七年级数学下册《平行线性质》练习题(含答案)
- 格式:doc
- 大小:268.50 KB
- 文档页数:11
2022-2023学年人教版七年级数学下册《5.3平行线的性质》同步练习题(附答案)一.选择题1.如图,AB∥EC,则下列结论正确的是()A.∠A=∠ECD B.∠A=∠ACE C.∠B=∠ACE D.∠B=∠ACB 2.如图,已知AB∥EF,DE∥BC,则与∠1相等的角有()A.1个B.2个C.3个D.4个3.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°4.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,直线a∥b,直线c与a、b相交,∠1=55°,则∠2=()6.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°7.如图,直线a,b,a∥b,点C在直线b上,∠DCB=90°,若∠1=70°,则∠2的度数为()A.20°B.25°C.30°D.40°8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是66°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B是()A.87°B.93°C.39°D.109°9.一艘轮船从A港出发,沿着北偏东63°的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27°方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()10.一把直尺与一块直角三角板按如图方式摆放,若∠1=47°,则∠2=()A.40°B.43°C.45°D.47°二.填空题(共6小题)11.如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=150°,则∠A为.12.如图,AB∥DE,FC⊥CD于点C,∠ABC=107°,∠CDE=130°,点G在BC的延长线上,则∠FCG的度数是.13.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.14.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°),按如图所示放置,若∠1=55°,则∠2的度数为.15.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2=.16.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.三.解答题(共6小题)17.如图:已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,求∠BCD的度数.18.如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)AB与DE平行吗?请说明理由;(2)若DC是∠NDE的平分线.①试说明∠ABC=∠C;②试说明BD是∠ABC的平分线.19.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.20.如图所示,直线a∥b,AC丄AB,AC交直线b于点C,∠1=60°,求∠2的度数.21.如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.22.如图,已知AB∥ED,∠C=90°,∠ABC=∠DEF,∠D=130°,∠F=100°,求∠E的大小.参考答案一.选择题1.解:∵AB∥EC,∴∠A=∠ACE,∠B=∠ECD.故选:B.2.解:如图所示,与∠1相等的角有∠B、∠DEF、∠EFC共3个,故选:C.3.解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.4.解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.5.解:∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,又∵∠2=∠3,∴∠2=55°,故选:A.6.解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.7.解:∵∠1=70°,∠1与∠3是对顶角,∴∠3=∠1=70°.∵a∥b,点C在直线b上,∠DCB=90°,∴∠2+∠DCB+∠3=180°,∴∠2=180°﹣∠3﹣∠DCB=180°﹣70°﹣90°=20°.故选:A.8.解:如图:过B作直线b平行于拐弯之前的道路a,由平行线的传递性得a∥b∥c,∵a∥b,∴∠A=∠1=66°,∵b∥c,∴∠2=180°﹣∠C=180°﹣153°=27°,∴∠ABC=∠1+∠2=66°+27°=93°.故选:B.9.解:根据题意,得AE∥BF,AM∥CN;∠A=63°,∠FBC=27°.∵AE∥BF,∴∠1=∠A=63°.∵AM∥CN,∴∠DCN=∠DBM=∠1+∠FBC=63°+27°=90°.故选:C.10.解:方法1:如图,∵∠1=47°,∠4=45°,∴∠3=∠1+∠4=92°,∵矩形对边平行,∴∠5=∠3=92°,∵∠6=45°,∴∠2=180°﹣45°﹣92°=43°.方法2:如图,作矩形两边的平行线,∵矩形对边平行,∴∠3=∠1=47°,∵∠3+∠4=90°,∴∠4=90°﹣47°=43°∴∠2=∠4=43°.故选:B.二.填空题11.解:∠ABC=180°﹣∠ABE=180°﹣150°=30.∵AB∥CD,∴∠BCD=∠ABC=30°.∵CE平分∠ACD,∴∠ACD=2∠BCD=60°.∴∠A=180°﹣∠ACD=180°﹣60°=120°.故答案为:120°.12.解:过点C作CH∥AB∴∠GCH=∠ABC=107°∴∠HCD+∠CDE=180°∴∠HCD=180°﹣130°=50°∴∠GCD=∠GCH﹣∠HCD=107°﹣50°=57°∴∠FCG=90°﹣57°=33°.故答案为33°.13.解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.14.解:∵∠1=55°,∠A=60°,∴∠3=∠4=65°,∵a∥b,∴∠4+∠2=180°,∴∠2=115°.故答案为:115°.15.解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案为:20°.16.解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.三.解答题17.解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.18.解:(1)AB∥DE,理由如下:∵MN∥BC,(已知)∴∠ABC=∠1=60°.(两直线平行,内错角相等)又∵∠1=∠2,(已知)∴∠ABC=∠2.(等量代换)∴AB∥DE.(同位角相等,两直线平行);(2)①∵MN∥BC,∴∠NDE+∠2=180°,∴∠NDE=180°﹣∠2=180°﹣60°=120°.∵DC是∠NDE的平分线,∴∠EDC=∠NDC=∠NDE=60°.∵MN∥BC,∴∠C=∠NDC=60°.∴∠ABC=∠C.②∠ADC=180°﹣∠NDC=180°﹣60°=120°,∵BD⊥DC,∴∠BDC=90°.∴∠ADB=∠ADC﹣∠BDC=120°﹣90°=30°.∵MN∥BC,∴∠DBC=∠ADB=30°.∴∠ABD=∠DBC=∠ABC.∴BD是∠ABC的平分线.19.解:图1:∠APC=∠P AB+∠PCD.理由:过点P作PE∥AB,∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠1=∠A,∠2=∠C,∴∠APC=∠1+∠2=∠P AB+∠PCD,即∠APC=∠P AB+∠PCD;图2:∠APC+∠P AB+∠PCD=360°.理由:过点P作PE∥AB.∵AB∥CD,∴AB∥PE∥CD(平行线的传递性),∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠1+∠2+∠C=360°,∴∠APC+∠P AB+∠PCD=360°;图3:∠APC=∠PCD﹣∠P AB.理由:延长DC交AP于点E.∵AB∥CD,∴∠1=∠P AB(两直线平行,同位角相等);又∵∠PCD=∠1+∠APC,∴∠APC=∠PCD﹣∠P AB;图4:∴∠P AB=∠APC+∠PCD.理由:∵AB∥CD,∴∠1=∠P AB(两直线平行,内错角相等);又∵∠1=∠APC+∠PCD,∴∠P AB=∠APC+∠PCD.20.解:∵AC丄AB,∴∠BAC=90°,∵∠1=60°,∴∠B=180°﹣∠1﹣∠BAC=30°,∵a∥b,∴∠2=∠B=30°.21.证明:∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).22.解:延长DC、AB交于G,∵ED∥AB,∠D=130°,∴∠G=50°,又∵∠BCD=90°,∠BCD=∠G+∠CBG,∴∠CBG=40°,∴∠ABC=140°,∴∠E=∠ABC=140°.。
5.3.1《平行线的性质》重难点题型专项练习考查题型一两直线平行同位角相等的应用典例1.(2022秋·重庆铜梁·七年级校考阶段练习)如图,直线,被直线所截,若,,则的度数为()A.B.C.D.【答案】A【分析】由,根据两直线平行,同位角相等,即可求得的度数,又由邻补角的定义即可求得的度数.【详解】解:如图:∵,,∴,∵,∴.故选:A.【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握平行线的性质,正确运用数形结合思想.变式1-1.(2022·四川德阳·模拟预测)如图,直线,将三角尺的直角顶点放在直线上,如果,那么的度数为( )A.B.C.D.【答案】A【分析】根据平行线的性质求出,由平角性质可知即可得出结论.【详解】如图:,,,故选:.【点睛】本题考查了平行线的性质,熟练运用平行线的性质推理是解题的关键.变式1-2.(2022·宁夏固原·校考模拟预测)如图,把一个三角尺的直角顶点放在直尺的一边上,如果,那么的大小为()A.B.C.D.【答案】D【分析】根据余角的定义求出,再根据两直线平行,同位角相等可得.【详解】解:∵,∴,∵直尺的两边互相平行,∴.故选:D.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式1-3.(2022秋·陕西西安·七年级校考期中)如图,将直尺与角的三角尺叠放在一起,若,则的大小是()A.B.C.D.【答案】B【分析】由三角尺可知,由平角可求,再根据平行线的性质可知.【详解】解:如图:由三角尺可知,∵,∴,由平行线的性质可知.故选:B.【点睛】本题考查了平行线的性质及直角三角形的性质,充分运用三角板和直尺的几何特征是解题的关键.考查题型二两直线平行内错角相等的应用典例2.(2021·新疆乌鲁木齐·校考一模)如图,直线,直角三角板的直角顶点C在直线上,一锐角顶点B在直线上,若,则的度数是()A.B.C.D.【答案】B【分析】先根据角的和差求出的度数,然后根据平行线的性质求解即可.【详解】解:如图,,,,又,.故选:B.【点睛】本题考查了平行线的性质,掌握两直线平行,内错角相等是解题的关键.变式2-1.如图,,,则的度数为()A.160B.140C.50D.40【答案】B【分析】利用平行线的性质先求解,再利用邻补角的性质求解即可.【详解】解:∵,,∴,∴,故选B.【点睛】本题考查的是平行线的性质,邻补角的性质,熟知两直线平行,内错角相等是解题的关键.变式2-2.(2022·河南洛阳·统考一模)如图,是的外角,,,,则的度数为( )A.B.C.D.【答案】B【分析】由可得进而即可求;【详解】∵,∴∵∴.故选:B.【点睛】本题主要考查平行线的性质,掌握“两直线平行,内错角相等”定理是解题的关键.变式2-3.如图,直线,被直线所截,,,则的度数为()A.20°B.40°C.50°D.140°【答案】B【分析】根据两直线平行内错角相等可得出答案.【详解】解:∵,,∴,故选:B.【点睛】本题考查了平行线的性质,熟知两直线平行,内错角相等是解本题的关键.考查题型三两直线平行同旁内角互补的应用典例3.(2022春·黑龙江哈尔滨·七年级校考阶段练习)如图,已知直线,,,则的度数为()A.B.C.D.【答案】D【分析】由,可得,由得,进而可求出的度数.【详解】解:如下图所示,∵,∴,∵,∴,∴∵,∴,∴,故选:D.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.变式3-1.如图,已知直线,把三角板的直角顶点放在直线b上.若,则的度数为()A.140°B.130°C.120°D.110°【答案】B【分析】根据互余计算出,再根据平行线的性质由得到.【详解】解:∵,∴,∵,∴.∴.故选:B.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.变式3-2.(2022秋·福建福州·七年级校考期中)如图,,,则( )A.B.C.D.【答案】C【分析】先利用对顶角相等,再利用两直线平行,同旁内角互补得出答案.【详解】解:,,,.故选:.【点睛】此题主要考查了平行线的性质,对顶角相等,熟练掌握性质是解答题的关键.变式3-3.如图,,平分交于点E,若,则( )A.B.C.D.【答案】A【分析】如图:根据平角的定义及角平分线的性质求得的度数,再根据平行线的性质求解即可.【详解】解:如图:∵,∴,∵平分∴,∵,∴,∴.故选:A.【点睛】本题主要考查了平行线的性质、角平分线的定义等知识点,灵活运用平行线的性质是解答本题的关键.考查题型四根据平行线的性质探究角的关系典例4.(2022秋·重庆铜梁·七年级校考期中)如图,已知,且∠C=110°,则∠1与∠2的数量关系为__________________ .【答案】【分析】过点C作,则,根据平行线的性质可得角之间的关系,从而∠1与∠2的数量关系即可求解.【详解】解:过点C作,如图:则,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了平行线的性质,解题的关键是作出平行线,利用平行线的性质得出角之间的关系.变式4-1.(2022·浙江杭州·杭州绿城育华学校校考模拟预测)如图,已知,,则______ .【答案】##180度【分析】根据两直线平行,同位角相等与两直线平行,同旁内角互补,得到,,等量代换即可求得的值.【详解】解:如图,设与交于点H,∵,,∴,,∴.故答案为:.【点睛】此题考查了平行线的性质.解题的关键是注意两直线平行,同位角相等与两直线平行,同旁内角互补定理的应用,注意数形结合思想的应用.变式4-2.(2022秋·内蒙古乌海·七年级校考期中)如图,AB∥EF,则∠A,∠C,∠E满足的数量关系是______.【答案】【分析】根据两直线平行,同旁内角互补可直接得到答案.【详解】如下图所示,过点C作,∵,∴(两直线平行,同旁内角互补),∵,,∴,∴(两直线平行,同旁内角互补),∴,∴,∴在原图中,故答案为:.【点睛】本题考查平行直线的性质,解题的关键是熟练掌握两直线平行,同旁内角互补.变式4-3.(2022秋·山东青岛·七年级统考期末)如图,直线AB//CD,∠AEM=2∠MEN,∠CFM=2∠MFN,则∠M和∠N的数量关系是________.【答案】∠EMF=∠ENF【分析】利用平行线的性质以及已知条件解决问题即可.【详解】解:过点M作MJ∥AB,过点N作NK∥AB.∵AB∥CD,∴MJ∥AB∥CD,NK∥AB∥CD,∴∠EMJ=∠AEM,∠FMJ=∠CFM,∠ENK=∠AEN,∠FNK=∠CFN,∴∠EMF=∠AEM+∠CFM,∠ENF=∠AEN+∠CFN,∵∠AEM=2∠MEN,∠CFM=2∠MFN,∴∠AEM+∠CFM=(∠AEN+∠CFN),即∠EMF=∠ENF.故答案为:∠EMF=∠ENF.【点睛】本题考查平行线的性质,解题的关键是学会探究规律的方法,属于中考常考题型.考查题型五利用平行线的性质求角的度数典例5.(2022秋·北京西城·七年级期中)如图,若,EF与AB,CD分别相交于点E,F,,平分线与EP相交于点P,,则__________°.【答案】【分析】由题可求出,然后根据两直线平行,同旁内角互补可知,根据角平分线的定义可得到结果.【详解】∵,∴,∵,∴,∵,∴,∵平分,∴.【点睛】本题考查了平行线的性质与角平分线的定义,以及三角形的内角和定理,注意数形结合思想是解题关键.变式5-1.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,已知,,若,则________.【答案】【分析】先根据“两直线平行,内错角相等”得出,再根据“两直线平行,同旁内角互补”得出答案.【详解】如图所示.∵,∴.∵,∴,∴.故答案为:.【点睛】本题主要考查了平行线的性质,灵活选择平行线的性质是解题的关键.变式5-2.如图,,若,,则∠E=______.【答案】##66度【分析】如图所示,过点E作,则,根据两直线平行内错角相等分别求出,则.【详解】解:如图所示,过点E作,∵,∴,∴,∴,故答案为:.【点睛】本题主要考查了平行线的性质,正确作出辅助线求出是解题的关键.变式5-3.将一块长方形纸折成如图的形状,若已知,则____.【答案】【分析】根据平行线的性质以及折叠的性质,即可得到的度数.【详解】解:如图所示:∵,∴,∵由折叠可知,∴,故答案为:.【点睛】本题主要考查了平行线的性质和折叠的性质,根据题意正确作出辅助线是解答本题的关键.考查题型六平行线的判定与性质的综合应用典例6.(2022秋·陕西渭南·七年级统考期中)如图,已知点B、C在线段的异侧,连接,点E、F分别是线段上的点,连接,分别与交于点G,H,且,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)证明见解析(2)证明见解析(3)【分析】(1)只需要证明即可证明;(2)先证明得到则,再由即可证明;(3)根据平行线的性质得到,,再结合已知条件求出的度数即可得到答案.【详解】(1)证明:∵,,,∴,∴;(2)证明:∵,∴,∴,∴,又∵,∴;(3)解:由(2)得,∴,,又∵,∴,∴,∴.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟知平行线的性质与判定条件是解题的关键.变式6-1.(2022秋·广东东莞·七年级统考期中)如图,点,在线段的异侧,点,分别是线段,上的点,已知,.(1)求证:;(2)若,求证:;(3)在(2)的条件下,若,求的度数.【答案】(1)见解析(2)见解析(3)【分析】(1)已知,所以,又因为,可以得出即可判定;(2)已知,,可以得出,即可得出;(3)由(1)(2)可知,,可以得出,;可以得出,可以得出,又因为,即可求出的度数.【详解】(1)证明:,,,,;(2)证明:,,,,;(3),,,,,,,,.【点睛】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.变式6-2.如图,已知.(1)求证:;(2)若平分,交于点,交于点,且,求的度数.【答案】(1)见解析(2)【分析】(1)根据平行线的性质及等量代换得出,即可判定;(2)过点作,根据平行公理得出,根据平行线的性质及角平分线定义得到,根据三角形外角性质求解即可.【详解】(1)证明:∵,∴,∵,∴,∴;(2)解:如图,过点作,∵,∴,∴,∴,∵平分,∴,∴.【点睛】此题考查了平行线的判定与性质,角平分线的定义,熟记平行线的判定与性质是解题的关键.变式6-3.(2022秋·福建福州·七年级校考期中)如图,在中,,.(1)求证:;(2)若,,求的度数.【答案】(1)见解析(2)【分析】(1)由于,可判断,则,由得出判断出;(2)由,得到,由得出,得出的度数.【详解】(1)解:,理由如下:,,,,,;(2)解:,,,,,,.【点睛】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.。
平行线的性质练习题1.如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG的度数.2.完成下面的证明:如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD,求证:∠EGF=90°.证明:∵AB∥GH(已知),∴∠1=∠3(),又∵CD∥GH(已知),∴(两直线平行,内错角相等)∵AB∥CD(已知),∴∠BEF+=180°(两直线平行,同旁内角互补)∵EG平分∠BEF(已知),(角平分线定义),∴∠1=12又∵FG平分∠EFD(已知),∠EFD(),∴∠2=12(+∠EFD)∴∠1+∠2=12∴∠l+∠2=90°,∴∠3+∠4=90°(等量代换),即∠EGF=90°.3.如图,AB//DG, AD∥EF,(1)试说明:∠1+∠2=180°;(2)若DG是∠ADC的平分线,∠2=140°,求∠B的度数.4.如图,AB∥DC,AD∥BC,E为AB延长线上一点,连结DE与BC相交于点F,若∠BFE=∠E.试说明DE平分∠ADC.5.完成下面证明:如图,B是射线AD上一点,∠DAE=∠CAE,∠DAC=∠C=∠CBE (1)求证:∠DBE=∠CBE证明:∵∠C=∠CBE(已知)∴BE∥AC________∴∠DBE=∠DAC________∵∠DAC=∠C(已知)∴∠DBE=∠CBE________(2)请模仿(1)的证明过程,尝试说明∠E=∠BAE.6.已知AB∥DE,∠ABC=800,∠CDE=1400.请你探索出一种(只须一种)添加辅助线求出∠BCD度数的方法,并求出∠BCD的度数.7.已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.试说明:EF平分∠BED.8.如图,在四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.(1)若点O在四边形ABCD的内部,①如图,若AD//BC,∠B=40°,∠C=70°,则∠DOE=_______°;②如图,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.(2)如图,若点O是四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.9.如图,已知AB//CD,分别探究下列三个图形中∠APC和∠PAB,∠PCD的关系.结论:(1)__________________________(2)__________________________(3)__________________________10.已知射线AB∥射线CD,点E、F分别在射线AB、CD上.(1)如图①,点P在线段EF上,若∠A=25°,∠APC=70°,求∠C的度数;(2)如图②,若点P在射线FE上运动(不包括线段EF),猜想∠APC、∠A、∠C之间有怎样的数量关系?说明理由;(3)如图③,若点P在射线EF上运动(不包括线段EF),请直接写出∠A、∠APC、∠C之间的数量关系,不必说明理由.11.阅读第(1)题解答过程填理由,并解答第(2)题(1)已知:如图1 AB∥CD,P 为AB、CD 之间一点,求∠B+∠C+∠BPC 的大小.解:过点P 作PM∥AB∵AB∥CD(已知)∴PM∥CD _________∴∠B+∠1=180°________________∴∠C+∠2=180°______________∵∠BPC=∠1+∠2∴∠B+∠C+∠BPC=360°(2)我们生活中经常接触小刀,小刀刀柄外形是一个直角梯形(挖去一个小半圈)如图2,刀片上、下是平行的,转动刀片时会形成∠1 和∠2,那么∠1+∠2 的大小是否会随刀片的转动面改变?说明理由.12.小红和小明在研究一个数学问题:已知AB∥CD,AB和CD都不经过点E,探索∠E与∠A,∠C的数量关系.(一)发现:在如图1中,小红和小明都发现:∠AEC=∠A+∠C;小红是这样证明的:如图7过点E作EQ∥AB.∴∠AEQ=∠A()∵EQ∥AB,AB∥CD.∴EQ∥CD()∴∠CEQ=∠C∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.小明是这样证明的:如图7过点E作EQ∥AB∥CD.∴∠AEQ=∠A,∠CEQ=∠C∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C请在上面证明过程的横线上,填写依据:两人的证明过程中,完全正确的是.(二)尝试:(1)在如图2中,若∠A=110°,∠C=130°,则∠E的度数为;(2)在如图3中,若∠A=20°,∠C=50°,则∠E的度数为.(三)探索:装置如图4中,探索∠E与∠A,∠C的数量关系,并说明理由.(四)猜想:(1)如图5,∠B、∠D、∠E、∠F、∠G之间有什么关系?(直接写出结论)(2)如图6,你可以得到什么结论?(直接写出结论)13.在综合与实践课上,同学们以“一个含30∘的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a,b且a//b和直角三角形ABC,∠BCA=900,∠BAC=30∘,∠ABC=60∘.操作发现:(1)在如图1中,∠1=46∘,求∠2的度数;(2)如图2,创新小组的同学把直线a向上平移,并把∠2的位置改变,发现∠2−∠1= 120∘,说明理由;实践探究:(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,AC 平分∠BAM,此时发现∠1与∠2又存在新的数量关系,请直接写出∠1与∠2的数量关系.14.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b 反射出的光线n与光线m平行,且∠1=38°,则∠2=°,∠3=°.(2)在(1)中,若∠1=55°,则∠3=°;若∠1=40°,则∠3=°.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?参考答案1.(1)76°,90°;(2)90°,90°(3)90°.【解析】【分析】(1)根据平面镜反射光线的规律,可得∠1=∠5,∠7=∠6,根据平角的定义可得∠4=104°,根据m∥n,所以∠2=76°,∠5=38°,根据三角形内角和为180°,即可求出答案;(2)结合题(1)可得∠3的度数都是90°;(3)证明m∥n,由∠3=90°,证得∠2与∠4互补即可.【详解】(1)由平面镜反射光线的规律可得:∠1=∠5,∠7=∠6.又∵∠1=38°,∴∠5=38°,∴∠4=180°﹣∠1﹣∠5=104°.∵m∥n,∴∠2=180°﹣∠4=76°,∴∠6=(180°﹣76°)÷2=52°,∴∠3=180°﹣∠6﹣∠5=90°;(2)同(1)可得当∠1=55°和∠1=40°时,∠3的度数都是90°;(3)∵∠3=90°,∴∠6+∠5=90°,又由题意知∠1=∠5,∠7=∠6,∴∠2+∠4=180°﹣(∠7+∠6)+180°﹣(∠1+∠5)=360°﹣2∠5﹣2∠6=360°﹣2(∠5+∠6)=180°.由同旁内角互补,两直线平行,可知:m∥n.故答案为:76°,90°,90°,90°90°.【点睛】本题考查了平行线的判定与性质,本题是数学知识与物理知识的有机结合,充分体现了各学科之间的渗透性.2.73°【解析】【分析】先根据三角形外角性质以及平行线的性质,求出∠AEG的度数,然后根据角平分线的定义求出∠AEF的度数,然后根据两直线平行内错角相等,即可求出∠EFG的度数.【详解】∵∠DFH=13°,∠H=21°,∴∠EGF=13°+21°=34°,∵AB∥CD,∴∠AEG+∠FGE=180°,∴∠AEG=146°,∵EF平分∠AEG,∠AEG=73°,∴∠AEF=12∵AB∥CD,∴∠EFG=∠AEF=73°.【点睛】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.3.两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF【解析】【分析】依据平行线的性质和判定定理以及角平分线的定义,结合解答过程进行填空即可.【详解】∵AB∥GH(已知),∴∠1=∠3(两直线平行,内错角相等),又∵CD∥GH(已知),∴∠2=∠4(两直线平行,内错角相等)∵AB∥CD(已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补)∵EG平分∠BEF(已知)∠BEF(角平分线定义),∴∠1=12又∵FG平分∠EFD(已知),∴∠2=1∠EFD(角平分线定义),2∴∠1+∠2=1(∠BEF+∠EFD)2∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换),即∠EGF=90°.故答案为:两直线平行,内错角相等;∠2=∠4;∠EFD;∠BEF;角平分线定义;∠BEF.【点睛】考查的是平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.4.(1)180°;(2)40°.【解析】【分析】(1)由AB//DG可得∠1=∠BAD,由AD//EF可得∠BAD+∠2=180°,然后由等量代换可证∠1+∠2=180°;(2)由∠1+∠2=180°, ∠2=140°,可求出∠1=40°,由DG平分∠ADC,可求∠CDG=∠1=40°,然后根据平行线的性质可求∠B的值.【详解】(1)∵AB//DG,∴∠1=∠BAD.∵AD//EF,∴∠BAD+∠2=180°,∴∠1+∠2=180°;(2) ∵∠1+∠2=180°, ∠2=140°,∴∠1=40°,∵DG平分∠ADC,∴∠CDG=∠1=40°,∵AB//DG,∴∠B=∠CDG =40°.【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.5.见解析.【解析】【分析】根据平行线的性质得到∠CDE=∠E,∠ADE=∠BFE,等量代换即可得到结论.【详解】解:∵AB∥DC,∴∠CDE=∠E,∵AD∥BC,∴∠ADE=∠BFE,∵∠BFE=∠E,∴∠CDE =∠ADE.∴DE平分∠ADC.【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.6.(1)内错角相等,两直线平行;两直线平行,同位角相等;等量代换;(2)详见解析. 【解析】【分析】(1)先根据平行线的判定定理得出BE∥AC,故可得出∠DBE=∠DAC,再由∠DAC=∠C 即可得出结论;(2)根据∠C=∠CBE得出BE∥AC,故∠CAE=∠E,再由∠DAE=∠CAE即可得出结论.【详解】(1)内错角相等,两直线平行;两直线平行,同位角相等;等量代换(2)证明:∵∠C=∠CBE(已知),∴BE∥AC(内错角相等,两直线平行),∴∠CAE=∠E(两直线平行,内错角相等).∵∠DAE=∠CAE(已知),∴∠DAE=∠E(等量代换)【点睛】本题考查平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.7.∠BCD=40°【解析】【分析】过点C作FG∥AB,根据平行线的传递性得到FG∥DE,根据平行线的性质得到∠B=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=80°,由等式性质得到∠DCF=40°,于是得到结论.【详解】解:过C作CF∥DE∵CF∥DE(作图)AB∥DE(已知)∴AB∥DE∥CF(平行于同一条直线的两条直线平行)∴∠BCF=∠B=80°(两直线平行,内错角相等)∠DCF+∠D=180°(两直线平行,同旁内角互补)又∵∠D=140°(已知)∴∠DCF=40°(等量代换)又∵∠BCD=∠BCF-∠DCF(角的和差定义)∴∠BCD=80°-40°(等量代换)即∠BCD=40°【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,8.(1)①125°;②∠DOE=180°−12∠B−12∠C;(2)∠DOE=12∠B+12∠C.【解析】【分析】(1)①根据平行线的性质和角平分线的定义可求∠BAE,∠CDO,再根据三角形外角的性质可求∠AEC,再根据四边形内角和等于360°可求∠DOE的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE和∠BAD、∠ADC的关系,再根据四边形内角和等于360°可求∠B、∠C、∠DOE之间的数量关系;(2)根据四边形和三角形的内角和得到∠BAD+∠ADC=360°-∠B-∠C,∠EAD+∠ADO=180°-∠DOE,根据角平分线的定义得到∠BAD=2∠EAD,∠ADC=2∠ADO,于是得到结论.【详解】解:(1)①)①∵AD∥BC,∠B=40°,∠C=70°,∴∠BAD=140°,∠ADC=110°,∵AE、DO分别平分∠BAD、∠CDA,∴∠BAE=70°,∠ODC=55°,∴∠AEC=110°,∴∠DOE=360°-110°-70°-55°=125°;故答案为:125;②∵AE平分∠BAD∴∠DAE=12∠BAD∵DO平分∠ADC∵∠ADO=12 ADC∴∠DAE+∠ADO=12∠BAD+12ADC=12(∠BAD+∠ADC)∵∠B+∠C+∠BAD+∠ADC=360°∴∠BAD+∠ADC=360°−∠B−∠C∴∠DAE+∠ADO=12(360°−∠B−∠C)=180°−12∠B−12∠C∴∠AOD=180°−(∠DAE+∠ADO)=12∠B+12∠C∴∠DOE=180°−∠AOD=180°−12∠B−12∠C.(2)∠DOE=12∠B+12∠C.【点睛】本题考查多边形内角与外角,平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°的知识点.9.见解析【解析】【分析】要证明EF平分∠BED,即证∠4=∠5,由平行线的性质,∠4=∠3=∠1,∠5=∠2,只需证明∠1=∠2,而这是已知条件,故问题得证.【详解】证明:∵AC∥DE(已知),∴∠BCA=∠BED(两直线平行,同位角相等),即∠1+∠2=∠4+∠5,∵AC∥DE,∴∠1=∠3(两直线平行,内错角相等);∵DC∥EF(已知),∴∠3=∠4(两直线平行,内错角相等);∴∠1=∠4(等量代换),∴∠2=∠5(等式性质);∵CD平分∠BCA(已知),∴∠1=∠2(角平分线的定义),∴∠4=∠5(等量代换),∴EF平分∠BED(角平分线的定义).【点睛】本题考查了角平分线的定义及平行线的性质.10.(1)∠1+∠2=∠3,证明见解析;(2)∠1+∠3=∠2或∠2+∠3=∠1,证明见解析.【解析】【分析】(1)过点P作l1的平行线,依据平行线的性质可得∠1=∠CPQ,∠2=∠DPQ,根据∠CPQ+∠DPQ=∠3,即可得到∠1+∠2=∠3;(2)当点P在下侧时,过点P作l1的平行线PQ,依据平行线的性质可得∠1-∠2=∠3;当点P在上侧时,同理可得:∠2-∠1=∠3.【详解】解:(1)∠1+∠2=∠3;理由:如图,过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠CPQ,∠2=∠DPQ,∵∠CPQ+∠DPQ=∠3,∴∠1+∠2=∠3;(2)∠1-∠2=∠3或∠2-∠1=∠3;理由:当点P在下侧时,过点P作l1的平行线PQ,∵l1∥l2,∴l1∥l2∥PQ,∴∠2=∠4,∠1=∠3+∠4,(两直线平行,内错角相等)∴∠1-∠2=∠3;当点P在上侧时,同理可得:∠2-∠1=∠3.【点睛】本题考查平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.(1)∠A+∠P+∠C=360°;(2)∠APC=∠A+∠C;(3)∠C=∠A+∠P【解析】【分析】(1)过点P作PE∥AB,则AB∥PE∥CD,再根据两直线平行同旁内角互补即可解答;(2)过点P作PF∥AB,则AB∥CD∥PF,再根据两直线内错角相等即可解答;(3)根据AB∥CD,可得出∠PEB=∠PCD,再根据三角形外角的性质进行解答;【详解】解:(1)过点P作PE∥AB,则AB∥PE∥CD,∴∠1+∠PAB=180°,∠2+∠PCD=180°,∴∠APC+∠PAB+∠PCD=360°.故填:∠A+∠APC+∠C=360°;(2)过点P作直线PF∥AB,∵AB∥CD,∴AB∥PF∥CD,∴∠PAB=∠1,∠PCD=∠2,∴∠APC=∠PAB+∠PCD.故填:∠APC=∠A+∠C;(3)∵AB∥CD,∴∠1=∠C,∵∠1=∠A+∠P,∴∠C=∠A+∠P.故填:∠C=∠A+∠P.【点睛】本题考查的是平行线的性质及三角形外角的性质,能根据题意作出辅助线,再利用平行线的性质进行解答是解答此题的关键.12.(1)∠C=45°;(2)∠APC=∠C-∠A,理由详见解析;(3)∠APC=∠A-∠C.【解析】【分析】(1)过P作PQ∥CD,根据平行线的性质得∠2=∠C,由AB∥CD得到AB∥PQ,则∠APC=∠1+∠2=∠A+∠C,把∠A=25°,∠APC=70°代入计算可得到∠C的度数;(2)证明方法与(1)一样,可得到∠APC=∠C-∠A;(3)证明方法与(1)一样,可得到∠APC=∠A-∠C.【详解】(1)解:过点P作PQ∥AB(如图),∵AB∥CD(已知),∴PQ∥CD,(平行于同一条直线的两直线互相平行).∴∠C=∠2,(两直线平行,内错角相等)∵PQ∥AB,∴∠A=∠1,(两直线平行,内错角相等),∴∠APC=∠1+∠2=∠A+∠C∵∠A=25°,∠APC=70°,∴∠C=∠APC-∠A=70°-25°=45°.(2)∠APC=∠C-∠A,理由如下:过点P作PQ∥AB(如图),∵AB∥CD(已知),∴PQ∥CD,(平行于同一条直线的两直线互相平行)∴∠C=∠CPQ,(两直线平行,内错角相等)∵PQ∥AB,∴∠A=∠APQ,(两直线平行,内错角相等),∵∠APC=∠CPQ-∠APQ,∴∠APC=∠C-∠A.(3)∠APC=∠A-∠C.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,熟练掌握相关知识是解题的关键.13.(1)见解析;(2)∠1+∠2=90°不会变,理由见解析.【解析】【分析】(1)利用平行线的性质,根据两直线平行,同旁内角互补,即可求得答案;(2)首先过点E作EF∥AB,根据两直线平行,内错角相等,即可求得答案.【详解】(1)过点P 作PM∥AB∵AB∥CD(已知)∴PM∥CD(两条直线都与第三条直线平行,那么这两条直线也互相平行)∴∠B+∠1=180°(两直线平行,同旁内角互补),∴∠C+∠2=180°(两直线平行,同旁内角互补),∵∠BPC=∠1+∠2,∴∠B+∠C+∠BPC=360°.(2)∠1+∠2=90°不会变.理由:如图,过点E 作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠3=∠1,∠4=∠2∵∠AEC=90°,即∠3+∠4=90°,∴∠1+∠2=90°.【点睛】本题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.(一)(两直线平行,内错角相等)(平行于同一条直线的两直线平行),小明的证法;(二)120°,30°;(三)见解析;(四) (1)∠E+∠G=∠B+∠F+∠D;(2)见解析.【解析】【分析】(一)小红、小明的做法,都是做了平行线,利用平行线的性质;(二)的(1)、(四)都可仿照(一),通过添加平行线把分散的角集中起来.【详解】(一)(两直线平行,内错角相等),(平行于同一条直线的两直线平行);完全正确的是:小明的证法;(二)尝试:(1)(1)过点E作EF∥AB,∵AB∥CD,∴EF∥CD.∵EF∥AB,∴∠A+∠AEF=180°,∵∠A=110°,∴∠AEF=70°.∵EF∥CD,∴∠C+∠CEF=180°,∵∠C=130°,∴∠CEF=50°.∴∠AEC=∠AEF+∠CEF=70°+50°=120°.(2)如图,∵AB∥CD,∴∠EOB=∠C=50°,∵∠EOB=∠A+∠E,∵∠E=∠EOB-∠A=50°-20°=30°.答案:120°,30°.(三)∠E=∠EAB−∠C.理由:延长EA,交CD于点F.∵AB∥CD,∴∠EFD=∠EAB.∵∠EFD=∠C+∠E,∴∠EAB=∠C+∠E,∴∠E=∠EAB−∠C.(四)(1)可通过过点E、F、G分别做AB的平行线,得到结论:∠E+∠G=∠B+∠F+∠D.(2)同上道理一样,可得到结论:∠E1+∠E2+…+∠E n=∠F1+∠F2+…∠F n+∠B+∠D.【点睛】本题考查了平行线的性质与判定、三角形的外角与内角关系及角的和差.添加平行线把分散的角集中起来,是解决问题的关键.15.操作发现:(1)∠2=44∘;(2)见解析;实践探究:(3)∠1=∠2.【解析】【分析】(1)如图1,根据平角定义先求出∠3的度数,再根据两直线平行,同位角相等即可得;(2)如图2,过点B作BD//a,则有∠2+∠ABD=180°,根据已知条件可得∠ABD =60°-∠1,继而可得∠2+60°-∠1=180°,即可求得结论;(3)∠1=∠2,如图3,过点C作CD//a,由已知可得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,根据平行线的性质可得∠BCD=∠2,继而可求得∠1=∠BAM=60°,再根据∠BCD=∠BCA-∠DCA求得∠BCD=60°,即可求得∠1=∠2.【详解】(1)如图1,∵∠BCA=90°,∠1=46°,∴∠3=180°-∠BCA-∠1=44°,∵a//b,∴∠2=∠3=44°;(2)理由如下:如图2,过点B作BD//a,∴∠2+∠ABD=180°,∵a//b,∴b//BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:如图3,过点C作CD//a,∵AC平分∠BAM,∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=2×30°=60°,∵CD//a,∴∠BCD=∠2,∵a//b,∴∠1=∠BAM=60°,b//CD,∴∠DCA=∠CAM=30°,∵∠BCD=∠BCA-∠DCA,∴∠BCD=90°-30°=60°,∴∠2=60°,∴∠1=∠2.【点睛】本题考查了平行线的判定与性质,三角板的知识,正确添加辅助线,熟练掌握平行线的判定与性质是解题的关键.。
七年级数学下册《平行线的性质》练习题及答案解析一、选择题(共20小题)1. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A. 1个B. 2个C. 3个D. 4个2. 如图,AB∥CD,∠B=75∘,∠E=27∘,则∠D的度数为( )A. 45∘B. 48∘C. 50∘D. 58∘3. 如图,直线DE经过点A,DE∥BC,∠B=60∘,下列结论一定成立的是( )A. ∠C=60∘B. ∠DAB=60∘C. ∠EAC=60∘D. ∠BAC=60∘4. 如图,已知AD∥BC,下列结论不一定正确的是( )A. ∠A+∠ABC=180∘B. ∠1=∠2C. ∠A=∠3D. ∠C=∠35. 如图,直线a∥b,直线c分别与a,b相交,∠1=50∘,则∠2的度数为( )A. 130∘B. 150∘C. 50∘D. 100∘6. 如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是( )A. 相等B. 互余或互补C. 互补D. 相等或互补7. 如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60∘,则下列结论错误的是( )A. ∠2=60∘B. ∠3=60∘C. ∠4=120∘D. ∠5=40∘8. 如图,直线a,b被直线c所截,a∥b,∠1=50∘,则∠2的度数为( )A. 40∘B. 50∘C. 130∘D. 150∘9. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘10. 将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30∘,则∠2的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘11. 如图,将三角板的直角顶点放在直尺的一边上,如果∠1=25∘,那么∠2的度数为( )A. 25∘B. 30∘C. 45∘D. 65∘12. 如图,两直线a,b被直线c所截,已知a∥b,∠1=65∘,则∠2的度数为( )A. 65∘B. 105∘C. 115∘D. 125∘13. 如图,直线AD∥BC,若∠1=74∘,∠BAC=56∘,则∠2的度数为( )A. 70∘B. 60∘C. 50∘D. 40∘14. 如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知∠1=55∘,则∠2的度数为( )A. 45∘B. 125∘C. 55∘D. 35∘15. 如图,已知AB∥CD,∠1=100∘,∠2=145∘,那么∠F=( )A. 55∘B. 65∘C. 75∘D. 85∘16. 如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40∘,则∠BAE的度数是( )A. 40∘B. 70∘C. 80∘D. 140∘17. 如图,直线a∥b,直线c分别与直线a,b相交于点A,B,且AC垂直直线c于点A,若∠1=40∘,则∠2的度数为( )A. 140∘B. 90∘C. 50∘D. 40∘18. 一个多边形的内角和比它的外角和的3倍少180∘,这个多边形的边数是( )A. 5B. 6C. 7D. 819. 经过点P(−4,3)垂直于x轴的直线可以表示为( )A. 直线x=3B. 直线y=−4C. 直线x=−4D. 直线y=320. 如图,AB∥EF,CD⊥EF于点D,若∠ABC=40∘,则∠BCD的度数是( )A. 140∘B. 130∘C. 120∘D. 110∘二、填空题(共8小题)21. 如图,已知直线AB∥CD,∠1=50∘,则∠2=.22. 如图所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、后的两条路平行,若第—次拐角是150∘,则第二次拐角大小为度.23. 如图,l1∥l2,∠1=120∘,∠2=100∘,则∠3=.24. 将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=.25. 如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a∘.则下列结论:(180−a)∘;①∠BOE=12②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论(填编号).26. 小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∥CD,∠A=40∘,∠1=70∘,小明马上运用已学的数学知识得出了∠C 的度数,聪明的你一定知道∠C=.27. 如图,AD∥CE,∠ABC=100∘,则∠2−∠1的度数是.28. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∘角的直角三角尺按如图所示的方式摆放,若∠EMB=75∘,则∠PNM等于度.三、解答题(共6小题)29. 如图,已知:点P在直线CD上,∠BAP+∠APD=180∘,∠1=∠2.求证:∠E=∠F.30. 已知AB∥CD,E为AB,CD同侧上一点.(1)如图1,过点E作EF∥AB.求证:∠CEA=∠EAB−∠ECD.(2)如图2,E,B,D三点在一条直线上,EA平分∠CED,若∠C=50∘,∠EAB=80∘,求∠CED的度数;(3)如图3,CH,AH交于点H,∠BAH=2∠EAH,∠DCH=40∘,∠DCE=60∘,求∠H的值.∠E31. 如图,∠AOB=120∘,射线OC在∠AOB内,且∠AOC=30∘,OD平分∠BOC,OE平分∠AOD.(1)依题意补全图形;(2)求∠EOC的度数.32. 复杂的数学问题我们常会把它分解为基本问题来研究,化繁为简,化整为零,这是一种常见的数学解题思想.(1)如图①,直线l1,l2被直线l3所截,在这个基本图形中,形成了对同旁内角;(2)如图②,平面内三条直线l1,l2,l3两两相交,交点分别为A,B,C,图中一共有对同旁内角;(3)平面内四条直线两两相交,最多可以形成对同旁内角;(4)平面内n条直线两两相交,最多可以形成对同旁内角.33. 如图,直线AB,CD被m,n所截,已知:∠1=110∘,∠2=70∘.(1)试判断AB,CD的位置关系,并说明理由.(2)已知AD平分∠BAC,若∠3=120∘,求∠BAD的度数.34. 如图,直线AB∥CD,DE∥BC.(1)判断∠B与∠D的数量关系,并说明理由.(2)设∠B=(2x+15)∘,∠D=(65−3x)∘,求∠1的度数.参考答案与解析1. D2. B【解析】∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B−∠E=75∘−27∘=48∘.3. B4. D5. A6. D7. D8. B 【解析】∵a∥b,∴∠2=∠1=50∘.9. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘,∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.故选:B.10. B【解析】因为AB∥CD,所以∠1=∠ADC=30∘,又因为等腰直角三角形ADE中,∠ADE=45∘,所以∠1=45∘−30∘=15∘.11. D12. C 【解析】∵a∥b,∴∠1=∠3,∵∠1=65∘,∴∠3=65∘,∵∠2+∠3=180∘,∴∠2=115∘.13. C14. D15. B【解析】如图:∵AB∥CD,∠1=100∘,∠2=145∘,∴∠3=∠1=100∘,∠4=180∘−∠2=35∘.∵∠F+∠4=∠3,∴∠F=∠3−∠4=100∘−35∘=65∘.16. B【解析】因为AB∥CD,所以∠ACD+∠BAC=180∘,因为∠ACD=40∘,所以∠BAC=180∘−40∘=140∘,因为AE平分∠CAB,×140∘=70∘.所以∠BAE=∠BAC=1217. C【解析】如图所示:∵直线a∥b,∠1=40∘,∴∠3=∠1=40∘.∵AC⊥AB,∴∠BAC=90∘,∴∠2=90∘−∠1=90∘−40∘=50∘.故选C.18. C【解析】设这个多边形的边数为n,则(n−2)⋅180∘=360∘×3−180∘,解得n=7.19. C【解析】经过点P(−4,3)且垂直于x轴的直线可以表示为直线x=−4.故选:C.20. B【解析】如图,过点C作CG∥AB,由题意可得AB∥EF∥CG,故∠B=∠BCG,∠GCD+∠CDF=180∘.∵CD⊥EF,∴∠CDF=90∘.∴∠GCD=90∘.则∠BCD=40∘+90∘=130∘.21. 50∘22. 15023. 40∘24. 90∘25. ①②③【解析】①∵AB∥CD,∴∠BOD=∠ABO=a∘,∴∠COB=180∘−a∘=(180−a)∘,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180−a)∘.故①正确;②∵OF⊥OE,∴∠EOF=90∘,∴∠BOF=90∘−12(180−a)∘=12a∘,∴∠BOF=12∠BOD,∴OF平分∠BOD,∴②正确;③∵OP⊥CD,∴∠COP=90∘,∴∠POE=90∘−∠EOC=12a∘,∴∠POE=∠BOF;∴③正确;∴∠POB=90∘−a∘,而∠DOF=12a∘,∴④错误.26. 30∘27. 80∘【解析】作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180∘,∵∠ABC=100∘,∴∠3+∠4=100∘,∴∠1+∠4=100∘,∴∠2−∠1=80∘.28. 30【解析】因为AB∥CD,所以∠DNM=∠BME=75∘.因为∠PND=45∘,所以∠PNM=∠DNM−∠DNP=30∘.29. ∵∠BAP+∠APD=180∘,∴AB∥CD,∴∠BAP=∠APC.又∵∠1=∠2,∴∠BAP−∠1=∠APC−∠2,即∠EAP=∠APF,∴AE∥FP,∴∠E=∠F.30. (1)∵AB∥CD,EF∥AB,∴CD∥EF∥AB,∴∠FEA=∠EAB,∠FEC=∠ECD,∴∠CEA=∠FEA−∠FEC=∠EAB−∠ECD;(2)由(1)知∠CEA=∠EAB−∠ECD=30∘,∵EA平分∠CED,∴∠CED=2∠CEA=60∘;(3)设∠EAH=x,∠BAH=2x,由(1)可知∠E=∠EAB−∠ECD=3x−60∘,∠H=∠HAB−∠HCD=2x−40∘,∴∠H∠E =2x−40∘3x−60∘=23.31. (1)补全图形如图所示:(2)∵∠AOB=120∘,∠AOC=30∘,∴∠COB=∠AOB−∠AOC=90∘.∵OD平分∠BOC,∴∠DOC=12∠BOC=45∘.∴∠DOA=∠AOC+∠DOC=75∘.∵OE平分∠AOD,∴∠DOE=12∠AOD=37.5∘.∴∠EOC=∠DOC−∠DOE=45∘−37.5∘=7.5∘.32. (1)2(2)6(3)24(4)n(n−1)(n−2)33. (1)AB∥CD.理由如下:∵∠1=110∘,∵∠2=70∘,∴∠2=∠4,∴AB∥CD.(2)∵∠3=120∘,∴∠5=60∘,∴AB∥CD,∴∠BAC=∠5=60∘,∵AD平分∠BAC,∠BAC=30∘.∴∠BAD=1234. (1)∠B=∠D.∵AB∥CD,∴∠B=∠1 .∵DE∥BC,∴∠1=∠D .∴∠B=∠D .(2)由2x+15=65−3x,解得x=10,所以∠B=35∘ .。
人教版七年级下册数学平行线的判定及性质证明题训练(含答案)1.如图,三角形ABC 中,点D 在AB 上,点E 在BC 上,点F ,G 在AG 上,连接,,DG BG EF .己知12∠=∠,3180ABC ∠+∠=︒,求证:∥BG EF .将证明过程补充完整,并在括号内填写推理依据.证明:∵_____________(已知)∴∥DG BC (_______________________)∴.CBG ∠=________(____________________)∵12∠=∠(已知)∴2∠=________(等量代换)∴∥BG EF (___________________)2.如图,已知12∠=∠,A F ∠=∠,试说明C D ∠=∠的理由.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=( ),所以 ∥ ( ).(请继续完成接下去的说理过程)3.如图,CD ∥AB ,点O 在直线AB 上,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,求∠DOF 的度数.4.如图,DH 交BF 于点E ,CH 交BF 于点G ,12∠=∠,34∠=∠,5B ∠=∠.试判断CH 和DF 的位置关系并说明理由.5.已知:如图,直线DE//AB.求证:∠B+∠D=∠BCD.6.如图,已知AB CD∥,BE平分ABC∠,CE平分BCD∠,求证1290∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.7.请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF().即∠BAF=.∴∠4=∠BAF.().∴AB∥CD().8.如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A=().∴AB∥().又∵∠1=∠2(已知),∴EF ∥ ( ).∴∠FDG =∠EFD ( ).9.在三角形ABC 中,CD AB ⊥于D ,F 是BC 上一点,FH AB ⊥于H ,E 在AC 上,EDC BFH ∠=∠.(1)如图1,求证:∥DE BC ;(2)如图2,若90ACB ∠=︒,请直接写出图中与ECD ∠互余的角,不需要证明.10.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.11.如图直线a b ∥,直线EF 与,a b 分别和交于点,,A B AC AB AC ⊥、交直线b 于点C .(1)若160∠=︒,直接写出2∠= ;(2)若3,4,5AC AB BC ===,则点B 到直线AC 的距离是 ;(3)在图中直接画出并求出点A 到直线BC 的距离.12.如图,已知AB CD ,BE 平分∠ABC ,∠CDE = 150°,求∠C 的度数.13.如图,在ABC 中,CD 平分ACB ∠交AB 于D ,EF 平分AED ∠交AB 于F ,已知ADE B ∠=∠,求证:EF CD ∥.14.已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.15.如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,A F ∠=∠,C D ∠=∠,求证:12∠=∠.16.如图,在ABC 中,DE ∥AC ,DF ∥AB .(1)判断∠A 与∠EDF 之间的大小关系,并说明理由.(2)求∠A +∠B +∠C 的度数.17.已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠.(1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.18.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.19.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ∥,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.20.直线AB CD∠.∥,直线EF分别交AB、CD于点M、N,NP平分MND(1)如图1,若MR平分EMB∠,则MR与NP的位置关系是.∠,则MR与NP有怎样的位置关系?请说明理由.(2)如图2,若MR平分AMN(3)如图3,若MR平分BMN∠,则MR与NP有怎样的位置关系?请说明理由.参考答案:1.解:证明:∵3180ABC ∠+∠=︒(已知)∴∥DG BC (同旁内角互补,两直线平行)∴.1CBG ∠=∠(两直线平行,内错角相等)∵12∠=∠(已知)∴2CBG ∠=∠(等量代换)∴∥BG EF (同位角相等,两直线平行)2.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=(等量代换),所以//BD CE (同位角相等,两直线平行),所以4C ∠=∠(两直线平行,同位角相等),又因为A F ∠=∠,所以//DF AC (同位角相等,两直线平行),所以4D ∠=∠(两直线平行,内错角相等),所以C D ∠=∠(等量代换).故答案为:等量代换;BD ;CE ;同位角相等,两直线平行.3.解:∵CD AB ∥∴110DOB D ∠=∠=︒∵OE 平分∠BOD ∴1552DOE DOB ∠=∠=︒ 又∵OF ⊥OE∴90EOF ∠=︒∴905535DOF EOF DOE ∠=∠-∠=︒-︒=︒故答案为:35︒4.解:CH DF,理由如下:∵34∠=∠,∴CD BF,∴5180BED∠+∠=︒,∵5B∠=∠,∴180B BED∠+∠=︒,∴BC DH,∴2H∠=∠,∵12∠=∠,∴1H∠=∠,∴CH DF.5.证明:过点C作CF∥AB,∴∠B=∠BCF,∵DE//AB.CF∥AB,∴CF∥DE,∴∠D=∠DCF,∴∠BCD=∠BCF+∠DCF=∠B+∠D.6.证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°. 故答案为:12∠ABC ;角平分线的定义;12∠BCD ;(∠ABC +∠BCD );180°;两直线平行,同旁内角互补.7.证明:∵AD ∥BC (已知),∴∠3=∠CAD (两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD (等量代换).∵∠1=∠2(已知),∴∠1+∠CAF =∠2+∠CAF (等式的性质).即∠BAF =∠CAD .∴∠4=∠BAF .(等量代换).∴AB ∥CD (同位角相等,两直线平行).8.解:∵∠A =120°,∠FEC =120°(已知),∴∠A =∠FEC (等量代换),∴AB ∥EF (同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB ∥CD (内错角相等,两直线平行),∴EF ∥CD (平行于同一条直线的两直线互相平行),∴∠FDG =∠EFD (两直线平行,内错角相等),故答案为:∠FEC ;等量代换;EF ;同位角相等,两直线平行;内错角相等,两直线平行;CD ;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.9.证明:∵CD AB ⊥,FH AB ⊥,∴//CD FH ,∴BCD BFH ∠=∠.∵EDC BFH ∠=∠,∴BCD EDC ∠=∠,∴//ED BC .(2)与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.证明:∵//ED BC ,∴90DEC ACB ∠=∠=︒,EDC BCD ∠=∠,∴90ECD EDC ∠+∠=︒,90ECD BCD ∠+∠=︒.∵//CD FH ,∴BCD BFH ∠=∠,∴90ECD BFH ∠+∠=︒.∵CD AB ⊥,∴90ACD A ∠+∠=︒,即90ECD A ∠+∠=︒.综上,可知与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.10.解:(1)∵1103∠=︒,∴77∠=︒ABC ,∵277∠=︒,∴2ABC ∠=∠,∴EF OP ∥;(2)∵MN HQ ∥,EF OP ∥,∴1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,∵396∠=︒,∴180********∠=︒-∠=︒-︒=︒FDG ,∴1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .11.解:(1)∵a b ∥,∴12180BAC ∠+∠+∠=︒,∵AC AB ⊥,160∠=︒,∴230∠=︒,故答案为:30︒;(2)∵AC AB⊥,∴点B到直线AC的距离为线段4AB=,故答案为:4;(3)如图所示:过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,∵AC AB⊥,∴ABC∆为直角三角形,∴1122ABCS AC AB BC AD∆=⨯⨯=⨯⨯,即1134522AD ⨯⨯=⨯⨯,解得:125 AD=,∴点A到直线BC的距离为125.12.解:∵∠CDE=150°,∴∠CDB=180°-∠CDE=30°,又∵AB CD,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB CD,∴∠C=180°-∠ABC=120°.13.证明:ADE B∠=∠(已知),DE//BC∴(同位角相等,两直线平行),ACB AED∴∠=∠(两直线平行,同位角相等),CD 平分ACB ∠,EF 平分AED ∠(已知),12ACD ACB ∴∠=∠,12AEF AED ∠=∠(角平分线的定义), ACD AEF ∴∠=∠(等量代换).EF //CD ∴(同位角相等,两直线平行).14.证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等) 又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等) ∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)15.证明:∵A F ∠=∠,∴AC DF ∥,∴ABD D ∠=∠,又∵C D ∠=∠,∴ABD C ∠=∠,∴DB CE ∥,∴13∠=∠,∵23∠∠=,∴12∠=∠.16.(1)两角相等,理由如下:∵DE ∥AC ,∴∠A =∠BED (两直线平行,同位角相等).∵DF ∥AB ,∴∠EDF =∠BED (两直线平行,内错角相等), ∴∠A =∠EDF (等量代换).(2)∵DE ∥AC ,∴∠C =∠EDB (两直线平行,同位角相等).∵DF ∥AB ,∴∠B =∠FDC (两直线平行,同位角相等).∵∠EDB +∠EDF +∠FDC =180°,∴∠A +∠B +∠C =180°(等量代换).17.解:(1)∵32180∠+∠=︒,∠2+∠DFE =180°, ∴∠3=∠DFE ,∴EF //AB ,∴∠ADE =∠1,又∵1B ∠=∠,∴∠ADE =∠B ,∴DE //BC ,(2)∵DE 平分ADC ∠,∴∠ADE =∠EDC ,∵DE //BC ,∴∠ADE =∠B ,∵33B ∠=∠∴∠5+∠ADE +∠EDC =3B B B ∠+∠+∠=180°, 解得:36B ∠=︒,∴∠ADC =2∠B =72°,∵EF //AB ,∴∠2=∠ADC =180°-108°=72°,18.(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠BAD +∠2=180°.∵AD ∥EF .(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG 是∠ADC 的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.19.解:问题情境:∵AB ∥CD ,PE ∥AB ,∴PE ∥AB ∥CD ,∴∠A +∠APE =180°,∠C +∠CPE =180°,∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =50°+60°=110°;(1)CPD αβ∠=∠+∠;过点P 作PQ AD ∥,又因为AD BC ∥,所以PQ AD BC ∥∥,则ADP DPE ∠=∠,BCP CPE ∠=∠,所以CPD DPE CPE ADP BCP ∠=∠+∠=∠+∠;(2)情况1:如图所示,当点P 在B 、O 两点之间时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠DPE -∠CPE =∠α-∠β,情况2:如图所示,点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠CPE -∠DPE =∠β-∠α20.(1)如题图1,AB CD ∥EMB END ∴∠=∠MR 平分EMB ∠,NP 平分MND ∠.11,22EMR EMB ENP END ∴∠=∠∠=∠ EMR ENP ∴∠=∠∴MR ∥NP ;(2)如题图2,AB CD ∥AMN END ∴∠=∠MR 平分AMN ∠,NP 平分MND ∠.11,22RMN AMN ENP END ∴∠=∠∠=∠ RMN ENP ∴∠=∠∴MR ∥NP ;(3)如图,设,MR PN 交于点Q ,过点Q 作QG AB ∥AB CD ∥180BMN END ∴∠+∠=︒,QG CD ∥ ,MQG BMR GQN PND ∴∠=∠∠=∠ MR 平分BMN ∠,NP 平分MND ∠.11,22BMR BMN PND END ∴∠=∠∠=∠ 90BMR PND ∴∠+∠=︒90MQN MQG NQG ∴∠=∠+∠=︒ ∴MR ⊥NP ;。
七年级数学(下)第五章《平行线的性质与判定》综合练习1.如图,要判定AB∥CD,需要哪些条件?根据是什么?2.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.解:∵CD∥EF,∴∠DCB=∠2(____________________).∵∠1=∠2,∴∠DCB=∠1(____________________).∴GD∥CB(____________________).∴∠3=∠ACB(____________________).3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.6.如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.求证:EC∥DF.7.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?为什么?9.如图,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么BA是否平分∠EBF,试说明理由.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.11.如图,直线l1、l2均被直线l3、l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.12.如图1,CE∥AB,所以∠ACE=∠A,∠DCE=∠B,所以∠ACD=∠ACE+∠DCE=∠A+∠B.这是一个有用的结论,借用这个结论,在图2所示的四边形ABCD内,引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.参考答案1.略2.两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,同位角相等3.证明:∵AD∥BE,∴∠A=∠3.∵∠A=∠E,∴∠3=∠E.∴DE∥AB.∴∠1=∠2.4.证明:∵AD∥EF,∴∠1=∠BAD.∵∠1=∠2,∴∠BAD=∠2.∴AB∥DG.5.(1)∵∠AEF=66°,∴∠BEF=180°-∠AEF=114°.又PE平分∠BEF,∴∠PEB=12∠BEF=57°.(2)∵AB∥CD,∴∠EFD=∠AEF=66°. ∵PF平分∠EFD,∴∠PFD=12∠EFD=33°.过点P作PQ∥AB,∵∠EPQ=∠PEB=57°,又AB∥CD,∴PQ∥CD.∴∠FPQ=∠PFD=33°.∴∠EPF=∠EPQ+∠FPQ=57°+33°=90°.6.证明:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=12∠ABC,∠ECB=12∠ACB.∵∠ABC=∠ACB,∴∠DBF=∠ECB.∵∠DBF=∠F,∴∠ECB=∠F.∴EC∥DF.7.∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°.∴∠2=110°.8.平行.理由:∵CE平分∠BCD,∴∠1=∠4.∵∠1=∠2=70°,∴∠1=∠2=∠4=70°.∴AD∥BC.∴∠D=180°-∠BCD=180°-∠1-∠4=40°.∵∠3=40°,∴∠D=∠3.∴AB∥CD.9.BA平分∠EBF.理由如下:∵AB∥CD,∴∠2+∠3=180°.∵∠2∶∠3=2∶3,∴∠2=180°×25=72°.∵∠1∶∠2=1∶2,∴∠1=36°.∴∠EBA=72°=∠2,即BA平分∠EBF.10.AB∥DE.理由:图略,过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.过D作DE∥AB.则由阅读得到的结论,有∠BED=∠C+∠CDE.又∠ABE+∠BED=180°,∠A+∠ADE=180°(两直线平行,同旁内角互补).两式相加,得∠ABE+∠BED+∠A+∠ADE=360°,即∠A+∠B+∠C+∠ADC=360°.。
七年级数学下册《平行线》练习题及答案(浙教版)一、选择题1.如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是( )2.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠53.如图,已知AB⊥BD,BC⊥CD,AD=a,CD=b,则BD的长的取值范围为()A.大于bB.小于aC.大于b且小于aD.无法确定4.如图,下列说法正确的是( )A.∠1和∠B是同旁内角B.∠1和∠C是内错角C.∠2和∠B是同位角D.∠3和∠C同旁内角5.如图,在下列条件中,能判断AD∥BC的是( )A.∠DAC=∠BCAB.∠DCB+∠ABC=180°C.∠ABD=∠BDCD.∠BAC=∠ACD6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为( )A.互相垂直B.互相平行C.相交D.没有确定关系7.长方体的每一对棱相互平行,那么这样的平行棱共有( )A.9对B.16对C.18对D.以上答案都不对8.如图,直线a∥b,将一块含30°角(∠BAC=30°)的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2的度数为( )A.20° B.30° C.40° D.50°9.如图,如果AB∥CD,CD∥EF,那么∠BCE等于( )A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠210.如图,OA⊥OC,OB⊥OD,4位同学观察图形后分别说了自己的观点:甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个;其中正确的结论是( )A.1个B.2个C.3个D.4个11.将一副三角板按如图放置,则下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=45°;④如果∠CAD=150°,必有∠4=∠C.其中正确的有()A.①②③B.①②④C.①③④D.①②③④12.学习了平行线后,小明想出了过已知直线外一点画这条直线的平行线的新方法,他是通过折一张半透明的纸得到的(如图①~④):从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④二、填空题13.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC ′=.14.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD= .15.如图所示,内错角共有____对.16.如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是.17.将如图1的长方形ABCD纸片沿EF折叠得到图2,折叠后DE与BF相交于点P.如果∠EPF=70°,则∠PEF的度数为_________ .18.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=_________.三、解答题19.如图,在Rt△ABC中,∠C=90°,AC=4cm ,BC=3cm ,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长.(2)求四边形AEFC的周长.20.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF;若∠AOE=40°,求∠BOD的度数.21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?22.如图,△ABC中,∠ACB=90°,CD⊥AB,点D为垂足,点E,F分别在AC.AB边上且∠AEF=∠B.求证:EF∥CD.23.如图,BE平分∠ABD,DE平分∠BDC,DG平分∠CDF,且∠1+∠2=90°,试说明BE∥DG.24.如图1,已知△ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A 、∠B 、∠C 作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法. 证法1:如图1,延长BC 到D ,过C 画CE ∥BA .∵BA ∥CE (作图2所知)∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)∴∠A+∠B+∠ACB=180°(等量代换).如图3,过BC 上任一点F ,画FH ∥AC ,FG ∥AB ,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.25.已知AB ∥CD,∠ABE 与∠CDE 两个角的角平分线相交于点F.(1)如图1,若∠E =80°,求∠BFD 的度数.(2)如图2,若∠ABM =13∠ABF,∠CDM =13∠CDF,试写出∠M 与∠E 之间的数量关系并证明你的结论. (3)若∠ABM =1n ∠ABF,∠CDM =1n∠CDF,∠E =m °,请直接用含有n,m °的代数式表示出∠M.参考答案1.B2.A.3.C4.D5.A6.B7.C8.C9.C.10.C.11.D12.C13.答案为:5.14.答案为:垂直;90°.15.答案为:8.16.答案为:同位角相等,两直线平行.17.答案为:55°18.答案为:140°19.解:(1)3; (2)8+3+4+3=18.20.解:∵OA⊥OB(已知)∴∠AOB=90°(垂直的定义)∵∠AOE=40°(已知)∴∠BOE=∠AOB-∠AOE=90°-40°=50°∵OC平分∠AOF(已知)∴∠BOD=20°21.答案为:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.22.证明:∵∠ACB=90°∴∠B+∠A=90°∵CD⊥AB∴∠ADC=90°∴∠A+∠ACD=90°∴∠B=∠ACD∵∠AEF=∠B∴∠AEF=∠ACD∴EF∥CD.23.证明:∵∠1+∠2=90°(已知)∴△BDE中,∠E=180°-(∠1+∠2)=90°∵ DE平分∠BDC,DG平分∠CDF(已知)∴∠EDG=∠EDC+∠CDG=∴∠E=∠EDG(等量代换)∴ BE∥DG (内错角相等,两直线平行)24.证明:如图3∵HF∥AC∴∠1=∠C∵GF∥AB∴∠B=∠3∵HF∥AC∴∠2+∠AGF=180°∵GF∥AH∴∠A+∠AGF=180°∴∠2=∠A∴∠A+∠B+∠C=∠1+∠2+∠3=180°(等量代换).25.解:(1)如图,作EG∥AB,FH∥AB∵AB∥CD∴EG∥AB∥FH∥CD∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°∴∠ABE+∠BEG+∠GED+∠CDE=360°∵∠BED=∠BEG+∠DEG=70°∴∠ABE+∠CDE=290°∵∠ABF和∠CDF的角平分线相交于E∴∠ABF +∠CDF =145°∴∠BFD =∠BFH +∠DFH =145°;(2)∵∠ABM =13∠ABF ,∠CDM =13∠CDF ∴∠ABF =3∠ABM ,∠CDF =3∠CDM∵∠ABE 与∠CDE 两个角的角平分线相交于点F ∴∠ABE =6∠ABM ,∠CDE =6∠CDM∴6∠ABM +6∠CDM +∠E =360°∵∠M =∠ABM +∠CDM∴6∠M +∠E =360°.(3)由(2)结论可得2n ∠ABN +2n ∠CDM +∠E =360°,∠M =∠ABM +∠CDM 解得:∠M =n2m 360︒-︒. 故答案为:∠M =n 2m 360︒-︒.。
人教版七年级数学下册平行线的判定同步练习题(含解析)人教版七年级数学下册平行线的判定同步练习题(含解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,点E在线段AC的延长线上,下列条件中能判断的是(?)A.∠3=∠AB.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°2.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是(?)A.30°B.40°C.60°D.70°3.如图,直线a,b被直线c所截,下列条件不能判定直线a 与b平行的是()A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°4.如图,点E在AC的延长线上,下列条件能判断ABCD的是(?)A.∠3=∠4B.∠D=∠DCEC.∠D+∠ACD=180°D.∠1=∠25.如图,下面条件不能判断的是(?)A.B.C.D.6.如图,要使,则需要添加的条件是(?)A .B.C.D.二、填空题7.如图,请你添加一个条件________,使AB∥CD.8.两条平行直线被第三条直线所截,内错角相等.简称:两直线平行,内错角_________.如图,因为a∥b (已知),所以∠1=_____(两直线平行,内错角相等). 9.如图所示,在下列条件中,不能判断的有___________.①.?②.③.?④.10.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.11.如图,已知∠1=30°,∠2或∠3满足条件_________,则a∥b.三、解答题12.如图,在△ABC中,AD是BC边上的中线,F,E分别是AD及其延长线上的点.(1)如果CFBE,说明:△BDE≌△CDF;(2)若CF,BE是△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F,请猜想BF与CE的位置关系?并说明理由.13.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠A BC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.14.下列推理是否正确?为什么?(1)如图,∵,∴;(2)如图,∵,∴;(3)如图,∵,∴;(4)如图,∵,∴.15.如图,将绕点B顺时针旋转60度得到,点C的对应点E 恰好落在AB的延长线上,连接AD.(1)求证:;(2)若AB=4,BC=1,求A,C两点旋转所经过的路径长之和.16.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2(1)求角F的度数与DH的长;(2)求证:.17.如图,在四边形中,与有怎样的位置关系?为什么?与呢?18.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC//DE.19.请补全证明过程及推理依据.已知:如图,BC//ED,BD平分∠ABC,EF平分∠AED.求证:BD∥EF.证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(______________)∵BC∥ED(________)∴∠AED=________(________________)∴∠AED=∠ABC∴∠1=________∴BD∥EF(________________).参考答案:1.B【分析】根据平行线的判定条件逐一判断即可.【详解】A.由∠3=∠A无法判断,故A不符合题意;B.由∠1=∠2能判断,故B符合题意;C.由∠D=∠DCE可以判断,不能判断,故C不符合题意;D.∠D+∠ACD=180°可以判断,不能判断,故D不符合题意.故选:B.【点睛】本题主要考查平行线的判定,熟知平行线的判定条件,是解题的关键.2.A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.【详解】解:如图,过点作,,,,,,,,,故选:A.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.3.D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4.D【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠3=∠4,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;B、由∠D=∠DCE,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;C、由∠D+∠ACD=180°,可以利用内错角相等,两直线平行得到,不能得到,不符合题意;D、由∠1=∠2,可以利用内错角相等,两直线平行得到得到,符合题意;故选D.【点睛】本题主要考查了平行线的判定,熟知内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,两直线平行是解题的关键.5.B【分析】根据平行线的判定条件逐一判断即可.【详解】解:A、由∠1=∠2,可以判断(内错角相等,两直线平行),故此选项不符合题意;B、由∠1+∠3=180°,可以判断(同旁内角互补,两直线平行),不能判断,故此选项符合题意;C、由,可以判断(同位角相等,两直线平行),故此选项不符合题意;D、由,可以判断(同旁内角互补,两直线平行),故此选项不符合题意;故选B.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.6.A【分析】依据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可得到添加的条件.【详解】解:A.∵∠A=∠CBE,∴AD∥BC,符合题意;B.由∠A=∠C无法得到AD∥BC,不符合题意;C.由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BC,不符合题意;D.由∠A+∠D =180°,只能得到AB∥CD,无法得到AD∥BC,不符合题意;故选:A.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.∠1=∠5.【分析】根据平行线的判定进行解答,可以考虑同位角相等,或内错角相等,或同旁内角互补.【详解】添加∠1=∠5∵∠1=∠5,∴AB∥CD.故答案为∠1=∠5【点睛】本题属于开放题,主要考查了平行线的判定,解决问题的关键是掌握平行线的判定方法.8.相等 ∠2【解析】略9.②③##③②【分析】根据平行线的判定进行解答即可得.【详解】解:①∵,∴(内错角相等,两直线平行),说法正确,不符合题意;②∵和既不是同位角,也不是内错角,∴不能根据判定,说法错误,符合题意;③∵为同位角,∴不一定平行,符合题意;④∵,∴(同旁内角互补,两直线平行),说法正确,不符合题意;故答案为:②③.【点睛】本题考查了平行线的判定,解题的关键是熟记并理解平行线的判定.10.互相垂直【详解】且a∥b,b⊥c,a⊥c.故答案为互相垂直.11.∠2=150°或∠3=30°【解析】略12.(1)见解析(2)BFCE,证明见解析【分析】(1)根据已知条件,通过两角及其夹边对应相等即可证明△BDE≌△CDF;(2)先证CFBE,利用(1)中结论得△BDE≌△CDF,推出,利用SAS证明△BDF≌△CDE,推出,利用内错角相等,两直线平行,可得BFCE.(1)证明:∵CFBE,∴∠FCD﹦∠EBD.∵AD是BC边上的中线,∴.在△BDE和△CDF中,,∴△BDE≌△CDF.(2)解:BFCE.理由如下:如图,连接BF,CE.∵ C F⊥AD于F,BE⊥AD于E,∴CFBE.由(1)的结论可知△BDE≌△CDF,∴.∵AD是BC边上的中线,∴BD =CD.在△B DF和△CDE中,,∴△BDF≌△CDE.∴,∴BFCE.【点睛】本题考查全等三角形的判定与性质,平行线的性质与判定,三角形中线的定义等,熟练掌握全等三角形的判定方法、平行线的性质定理和判定定理是解题的关键.13.(1)①,SSS(2)见解析【分析】(1)根据SSS即可证明△ABC≌?DEF,即可解决问题;(2)根据全等三角形的性质可得可得∠A=∠EDF,再根据平行线的判定即可解决问题.(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.(注意:只需选一个条件,多选不得分)故答案为:①,SSS;(2)证明:∵△ABC ≌△DEF.∴∠A=∠EDF,∴AB∥DE.【点睛】本题考查了平行线的性质和全等三角形的性质,和判定定理,能熟记全等三角形的判定定理是解此题的关键.14.(1)正确;理由见解析;(2)不正确;理由见解析;(3)正确;理由见解析;(4)正确;理由见解析.【分析】(1)是被所截形成的同位角,再利用同位角相等,两直线平行可判断;(2)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;(3)是被所截形成的内错角,再利用内错角相等,两直线平行可判断;(4)是被所截形成的同旁内角,再利用同旁内角互补,两直线平行可判断;【详解】解:(1)正确,理由:同位角相等,两直线平行;(2)不正确,因为由“”只能推出“”,推不出“”;(3)正确,理由:内错角相等,两直线平行;(4)正确,理由:同旁内角互补,两直线平行.【点睛】本题考查的是平行线的判定,掌握“平行线的判定方法”是解题的关键.15.(1)见解析;(2)【分析】(1)先利用旋转的性质证明△ABD为等边三角形,则可证,即再根据平行线的判定证明即可.(2)利用弧长公式分别计算路径,相加即可求解.【详解】(1)证明:由旋转性质得:是等边三角形所以∴;(2)依题意得:AB=BD=4,BC=BE=1,所以A,C两点经过的路径长之和为.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、平行线的判定、弧长公式等知识,熟练掌握这些知识点之间的联系及弧长公式是解答的关键.16.(1)35°;6(2)见解析【分析】(1)根据三角形内角和定理求出∠ACB,根据全等三角形的性质得出AB=DE,∠F=∠ACB,即可得出答案;(2)根据全等三角形的性质得出∠B=∠DEF,再根据平行线的判定即可证得结论.(1)解:∵∠A=85°,∠B=60°,∴∠ACB=180°-∠A-∠B=180°-85°-60°=35°,∵△ABC≌△DEF,AB=8,∴∠F=∠ACB=35°,DE=AB=8,∵EH=2,∴DH=DE-EH=8-2=6;(2)证明:∵△ABC≌△DEF,∴∠B=∠DEF,∴.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,平行线的判定的应用,解此题的关键是能根据全等三角形的性质得出AB=DE,∠B=∠DEF,∠ACB=∠F,注意:全等三角形的对应边相等,对应角相等.17.,见解析【分析】四边形ABCD内角和360°,即,因为,所以,所以,同理.【详解】四边形ABCD内角和360°同理可得:【点睛】本题主要考查了四边形内角和以及平行线的判定,掌握该性质判定是解题的关键.18.见解析【分析】由BE平分∠ABC,可得∠1=∠3,再利用等量代换可得到一对内错角相等,即∠2=∠3,即可证明结论.【详解】证明:∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴B C//DE.【点睛】本题主要利用了角平分线的性质以及内错角相等、两直线平行等知识点,灵活运用平行线的判定定理成为解答本题的关键.19.角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行【分析】根据角平分线的定义得出∠1=∠AED,∠2=∠ABC,根据平行线的性质定理得出∠AED=∠ABC,求出∠1=∠2,再根据平行线的判定定理推出即可.【详解】证明:∵BD平分∠ABC,EF平分∠AED,∴∠1=∠AED,∠2=∠ABC(角平分线的定义)∵BC∥ED(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=∠ABC∴∠1=∠2 ∴BD∥EF(同位角相等,两直线平行).故答案为:角平分线的定义;已知;∠ABC;两直线平行,同位角相等;∠2;同位角相等,两直线平行.【点睛】本题考查了角平分线的定义,平行线的性质定理和判定定理等知识点,能熟记平行线的性质定理和判定定理是解此题的关键.答案第1页,共2页答案第1页,共2页试卷第1页,共3页试卷第1页,共3页。
5.3 平行线的性质(三)◆典型例题【例1】下列语句是不是命题。
(1)画∠AOB的角平分线;(2)平面上有几个点;(3)两点之间,线段最短;(4)若a≠b,则|a|≠|b|。
【解析】 (1)是操作性的语句;(2)是问句;(3)、(4)是判定语句。
【答案】 (1)、(2)不是命题;(3)、(4)是命题。
【例2】指出下列命题的题论、结论:(1)如果两条直线相交,那么它们只有一个交点。
(2)两条直线被第三条直线所截,如果同旁内角互补,即这两条直线平行。
(3)两条平行平行线被第三条直线所截,内错角相等。
(4)若∠1=∠2,∠2=∠3,则∠1=∠3。
【解析】每个命题都是由题设、结论两部分组成,题设是知事项,结论是由已知事项推出的事项,命题常写成“如果…,那么…”的形式,具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
【答案】 (1)题设:两条直线相交;结论:它们只有—个交点;(2)题设:两条直线被第三条直线所截,同旁内角互补;结论:这两条直线平行。
(3)因为这个命题可以改写成:“如果两条平行线被第三条直线所截,那么内错角相等”;也可以简写成“如果两直线平行,那么内错角相等”,所以可以简单说成,题设:两直线平行,结论:内错角相等。
(4)题设:∠1=∠2,∠2=∠3,结论:∠1=∠3。
◆课前热身1。
每个命题都由____________和____________两部分组成。
2。
命题“对顶角相等”的题设是____________,结论________________________。
◆课上作业3。
命题“同位角相等”改写成“如果…,那么…”的形式是____________________________。
4。
请用“如果…,那么…”的形式写一个命题______________5。
一个命题,如果题设成立,结论一定成立,这样的命题是_____________命题;如果题设成立,结论不成立或不一定成立,这样的命题叫_______命题(填“真”、“假”)。
人教版七年级数学下册第五章平行线的性质作业练习题(含答案)如图:已知AB∥CD,EF∥AB于点O,∥FGC=125°,求∥EFG的度数.下面提供三种思路:(1)过点F作FH∥AB;(2)延长EF交CD于M;(3)延长GF交AB于K.请你利用三个思路中的两个思路,将图形补充完整,求∥EFG的度数.解(一):解(二):【答案】见解析【解析】【分析】(一)过点F作FH∥AB,求出∥EFH,求出∥GFH,相加即可;(二)延长EF交CD于M,求出∥GMF、根据三角形外角性质求出∥GFM,即可求出答案.【详解】解:(一)利用思路(1)过点F 作FH∥AB,∥EF∥AB,∥∥BOF=90°,∥FH∥AB,∥∥HFO=∥BOF=90°,∥AB∥CD,∥FH∥CD,∥∥FGC+∥GFH=180°,∥∥FGC=125°,∥∥GFH=55°,∥∥EFG=∥GFH+∥HFO=55°+90°=145°;解:(二)利用思路(2)延长EF交CD于M,∥EF∥AB,∥∥BOF=90°,∥CD∥AB,∥∥CMF=∥BOF=90°,∥∥FGC=125°,∥∥1=55°,∥∥1+∥2+∥GMF=180°,∥∥2=35°,∥∥GFO+∥2=180°,∥∥GFO=145°.72.如图,已知∥1=70°,∥2=50°,∥D=70°,AE∥BC,求∥C的度数.【答案】50°【解析】【分析】根据平行线的判定推出AB∥CD,根据平行线的性质求出∠3=∠2=62°,根据平行线的性质求出∠C=∠3=62°即可.【详解】解:∵∠1=∠D=70°,∴AB∥CD,∵∠2=50°,∴∠AED=∠2=50°,∵AE∥BC,∴∠C=∠AED=50°73.如图,DG⊥BC,AC⊥BC,FE⊥AB,∠1=∠2,试说明:CD⊥AB.解:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(__________________________),∴∠2=∠________(____________________).∵∠1=∠2(已知),∴∠1=∠________(等量代换),∴EF∥CD(________________________),∴∠AEF=∠________(__________________________).∵EF⊥AB(已知),∴∠AEF=90°(________________),∴∠ADC=90°(________________),∴CD⊥AB(________________).【答案】同位角相等,两直线平行;∠ACD;两直线平行,内错角相等;ACD;同位角相等,两直线平行;ADC;两直线平行,同位角相等;垂直定义;等量代换;垂直定义【解析】【分析】根据解题过程和平行线的性质与判定及垂直定义等填空.【详解】解:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(_同位角相等,两直线平行_),∴∠2=∠ACD ___(_两直线平行,内错角相等__).∵∠1=∠2(已知),∴∠1=∠ACD __(等量代换),∴EF∥CD(同位角相等,两直线平行_),∴∠AEF=∠_ ADC _(_两直线平行,同位角相等_).∵EF⊥AB(已知),∴∠AEF=90°(垂直的定义),∴∠ADC=90°(_等量代换__),∴CD⊥AB(_垂直的定义__).本题主要考查解题的依据,需要熟练掌握平行线的性质与判定.74.如图,AB∥CD,∠CED=90°,∠BED=40°,求∠C的度数.【答案】50°.【解析】试题分析:先根据平行线的性质求得∠D的度数,再根据三角形的内角和定理即可求得结果.∠AB∠CD,∠BED=40°∠∠D=∠BED=40°∠∠CED=90°∠∠C=50°.考点:平行线的性质,三角形的内角和定理点评:解题的关键是熟练掌握两直线平行,内错角相等;三角形的内角和为180°.75.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,⊥1=⊥2,试判断DG 与BC的位置关系,并说明理由.【答案】DG∥BC.理由见解析.【分析】根据垂直的定义可得∥EFB=∥CDB=90°,然后根据同位角相等两直线平行可得CD∥EF,再根据两直线平行,同位角相等求出∥2=∥3,然后求出∥1=∥3,再根据内错角相等,两直线平行证明即可.【详解】解:DG∥BC.理由如下:∥CD是高,EF∥AB,∥∥EFB=∥CDB=90°,∥CD∥EF,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥BC.【点睛】本题考查平行线的判定与性质.76.根据题意结合图形填空:如图,点E 在DF 上,点B 在AC 上,12∠=∠,C D ∠=∠.试说明:AC ∥DF .将过程补充完整.解:∥12∠=∠(已知)且13∠=∠( )∥23∠=∠(等量代换)∥ ∥ ( )∥C ABD ∠=∠( )又∥C D ∠=∠(已知)∥ = (等量代换 )∥AC ∥DF ( )【答案】对顶角相等;同位角相等,两条直线平行;两条直线平行,同位角相等;等量代换;内错角相等,两条直线平行.【解析】试题分析:由条件可先证明EC ∠DB ,可得到∠D=∠ABD ,再结合条件两直线平行的判定可证明AC ∠DF ,依次填空即可.试题解析:∠∠1="∠2(已知)"∠1="∠3(对顶角相等)"∠∠2="∠3(等量代换)"∠EC∠DB(同位角相等,两直线平行)∠∠C="∠ABD(两直线平行,同位角相等)"又∠∠C="∠D(已知)"∠∠D="∠ABD(等量代换)"∠AC∠DF(内错角相等,两直线平行)考点:平行线的判定与性质.77.如图,12180,.∠=∠∠+∠=AGF ABC()1试判断BF与DE的位置关系,并说明理由;()2若2150∠的度数.,,求AFG⊥∠=BF AC【答案】(1)BF∥DE,理由见解析;(2)60°.【解析】【分析】(1)由∠AGF=∠ABC,根据同位角相等,两直线平行可得GF∥BC,从而可得∠1=∠3,再根据已知条件∠1+∠2=180°,利用等量代换可得∠3+∠2=180°,根据同旁内角互补,两直线平行即可判定BF//DE;(2)由BF⊥AC,可得∠AFB=90°,根据∠1+∠2=180°,∠2=150°,可得∠1=30°,从而即可求得∠AFG=60°.【详解】(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF⊥AC,∴∠AFB=90°,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=∠AFB-∠1=90°-30°=60°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.78.(1)、如图(1),AB⊥CD,点P在AB、CD外部,若⊥B=40°,⊥D=15°,则⊥BPD °.(2)、如图(2),AB⊥CD,点P在AB、CD内部,则⊥B,⊥BPD,⊥D之间有何数量关系?证明你的结论;(3)、在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若⊥BPD=90°,⊥BMD=40°,求⊥B+⊥D的度数.【答案】(1)、25°;(2)、∥BPD=∥B+∥D,理由见解析;(3)、50°.【解析】【分析】(1)、根据AB∥CD得出∥BOD=∥B=40°,然后根据三角形外角的性质得出∥BPD的度数;(2)、过点P作PE∥AB,从而得出AB∥PE∥CD,根据平行线的性质得出∥1=∥B,∥2=∥D,最后根据∥BPD=∥1+∥2得出答案;(3)、过点P 作GP∥AB交CD于E,过点P作PF∥CD,根据平行线的性质得出∥BMD=∥GED=∥GPF=50°,∥B=∥BPG,∥D=∥DPF,则∥B+∥D=∥BPG+∥DPF,从而得出答案.【详解】(1)、∥AB∥CD(已知)∥∥BOD=∥B=40°(两直线平行,内错角相等)∥∥P=∥BOD﹣∥D=40°﹣15°=25°(等式的性质)(2)、∥BPD=∥B+∥D.理由如下:过点P作PE∥AB ∥AB∥CD,PE∥AB(已知)∥AB∥PE∥CD(平行于同一直线的两条直线平行)∥∥1=∥B,∥2=∥D(两直线平行,内错角相等)∥∥BPD=∥1+∥2=∥B+∥D(等量代换)(3)、过点P作GP∥AB交CD于E 过点P作PF∥CD∥ PE∥AB∥∥BMD=∥GED=∥GPF=40°, ∥B=∥BPG (两直线平行,内错角相等) ∥ PF ∥CD ∥∥D=∥DPF (两直线平行,内错角相等)∥∥B+∥D=∥BPG+∥DPF (等量代换)即∥B+∥D =∥BPD -∥GPF=∥BPD -∥BMD=90°- 40°=50°【点睛】考点:平行线的性质79.如图,在ABC 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.【答案】DG ∠BC ,理由见解析【解析】【分析】由垂线的性质得出CD ∥EF ,由平行线的性质得出∠2=∠DCE ,再由已知条件得出∠1=∠DCE ,即可得出结论.【详解】解:DG ∥BC ,理由如下:∵CD ⊥AB ,EF ⊥AB ,∴CD ∥EF ,∴∠2=∠DCE ,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.80.(1)、如图,AC平分⊥DAB,⊥1=⊥2,试说明AB与CD的位置关系,并予以证明;(2)、如图,在(1)的条件下,AB的下方两点E,F满足:BF平分⊥ABE,CF 平分⊥DCE,若⊥CFB=20°,⊥DCE=70°,求⊥ABE的度数.(3)、在前面的条件下,若P是BE上一点;G是CD上任一点,PQ平分⊥BPG,PQ⊥GN,GM平分⊥DGP,下列结论:⊥⊥DGP﹣⊥MGN的值不变;⊥⊥MGN 的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.【答案】(1)、AB∥CD;理由见解析;(2)、30°;(3)、∥∥DGP﹣∥MGN的值随∥DGP的变化而变化;∥∥MGN的度数为15°不变;证明过程见解析.【解析】【分析】(1)、根据角平分线得出∥1=∥CAB,从而得出∥2=∥CAB,从而说明平行线;(2)、根据角平分线的性质得出∥DCF=1∥DCE=35°,∥ABE=2∥ABF,根据2CD∥AB得出∥2=∥DCF=35°,根据∥2=∥CFB+∥ABF,∥CFB=20°得出∥ABF 和∥ABE的度数;(3)、根据三角形外角性质得出∥1=∥BPG+∥B,根据角平分线的性质得出∥GPQ=12∥BPG,∥MGP=12∥DGP,根据AB∥CD得出∥MGP=1 2(∥BPG+∥B),根据PQ∥GN得出∥NGP=∥GPQ=12∥BPG,从而根据∥MGN=∥MGP﹣∥NGP=12∥B,从而得出答案.【详解】(1)、AB∥CD.∥AC平分∥DAB,∥∥1=∥CAB,∥∥1=∥2,∥∥2=∥CAB,∥AB∥CD;(2)、如图2,∥BF平分∥ABE,CF平分∥CDE,∥∥DCF=12∥DCE=35°,∥ABE=2∥ABF,∥CD∥AB,∥∥2=∥DCF=35°,∥∥2=∥CFB+∥ABF,∥CFB=20°,∥∥ABF=15°,∥∥ABE=2∥ABF=30°(3)、如图3,根据三角形的外角性质,∥1=∥BPG+∥B,∥PQ平分∥BPG,GM平分∥DGP,∥∥GPQ=12∥BPG,∥MGP=12∥DGP,∥AB∥CD,∥∥1=∥DGP,∥∥MGP=12(∥BPG+∥B),∥PQ∥GN,∥∥NGP=∥GPQ=12∥BPG,∥∥MGN=∥MGP﹣∥NGP=12(∥BPG+∥B)﹣12∥BPG=12∥B,根据前面的条件,∥B=30°,∥∥MGN=12×30°=15°,∥∥∥DGP﹣∥MGN的值随∥DGP的变化而变化;∥∥MGN的度数为15°不变.【点睛】考点:(1)、平行线的性质;(2)、角平分线的性质.。
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
七年级数学下册平行线习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以2.下列真命题的个数是()(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个B.2个C.3个D.4个3.下列推理正确的是()A.因为a∥d,b∥c,所以c∥d B.因为a∥c,b∥d,所以c∥dC.因为a∥b,a∥c,所以b∥c D.因为a∥b,d∥c,所以a∥c4.下列语句:其中错误的个数是()∥直线AB与直线BA是同一条直线;∥射线AB与射线BA是同一条射线;∥两点确定一条直线;∥经过一点有且只有一条直线与已知直线平行;∥经过一点有且只有一条直线与已知直线垂直;∥两点之间的线段叫做两点之间的距离.A.3B.4C.5D.65.下列语句中正确的是()A.不相交的两条直线叫做平行线B.过一点有且只有一条直线与已知直线平行C.平面内两条直线被第三条直线所截,如果内错角相等,则同位角也相等D.两条直线被第三条直线所截,同位角相等.6.如图,直线AB与CD相交于点O,∥BOD=40°,OE∥AB,则∥COE的度数为()A.140B.130C.120D.110二、填空题7.在同一平面内,两条不相重合的直线位置关系有两种:_____和_____.8.(1)平行公理是:____________________________________________.a b c,(2)平行公理的推论是如果两条直线都与______________,那么这两条直线也________.即三条直线,,a b b c,则_________.若//,//9.下列说法:∥对顶角相等;∥两点间线段是两点间距离;∥过一点有且只有一条直线与已知直线平行;∥,则点C是线段AB的中点;∥同角的余角相等正过一点有且只有一条直线与已知直线垂直;∥若AC BC确的有_________.(填序号)10.如图,已知直线AB∥CD,直线AB与EF相交于点P,那么直线EF也与直线CD相交,请在下面的推理过程中填空.∥AB∥CD,AB.EF交于点P;∥点P必在直线CD外.假设直线EF和CD不相交,那么过点P就有两条直线.AB和EF都与CD平行,这与____________公理矛盾.∥直线EF也与直线CD相交.11.四条直线相交,最多有____个交点.12.空间两条不重合的直线的位置关系有________、________、________三种.三、解答题13.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB ,交AC 的延长线于点E ;(3)指出∥E 的同位角和内错角.14.如图,根据要求填空.(1)过A 作AE ∥BC ,交______于点E ;(2)过B 作BF ∥AD ,交______于点F ;(3)过C 作CG ∥AD ,交__________于点G ;(4)过D 作DH ∥BC ,交BA 的__________于点H .15.若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交于一点呢?16.作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB 、BC .利用方格纸完成以下操作: (1)过点A 作BC 的平行线;(2)过点C 作AB 的平行线,与(1)中的平行线交于点D ;(3)过点B 作AB 的垂线.17.如图所示,分别延长ABC ∆的中线,BD CE 到点,F G ,使,E DF BD G CE ==.G A F在一条直线上.求证:三点,,18.学习了平行线后,王玲同学想出了过一点画一条直线的平行线的新方法,她是通过折纸完成的,折纸步骤如图所示.b a,要求保留折纸痕迹,画(1)请你仿照以上步骤,在下图中画出一条直线b,使直线b经过点P﹐且//出所用到的直线,无须写画法;(2)在第(2)步中,折纸实际上是在寻找过点P的直线a的_______..参考答案:1.D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.【详解】由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点睛】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.2.B【分析】根据平行公理的推论,平行线的判定定理与性质定理,即可判断命题是真命题还是假命题.【详解】解:(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d,此说法正确,是真命题;(2)两条直线被第三条直线所截,同旁内角不一定互补,所以同旁内角的平分线不一定互相垂直,此说法错误,是假命题;(3)两条直线被第三条直线所截,同位角不一定相等,此说法错误,是假命题;(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行,此说法正确,是真命题;所以真命题有2个.故选:B.【点睛】此题主要考查了命题与定理,正确把握平行线的判定与性质是解题关键.3.C【分析】根据平行公理的推论逐项判断即得答案.【详解】解:A、由a∥d,b∥c,不能推出c∥d,所以本选项推理错误,不符合题意;B、由a∥c,b∥d,不能推出c∥d,所以本选项推理错误,不符合题意;C、由a∥b,a∥c,能推出b∥c,所以本选项推理正确,符合题意;D、由a∥b,d∥c,不能推出a∥c,所以本选项推理错误,不符合题意.故选:C.【点睛】本题考查了平行公理的推论,属于基础题型,熟练掌握基本知识是关键.4.B【分析】∥根据直线的定义进行判断即可;∥根据射线的定义进行判断即可;∥根据两点确定一条直线进行判断即可;∥点是否在该直线上进行判断即可;∥根据是否在平面内这一条件进行判断即可;∥根据两点间距离的定义进行判断即可.【详解】∥直线AB与直线BA是同一条直线,故原题说法正确;∥射线AB与射线BA不是同一条射线,因为射线有方向,故原题说法错误;∥两点确定一条直线,故原题说法正确;∥经过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;∥平面内,经过一点有且只有一条直线与已知直线垂直,故原题说法错误;∥两点之间的线段长度叫做两点之间的距离,故原题说法错误.错误的说法有4个,答案:B.【点睛】本题考查了直线、射线的定义,本题错点一是在平面内才有经过一点有且只有一条直线与已知直线垂直;二是经过直线外一点有且只有一条直线与已知直线平行;三是两点间的距离不是线段而是线段的长度.5.C【分析】根据平行线的定义、平行公理、平行线的性质和判定逐一进行判断即可【详解】解:A 错误,在同一平面内,不相交的两条直线叫做平行线;B 错误,必须是过直线外一点有且只有一条直线与已知直线平行;C 正确;平面内两条直线被第三条直线所截,如果内错角相等,则两条直线平行,则同位角也相等D 错误,两条平行直线被第三条直线所截,同位角才会相等;故选C .【点睛】本题考查了平行线的定义、平行公理、平行线的性质和判定,熟练掌握相关知识是解题的关键. 6.B【分析】根据垂直定义可得90AOE ∠=,根据对顶角相等可得40AOC =∠,然后可得答案.【详解】∥OE∥AB ,∥∥AOE=90°,∥∥BOD=40°,∥∥AOC=∥BOD=40°,∥∥EOC=∥AOE +∥AOC =130°.故选:B .【点评】本题主要考查了垂线的定义、对顶角和角的和差,掌握相关定义及性质是解题的关键. 7. 相交, 平行【分析】同一平面内,直线的位置关系通常有两种:平行或相交.【详解】解:平面内的直线有平行或相交两种位置关系.故答案为相交,平行.【点睛】本题主要考查了在同一平面内的两条直线的位置关系,属于基础题,应熟记这一知识点. 8. 过直线外一点有且只有一条直线与已知直线平行 第三条直线平行 平行 //a c【分析】根据平行公理以及平行公理的推论解答即可.【详解】(1)平行公理是:过直线外一点有且只有一条直线与已知直线平行;(2)平行公理的推论是如果两条直线都与第三条直线平行,那么这两条直线也平行,即三条直线,,a b c ,若//,//a b b c ,则//a c .故答案为:过直线外一点有且只有一条直线与已知直线平行;第三条直线平行,平行,//a c .【点睛】本题主要考查了平行公理以及平行公理的推论,属于基础题,掌握平行公理以及平行公理的推论是解题的关键.9.∥∥∥【分析】利用对顶角的性质判断∥,利用两点距离定义判定∥,利用平行公理判定∥,利用垂线公里判定∥,利用线段中点定义判定∥,利用余角的性质判定∥.【详解】∥对顶角相等正确;∥由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;∥由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确; ∥过一点有且只有一条直线与已知直线垂直正确;∥由线段中点的性质,若AC BC =,点C 在AB 上,则点C 是线段AB 的中点,所以若AC BC =,则点C 是线段AB 的中点不正确;∥同角的余角相等正确;正确的有∥∥∥.故答案为:∥∥∥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键. 10.平行【详解】∥AB∥CD ,AB.EF 交于点P ;∥点P 必在直线CD 外.假设直线EF 和CD 不相交,那么过点P 就有两条直线AB 和EF 都与CD 平行,这与平行公理矛盾. ∥直线EF 也与直线CD 相交.点睛:本题考查了利用平行公里和反证法证明命题,反证法的证题步骤是:(1)假设命题结论的反面成立;(2)从这个假设出发,一步步推导出与某个定理、公式或已知条件相矛盾的结论;(3)肯定原命题结论正确. 11.6.【分析】先根据题意,画出图形,数出交点的个数即可.【详解】如图:4条直线相交,最多有6个交点.故答案为6.【点睛】此题考查垂直与平行的特征及性质,组合图形的计数,解题关键在于画出图形.12.相交平行异面【分析】在空间,直线与直线的位置关系有平行、相交、异面三种,在同一平面内两条不重合的直线的位置关系是平行或相交,根据两条直线所在的空间解答即可.【详解】在空间,直线与直线的位置关系有相交、平行、异面,故答案为:相交、平行、异面.【点睛】此题考查相交于平行的特征及性质,关键是要明确两条直线所在的平面是在空间或是在同一平面内.13.(1)见解析(2)见解析(3)∥E的同位角是∥ACD,∥E的内错角是∥BAE和∥BCE.【分析】(1)如图,过A点作AD∥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.【详解】(1)(2)如图所示.(3)∥E的同位角是∥ACD,∥E的内错角是∥BAE和∥BCE.【点睛】本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键. 14.(1)DC;(2)DC;(3)AB;(4)延长线.【分析】根据要求,直接进行作图就可以解决.【详解】(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.15.12对,(n2-n)对【详解】试题分析:两条直线相交于一点形成2对对顶角,很明显,三、四、n 条不同的直线相交于一点可看成是三、六、(1)2n n -种两条直线相交于一点的情况,再乘以2,即可得对顶角的对数. 试题解析:两条直线相交于一点形成2对对顶角;三条直线相交于一点可看成是三种两条直线相交于一点的情况,所以形成6对对顶角;四条直线相交于一点可看成是六种两条直线相交于一点的情况,所以形成12对对顶角;n 条直线相交于一点可看成是(1)2n n -种两条直线相交于一点的情况,所以形成n(n−1)对对顶角. 16.(1)见解析(2)见解析(3)见解析【分析】(1)点A 所在的横线就是满足条件的直线;(2)在A 所在的横线上,在A 点的右边取AD=BC ,连结CD 即可.(3)在AE 上的点D 右边1个格点处取点F ,过B ,F 的直线即为所求.【详解】(1)点A 所在的横线就是满足条件的直线,即AE 就是所求;(2)在A 所在的横线中A 点的右边取AD=BC ,连结CD ,则直线CD 即为所求;(3)在AE 上的点D 右边1个格点处取点F ,过B ,F 作直线,即为所求.【点睛】本题主要考查了尺规作图,作图的依据是等腰直角三角形的判定,以及平行四边形的判定. 17.详见解析【分析】易证∥AEG∥∥BEC ,∥ADF∥∥CDB ,根据全等三角形对应角、对应边相等的性质,可得∥F=∥CBD ,∥G=∥BCE ,继而可得AF∥BC ,AG∥BC ,根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行即可得出结论.【详解】证明:在∥AEG 和∥BEC 中,EG=EC AEG=BEC AE=BE ⎧⎪∠∠⎨⎪⎩,∥∥AEG∥∥BEC ,(SAS )∥∥BCE=∥G ,∥AG∥BC ,在∥ADF 和∥CDB 中,DF=DB ADF=CDB AD=CD ⎧⎪∠∠⎨⎪⎩, ∥∥ADF∥∥CDB ,(SAS )∥∥DBC=∥F ,∥AF∥BC ,∥AF ,AG 都经过点A ,∥G 、A 、F 在一条直线上【点睛】本题考查全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证∥AEG∥∥BEC 和∥AEG∥∥BEC 是解题的关键.也考查了平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18.(1)详见解析;(2)垂线【分析】)(1)首先折直线a 的垂线,并且使a 的垂线经过点P ,再折出直线a 的垂线的垂线b ,并且过点P ; (2)根据作图可得折平行线的过程实际就是寻找过点P 的直线a 的垂线;【详解】(1)如图所示.(2)在(1)中的步骤(2)中,折纸实际上是在寻找过点P 的直线a 的垂线;【点睛】此题主要考查了应用与设计作图以及平行线的判定与性质等知识,利用数形结合得出是解题关键.。
人教版七年级数学下册第五章平行线的性质复习试题(含答案)如图,已知直线a、b被直线l所截,且a∥b,∠1=85º,那么∠2 =_________度;【答案】95【解析】【分析】先根据邻补角的定义求出∠1的邻补角,再根据两直线平行,同位角相等解答即可.【详解】如图,∵∠1=85°,∴∠3=180°-∠1=180°-85°=95°,∵a∥b,∴∠2=∠3=95°.故答案是:95.【点睛】考查了平行线的性质,平角的定义,熟记性质是解题的关键.52.如果一个角的两边分别平行于另一个角的两边,且其中一个角是另一个角的4倍,则这个两个角的度数分别是__________【答案】36°,144°.【解析】【分析】如果两个角的两边互相平行,那么这两个角相等或互补,又因为其中一个角是另一个角的3倍,故这两个角应互补,根据题意,列方程求解即可.【详解】解:由题意知,这两个角互补,设这两个角分别为x,4x,则x+4x=180°,解得x=36°,4x=144°.故答案为36°,144°.【点睛】本题考查了平行线的性质,注意根据平行线的性质证明的一个结论:如果两个角的两边互相平行,那么这两个角相等或互补.显然此题中,不可能相等.53.如图,直线a∥b,点A、B位于直线a上,点C、D位于直线b上,且AB:CD=1:3,若△ABC的面积为5,则△BCD的面积为__________________【答案】15【分析】由已知得:△BCD 和△ABC 的高相等,面积之比就是他们的底边之比.【详解】解:根据题意△BCD 和△ABC 的高相同,可设为h ,12ABC S AB h ∆=• 12BCD S BD h ∆=• 又因为AB :CD=1:3,则:3BCD ABC S S ∆∆==15【点睛】本题主要考查平行线间的距离相等,即即△BCD 和△ABC 的高相等是解答本题的关键.54.如图,折叠宽度相等的长方形纸条,若248∠=,则1∠=______.【答案】66°【解析】【分析】根据平行线与折叠的性质即可求解.【详解】根据平行线与折叠的性质,∠1=(180°-∠2)÷2=66°此题主要考查度数的求解,解题的关键是熟知两直线平行,内错角相等.55.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB 交直线a于点C,若∠1=35°,则∠2=_____度.【答案】55【解析】【分析】先根据两直线平行,同旁内角互补,得出∠1+∠ABC+∠2=180°,再根据BC∠AB,∠1=35°,即可得出∠2的度数.【详解】∵直线a∠b,∠∠1+∠ABC+∠2=180°,又∵BC∠AB,∠1=35°,∠∠2=180°﹣90°﹣35°=55°,故答案为55.【点睛】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.本题也可以根据∠ACB的度数,得出∠2的度数.三、解答题56.已知AD∥EF,∠1=∠2.试说明:AB∥DG【答案】见解析【解析】【分析】由AD与EF平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】证明:∵AD∥EF,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴AB∥DG.【点睛】考查平行线的判定与性质,掌握平行线的判定方法是解题的关键.57.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.【答案】答案见解析【解析】【分析】根据∠1=∠2利用“同位角相等,两直线平行”可得出AB∥CD,再根据∠3+∠4=180°利用“同旁内角互补,两直线平行”可得出CD∥EF,从而即可证出结论.【详解】∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF,∴AB∥EF.【点睛】本题考查了平行线的判定,解题的关键是分别找出AB∥CD、CD∥EF.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的直线是关键.58.如图,已知AB∥CD,EF∥MN,∥1=115°.(1)求∥2和∥4的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳:如果一个角的两边分别平行于另一个角的两边,那么这两个角___________.【答案】(1) ∠ 2=115°,∠4=65°;(2)相等或互补【解析】【分析】(1)由平行线的性质可求得∠2,再求得∠4;(2)由(1)的结果可得到这两个角相等或互补.【详解】(1)∵AB∥CD,∴∠2=∠1=115°.∵EF∥MN,∴∠4+∠2=180°,∴∠4=180°﹣∠2=65°.(2)由(1)可知:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.故答案为:相等或互补.【点睛】本题考查了平行线的性质,掌握平行线的性质和判定是解题的关键,解题时注意:①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.59.如图1,AB,BC被直线AC所截,点D是线段AC上的点,过点D 作DE//AB,连接AE,∠B=∠E=70°.(1)请说明AE//BC的理由.(2)将线段AE沿着直线AC平移得到线段PQ,连接DQ.①如图2,当DE⊥DQ时,求∠Q的度数;②在整个运动中,当∠Q=2∠EDQ时,则∠Q= .【答案】(1)详见解析;(2)①20°;②1403【解析】【分析】(1)由DE//AB,可得∠BAE+∠E=180°,从而可证∠BAE+∠B=180°,根据从旁内角互补,两直线平行可证AB//DE;(2)∠过D点作DF//AE,由平行线的性质可得∠EDF=70°,由DE∠DQ,可得∠FDQ=20°,进而可的求出∠Q=20°;②如图,作DF//AE,根据平行线的性质解答即可.【详解】(1)证明:∠DE//AB,∠∠BAE+∠E=180°.又∠∠B=∠E,∠∠BAE+∠B=180°,∠AB//DE;(2)∠过D点作DF//AE,∠PQ//AE ,∠DF//PQ,∠∠E=70°,∠∠EDF=70°.∠DE∠DQ,∠∠EDQ=90°,∠∠FDQ=90°-70°=20°,∠∠Q=∠FDQ=20°;∠如图,作DF//AE,∠PQ//AE ,∠DF//PQ,∴∠Q=∠QDF,∠E=∠EDF=70°,∴∠EDQ+∠Q=70°,∵∠Q=2∠EDQ,∴12∠Q+∠Q=70°,∴∠Q=(1403)°.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.也考查了平行公理的推论:平行于同一直线的两条直线互相平行.60.如图,已知直线AC∥BD,且直线AB和AC、BD分别交于A、B两点,直线CD和AC、BD分别交于C、D两点,点P在直线AB上.(1)如果点P在A、B两点之间运动时(如图1),试找出∠PCA、∠PDB、∠CPD之间的关系,并说出理由;(2)如果点P在A、B两点外侧运动时(如图2,图3),问∠PCA、∠PDB、∠CPD之间的关系是否发生变化?试分别利用图2,图3探究∠PCA、∠PDB、∠CPD之间的关系(点P和A、B不重合).【答案】∠CPD=∠PCA+∠PDB,理由见解析;(2)①当点P在线段AB 的延长线上运动时,∠CPD=∠PCA-∠PDB;②当点P在线段BA的延长线上运动时,∠CPD=∠PDB-∠PCA.【解析】【分析】(1)过点P作a的平行线,根据平行线的性质进行求解;(2)①当点P在线段AB的延长线上运动时,过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;②当点P在线段BA的延长线上运动时,设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【详解】(1)如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2,即∠CPD=∠PCA+∠PDB;(2)①当点P在线段AB的延长线上运动时,∠CPD=∠PCA-∠PDB.理由:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠EPC,∵∠3=∠EPC-∠EPD,∴∠3=∠1-∠2,即∠CPD=∠PCA-∠PDB;②当点P在线段BA的延长线上运动时,∠CPD=∠PDB-∠PCA.证明:如图3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,∴∠2=∠1+∠3,∴∠3=∠2-∠1,即∠CPD=∠PDB-∠PCA.【点睛】本题考查的是平行线的性质,根据题意作出平行线,利用两直线平行,内错角相等进行推导是解答此题的关键.。
北师大新版七年级下学期《2.3 平行线的性质》同步练习卷一.选择题(共25小题)1.如图,已知AB∥CD,∠BEG=58°,∠G=30°,则∠HFG的度数为()A.28°B.29°C.30°D.32°2.如图,AB∥CD,∠AFE=135°,∠D=80°,则∠E等于()A.55°B.45°C.80°D.50°3.如图,AC∥BE,∠ABE=70°,则∠A的度数为()A.70°B.65°C.50°D.140°4.如图,DE∥AB,若∠A=60°,则∠ACE=()A.30°B.60°C.70°D.120°5.如图,∠A的一边AB为平面镜,另一边AC上有一点D,从D点射出一束光线经AB上一点E反射,反射光线EF恰好与AC平行,已知∠AED=∠BEF,∠EDC=70°,则∠A的度数是()A.30°B.35°C.40°D.45°6.如图,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2的度数是()A.50°B.70°C.90°D.110°7.如图,现将一块三角板的含有60°的角的顶点放在直尺的一边上,若∠1=80°,那么∠2的度数为()A.30°B.40°C.50°D.60°8.如图,直线a∥b,则∠1与∠2不一定相等的是()A.B.C.D.9.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为()A.32°B.58°C.138°D.148°10.如图,AB∥EF,点D是AB上一点,且DC⊥BE于点C,若∠A=36°,则∠ADC 的度数()A.106°B.116°C.126°D.136°11.如图,直线a∥b,将含30°角的直角三角板如图放置,直角顶点落在直线b 上,若∠1=55°,则∠2的度数为()A.30°B.35°C.45°D.55°12.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,已知∠FEG=36°,则∠EFG=()A.36°B.72°C.108°D.144°13.已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()A.90°B.120°C.150°D.180°14.如图,直线m∥n,一个含30°角的直角三角板ABC的顶点A在直线m上,则∠α等于()A.38°B.42°C.52°D.68°15.如图,直线a∥b,Rt△BCD如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°16.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.130°B.140°C.120°D.125°17.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159°B.148°C.142°D.138°18.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯是()A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30°19.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相反,这两次拐弯的角度可能是()A.第一次向左拐50°,第二次向左拐130°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐30°,第二次向右拐30°20.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是()A.18°B.126°C.18°或126°D.以上都不对21.如图所示,AB∥CD∥EF,CG平分∠DCE,AF平分∠BAE,则图中与∠CGE 相等的角共有(不包括∠CGE)()个.A.5B.6C.7D.822.如图,a∥b,将一块三角板的直角顶点放在直线a上,若∠1=42°,求∠2的度数.以下是排乱的推理过程:①∵∠1=42°②∵a∥b③∴∠3=90°﹣42°=48°④∴∠2=48°⑤∴∠2=∠3推理步骤正确的顺序是()A.①→③→②→④→⑤B.①→③→②→⑤→④C.①→⑤→②→③→④D.②→③→①→④→⑤23.如图,已知直线a∥b,将一块含有60°角的直角三角板的两个顶点分别放在直线a、b上,若∠1=62°,则∠2的度数为()A.28°B.32°C.38°D.40°24.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D,C两点分别落在点D′,C′的位置,∠DEF=∠D′EF,并利用量角器量得∠EFB=66°,则∠AED′的度数为()A.66°B.132°C.48°D.38°25.如图,长方形纸片ABCD的边长AB=2,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是()A.120°B.110°C.115°D.105°二.填空题(共14小题)26.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为.27.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,则图中∠1与∠2之间的数量关系为.28.用一张长方形纸条折成如图所示图形,如果∠1=62°,那么∠2=.29.如图,直线m∥n,若∠1=70°,∠2=25°,则∠A等于.30.如图,直线AB∥CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN⊥AB,垂足为点N,∠CFH=α,∠EMN=(用含α的式子表示)31.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是.32.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2=.33.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=.34.如图,D、E分别是AB、AC上的点,DE∥BC,若∠C=50°,则∠AED=°.35.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=.36.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=.37.如图是一架婴儿车,其中AB∥CD,∠BFG=50°,∠D=40°,那么∠AEF=.38.如图,已知直线a∥b,∠1=72°,∠2=38°,则∠3=°.39.如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为.三.解答题(共11小题)40.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,求∠FAG的度数.41.如图,点D,E,F分别在AB,BC,AC上,且DE∥AC,EF∥AB,下面写出了证明“∠A+∠B+∠C=180°”的过程,请补充完整:证明:∵DE∥AC,EF∥AB(已知),∴∠1=∠,∠3=∠,∠4=∠(两直线平行,同位角相等)∵EF∥AB(已知)∴∠2=∠4()∴∠2=∠A(等量代换)∵∠1+∠2+∠3=180°()∴∠A+∠B+∠C=180°(等量代换).42.如图,已知EF∥AB,∠1=∠B,求证:∠EDC=∠DCB.43.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.44.如图DE⊥AB,EF∥AC,∠A=35°,求∠DEF的度数.45.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,问:EP⊥FP吗?请说明理由.46.已知AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠AGF=∠F.47.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由.(2)求∠AFE的度数.48.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,你能算出∠EAD、∠DAC、∠EAC的度数吗?49.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数.50.已知AB∥CD,AD∥BC,E为CB延长线上一点,∠EAF=∠EFA.(1)求证:AF平分∠EAD;(2)若AG平分∠EAB,∠D=70°,求∠GAF的度数.北师大新版七年级下学期《2.3 平行线的性质》同步练习卷参考答案与试题解析一.选择题(共25小题)1.如图,已知AB∥CD,∠BEG=58°,∠G=30°,则∠HFG的度数为()A.28°B.29°C.30°D.32°【分析】根据两直线平行,内错角相等,可得∠EHF的度数,再根据三角形外角的性质即可求解.【解答】解:∵AB∥CD,∠BEG=58°,∴∠EHF=58°,∵∠G=30°,∴∠HFG=58°﹣30°=28°.故选:A.【点评】本题主要考查了平行线的性质与三角形外角的性质的定义,解题的依据是:两直线平行,内错角相等.2.如图,AB∥CD,∠AFE=135°,∠D=80°,则∠E等于()A.55°B.45°C.80°D.50°【分析】先根据两直线平行内错角相等得出∠DGF=∠AFE=135°,由邻补角定义得出∠DGE=45°,最后根据三角形的内角和为180°可得答案.【解答】解:∵AB∥CD,∠AFE=135°,∴∠DGF=∠AFE=135°,∴∠DGE=180°﹣∠DGF=45°,∵∠D=80°,∴∠E=180°﹣∠D﹣∠DGE=55°,故选:A.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.3.如图,AC∥BE,∠ABE=70°,则∠A的度数为()A.70°B.65°C.50°D.140°【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【解答】解:∵AC∥BE,∴∠A=∠ABE=70°,故选:A.【点评】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.4.如图,DE∥AB,若∠A=60°,则∠ACE=()A.30°B.60°C.70°D.120°【分析】根据两直线平行,同旁内角互补求解.【解答】解:∵DE∥AB,∴∠A+∠ACE=180°,∴∠ACE=180°﹣60°=120°.故选:D.【点评】本题考查了平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.如图,∠A的一边AB为平面镜,另一边AC上有一点D,从D点射出一束光线经AB上一点E反射,反射光线EF恰好与AC平行,已知∠AED=∠BEF,∠EDC=70°,则∠A的度数是()A.30°B.35°C.40°D.45°【分析】过点E作EH⊥AB交AC于点H.根据题意知,EH是∠DEF的角平分线,故∠1=∠3;然后又由两直线EF∥AC推知内错角∠1=∠2;最后由三角形的内角和定理求得∠A的度数.【解答】解:过点E作EH⊥AB交AC于点H.∵入射角等于反射角,∴∠1=∠3,∵EF∥AC,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);∵∠EDC=70°,∴∠2=∠3=55°,在Rt△AEH中,∠AEH=90°,∠2=55°,∴∠A=90°﹣55°=35°;故选:B.【点评】本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.6.如图,直线l1和直线l2被直线l所截,已知l1∥l2,∠1=70°,则∠2的度数是()A.50°B.70°C.90°D.110°【分析】根据平行线的性质得出∠2=∠3,然后根据对顶角相等得出∠3=∠1=70°,即可求出答案.【解答】解:∵直线l1∥l2,∴∠3=∠2,∵∠3=∠1=70°,∴∠2=70°,故选:B.【点评】本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.7.如图,现将一块三角板的含有60°的角的顶点放在直尺的一边上,若∠1=80°,那么∠2的度数为()A.30°B.40°C.50°D.60°【分析】先根据两直线平行的性质,得到∠3=∠2,再根据平角的定义,即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=80°,∴80°+60°+∠3=180°,∴∠3=40°,∴∠2=40°,故选:B.【点评】本题主要考查了平行的性质,解题的关键是掌握:两直线平行,同位角相等.8.如图,直线a∥b,则∠1与∠2不一定相等的是()A.B.C.D.【分析】根据平行线的性质分析选择.【解答】解:A、∵a∥b,∴∠1=∠2,正确;B、∵a∥b,∴∠1=∠2,正确;C、∵a∥b,∴∠1=∠2,正确;D、∵a∥b,∴∠1+∠2=180°,错误;故选:D.【点评】此题考查平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.9.将一把直尺与一块直角三角板如图放置,如果∠1=58°,那么∠2的度数为()A.32°B.58°C.138°D.148°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+58°=148°,∵直尺的两边互相平行,∴∠2=∠3=148°.故选:D.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.如图,AB∥EF,点D是AB上一点,且DC⊥BE于点C,若∠A=36°,则∠ADC 的度数()A.106°B.116°C.126°D.136°【分析】依据BE∥AF,∠A=36°,即可得到∠B=∠A=36°,再根据DC⊥BE,即可得出∠ADC=∠B+∠BCD=36°+90°=126°.【解答】解:∵BE∥AF,∠A=36°,∴∠B=∠A=36°,又∵DC⊥BE,∴∠ADC=∠B+∠BCD=36°+90°=126°,故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.11.如图,直线a∥b,将含30°角的直角三角板如图放置,直角顶点落在直线b 上,若∠1=55°,则∠2的度数为()A.30°B.35°C.45°D.55°【分析】依据直角顶点落在直线b上,∠1=55°,即可得到∠3=90°﹣55°=35°,再根据平行线的性质,即可得到∠2=∠3=35°.【解答】解:∵直角顶点落在直线b上,∠1=55°,∴∠3=90°﹣55°=35°,又∵a∥b,∴∠2=∠3=35°,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.12.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,已知∠FEG=36°,则∠EFG=()A.36°B.72°C.108°D.144°【分析】依据EG平分∠AEF,∠FEG=36°,即可得到∠AEF=72°,再根据平行线的性质,即可得出∠EFG=180°﹣∠AEF=108°.【解答】解:∵EG平分∠AEF,∠FEG=36°,∴∠AEF=72°,又∵AB∥CD,∴∠EFG=180°﹣∠AEF=108°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.13.已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()A.90°B.120°C.150°D.180°【分析】先利用平行线的性质得出∠1=∠3,∠2=∠4,最后利用直角三角形的性质即可.【解答】解:如图,过直角顶点作l3∥l1,∵l1∥l2,∴l1∥l2∥l3,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=90°.故选:A.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是作出辅助线,是一道基础题目.14.如图,直线m∥n,一个含30°角的直角三角板ABC的顶点A在直线m上,则∠α等于()A.38°B.42°C.52°D.68°【分析】先求出∠1,再根据两直线平行,同位角相等可得∠α=∠1.【解答】解:如图,∠1=180°﹣60°﹣52°=68°,∵直线m∥n,∴∠α=∠1=68°.故选:D.【点评】本题考查了平行线的性质,平角的定义,要求正确观察图形,熟练掌握平行线的性质.15.如图,直线a∥b,Rt△BCD如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°【分析】由三角形外角性质求出∠3的度数,再由a与b平行,利用两直线平行同旁内角互补,得到∠3+∠4+∠2的度数,根据∠3与∠4的度数求出∠2的度数即可.【解答】解:∵∠3为三角形的外角,∴∠3=∠1+∠B=70°,∵a∥b,∴∠3+∠4+∠2=180°,∵∠4=90°,∠3=70°,∴∠2=20°.故选:A.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.16.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.130°B.140°C.120°D.125°【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【解答】解:∵∠1=40°,∴∠3=90°﹣∠1=90°﹣40°=50°,∴∠4=180°﹣50°=130°,∵直尺的两边互相平行,∴∠2=∠4=130°.故选:A.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,是基础题,准确识图是解题的关键.17.如图,已知直线AB∥CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A.159°B.148°C.142°D.138°【分析】根据平行线的性质可得∠GEB=∠1=42°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=40°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=21°,∴∠2=180°﹣∠FEB=159°.故选:A.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.18.一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯是()A.第一次向右拐30°,第二次向右拐30°B.第一次向右拐30°,第二次向右拐150°C.第一次向左拐30°,第二次向右拐150°D.第一次向左拐30°,第二次向右拐30°【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【解答】解:如图所示,∵∠1=∠2=30°,∴AB∥CD,且两次拐弯方向相反,∴第一次向左拐30°,第二次向右拐30°.故选:D.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.19.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相反,这两次拐弯的角度可能是()A.第一次向左拐50°,第二次向左拐130°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐30°,第二次向右拐30°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:A.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.20.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是()A.18°B.126°C.18°或126°D.以上都不对【分析】由∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,然后设∠α=x°,由∠α比∠β的3倍少36°,分别从∠α与∠β相等或互补去分析,求得方程,解方程即可求得∠α的度数.【解答】解:∵∠α与∠β的两边分别平行,∴∠α与∠β相等或互补,设∠α=x°,∵∠α比∠β的3倍少36°,∴若∠α与∠β相等,则x=3x﹣36,解得:x=18,若∠α与∠β互补,则x=3(180﹣x)﹣36,解得:x=126,∴∠α的度数是18°或126°.故选:C.【点评】此题考查了平行线的性质.此题难度适中,解题的关键是注意若∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,注意方程思想与分类讨论思想的应用.21.如图所示,AB∥CD∥EF,CG平分∠DCE,AF平分∠BAE,则图中与∠CGE 相等的角共有(不包括∠CGE)()个.A.5B.6C.7D.8【分析】根据平行线的性质,角平分线的定义解答即可.【解答】解:∵AB∥CD∥EF,CG平分∠DCE,AF平分∠BAE,∴图中与∠CGE相等的角有∠HFG,∠DCG,∠ECG,∠CAF,∠BAF,∠AHC,∠DHF故选:C.【点评】本题考查了平行线性质,对顶角相等,角平分线的定义的应用,主要考查学生的推理能力.22.如图,a∥b,将一块三角板的直角顶点放在直线a上,若∠1=42°,求∠2的度数.以下是排乱的推理过程:①∵∠1=42°②∵a∥b③∴∠3=90°﹣42°=48°④∴∠2=48°⑤∴∠2=∠3推理步骤正确的顺序是()A.①→③→②→④→⑤B.①→③→②→⑤→④C.①→⑤→②→③→④D.②→③→①→④→⑤【分析】根据直角的定义求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:①∵∠1=42°,③∴∠3=90°﹣42°=48°②∵a∥b⑤∴∠2=∠3④∴∠2=48°故推理步骤正确的顺序是①→③→②→⑤→④.故选:B.【点评】本题考查了平行线的性质的应用,能求出∠2=∠3是解此题的关键,注意:两直线平行,内错角相等.23.如图,已知直线a∥b,将一块含有60°角的直角三角板的两个顶点分别放在直线a、b上,若∠1=62°,则∠2的度数为()A.28°B.32°C.38°D.40°【分析】根据平行线的性质求出∠3的度数,再根据角的和差关系即可求解.【解答】解:如图,∵a∥b,∠1=62°,∴∠3=62°,90°﹣60°=30°,∴∠2=62°﹣30°=32°.故选:B.【点评】考查了平行线的性质,平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.24.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D,C两点分别落在点D′,C′的位置,∠DEF=∠D′EF,并利用量角器量得∠EFB=66°,则∠AED′的度数为()A.66°B.132°C.48°D.38°【分析】先根据平角的定义求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【解答】解:∵∠EFB=66°,∴∠EFC=180°﹣66°=114°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=180°﹣∠EFC=180°﹣114°=66°,∵沿EF折叠D和D′重合,∴∠D′EF=∠DEF=66°,∴∠AED′=180°﹣66°﹣66°=48°.故选:C.【点评】本题考查了折叠性质,矩形性质,平行线的性质的应用,解题时注意:两直线平行,同旁内角互补.25.如图,长方形纸片ABCD的边长AB=2,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是()A.120°B.110°C.115°D.105°【分析】先根据三角形内角和定理得到∠BEC的度数,再根据折叠的性质即可得到∠AEF的度数,最后根据平行线的性质,即可得到∠DFE的度数.【解答】解:∵∠BCE=30°,∠B=90°,∴∠BEC=60°,由折叠可得,∠AEF=∠CEF,∴∠AEF=(180°﹣∠BEC)=60°,由CD∥AB,可得∠AEF+∠DFE=180°,∴∠DFE=180°﹣60°=120°.故选:A.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.二.填空题(共14小题)26.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为15°.【分析】过点E作EF∥AB,利用平行线的性质可知∠1+∠2=∠AEC=90°,进而得到∠2的度数.【解答】解:如图,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠1=∠AEF,∠2=∠CEF,∴∠1+∠2=∠AEF+∠CEF=∠AEC=90°,又∵∠1=75°,∴∠2=15°.故答案为:15°.【点评】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.27.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,则图中∠1与∠2之间的数量关系为∠2﹣∠1=90°.【分析】先根据平角的定义得出∠3=180°﹣∠2,再由平行线的性质得出∠4=∠3,根据∠4+∠1=90°即可得出结论.【解答】解:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.∴∠1与∠2之间的数量关系为:∠2﹣∠1=90°,故答案为:∠2﹣∠1=90°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.28.用一张长方形纸条折成如图所示图形,如果∠1=62°,那么∠2=59°.【分析】由折叠可得,∠2=∠BEF,依据∠1=62°,即可得到∠2=(180°﹣62°)=59°.【解答】解:由折叠可得,∠2=∠BEF,又∵∠1=62°,∴∠2=(180°﹣62°)=59°,故答案为:59°.【点评】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.29.如图,直线m∥n,若∠1=70°,∠2=25°,则∠A等于45°.【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=25°,∴∠A=45°,故答案为:45°.【点评】本题考查了平行线的性质和三角形的外角性质,解决问题的关键是求出∠3的度数.30.如图,直线AB∥CD,E为直线AB上一点,EH,EM分别交直线CD与点F、M,EH平分∠AEM,MN⊥AB,垂足为点N,∠CFH=α,∠EMN=2α﹣90°(用含α的式子表示)【分析】先利用平行线的性质得到∠AEH=∠CFH=α,再根据角平分线定义得到∠MEH=∠AEH=α,则利用邻补角的定义得到∠MEN=180°﹣2α,然后根据三角形内角和计算∠EMN的度数.【解答】解:∵AB∥CD,∴∠AEH=∠CFH=α,∵EH平分∠AEM,∴∠MEH=∠AEH=α,∴∠MEN=180°﹣2α,∵MN⊥AB,∴∠MNE=90°,∴∠EMN=90°﹣(180°﹣2α)=2α﹣90°.故答案为2α﹣90°.【点评】本题考查了平行线性质定理:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.31.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是40°.【分析】先根据a∥b得出∠1=∠3=20°,再求出∠4的度数,由b∥c即可得出结论.【解答】解:∵a∥b,∠1=20°,∴∠1=∠3=30°,∴∠4=60°﹣20°=40°.∵b∥c,∴∠2=∠4=40°.故答案为:40°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.32.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2=35°.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.33.如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2=135°.【分析】直接利用平行线的性质结合邻补角的性质得出答案.【解答】解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.34.如图,D、E分别是AB、AC上的点,DE∥BC,若∠C=50°,则∠AED=50°.【分析】依据DE∥BC,可得∠AED=∠C,利用∠C=50°,即可得到∠AED=50°.【解答】解:∵DE∥BC,∴∠AED=∠C,又∵∠C=50°,∴∠AED=50°,故答案为:50.【点评】本题考查了平行线的性质和判定的应用,主要考查学生运用定理进行推理的能力.35.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=85°.【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.36.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=60°.【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【解答】解:∵DA⊥CE,∴∠DAE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为:60°.【点评】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.37.如图是一架婴儿车,其中AB∥CD,∠BFG=50°,∠D=40°,那么∠AEF=90°.【分析】直接利用平行线的性质得出∠A=∠D=40°,再利用三角形内角和定理得出答案.【解答】解:∵AB∥CD,∴∠A=∠D=40°,∵∠BFG=50°,∴∠AFE=50°,∴∠AEF=180°﹣40°﹣50°=90°.故答案为:90°.【点评】此题主要考查了平行线的性质以及三角形内角和定理,正确得出∠A度数是解题关键.38.如图,已知直线a∥b,∠1=72°,∠2=38°,则∠3=70°.【分析】依据a∥b,即可得到∠2=∠4=38°,再根据∠1=72°,即可得到∠3的度数.【解答】解:∵a∥b,∴∠2=∠4=38°,又∵∠1=72°,∴∠3=180°﹣38°﹣72°=70°,故答案为:70.【点评】本题考查了平行线的性质和平角的定义,熟练掌握性质定理是解题的关键.39.如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【分析】依据AB∥CD,∠EGF=64°,即可得到∠BEG=∠EGF=64°,再根据EG平分∠BEF,即可得到∠BEF=2∠BEG=128°,进而得出∠AEF=180°﹣128°=52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°,又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,角平分线的定义的运用,熟练掌握性质并准确识图是解题的关键.三.解答题(共11小题)40.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,求∠FAG的度数.【分析】由平行线的性质得到∠BAC=∠ECF=70°;利用邻补角的定义、角平分线的定义,即可求∠FAG的度数.【解答】解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC 的度数是解题的难点.41.如图,点D,E,F分别在AB,BC,AC上,且DE∥AC,EF∥AB,下面写出了证明“∠A+∠B+∠C=180°”的过程,请补充完整:证明:∵DE∥AC,EF∥AB(已知),∴∠1=∠C,∠3=∠B,∠4=∠A(两直线平行,同位角相等)∵EF∥AB(已知)∴∠2=∠4(两直线平行,内错角相等)∴∠2=∠A(等量代换)∵∠1+∠2+∠3=180°(平角的性质)∴∠A+∠B+∠C=180°(等量代换).【分析】先由DE∥AC,AB∥EF,根据平行线的性质得出∠1=∠C,∠3=∠B,∠2=∠4,进而得到∠A+∠B+∠C=180°.【解答】证明:∵DE∥AC,EF∥AB(已知),∴∠1=∠C,∠3=∠B,∠4=∠A(两直线平行,同位角相等)∵EF∥AB(已知)∴∠2=∠4(两直线平行,内错角相等)∴∠2=∠A(等量代换)∵∠1+∠2+∠3=180°(平角的性质)∴∠A+∠B+∠C=180°(等量代换).故答案为:C;B;A;两直线平行,内错角相等;平角的性质.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等.42.如图,已知EF∥AB,∠1=∠B,求证:∠EDC=∠DCB.【分析】证明∠EDC=∠DCB,只需具备DE∥BC即可,可以考虑证得∠ADE=∠B,而∠1与这两个角都相等.【解答】证明:∵EF∥AB,∴∠1=∠ADE,∵∠1=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠EDC=∠DCB.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.根据下面解答过程,完成下面填空:如图,已知AB∥CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.【分析】直接利用平行线的性质得出∠ACD=75°,进而得出∠DCE=24°,再得出∠E=∠DCE即可得出答案.【解答】解:∵AB∥CD(已知).∴∠A+∠ACD=180°(同旁内角已互补,两直线平行).∵∠A=105°.∴∠ACD=75°.∵∠DCE=∠ACD﹣∠ACE,∠ACE=51°.∴∠DCE=24°.∵CD∥EF(已知).∴∠E=∠DCE(两直线平行、内错角相等).∴∠E=24°.【点评】此题主要考查了平行线的性质,正确得出∠DCE的度数是解题关键.44.如图DE⊥AB,EF∥AC,∠A=35°,求∠DEF的度数.【分析】先根据DE⊥AB可知∠ADE=90°,再由三角形外角的性质求出∠DGC的度数,根据平行线的性质即可得出结论.【解答】解:∵DE⊥AB,∴∠ADE=90°,∵∠DGC是△ADG的外角,∠A=35°,∴∠DGC=∠A+∠ADG=35°+90°=125°,∵EF∥AC,∴∠DEF=∠DGC=125°.【点评】本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.45.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,问:EP⊥FP吗?请说明理由.【分析】要证EP⊥FP,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.【解答】解:EP⊥FP.理由:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,即EP⊥FP.【点评】本题主要考查了平行线的性质,解决问题的关键就是找到∠PEF+∠EFP 与∠BEF+∠EFD之间的关系,运用整体代换思想.46.已知AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠AGF=∠F.【分析】直接利用平行线的性质得出∠AGF=∠BAD,∠CAD=∠F,再利用角平分线的定义得出答案.【解答】证明:∵EF∥AD,∴∠AGF=∠BAD,∠CAD=∠F,又∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠AGF=∠F.【点评】此题主要考查了平行线的性质,得出相等的角是解题关键.47.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由.(2)求∠AFE的度数.【分析】(1)先延长AF、DE相交于点G,根据两直线平行同旁内角互补可得∠CDE+∠G=180°.又已知∠CDE=∠BAF,等量代换可得∠BAF+∠G=180°,根据同旁内角互补,两直线平行得AB∥DE;(2)先延长BC、ED相交于点H,由垂直的定义得∠B=90°,再由两直线平行,同旁内角互补可得∠H+∠B=180°,所以∠H=90°,最后可结合图形,根据邻补角的定义求得∠AFE的度数.【解答】解:(1)AB∥DE.理由如下:延长AF、DE相交于点G,∵CD∥AF,。
七年级数学下册《平行线性质》练习题(含答案)1、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF= .2、已知:如图,AB∥CD,FG∥HD,∠B=100°,FE为∠CEB的平分线,求∠EDH的度数.3、如图,DE∥CB,试证明∠AED=∠A+∠B。
4、已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.5、如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.6、如图,∠B、∠D的两边分别平行.(1)在图1中,∠B与∠D的数量关系是;(2)在图2中,∠B与∠D的数量关系是;(3)用一句话归纳的结论为;请选择(1)(2)中的一种情况说明理由.(4)应用:若两个角的两边两两互相平行,其中一个角的是另一个角的,求着两个角的度数.7、如图,若直线AB∥ED,你能推得∠B、∠C、∠D•之间的数量关系吗?请说明理由.8、如图所示,已知∠AED=∠C,∠3=∠B,请写出∠1与∠2的数量关系,并对结论进行证明.9、如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140º,求∠BFD的度数.10、已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.11、如图,AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF.EG⊥FG于点G,∠BEM=50°. 求∠CFG的度数.12、如图,AB∥DE∥GF,∠1:∠D:∠B=2:3:4,求∠1的度数?13、已知:如图,AB∥CD,∠ABE=∠DCF,说明∠E=∠F的理由.14、如图,已知 DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP 是∠BAC 的平分线.求∠PAG 的度数.15、已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.16、如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)求证:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.17、已知如图,AB∥CD∥EF,点M、N、P分别在AB、CD、EF上,NQ平分∠MNP.(1)若∠AMN=50º,∠EPN=70º,分别求∠MNP,∠DNQ的度数;(2)若∠AMN=度,∠EPN=度,请直接写出∠DNQ的度数(用含,的代数式表示);(3)试探究:∠DNQ与∠AMN,∠EPN之间的数量关系,并说明理由.18、已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.19、(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是_______(只写结果,不要证明).20、如图1,AB∥CD,EOF是直线AB、CD间的一条折线。
(1)猜想∠1、∠2、∠3的数量关系,并说明理由。
(2)如图2,将折一次改为折二次,若∠1=40°,∠2=60°,∠3=70°,则∠4=____。
(3)如图3,若改为折多次,直接写出∠1,∠2,∠3,…,∠2n-1,∠2n之间的数量关系:____________________________________________________。
21、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,则图③中∠CFE度数是多少?(2)若∠DEF=α,把图③中∠CFE用α表示.22、AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°. (1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.23、如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F。
(1)如图1,若∠E=80°,求∠BFD的度数。
(2)如图2:若∠ABM=∠ABF, ∠CDM=∠CDF, 写出∠M和∠E 之间的数量关系并证明你的结论。
(3)∠ABM=∠ABF, ∠CDM=∠CDF, 设∠E=m°,直接用含有n,m°的代数式写出∠M= (不写过程)24、(1)如图1,a∥b,则∠1+∠2=(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由(3)如图3,a∥b,则∠1+∠2+∠3+∠4=(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)25、已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF。
试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。
参考答案1、由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°.于是可得关于∠B、∠D的方程组解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=∠BEF=30°.2、解:∵AB∥CD,∴∠B+∠BEC=180°,∵∠B=100°,∴∠BEC=80°,∵FE为∠CEB的平分线,∴∠FEC=∠BEC=40°,∵FG∥HD,∴∠EDH=∠FEC=40°.3、作EF∥AB交OB于F∵EF∥AB∴∠2=∠A,∠3=∠B∵DE∥CB∴∠1=∠3∴∠1=∠B∴∠1+∠2=∠B+∠A∴∠AED=∠A+∠B4、5、解:如图,延长ED交BC于F,由三角形的外角性质得,∠CFD=∠CDE﹣∠C,所以,∠BFD=180°﹣∠CFD=180°﹣(∠CDE﹣∠C),∵∠ABC+∠CDE﹣∠C=180°,∴∠ABC=180°﹣(CDE﹣∠C),∴∠ABC=∠BFD,∴AB∥DE.6、解:(1)∵AB∥CD,∴∠B=∠1,∵BE∥DF,∴∠1=∠D,∴∠B=∠D;(2)∵AB∥CD,∴∠B=∠1,∵BE∥DF,∴∠1+∠D=180°,∴∠B+∠D=180°;(3)如果两个角的两边分别平行,那么这两个角相等或互补;证明见(1)和(2);故答案为相等,互补,如果两个角的两边分别平行,那么这两个角相等或互补;(4)设这两个角的度数分别为x,y,∵一个角的是另一个角的,∴x=y,即x=y,∴x与y不相等,∴x+y=180°,∴y+y=180°,解得y=108°,∴x=72°,即这两个角的度数分别为72°、108°.7、解:∠C+∠D-∠B=180°.理由:如答图,过点C作CF∥AB,则∠B=∠2.∵AB∥ED,CF∥AB,∴ED∥CF(平行于同一条直线的两直线平行).∴∠1+∠D=180°(两直线平行,同旁内角互补).而∠1=∠BCD-∠2=∠BCD-∠B,∴∠BCD-∠B+∠D=180°,即∠BCD+∠D-∠B=180°.8、解:∠1+∠2=180°,说明如下:∵∠AED=∠C, ∴DE∥BC ∴∠ADE=∠B∵∠3=∠ADE,∴EF∥AB∴∠2=∠4又∠1+∠4=180°∴∠1+∠2=180°9、110 º10、证明:∵∠3 =∠4,∴ AC∥BD.∴∠6+∠2+∠3 = 180°.∵∠6 =∠5,∠2 =∠1,∴∠5+∠1+∠3 = 180°.∴ ED∥FB.11、解:∵AB∥CD,∴∠AEF+∠CFE=180°,(两直线平行,同旁内角互补)∵∠AEF=∠BEM=50°,(对顶角相等)∴∠CFE=130°,·∵EG平分∠AEF,(已知)∴∠GEF=∠AEF=25°(角平分线定义),∵EG⊥FG,(已知)∴∠EGF=90°,(垂直定义)∴∠GFE=90°-∠GEF=65°,(直角三角形两锐角互余)∴∠CFG=∠GFE=65°(等量代换).·12解:∵∠1:∠D:∠B=2:3:4,∴设∠1=2x°,∠D=3x°,∠B=4x°,∵AB∥DE,∴∠GCB=°,∵DE∥GF,∴∠FCD=°,∵∠1+∠GCB+∠FCD=180°,∴180﹣4x+x+180﹣3x=180,解得x=30,∴∠1=60°.13、略14、解:∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP 是∠BAC 的平分线,∴∠PAC= ∠BAC=72°,∴∠PAG=∠PAC﹣∠GAC=72°﹣60°=12°.15、解:(1)∠APB=∠PAC+∠PBD过点P作PE∥L∴∠APE=∠PAC-∵L1∥L2PE∥L2∴∠BPE=∠PBD-∴∠APE+∠BPE =∠PAC+∠PBD∴∠APB =∠PAC+∠PBD(2)不成立图2:∠PAC =∠APB+∠PBD图3:∠PBD=∠PAC+∠APB-16、(1)略;(2)17、(1)∠MNP=∠MND+∠PND=∠AMN+∠EPN=50°+70°=120°∠DNQ=10°(2)∠DNQ=度(3)或理由;18、证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.19、(1)证明:如图1,过P作PM∥AC,∵AC∥BD,∴AC∥BD∥PM,∴∠1=∠PAC,∠2=∠PBD,∴∠APB=∠1+∠2=∠PAC+∠PBD;(2)∠APB+∠PBD+∠PAC=360°,证明:如图2,过P作PM∥AC,∵AC∥BD,∴AC∥BD∥PM,∴∠1+∠PAC=180°,∠2+∠PBD=180°,∴∠1+∠PAC+∠2+∠PBD=360°,即∠APB+∠PBD+∠PAC=360°;(3)∠APB=∠PBD﹣∠PAC,证明:过P作PM∥AC,如图3,∵AC∥BD,∴AC∥BD∥PM,∴∠MPA=∠PAC,∠MPB=∠PBD,∴∠APB=∠MPB﹣∠MPA=∠PBD﹣∠PAC,故答案为:∠APB=∠PBD﹣∠PAC.20、解:(1)如图,∠2=∠1+∠3,理由:过点O作直线GH∥AB∵GH∥AB∴∠1=∠EOH∵GH∥AB,CD∥AB∴GH∥CD∴∠3=∠FOH∴∠2=∠EOH +∠FOH =∠1+∠3(2)50°(3)∠1+∠3+∠5+…+∠2n-1=∠2+∠4+…+∠2n21.解:(1)∵长方形的对边是平行的,∴∠BFE=∠DEF=20°;∴图①、②中的∠CFE=180°﹣∠BFE,以下每折叠一次,减少一个∠BFE,∴图③中的∠CFE度数是120°;(2)由(1)中的规律,可得∠CFE=180°﹣3α.22、(1)(方法不唯一)∠BED=65°(2)∠BED=160°23、①∠BFD=140°②∠E+6∠M=360°③∠M=24、解答:解:(1)∵a∥b,∴∠1+∠2=180°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠1+∠AEF=180°,∠CEF+∠2=180°,∴∠1+∠AEF+∠CEF+∠2=180°+180°,即∠1+∠2+∠3=360°;(3)如图,过∠2、∠3的顶点作a的平行线,则∠1+∠2+∠3+∠4=180°×3=540°;(4)如图,过∠2、∠3…的顶点作a的平行线,则∠1+∠2+∠3+∠4+…+∠n=(n﹣1)•180°.故答案为:180°;360°;540°;(n﹣2)•180°.25、第11 页共11 页。