10%上升到90%的时间小于6倍导线延时,就是高速信号!即使8KHz的方波信号,只要边沿足够陡峭,一样是高速信号,在布线时需要使用传输线理论。
信号完整性研究:什么是信号完整性?时间:2009-03-11 20:18来源:sig007 作者:于博士点击: 1813次信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。
当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。
一般认为,当系统工作在50MHz时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。
元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。
1、什么是信号完整性(Singnal Integrity)?信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。
信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。
主要的信号完整性问题包括反射、振荡、地弹、串扰等。
常见信号完整性问题及解决方法:问题可能原因解决方法其他解决方法过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略振荡阻抗不匹配在发送端串接阻尼电阻2、什么是串扰(crosstalk)?串扰(crosstalk)是指在两个不同的电性能之间的相互作用。
现代电路设计中的信号完整性分析在当今高度数字化和集成化的电子世界中,电路设计的复杂性日益增加。
信号完整性已经成为确保电子系统可靠运行的关键因素之一。
简单来说,信号完整性指的是信号在传输过程中保持其准确性、完整性和时序特性的能力。
如果信号完整性出现问题,可能会导致系统性能下降、数据错误、甚至系统崩溃。
那么,为什么信号完整性在现代电路设计中如此重要呢?随着电子设备的工作频率不断提高,信号的传输速度也越来越快。
在高速情况下,信号的行为不再像在低速时那样简单和可预测。
例如,信号在传输线上可能会出现反射、串扰、衰减等现象,这些都会影响信号的质量。
反射是信号完整性中的一个常见问题。
当信号在传输线的终端遇到阻抗不匹配时,就会发生反射。
这就好像声音在一个封闭的房间里反射一样,会产生回声。
在电路中,反射会导致信号的失真和叠加,可能会引起误码或者时序错误。
串扰则是另一个需要关注的问题。
当相邻的传输线之间存在电磁场耦合时,就会发生串扰。
一条线上的信号可能会干扰到相邻线上的信号,导致信号的噪声增加,影响系统的性能。
衰减也是不可忽视的。
信号在传输过程中会因为电阻、电容和电感等因素而损失能量,导致信号的幅度减小。
如果衰减过大,可能会使接收端无法正确识别信号。
为了确保信号完整性,电路设计师需要在设计阶段就进行充分的分析和优化。
首先,要合理选择传输线的类型和参数。
不同类型的传输线,如微带线、带状线等,具有不同的特性,适用于不同的应用场景。
同时,传输线的阻抗、长度、宽度等参数也需要根据信号的频率和特性进行精心设计。
其次,布局和布线也是至关重要的。
在电路板上,元件的布局应该尽量减小信号传输的路径长度,减少反射和串扰的可能性。
布线时,要遵循一定的规则,如保持传输线之间的间距、避免直角转弯等。
电源和地的设计也会影响信号完整性。
稳定的电源供应是保证电路正常工作的基础,而良好的接地可以减少噪声和干扰。
在进行信号完整性分析时,通常会使用一些专业的工具和技术。
信号完整性分析我们在滤除较为低频的噪声的时候,就应当选择电容值比较高的电容,想滤去频率较高的噪声,比如我们前面所说的EMI,则应该选择数值比较小的电容。
所以,在实际中,我们通常放置一个1uf到10uf左右的去耦电容在每个电源输出管脚处,来抑制低频成分,而选取0.01uf到0.1uf左右的去耦电容来滤除高频部分。
何为高速电路“高速电路”已经成为当今电子工程师们经常提及的一个名词,但究竟什么是高速电路?这的确是一个“熟悉”而又“模糊”的概念。
而事实上,业界对高速电路并没有一个统一的定义,通常对高速电路的界定有以下多种看法:有人认为,如果数字逻辑电路的频率达到或者超过45MHZ-50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路;也有人认为高速电路和频率并没有什么大的联系,是否高速电路只取决于它们的上升时间;还有人认为高速电路就是我们早些年没有接触过,或者说能产生并且考虑到趋肤效应的电路;更多的人则对高速进行了量化的定义,即当电路中的数字信号在传输线上的延迟大于1/2上升时间时,就叫做高速电路,本文也沿用这个定义作为考虑高速问题的标准。
此外,还有一个容易产生混淆的是“高频电路”的概念,“高频”和“高速”有什么区别呢?对于高频,很多人的理解就是较高的信号频率,虽然不能说这种看法有误,但对于高速电子设计工程师来说,理解应当更为深刻,我们除了关心信号的固有频率,还应当考虑信号发射时同时伴随产生的高阶谐波的影响,一般我们使用下面这个公式来做定义信号的发射带宽,有时也称为EMI发射带宽:F=1/(Tr*π),F是频率(GHz);Tr(纳秒)指信号的上升时间或下降时间。
通常当F>100MHz的时候,就可以称为高频电路。
所以,在数字电路中,是否是高频电路,并不在于信号频率的高低,而主要是取决于上升沿和下降沿。
根据这个公式可以推算,当上升时间小于3.185ns左右的时候,我们认为是高频电路。
第6章 高速电路信号完整性分析和设计-高速信号的开关噪声分析近年来,随着数字系统工作的时钟频率大大提高,数字IC 规模的扩大,PCB 板元件和布线密度的急剧增加,同步开关噪声对系统的影响也越来越明显,减小和抑制同步开关噪声方法的研究也成为高速电路设计中一个非常重要的方面。
本章将从同步开关噪声的产生机理,现象以及减小措施等方面来进行分析和介绍。
6.1 同步开关噪声的概念6.1.1 S SN 噪声及其影响 同步开关噪声(Simultaneous Switch Noise ,简称SSN ):指当多个器件同时处于开关状态,产生瞬间变化的电流(di/dt ),在经过回流途径上存在的电感时,形成交流压降,从而引起的噪声,有时也被称为同步开关输出噪声(Simultaneous switching output noise ,简称SSO ),或者称为ΔI 噪声。
如果是由于封装电感而引起地平面波动,造成芯片地和系统地不一致,这种现象我们称为地弹(GroundBounce );如果是由于封装电感引起的芯片和系统的电源差异,就称为电源弹跳(Power Bounce )。
当电流变化过快,从而在封装的电源和地引脚上产生较大的电压变化的时候,就会对快速的总线系统构成严重的信号完整性及电源完整性问题。
开关噪声给信号传输带来的影响更为显著,由于地引线和地平面存在寄生电感(见图6.1),在开关电流的作用下,会造成一定的电压波动,也就是说器件的参考地已经不再保持零电平。
在驱动端(见图6.2),本来要发送的低电平会因此出现相应的噪声波形,而对于开关信号波形来说,会因为地弹噪声的影响导致信号的下降沿变缓;在接收端(见图6.3),信号的波形同样会受到地弹噪声的干扰,不过这时的干扰波形和地弹噪声相位相反;另外,在一些存储性器件里,还有可能因为本身电源和地弹噪声的影响造成数据意外翻转(图6.4)。
如果耦合在一个选通或者时钟输入信号的噪声电压超过了阈值电压的时候,就会导致误触发的现象。
高速数字电路中的信号完整性分析关键信息项:1、信号完整性分析的目标和范围目标:____________________________范围:____________________________2、分析方法和工具方法:____________________________工具:____________________________3、数据采集和测量要求采集点:____________________________测量参数:____________________________4、结果评估标准关键指标:____________________________合格阈值:____________________________5、报告内容和格式包含内容:____________________________格式要求:____________________________6、时间进度安排各个阶段的时间节点:____________________________7、费用和支付方式总费用:____________________________支付阶段:____________________________1、引言11 本协议旨在规范高速数字电路中信号完整性分析的相关流程、方法和要求,确保分析结果的准确性和可靠性,为电路设计和优化提供有力支持。
2、信号完整性分析的目标和范围21 目标211 识别和评估高速数字电路中可能存在的信号完整性问题,如反射、串扰、时序偏差等。
212 提供优化建议,以改善电路性能,满足设计要求。
213 预测电路在不同工作条件下的信号完整性表现,为系统的稳定性和可靠性提供保障。
22 范围221 涵盖指定的高速数字电路板,包括芯片、走线、连接器等关键组件。
222 考虑电路的工作频率、信号速率、电源分布等因素。
223 针对特定的信号传输路径和关键信号进行重点分析。
3、分析方法和工具31 方法311 采用时域和频域分析相结合的方法,包括仿真分析和实际测量。
芯片设计中的高速信号完整性分析在现代科技发展的浪潮下,芯片设计作为基础与核心的技术之一,成为了信息时代的重要支撑。
而在芯片设计的过程中,高速信号完整性分析是一项非常重要的任务。
本文将从介绍高速信号完整性分析的概念、意义以及主要方法入手,帮助读者深入了解该领域的重要性。
1. 概述芯片设计中的高速信号完整性分析是指对芯片内部传输的高速信号进行分析和优化的过程。
高速信号完整性分析的目标是确保信号在芯片内部传输过程中保持稳定,有效降低信号失真、串扰以及时序问题等不良影响,以保证芯片的可靠性和性能。
2. 意义高速信号完整性分析的意义在于在芯片设计的早期阶段,通过模拟和验证技术对芯片的高速信号进行分析,可以避免后期芯片设计过程中出现不可预测的错误和问题,节约了成本和时间,并提高了芯片的可靠性和性能。
3. 主要方法(1)传输线建模与分析:在芯片设计过程中,高速信号的传输线扮演着重要的角色。
传输线建模与分析主要是通过建立适当的传输线模型,利用传输线的电学特性进行模拟和分析,以预测和解决信号失真、串扰等问题。
(2)电磁兼容 (EMC) 分析:高速信号在芯片内传输过程中,往往会引起电磁辐射干扰,从而影响其他电路的正常工作。
通过电磁兼容分析,可以对芯片的电磁辐射干扰进行评估,并优化设计,以减少干扰。
(3)时序分析:芯片的高速信号需要满足严格的时序要求。
时序分析的主要任务是通过建立时序模型,分析信号传输的时延、时钟抖动等参数,以确保信号的时序性能和稳定性。
4. 结论芯片设计中的高速信号完整性分析是确保芯片性能和可靠性的关键环节,同时也是保证芯片能够满足高速高带宽应用需求的重要手段。
通过传输线建模与分析、电磁兼容分析以及时序分析等方法,可以有效降低芯片的失真、串扰和时序问题,从而提高芯片的可靠性和性能。
综上所述,高速信号完整性分析在芯片设计中具有重要的意义,可以提高芯片的可靠性、性能和兼容性。
芯片设计工程师需要熟练掌握相应的分析方法,并在设计过程中深入应用,以保证芯片的稳定性和优异的性能。