河北省高阳县2017-2018学年七年级下学期期末数学试题(含答案)
- 格式:pdf
- 大小:382.99 KB
- 文档页数:8
2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。
2017-2018学年河北省七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.4的平方根是()A.±2 B.2 C.﹣2 D.±2.点P(﹣2,3)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列四对数值中是方程2x﹣y=1的解的是()A.B.C.D.4.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查5.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)6.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°7.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.48.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.9.将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°10.把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间11.在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y轴的对称点N,已知N的坐标是(5,1),那么P点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)12.某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米二、填空题(共8小题,每小题3分,满分24分)13. +﹣=______.14.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是______.15.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是______.16.当______时,式子的值不大于零.17.已知是二元一次方程组的解,则m+3n的立方根为______.18.有3人携带会议材料乘坐电梯,这三人的体重共210kg,每捆材料重20kg,电梯最大负荷为1 050kg,则该电梯在此3人乘坐的情况下最多还能搭载______捆材料.19.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是______.20.将字母A、B、C、D按如图所示的规律无限排列下去,那么第17行从左到右第14个字母是______.三、解答题(共7小题,满分60分)21.解不等式组:,并把解集在数轴上表示出来.22.解方程组:(1)(2).23.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.24.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.(2)销售6个排球的利润与销售几个篮球的利润相等?25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=______,n=______.26.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是______;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.27.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.4的平方根是()A.±2 B.2 C.﹣2 D.±【考点】平方根.【分析】依据平方根的定义即可得出答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.点P(﹣2,3)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选B.3.下列四对数值中是方程2x﹣y=1的解的是()A.B.C.D.【考点】二元一次方程的解.【分析】将各选项代入方程进行验证即可.【解答】解:A、当x=2,y=0时,左边=2×2﹣0=4≠1,左边≠右边,故A错误;B、当x=﹣1,y=﹣1时,左边=2×(﹣1)﹣(﹣1)=﹣1≠1,左边≠右边,故B错误;C、当x=0,y=﹣1时,左边=2×0﹣(﹣1)=1=1,左边=右边,故C正确;D、当x=﹣1,y=1时,左边=2×(﹣1)﹣1=﹣3≠1,左边≠右边,故D错误.故选:C.4.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.5.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点横坐标等于零,可得答案.【解答】解:由点P(a﹣4,a)在y轴上,得a﹣4=0,解得a=4,P的坐标为(0,4),故选:B.6.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°【考点】垂线.【分析】根据直线EO⊥CD,可知∠EOD=90°,根据AB平分∠EOD,可知∠AOD=45°,再根据邻补角的定义即可求出∠BOD的度数.【解答】解:∵EO⊥CD,∴∠EOD=90°,∵AB平分∠EOD,∴∠AOD=45°,∴∠BOD=180°﹣45°=135°,故选C.7.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.8.一个自然数的平方根为a,则它的相邻的下一个自然数的算术平方根是()A.B.a+1 C.a2+1 D.【考点】算术平方根;平方根.【分析】设这个自然数为x,则x=a2,故与之相邻的下一个自然数为a2+1,再根据算术平方根的定义进行解答即可.【解答】解:设这个自然数为x,∵x平方根为a,∴x=a2,∴与之相邻的下一个自然数为a2+1,其算术平方根为:.故选D.9.将一直角三角板与两边平行的纸条如图放置.已知∠2﹣∠1=30°,则∠2的度数为()A.30° B.45° C.50° D.60°【考点】平行线的性质.【分析】根据平行线的性质得∠2=∠3,再根据互余得到∠2+∠1=90°,进而得出答案.【解答】解:如图所示:∵a∥b,∴∠2=∠3,∵∠1+∠3=90°,∴∠3=90°﹣∠1=∠2,∴∠2+∠1=90°,∵∠2﹣∠1=30°,∴∠2=60°.故选:D.10.把长宽分别为7和4的长方形经过割补变为一个正方形,这个正方形的边长在()A.5与6之间B.4与5之间C.3与4之间D.2与3之间【考点】估算无理数的大小.【分析】先求得正方形的面积,然后依据算术平方根的定义求得边长,然后再估算其大小即可.【解答】解:正方形的边长==.∵25<28<36,∴5<<6.故选:A.11.在平面直角坐标系中,把点P首先向左平移7个单位,再向上平移5个单位得到点M,作点M关于Y轴的对称点N,已知N的坐标是(5,1),那么P点坐标是()A.(2,﹣4)B.(6,﹣4)C.(6,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】根据向左平移横坐标减,纵坐标不变,向上平移纵坐标加,横坐标不变,进行计算即可求解.【解答】解:∵点M关于Y轴的对称点N,已知N的坐标是(5,1),∴M(﹣5,1),∵点P首先向左平移7个单位,再向上平移5个单位得到点M,∴P(2,﹣4),故选A.12.某市区现行出租车的收费标准:起步价5元(即行驶距离不超过3千米都需付5元车费),超过3千米后,每增加1千米,加收1.5元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费11元,那么甲地到乙地路程的最大值是()A.5千米B.7千米C.8千米D.9千米【考点】一元一次不等式的应用.【分析】本题可先用11减去5得到6,则1.5(x﹣3)≤6,解出x的值,取最大整数即为本题的解.【解答】解:依题意得:1.5(x﹣3)≤11﹣5,x﹣3≤4,x≤7.因此甲地到乙地路程的最大值是7千米.故选:B.二、填空题(共8小题,每小题3分,满分24分)13. +﹣= 1.【考点】实数的运算.【分析】原式利用立方根及算术平方根定义计算即可得到结果.【解答】解:原式=2+0﹣=1,故答案为:114.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是抽取500名学生的成绩.【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体.【解答】解:本题的研究对象是:2万名考生的成绩,因而样本是抽取的500名考生的成绩.故答案为:抽取500名学生的成绩.15.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是55°.【考点】平行线的性质;翻折变换(折叠问题).【分析】根据折叠性质得出∠2=∠EFG,求出∠BEF,根据平行线性质求出∠CFE,即可求出答案.【解答】解:∵根据折叠得出四边形MNFG≌四边形BCFG,∴∠EFG=∠2,∵∠1=70°,∴∠BEF=∠1=70°,∵AB∥DC,∴∠EFC=180°﹣∠BEF=110°,∴∠2=∠EFG=∠EFC=55°,故答案为:55°.16.当x≥时,式子的值不大于零.【考点】解一元一次不等式.【分析】根据题意列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子的值不大于零,∴≤0,解得x≥.故答案为:x≥.17.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】二元一次方程组的解;立方根.【分析】将代入方程组,可得关于m、n的二元一次方程组,得出代数式即可得出m+3n 的值,再根据立方根的定义即可求解.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.18.有3人携带会议材料乘坐电梯,这三人的体重共210kg,每捆材料重20kg,电梯最大负荷为1 050kg,则该电梯在此3人乘坐的情况下最多还能搭载42 捆材料.【考点】一元一次不等式的应用.【分析】先设还能搭载x捆材枓,根据电梯最大负荷为1050kg,列出不等式求解即可.【解答】解:设还能搭载x捆材枓,依题意得:20x+210≤1050,解得:x≤42.则该电梯在此3人乘坐的情况下最多能搭载42捆材枓.故答案为:42.19.为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是480元、400元.【考点】二元一次方程组的应用.【分析】设甲、乙两种服装的原单价分别是x元、y元,满足等量关系:①甲、乙两种服装的原单价共为880元;②打折后两种服装的单价共为684元,由此列出方程组求解.【解答】解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:,解得:,即:甲、乙两种服装的原单价分别是480元、400元.故答案是:480元、400元.20.将字母A、B、C、D按如图所示的规律无限排列下去,那么第17行从左到右第14个字母是 B .【考点】规律型:图形的变化类.【分析】先找到数的排列规律,求出第n﹣1行结束的时候一共出现的字母的个数,再求第n行从左向右的第14个字母,即可求出第17行从左向右的第14个字母.【解答】解:由排列的规律可得,第n﹣1行结束的时候排了1+2+3+…+n﹣1=n(n﹣1)个字母.所以第n行从左向右的第13个字母共n(n﹣1)+13个.所以n=17时,×17×(17﹣1)+14=150,150÷4=37…2.故第17行从左向右的第14个字母为B.故答案为:B.三、解答题(共7小题,满分60分)21.解不等式组:,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出不等式组中两不等式的解集,找出公共部分,表示在数轴上即可.【解答】解:,由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,22.解方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:6y﹣7﹣y=13,即y=4,把y=4代入②得:x=17,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,即x=2,把x=2代入①得:y=3,则方程组的解为.23.如图,已知:∠1=∠2,∠D=50°,求∠B的度数.【考点】平行线的判定与性质.【分析】此题首先要根据对顶角相等,结合已知条件,得到一组同位角相等,再根据平行线的判定得两条直线平行.然后根据平行线的性质得到同旁内角互补,从而进行求解.【解答】解:∵∠1=∠2,∠2=∠EHD,∴∠1=∠EHD,∴AB∥CD;∴∠B+∠D=180°,∵∠D=50°,∴∠B=180°﹣50°=130°.24.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.(2)销售6个排球的利润与销售几个篮球的利润相等?【考点】二元一次方程组的应用.【分析】(1)设购进篮球x个,购进排球y个,根据等量关系:①篮球和排球共20个②全部销售完后共获利润260元可列方程组,解方程组即可;(2)设销售6个排球的利润与销售a个篮球的利润相等,根据题意可得等量关系:每个排球的利润×6=每个篮球的利润×a,列出方程,解可得答案.【解答】解:(1)设购进篮球x个,购进排球y个,由题意得:解得:,答:购进篮球12个,购进排球8个;(2)设销售6个排球的利润与销售a个篮球的利润相等,由题意得:6×(60﹣50)=(95﹣80)a,解得:a=4,答:销售6个排球的利润与销售4个篮球的利润相等.25.在平面直角坐标系中,A、B、C三点的坐标分别为(﹣6,7)、(﹣3,0)、(0,3).(1)画出△ABC,并求△ABC的面积;(2)在△ABC中,点C经过平移后的对应点为C′(5,4),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出点A′,B′的坐标;(3)已知点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m= 3 ,n= 1 .【考点】作图-平移变换.【分析】(1)根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可,再利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解;(2)根据网格结构找出点A、B平移后的对应点A′、B′的位置,然后顺次连接即可,再根据平面直角坐标系写出A′、B′的坐标;(3)根据向右平移横坐标加,向下平移纵坐标减列出方程求解即可.【解答】解:(1)如图,△ABC如图所示;△ABC的面积=6×7﹣×3×7﹣×3×3﹣×4×6,=42﹣10.5﹣4.5﹣12,=42﹣27,=15;(2)△A′B′C′如图所示,A′(﹣1,8),B′(2,1);(3)由题意得,﹣3+4=n,m﹣6=﹣3,解得m=3,n=1.故答案为:3,1.26.某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是100 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【解答】解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50﹣10﹣16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×=360人.27.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?【考点】一次函数的应用.【分析】(1)设每吨水的政府补贴优惠价为x元,市场调节价为y元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小英家的用水量判断其再哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为a元,市场调节价为b元.解得:答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤14时,y=x;当x>14时,y=14+(x﹣14)×2.5=2.5x﹣21,∴所求函数关系式为:y=(3)∵x=24>14,∴把x=24代入y=2.5x﹣21,得:y=2.5×24﹣21=39(元).答:小英家三月份应交水费39元.2016年9月21日。
2017-2018学年七年级数学期末试卷(全卷三个大题,共24个小题,满分120分,考试时间120分钟)一.选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.下列图形中不是轴对称图形的是( )A .B .C .D .2.甲、乙、丙三地海拔高度分别为-100米、-300米、500米,那么最高的地方比最低的地方高( ) A .400米B .600米C .200米D .800米3.下列整式中,属于多项式的是( )A. b a 2-B. ab 2-C. 2-D. a 4.全球每分钟约有9350000吨污水排入江河湖海,9350000用科学计数法记为( )A. 410935⨯ B. 5105.93⨯ C. 61035.9⨯ D. 710935.0⨯ 5.下列运算结果正确的是( )A.22523a b a b -= B.623x x x ÷=C.236(2)8x x =D.222()a b a b -=-6.有两根长分别是20厘米和30厘米的木棒,若不改变木棒的长度,要钉成一个三角形框架,则应在下列木棒中选取( )厘米的木棒。
A.10 B.20 C.50 D.607.如图,已知AD=AE ,添加下列条件仍无法证明△ABE ≌△ACD 的是( ) A .AB=ACB .∠ADC=∠AEBC .∠B=∠CD .BE=CD8.下列调查中,适合普查的事件是( ) A .调查华为手机的使用寿命B .调查我国七年级学生的心理健康情况C .调查我班学生身高的情况D .调查中央电视台《朗读者》节目的收视率二.填空题(共6个小题,每小题3分,共18分)9. 5的相反数是 。
10.关于x 的方程06=+ax 的解是3-=x ,则a 11.已知∠A=70°,则∠A 的补角是 度。
12. 如图,直线AB 、CD 相交于点O ,EO ⊥CD , 若∠AOC =35°,则∠BOE 是 度。
2017-2018学年河北省七年级(下)期末数学试卷一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列各数①﹣3.14 ②π ③④⑤﹣中,无理数的个数是()A.2 B.3 C.4 D.52.以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命3.若两条平行线被第三条直线所截,则一组同旁内角的平分线互相()A.垂直 B.平行 C.重合 D.相交4.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.3a>3b D.<5.已知:是方程kx﹣y=3的解,则k的值是()A.2 B.﹣2 C.1 D.﹣16.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为()A.1 B.2 C.3 D.47.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)8.已知M(1,﹣2),N(﹣3,﹣2),则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交9.将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,则所得图形与原图形的关系是()A.将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B.将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C.将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D.将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位10.已知长江比黄河长836千米,黄河长的6倍比长江长的5倍多1284千米.若设长江长x千米,黄河长y千米,则下列方程组能满足上述关系的是()A.B.C.D.11.不等式组的整数解共有()A.3个 B.4个 C.5个 D.6个12.我校七年级学生总人数为700,其男女生所占比例如图所示,则该校七年级男生人数为()A.48 B.52 C.336 D.36413.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有()A.1个 B.2个 C.3个 D.4个14.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为()A.45°B.60°C.72°D.108°二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!共6题,每小题3分,共18分)15.计算:= .16.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)位于第象限.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.18.已知是二元一次方程组的解,则m+3n的立方根为.19.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对道题,成绩才能在80分以上.20.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(11,5)表示的实数是.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算:.22.解方程组:.23.解不等式组:,并在数轴上表示出不等式组的解集.24.我们在小学就已经知道,任意一个三角形的内角和等于180°我们是通过度量和剪拼得到这一结论的,我们马上就要升入八年级,在八年级的数学学习中,“三角形的内角和等于180°”是需要通过推理的方法去证明的,接下来我们需要接受挑战,完成下列题目要求:(1)在证法一中的括号内,填上推理的根据.(2)在证法二的提示下写出证明过程.并写清楚推理的根据.三角形内角和定理:三角形三个内角的和等于180°已知:如图1,△ABC求证:∠A+∠B+∠C=180°.证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,∠2=∠B又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°证法二:提示:如图3,过点C作DE∥AB.25.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?26.某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表::a ,b ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?27.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案与试题解析一、精心选一选,慧眼识金!(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中只有一项是正确的)1.下列各数①﹣3.14 ②π ③④⑤﹣中,无理数的个数是()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,共2个.故选A.2.以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、旅客上飞机前的安检,意义重大,宜用全面调查,故A选项错误;B、学校招聘教师,对应聘人员面试必须全面调查,故B选项错误;C、了解全校同学课外读书时间,数量不大,宜用全面调查,故C选项错误;D、了解一批灯泡的使用寿,具有破坏性,工作量大,不适合全面调查,故D选项正确.故选:D.3.若两条平行线被第三条直线所截,则一组同旁内角的平分线互相()A.垂直 B.平行 C.重合 D.相交【考点】平行线的性质.【分析】作出图形,然后根据两直线平行,同旁内角互补以及角平分线的定义可得∠1+∠2=90°,再根据三角形的内角和定理求出∠C=90°,从而得解.【解答】解:如图,∵a∥b,∴∠DAB+∠ABE=180°,∵AC、BC分别是角平分线,∴∠1=∠DAB,∠2=∠ABE,∴∠1+∠2=×180°=90°,∴∠C=180°﹣(∠1+∠2)=180°﹣90°=90°,∴AC⊥BC,∴同旁内角的平分线互相垂直,故选A.4.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.3a>3b D.<【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都减5,不等号的方向不变,故A错误;B、不等式的两边都加2,不等号的方向不变,故B错误;C、不等式的两边都乘以2,不等号的方向不变,故C正确;D、不等式的两边都除以3,不等号的方向不变,故D错误;故选:C.5.已知:是方程kx﹣y=3的解,则k的值是()A.2 B.﹣2 C.1 D.﹣1【考点】二元一次方程的解.【分析】将方程的解代入方程得到关于k的一元一次方程,于是可求得k的值.【解答】解:将代入方程kx﹣y=3得:2k﹣1=3,解得k=2.故选:A.6.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为()A.1 B.2 C.3 D.4【考点】平行线的性质.【分析】根据平行线的性质,平角等于180°对各小题进行验证即可得解.【解答】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,故(1)(2)正确;∵三角板是直角三角板,∴∠2+∠4=180°﹣90°=90°,故(3)正确;∴∠3+∠5=180°,∴∠4+∠5=180°,故(4)正确,综上所述,正确的个数是4.故选D.7.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3)B.(﹣3,1)C.(﹣3,9)D.(﹣1,3)【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度求出点A的纵坐标,再根据点到y轴的距离等于横坐标的长度求出横坐标,即可得解.【解答】解:∵A点到x轴的距离为3,A点在第二象限,∴点A的纵坐标为3,∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,∴点A的横坐标为﹣9,∴点A的坐标为(﹣9,3).故选A.8.已知M(1,﹣2),N(﹣3,﹣2),则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直相交,平行D.平行,垂直相交【考点】坐标与图形性质.【分析】根据坐标与图形的性质可知,两点纵坐标相等,所以直线MN与x轴平行,直线MN与y轴垂直相交.【解答】解:由题可知:MN两点的纵坐标相等,所以直线MN与x轴平行,直线MN与y轴垂直相交,故选D.9.将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,则所得图形与原图形的关系是()A.将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B.将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C.将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D.将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位【考点】坐标与图形变化-平移.【分析】根据坐标与图形变化﹣平移的有关结论进行求解.【解答】解:将△ABC的三个顶点的横坐标都加上﹣6,纵坐标都减去5,相对把△ABC向左平移6个单位,再向下平移3个单位.故选:C.10.已知长江比黄河长836千米,黄河长的6倍比长江长的5倍多1284千米.若设长江长x千米,黄河长y千米,则下列方程组能满足上述关系的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】此题中的等量关系:①长江比黄河长836千米;②黄河长度的6倍比长江长度的5倍多1284千米.【解答】解:设长江长x千米,黄河长y千米,根据长江比黄河长836千米,则x﹣y=836;根据黄河长度的6倍比长江长度的5倍多1284千米,则6y=5x+1284.可列方程组为.故选A.11.不等式组的整数解共有()A.3个 B.4个 C.5个 D.6个【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,在取值范围内可以找到整数解.【解答】解:由①式解得x≥﹣2,由②式解得x<3,∴不等式组的解集为﹣2≤x<3,∴不等式组的整数解为x=﹣2,﹣1,0,1,2共5个.故选C.12.我校七年级学生总人数为700,其男女生所占比例如图所示,则该校七年级男生人数为()A.48 B.52 C.336 D.364【考点】扇形统计图.【分析】利用扇形统计图得到男生所占的百分比为52%,然后用七年级学生总人数乘以这个百分比即可得到该校七年级男生人数.【解答】解:该校七年级男生人数=700×52%=364(人).故选D.13.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有()A.1个 B.2个 C.3个 D.4个【考点】不等式的性质.【分析】根据不等式的基本性质进行判断.【解答】解:①∵a>b,∴a﹣b>0.故①正确;②若c≤0时,ac≤bc.故②错误;③∵a>b>0,∴<.故③正确;④∵a>b>0,∴0<b<a,则b•b<ab,即b2<ab.故④错误.综上所述,正确的不等式是①③,共2个.故选:B.14.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为()A.45°B.60°C.72°D.108°【考点】条形统计图;扇形统计图.【分析】首先根据打篮球的人数是20人,占40%,求出总人数,用360°乘以足球所占的百分百,即可得出扇形的圆心角的度数.【解答】解:总人数是:20÷40%=50(人),360°×=72°,则扇形统计图(2)中表示”足球”项目扇形的圆心角度数为72°.故选C.二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!共6题,每小题3分,共18分)15.计算:= 2 .【考点】二次根式的乘除法.【分析】直接利用二次根式的性质进而化简求出即可.【解答】解:==2.故答案为:2.16.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)位于第二象限.【考点】点的坐标.【分析】根据x轴上点的纵坐标为0求出n,然后确定出点B的坐标,再根据各象限内点的坐标特征解答.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B(n﹣1,n+1)为(﹣1,1),∴点B位于第二象限.故答案为:二.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于 2 .【考点】角平分线的性质;平行线之间的距离.【分析】过点O作OF⊥AB于F,作OG⊥CD于G,然后根据角平分线上的点到角的两边的距离相等可得OE=OF=OG,再根据两直线平行,同旁内角互补求出∠BAC+∠ACD=180°,然后求出∠EOF+∠EOG=180°,从而判断出E、O、G三点共线,然后求解即可.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=+=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.18.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】二元一次方程组的解;立方根.【分析】把x与y的值代入方程组求出m+3n的值,利用立方根定义计算即可.【解答】解:把代入方程组得:,①+②得:m+3n=8,则m+3n的立方根为2,故答案为:219.某次数学测验中共有20道题目,评分办法:答对一道得5分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对17 道题,成绩才能在80分以上.【考点】一元一次不等式的应用.【分析】利用答对一道得5分,答错一道扣2分,不答得0分,表示出所得分数以及所扣分数,进而得出答案.【解答】解:设这个同学答对x道题,故5x﹣2(20﹣1﹣x)>80,解得:x>16,故这个同学至少要答对17道题,成绩才能在80分以上.故答案为:17.20.将正整数按如图所示的规律排列下去,若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(11,5)表示的实数是60 .【考点】实数;规律型:数字的变化类.【分析】观察图形可知,每一排的数字的个数与排数相同,先求出前10排的数字的总个数,然后根据有序数对的实际意义写出第11排的第5个数即可.【解答】解:由图可知,前10排共有:1+2+3+4+5+6+7+8+9+10=55个,∵(11,5)表示第11排从左到右第5个数,∴(11,5)表示的实数是60.故答案为:60.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算:.【考点】实数的运算;绝对值;立方根;二次根式的性质与化简.【分析】根据乘方、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=6+﹣1+2+5=12+.22.解方程组:.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:5x=10,即x=2,将x=2代入①得:y=3,则原方程组的解是.23.解不等式组:,并在数轴上表示出不等式组的解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.【解答】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:24.我们在小学就已经知道,任意一个三角形的内角和等于180°我们是通过度量和剪拼得到这一结论的,我们马上就要升入八年级,在八年级的数学学习中,“三角形的内角和等于180°”是需要通过推理的方法去证明的,接下来我们需要接受挑战,完成下列题目要求:(1)在证法一中的括号内,填上推理的根据.(2)在证法二的提示下写出证明过程.并写清楚推理的根据.三角形内角和定理:三角形三个内角的和等于180°已知:如图1,△ABC求证:∠A+∠B+∠C=180°.证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,两直线平行,内错角相等,∠2=∠B 两直线平行,同位角相等,又∵∠1+∠2+∠ACB=180°平角的定义∴∠A+∠B+∠ACB=180°等量代换证法二:提示:如图3,过点C作DE∥AB.【考点】平行线的性质;三角形内角和定理.【分析】(1)证法一:如图2,作BC的延长线CD,过点C作CE∥BA,根据平行线的性质得到∠1=∠A,∠2=∠B,由平角的定义得到∠1+∠2+∠ACB=180°,等量代换即可得到结论;(2)根据平行线的性质得到∠1=∠A,∠2=∠B,由平角的定义得到∠1+∠2+∠ACB=180°,等量代换即可得到结论;【解答】解:(1)证法一:如图2,作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,两直线平行,内错角相等,∠2=∠B,两直线平行,同位角相等,又∵∠1+∠2+∠ACB=180°,平角定义,∴∠A+∠B+∠ACB=180°,等量代换;故答案为:两直线平行,内错角相等,两直线平行,同位角相等,平角定义,等量代换.(2)如图,∵DE∥AB,则∠1=∠B,(两直线平行,内错角相等),∠2=∠A(两直线平行,内错角相等),又∵∠1+∠ACB+∠2=180°平角定义∴∠A+∠ACB+∠B=180°等量代换.25.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (+2 ,0 ),C→ D (+1,﹣2 );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?【考点】坐标确定位置;有理数的加减混合运算;整式的加减.【分析】(1)根据规定及实例可知B→C (+2,0),C→D(+1,﹣2);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)根据M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2)可知5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到答案.【解答】解:(1)∵向上向右走为正,向下向左走为负,∴图中B→C (+2,0),C→D(+1,﹣2);故答案为:+2,0,D,﹣2.(2)甲虫走过的路程为1+4+2+1+2=10(3)∵M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),∴5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,∴点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).26.某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表::a 40 ,b 0.14 ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)可先求出抽查的人数,根据50≤x<60这个分数段可求出抽查的人数为:20÷0.10=200人,根据频率=,可求出a和b的值.(2)根据(1)求出的a的值,画在图上就可以.(3)由70分以上频率和×20000,即可求出该市20000名九年级考生数学成绩为合格的学生人数.【解答】解:(1)抽查人数:20÷0.10=200(人),则a=200×0.20=40(人),b==0.14.(2)补全频数分布直方图,如图:(3)20000×(0.27+0.20+0.12+0.09+0.08)=15200(人).答:该市20000名九年级考生数学成绩为合格的学生约有15200人.27.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【考点】一元一次不等式组的应用.【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.2016年8月29日。
2017-2018学年七年级(下)期末数学试卷一、择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若m>﹣1,则下列各式中错误的是()A.6m>﹣6 B.﹣5m<﹣5 C.m+1>0 D.1﹣m<22.纳米是非常小的长度单位,1纳米=10﹣9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是()A.5×10﹣10米B.5×10﹣9米C.5×10﹣8米D.5×10﹣7米3.如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.4.下列运算正确的是()A.a3•a2=a6 B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a5.下列能平方差公式计算的式子是()A.(a﹣b)(b﹣a)B.(﹣x+1)(x﹣1)C.(﹣a﹣1)(a+1)D.(﹣x﹣y)(﹣x+y)6.已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.﹣1 B.1 C.﹣5 D.57.由方程组可得出x与y的关系式是()A.x+y=9 B.x+y=3 C.x+y=﹣3 D.x+y=﹣98.如图,已知∠1=50°,∠2=50°,∠3=100°,则∠4的度数为()A.40°B.50°C.80°D.100°9.分解因式2x2﹣4x+2的最终结果是()A.2x(x﹣2)B.2(x2﹣2x+1)C.2(x﹣1)2D.(2x﹣2)210.附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°二、填空题(共10小题,每小题3分,满分30分)11.“a的3倍与4的差不大于1”列出不等式是.12.如果x2+kx+1是一个完全平方式,那么k的值是.13.已知,可以得到x表示y的式子是.14.如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为.15.分解因式:x2y﹣y=.16.为保护生态环境,某地相应国家“退跟还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,要求改变后耕地面积和林地面积各有多少平方千米,设改变后耕地面积x平方千米,林地面积y平方千米,则可列方程组为.17.如图,AB∥CD,∠FGD=120°,∠FEB=40°,则∠F=.18.关于x的方程3+k(x﹣2)﹣4x=k(x+3)的解为负数,则k的取值范围是.19.在△ABC中,已知两条边a=3,b=4,则第三边c可能取的整数值共有个.20.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度.解答題:(本大题共6个小題,共50分.解答写出文字说明、证明过程或演算步骤)21.(7分)解不等式组,并把它的解集在数轴上表示出来.22.(7分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中:x=﹣2.23.(8分)如图所示,AE是△ABC的角平分线,AD⊥BC于点D.(1)若∠BAC=128°,∠C=36°,求∠DAE的度数;(2)若∠B=α,∠C=β(β>α),用α,β表示∠DAE的度数并简要写出计算过程.24.(8分)列方程组解应用题:用白铁皮做罐头盒,每张铁皮可制作盒身16个或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮用多少张制盒身,多少张制盒底,可以使盒身和盒底正好配套?25.(10分)如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E,若∠DAE=100°,∠E=30°,求∠B的度数.26.(10分)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为;(2)分式不等式的解集为;(3)解一元二次不等式2x2﹣3x<0.参考答案与试题解析一、择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若m>﹣1,则下列各式中错误的是()A.6m>﹣6 B.﹣5m<﹣5 C.m+1>0 D.1﹣m<2【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:根据不等式的基本性质可知,A、6m>﹣6,正确;B、根据性质3可知,m>﹣1两边同乘以﹣5时,不等式为﹣5m<5,故B错误;C、m+1>0,正确;D、1﹣m<2,正确.故选B.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.纳米是非常小的长度单位,1纳米=10﹣9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是()A.5×10﹣10米B.5×10﹣9米C.5×10﹣8米D.5×10﹣7米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:50纳米=50×10﹣9米=5×10﹣8米.故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.【点评】本题考查了在数轴上表示不等式的解集,先求出不等式的解集,再在数轴上表示出来,注意,不包括点1、2,用空心点表示.4.下列运算正确的是()A.a3•a2=a6 B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a【考点】单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用单项式乘多项式法则计算得到结果,即可作出判断;C、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.【解答】解:A、a3•a2=a5,本选项错误;B、2a(3a﹣1)=6a2﹣2a,本选项错误;C、(3a2)2=9a4,本选项错误;D、2a+3a=5a,本选项正确,故选:D【点评】此题考查了单项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.5.下列能平方差公式计算的式子是()A.(a﹣b)(b﹣a)B.(﹣x+1)(x﹣1)C.(﹣a﹣1)(a+1)D.(﹣x﹣y)(﹣x+y)【考点】平方差公式.【分析】由能平方差公式计算的式子的特点为:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、(a﹣b)(b﹣a)中两项均互为相反数,故不能平方差公式计算,故本选项错误;B、(﹣x+1)(x﹣1)中两项均互为相反数,故不能平方差公式计算,故本选项错误;C、(﹣a﹣1)(a+1)中两项均互为相反数,故不能平方差公式计算,故本选项错误;D、(﹣x﹣y)(﹣x+y)=x2﹣y2,故本选项正确.故选D.【点评】此题考查了平方差公式的应用条件.此题难度不大,注意掌握平方差公式:(a+b)(a﹣b)=a2﹣b2.6.已知a﹣b=1,则代数式2a﹣2b﹣3的值是()A.﹣1 B.1 C.﹣5 D.5【考点】代数式求值.【分析】将所求代数式前面两项提公因式2,再将a﹣b=1整体代入即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×1﹣3=﹣1.故选A.【点评】本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.7.由方程组可得出x与y的关系式是()A.x+y=9 B.x+y=3 C.x+y=﹣3 D.x+y=﹣9【考点】解二元一次方程组.【分析】由①得m=6﹣x,代入方程②,即可消去m得到关于x,y的关系式.【解答】解:由①得:m=6﹣x∴6﹣x=y﹣3∴x+y=9.故选A.【点评】本题考查了代入消元法解方程组,是一个基础题.8.如图,已知∠1=50°,∠2=50°,∠3=100°,则∠4的度数为()A.40°B.50°C.80°D.100°【考点】平行线的判定与性质;对顶角、邻补角.【分析】因为∠1=∠2,所以两直线平行,则∠4与∠5互补,又因为∠3=∠5,故∠4的度数可求.【解答】解:∵∠1=50°,∠2=50°∴a∥b,∴∠4与∠5互补,∵∠3=∠5=100°,∴∠4=180°﹣∠5=180°﹣100°=80°.故选C.【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.9.分解因式2x2﹣4x+2的最终结果是()A.2x(x﹣2)B.2(x2﹣2x+1)C.2(x﹣1)2D.(2x﹣2)2【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2=2(x2﹣2x+1)﹣﹣(提取公因式)=2(x﹣1)2.﹣﹣(完全平方公式)故选C.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.10.附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°【考点】平行线的性质.【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠3,然后求出∠2+∠3,再根据两直线平行,同位角相等表示出∠2+∠5,根据邻补角的定义用∠5表示出∠6,再代入整理即可得到∠1+∠6,根据两直线平行,同旁内角互补表示出∠3+∠4,从而得解.【解答】解:根据三角形的外角性质,∠3=∠1+∠A,∵∠1+∠2=180°,∴∠2+∠3=∠2+∠1+∠A>180°,故B选项错误;∵L∥N,∴∠3=∠5,∴∠2+∠5=∠2+∠1+∠A>180°,故A选项正确;C、∵∠6=180°﹣∠5,∴∠1+∠6=∠3﹣∠A+180°﹣∠5=180°﹣∠A<180°,故本选项错误;D、∵L∥N,∴∠3+∠4=180°,故本选项错误.故选A.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,分别用∠A表示出各选项中的两个角的和是解题的关键.二、填空题(共10小题,每小题3分,满分30分)11.“a的3倍与4的差不大于1”列出不等式是3a﹣4≤1.【考点】由实际问题抽象出一元一次不等式.【分析】不大于1就是小于等于1,根据a的3倍与4的差不大于1可列出不等式.【解答】解:根据题意得:3a﹣4≤1.故答案为:3a﹣4≤1.【点评】本题考查由实际问题抽象出一元一次不等式,关键是理解“不大于”的意思,从而可列出不等式.12.如果x2+kx+1是一个完全平方式,那么k的值是±2.【考点】完全平方式.【分析】这里首末两项是x和1这两个数的平方,那么中间一项为加上或减去x的系数和常数1的积的2倍,故k=±2.【解答】解:中间一项为加上或减去x的系数和常数1的积的2倍,∴k=±2.故答案为:k=±2.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.13.已知,可以得到x表示y的式子是y=.【考点】代数式求值.【分析】把x看作常数,y看作未知数,解关于y的一元一次方程即可.【解答】解:去分母得2x﹣3y=6,移项得3y=2x﹣6,系数化1得y=.【点评】注意要把x看作常数,y看作未知数.14.如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为50°.【考点】平行线的性质;角平分线的定义.【分析】根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D,∴∠CAD=∠D,在△ACD中,∠C+∠D+∠CAD=180°,∴80°+∠D+∠D=180°,解得∠D=50°.故答案为50°.【点评】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键.15.分解因式:x2y﹣y=y(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.为保护生态环境,某地相应国家“退跟还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,要求改变后耕地面积和林地面积各有多少平方千米,设改变后耕地面积x平方千米,林地面积y平方千米,则可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设改变后耕地面积x平方千米,林地面积y平方千米,根据林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,可列出方程组.【解答】解:设改变后耕地面积x平方千米,林地面积y平方千米,.故答案为:【点评】本题考查理解题意的能力,关键抓住林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,做为等量关系列方程求解.17.如图,AB∥CD,∠FGD=120°,∠FEB=40°,则∠F=80°.【考点】平行线的性质.【分析】由AB∥CD,可推出∠AHG=∠FGD=120°,再由三角形外角定理即可求出结论.【解答】解:∵AB∥CD,∠FGD=120°,∴∠AHG=∠FGD=120°,∴∠F=∠AHG﹣∠FEB=120°﹣40°=80°,故答案为:80°.【点评】此题主要考查了平行线的性质,熟练掌握定理是解题关键.18.关于x的方程3+k(x﹣2)﹣4x=k(x+3)的解为负数,则k的取值范围是k >.【考点】解一元一次不等式.【分析】先把k当作已知条件表示出x的值,再由x为负数求出k的取值范围即可.【解答】解:解关于x的方程3+k(x﹣2)﹣4x=k(x+3)得,x=,∵x为负数,∴<0,解得k>.故答案为:k>.【点评】本题考查了一元一次方程的解和解一元一次不等式,关键是得出关于k 的一元一次不等式是本题的关键.19.在△ABC中,已知两条边a=3,b=4,则第三边c可能取的整数值共有5个.【考点】三角形三边关系.【分析】直接由三角形的三边关系即可得出结论.【解答】解:∵在△ABC中,两条边a=3,b=4,∴第三边4﹣3<c<4+3,即1<c<7,∴第三边c可能取的整数值有:2,3,4,5,6,共5个.故答案为:5.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.20.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度.【考点】三角形内角和定理;三角形的外角性质.【分析】利用角平分线的性质、三角形外角性质,易证∠A1=∠A,进而可求∠A1,由于∠A1=∠A,∠A2=∠A1=∠A,…,以此类推可知∠A2013=∠A=°.【解答】解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=m°,∵∠A1=∠A,∠A2=∠A1=∠A,…以此类推∠A2013=∠A=°.故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出∠A1=∠A,并能找出规律.解答題:(本大题共6个小題,共50分.解答写出文字说明、证明过程或演算步骤)21.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,由①得:x≥1,由②得x<4,则不等式组的解集为:1≤x<4.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中:x=﹣2.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3,把x=2代入得:原式=4+3=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.23.如图所示,AE是△ABC的角平分线,AD⊥BC于点D.(1)若∠BAC=128°,∠C=36°,求∠DAE的度数;(2)若∠B=α,∠C=β(β>α),用α,β表示∠DAE的度数并简要写出计算过程.【考点】三角形内角和定理.【分析】(1)根据AE是△ABC的角平分线,AD⊥BC于点D,∠BAC=128°,∠C=36°,可以求得∠EAC和∠DAC的度数,从而可以求得∠DAE的度数;(2)根据题意可以用α,β表示∠DAE的度数.【解答】解:(1)∵AD⊥BC,∠C=36°,∴∠ADC=90°,∴∠DAC=54°,∵∠BAC=128°,AE是△ABC的角平分线,∴∠CAE=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°;(2)∠DAE=,理由:∵∠BAC=180°﹣α﹣β,AE是△ABC的角平分线,∴∠EAC==90°﹣,∵AD⊥BC,∠C=β,∴∠DAC=90°﹣β,∴∠DAE=∠EAC﹣∠DAC=(90°﹣)﹣(90°﹣β)=90°﹣﹣90°+β=.【点评】本题考查三角形内角和定理,解题的关键是明确题意,找出所求问题需要的条件.24.列方程组解应用题:用白铁皮做罐头盒,每张铁皮可制作盒身16个或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮用多少张制盒身,多少张制盒底,可以使盒身和盒底正好配套?【考点】二元一次方程组的应用.【分析】根据题意可知,本题中的相等关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,再列方程组求解.【解答】解:设用x张制作盒身,y张制作盒底,根据题意,得,解得:.答:用20张制作盒身,16张制作盒底可以使盒身与盒底正好配套.【点评】本题主要考查了二元一次方程组的应用,数学来源于生活,又服务于生活,本题就是数学服务于生活的实例.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.25.(10分)(2016春•滦县期末)如图,已知点A,D,B在同一直线上,∠1=∠2,∠3=∠E,若∠DAE=100°,∠E=30°,求∠B的度数.【考点】平行线的判定与性质.【分析】根据平行线的判定定理得到AE∥DC,由平行线的性质得到∠CDE=∠E,推出DE∥BC,得到∠B=∠ADE,于是得到结论.【解答】解:∵∠1=∠2,∴AE∥DC,∴∠CDE=∠E,∵∠3=∠E,∴∠CDE=∠3,∴DE∥BC,∴∠B=∠ADE,∵∠ADE=180°﹣∠DAE﹣∠E=50°,∴∠B=50°.【点评】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.26.(10分)(2012•湛江)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为x>4或x<﹣4;(2)分式不等式的解集为x>3或x<1;(3)解一元二次不等式2x2﹣3x<0.【考点】一元二次方程的应用;分式方程的应用;一元一次不等式组的应用.【分析】(1)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;(2)据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;【解答】解:(1)∵x2﹣16=(x+4)(x﹣4)∴x2﹣16>0可化为(x+4)(x﹣4)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>4,解不等式组②,得x<﹣4,∴(x+4)(x﹣4)>0的解集为x>4或x<﹣4,即一元二次不等式x2﹣16>0的解集为x>4或x<﹣4.(2)∵∴或解得:x>3或x<1(3)∵2x2﹣3x=x(2x﹣3)∴2x2﹣3x<0可化为x(2x﹣3)<0由有理数的乘法法则“两数相乘,异号得负”,得或解不等式组①,得0<x<,解不等式组②,无解,∴不等式2x2﹣3x<0的解集为0<x<.【点评】本题考查了一元一次不等式组及方程的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.。
12017——2018学年度下学期七 年 级 数 学 期 末 试 题数学试题共6页,包括六道大题,共26道小题。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试题和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在 条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答 题无效。
一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 . 学校 年 班 姓名: 考号:21 3 4 AB CDE (第6题)(第10题)2三、解答题(每小题5分,共20分) 15.计算:2393-+-.16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知),所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少?(2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?七年级数学试题 第3页 (共6页)七年级数学试题 第2页 (共6页) HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)3五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.学校 年 班 姓名: 考号:七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay5 25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分 解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分 ②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
期末测评( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( )4.下列各数1.414,√2,-13A.1.414B.√2D.0C.-135.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x= .15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x -1.5x 0.3+3x -2x4=6,x 2+x -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( B )4.导学号14154138下列各数1.414,√2,-13A.1.414B.√2C.-1D.035.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x-1.5x0.3+3x-2x4=6, x2+x-13=24.{2x-17x=24,①3x+2x=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x =46,x =4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.①,得x ≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.AB ∥DF ,∴∠D+∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∴DE ∥BC.DE ∥BC ,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表节目人数百分根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图解( 1 )2030( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O 1,B 1的坐标.( 2 )三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米. ( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得{x -x =100,5x =6x .( 2 ){x -x =100,5x =6x ,解得{x =600,x =500.答甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元. ( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3x =7800,3x +x =5400,解得{x =1200,x =1800.答改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )x +( 1800−500 )( 10−x )≤11800,300x +500( 10−x )≥4000,解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案方案一改扩建A类学校3所,B类学校7所;方案二改扩建A类学校4所,B类学校6所;方案三改扩建A类学校5所,B类学校5所.。
2017-2018学年河北省保定市高阳县七年级(下)期末数学试卷一、选择题(共16小题,每小题3分,满分43分)1.(3分)4的算术平方根是()A.4B.﹣4C.2D.±22.(3分)在平面直角坐标系中,已知点P(﹣2,3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在实数,﹣,,0,π,﹣中,是无理数的有()A.1个B.2个C.3个D.4个4.(3分)以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解全国中学生的用眼卫生情况5.(3分)如果c为有理数,且c≠0,下列不等式中正确的是()A.3c>2c B.C.3+c>2+c D.﹣3c<﹣2c 6.(3分)已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x7.(3分)下列说法正确的是()A.平方根等于它本身的数是0,1B.算术平方根等于它本身的数是0,1C.倒数等于它本身的数只有1D.平方等于它本身的数只有08.(3分)如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.9.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4B.4,10C.3,10D.10,310.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x只,兔为y只,则所列方程组正确的是()A.B.C.D.11.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°12.(2分)若(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4B.m=﹣2018,n=±4C.m=±2018,n=﹣4D.m=﹣2018,n=413.(2分)不等式组的解集为x<4,则a满足的条件是()A.a<4B.a=4C.a≤4D.a≥414.(2分)下列四种统计图:条形图、扇形图、折线图、直方图,能够显示数据分布情况的是()A.B.C.D.15.(2分)若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线16.(2分)如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),……依次扩展下去,则P2018的坐标为()A.(﹣503,503)B.(504,504)C.(﹣506,﹣506)D.(﹣505,﹣505)二、填空题(本题4小题,每小题3分,共12分)小于√17的最大正整数是17.(3分)小于的最大整数是18.(3分)如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE 的度数为度.19.(3分)若|x+1|+(2x﹣y)2=0,则x2﹣y=20.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)三、解答题(本题6小题,满分68分)21.(4分)计算:+++|﹣2|22.(4分)解方程组.23.(6分)解不等式组,并把解集在数轴上表示出来.24.(10分)在下列网格中建立平面直角坐标系如图,每个小正方形的边长均为1个单位长度.已知A(1,1)、B(3,4)和C(4,2).(1)在图中标出点A、B、C.(2)将点C向下平移3个单位到D点,将点A先向左平移3个单位,再向下平移1个单位到E点,在图中标出D点和E点.(3)求△EBD的面积S△EBD.25.(10分)为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对多少名学生进行了抽样调查?(2)请将图1和图2补充完整;并求出扇形统计图中小说所对应的圆心角度数.(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢小说人数约为多少人?26.(12分)已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.27.(12分)为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)28.(10分)(1)阅读下列材料并填空:对于二元一次方程组我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解,用数表可表示为,用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:上行下行从而得到该方程组的解为x=,y=(2)仿照(1)中数表的书写格式写出解方程组的过程.2017-2018学年河北省保定市高阳县七年级(下)期末数学试卷参考答案与试题解析一、选择题(共16小题,每小题3分,满分43分)1.(3分)4的算术平方根是()A.4B.﹣4C.2D.±2【解答】解:∵22=4,∴4算术平方根为:2.故选:C.2.(3分)在平面直角坐标系中,已知点P(﹣2,3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣2,3)位于第二象限.故选:B.3.(3分)在实数,﹣,,0,π,﹣中,是无理数的有()A.1个B.2个C.3个D.4个【解答】解:﹣=﹣5,在实数,﹣,,0,π,﹣中,是无理数的有﹣,,π,一共3个.故选:C.4.(3分)以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解全国中学生的用眼卫生情况【解答】解:A、旅客上飞机前的安检,意义重大,应采用全面调查,故此选项错误;B、学校招聘教师,对应聘人员的面试,人数较少,应采用全面调查,故此选项错误;C、了解全校学生的课外读书时间,人数较少,应采用全面调查,故此选项错误;D、了解全国中学生的用眼卫生情况,人数众多,应采用抽样调查,故此选项正确;故选:D.5.(3分)如果c为有理数,且c≠0,下列不等式中正确的是()A.3c>2c B.C.3+c>2+c D.﹣3c<﹣2c【解答】解:A、在不等式3>2的两边同时乘以不为零的正有理数c,不等式仍成立,即3c>2c.但是,当c<0时,不等式3c<2c.故本选项错误;B、在不等式3>2的两边同时除以不为零的正有理数c,不等式仍成立,即.但是,当c<0时,不等式.故本选项错误;C、在不等式3>2的两边同时加上有理数c,不等式仍成立,即3+c>2+c.故本选项正确;D、在不等式﹣3<﹣2的两边同时乘以负有理数c,则﹣3c>﹣2c.故本选项错误;故选:C.6.(3分)已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x【解答】解:∵﹣1<x<0,∴>﹣x2>x>2x,∴在x、2x、、﹣x2中最小的数是:2x.故选:B.7.(3分)下列说法正确的是()A.平方根等于它本身的数是0,1B.算术平方根等于它本身的数是0,1C.倒数等于它本身的数只有1D.平方等于它本身的数只有0【解答】解:A、平方根等于它本身的数是0,故此选项错误;B、算术平方根等于它本身的数是0,1,正确;C、倒数等于它本身的数有±1,故此选项错误;D、平方等于它本身的数有0,1,故此选项错误;故选:B.8.(3分)如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【解答】解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.9.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4B.4,10C.3,10D.10,3【解答】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x只,兔为y只,则所列方程组正确的是()A.B.C.D.【解答】解:如果设鸡为x只,兔为y只.根据“三十六头笼中露”,得方程x+y=36;根据“看来脚有100只”,得方程2x+4y=100.即可列出方程组.故选:C.11.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°【解答】解:∵a∥b,∠1=35°,∴∠3=∠1=35°.∵AB⊥BC,∴∠2=90°﹣∠3=55°.故选:C.12.(2分)若(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4B.m=﹣2018,n=±4C.m=±2018,n=﹣4D.m=﹣2018,n=4【解答】解:∵(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,∴,解得:m=﹣2018、n=4,故选:D.13.(2分)不等式组的解集为x<4,则a满足的条件是()A.a<4B.a=4C.a≤4D.a≥4【解答】解:解不等式组得,∵不等式组的解集为x<4,∴a≥4.故选:D.14.(2分)下列四种统计图:条形图、扇形图、折线图、直方图,能够显示数据分布情况的是()A.B.C.D.【解答】解:根据统计图各自的特点,能够显示数据分布情况的是直方图.故选:D.15.(2分)若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线【解答】解:不等式组的解集为:﹣1≤x≤5.在数轴上表示为:解集对应的图形是线段.故选:B.16.(2分)如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),……依次扩展下去,则P2018的坐标为()A.(﹣503,503)B.(504,504)C.(﹣506,﹣506)D.(﹣505,﹣505)【解答】解:由规律可得,2018÷4=504…2,∴点P20178第三象限,∵点P2(﹣1,﹣1),点P6(﹣2,﹣2),点P10(﹣3,﹣3),∴点P2018(﹣505,﹣505),故选:D.二、填空题(本题4小题,每小题3分,共12分)小于√17的最大正整数是17.(3分)小于的最大整数是4【解答】解:∵4<5,∴小于的最大整数是4,故答案为:4.18.(3分)如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE 的度数为125度.【解答】解:∵∠1=55°,∴∠COE=180°﹣55°=125°.故答案为:125.19.(3分)若|x+1|+(2x﹣y)2=0,则x2﹣y=3【解答】解:|x+1|+(2x﹣y)2=0,x+1=0,2x﹣y=0,x=﹣1,y=﹣2,所以x2﹣y=1﹣(﹣2)=3,故答案为:3.20.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有⑤(注:填写出所有错误说法的编号)【解答】解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.三、解答题(本题6小题,满分68分)21.(4分)计算:+++|﹣2|【解答】解:+++|﹣2|=9﹣3+2﹣+2=10﹣.22.(4分)解方程组.【解答】解:①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=1,解得:y=﹣1,所以原方程组的解为.23.(6分)解不等式组,并把解集在数轴上表示出来.【解答】解:解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式<,得:x>﹣7,则不等式组的解集为﹣7<x≤1,将解集表示在数轴上如下:24.(10分)在下列网格中建立平面直角坐标系如图,每个小正方形的边长均为1个单位长度.已知A(1,1)、B(3,4)和C(4,2).(1)在图中标出点A、B、C.(2)将点C向下平移3个单位到D点,将点A先向左平移3个单位,再向下平移1个单位到E点,在图中标出D点和E点.(3)求△EBD的面积S△EBD.【解答】解:(1)如图所示:A、B、C即为所求;(2)如图所示:点D,E即为所求;(3)S△EBD=5×6﹣×4×5﹣×1×5﹣×1×6=14.5.25.(10分)为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对多少名学生进行了抽样调查?(2)请将图1和图2补充完整;并求出扇形统计图中小说所对应的圆心角度数.(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢小说人数约为多少人?【解答】解:(1)20÷10%=200(名).答:该校对200名学生进行了抽样调查.(2)360°×20%=72°.(3)800×20%=160.答:全校学生中最喜欢小说的人数约为160名.26.(12分)已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.【解答】解:(1)∵DE∥OB,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O=40°,∴∠ACE=40°,∵∠ACD+∠ACE=180°,(平角定义)∴∠ACD=140°,又∵CF平分∠ACD,∴∠ACF=70°,(角平分线定义)∴∠ECF=70°+40°=110°;(2)证明:∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°,又∵∠AOC=180°,(平角定义)∴∠GCO+∠FCA=90°,∵∠ACF=∠DCF,∴∠GCO=∠GCD,(等角的余角相等)即CG平分∠OCD.(3)结论:当∠O=60°时,CD平分∠OCF.当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF.27.(12分)为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)【解答】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得:,答:A种型号家用净水器购进了60台,B种型号家用净水器购进了40台;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a 元,由题意得:60a+40×2a≥5600,解得:a≥40,150+40=190(元).答:每台A型号家用净水器的售价至少是190元.28.(10分)(1)阅读下列材料并填空:对于二元一次方程组我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解,用数表可表示为,用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:上行下行从而得到该方程组的解为x=6,y=10(2)仿照(1)中数表的书写格式写出解方程组的过程.【解答】解:(1)下行﹣上行,,从而得到该方程组的解为x=6、y=10,故答案为:下行﹣上行,,6,10;(2)。
火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
2017-2018学年冀教版七年级(下)期末检测数学试卷一、精心选一选(共10小题,每小题2分,满分20分,每小题只有一个选项符合要求)1.(2分)如图,∠1+∠2=220°,b∥c,则∠3=()A.110°B.120°C.70°D.60°2.(2分)如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=63°,则∠2=()A.63°B.53°C.37°D.27°3.(2分)下列各数2,π,,﹣,中,无理数的个数是()个.A.1B.2C.3D.44.(2分)点A(﹣2,1)是平面直角坐标系中的一点,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限5.(2分)把点(2,﹣3)先向左平移3个单位长度,再向下平移2个单位长度得到的点的坐标是()A.(﹣1,﹣5)B.(5,﹣1)C.(5,﹣5)D.(﹣1,﹣1)6.(2分)方程组的解为()A.B.C.D.7.(2分)扬州某中学2014-2015学年七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A.B.C.D.8.(2分)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.﹣2x<﹣2y D.>9.(2分)(1998•南京)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.10.(2分)某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了100名小区内老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况二、细心填一填(共8小题,每小题3分,满分24分)11.(3分)9的算术平方根是.12.(3分)已知是方程kx﹣2y﹣1=0的解,则k的值为.13.(3分)点(﹣3,6)到x轴的距离是.14.(3分)若点A(a+3,a﹣2)在y轴上,则点A的坐标为.15.(3分)如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=度.16.(3分)如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=cm.17.(3分)计算:5﹣3=.18.(3分)若关于x的不等式组的解集是x>2,则m的取值范围是.三、用心算一算(共7小题,满分56分)19.(6分)解方程组.20.(7分)解不等式组:,并把它的解集在数轴上表示出来.21.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.22.(8分)如图,EF⊥CD于F,GH⊥CD于H,已知∠1=70°,求∠3的度数.23.(8分)如图,已知:DF∥AC,∠C=∠D.求证:BD∥CE.24.(10分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数分布表(未完成):数据段30~40 40~50 50~60 60~70 70~80 总计频数10 40 20百分比5% 40% 10%注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此路段汽车时速超过60千米即为违章,则违章车辆共有多少辆?25.(10分)一家服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元.问A、B两种型号的服装每件分别为多少元?参考答案与试题解析一、精心选一选(共10小题,每小题2分,满分20分,每小题只有一个选项符合要求)1.(2分)如图,∠1+∠2=220°,b∥c,则∠3=()A.110°B.120°C.70°D.60°考点:平行线的性质.分析:先根据对顶角相等求出∠2的度数,再由平行线的性质即可得出结论.解答:解:∵∠1+∠2=220°,∠2=∠1,∴∠2=110°.∵b∥c,∴∠3=180°﹣∠2=180°﹣110°=70°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.2.(2分)如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=63°,则∠2=()A.63°B.53°C.37°D.27°考点:平行线的性质.分析:由AB∥CD,∠1=63°,根据两直线平行,同位角相等定理,即可求得∠3的度数,又由EF⊥AB,即可求得∠2的度数.解答:解:∵AB∥CD,∠1=63°,∴∠3=∠1=63°,∵EF⊥AB,∴∠AEF=90°,∴∠2=90°﹣∠3=90°﹣63°=27°.故选D.点评:此题考查了平行线的性质与垂直的定义.此题比较简单,注意掌握两直线平行,同位角相等定理的应用,注意数形结合思想的应用.3.(2分)下列各数2,π,,﹣,中,无理数的个数是()个.A.1B.2C.3D.4考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:π,﹣共2个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(2分)点A(﹣2,1)是平面直角坐标系中的一点,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点A(﹣2,1)在第二象限.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2分)把点(2,﹣3)先向左平移3个单位长度,再向下平移2个单位长度得到的点的坐标是()A.(﹣1,﹣5)B.(5,﹣1)C.(5,﹣5)D.(﹣1,﹣1)考点:坐标与图形变化-平移.分析:让点(2,﹣3)的横坐标减3,纵坐标减2即为所求点的坐标.解答:解:把点(2,﹣3)先向左平移3个单位长度,再向下平移2个单位长度得到的点的坐标是(2﹣3,﹣3﹣2),即(﹣1,﹣5).故选A.点评:本题考查坐标与图形变化﹣平移;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.6.(2分)方程组的解为()A.B.C.D.考点:解二元一次方程组.专题:计算题.分析:先用加减消元法求出x的值,再用代入消元法求出y的值即可.解答:解:,①+②得2x=6,解得x=3;把x=3代入①得3﹣y=1,解得y=2.故此方程组的解为:.故选:D.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.7.(2分)扬州某中学2014-2015学年七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A.B.C.D.考点:由实际问题抽象出二元一次方程组.专题:图表型.分析:两个定量:捐40元和50元的总人数,捐40元和50元的总钱数.等量关系为:①某中学2014-2015学年七年级一班有40名同学;②共捐款2000元.解答:解:根据2014-2015学年七年级一班有40名同学,得方程x+y=40﹣10﹣8,即x+y=22;根据共捐款2000元,得方程40x+50y=2000﹣20×10﹣100×8,40x+50y=1000.列方程组为.故选C.点评:读懂题意,找到捐40元和50元的总人数和捐40元和50元的总钱数是易错点.8.(2分)若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.﹣2x<﹣2y D.>考点:不等式的性质.专题:计算题.分析:利用不等式的性质判断即可得到结果.解答:解:若x>y,则有x﹣3>y﹣3;3﹣x<3﹣y;﹣2x<﹣2y;>,故选B点评:此题考查了不等式的性质,熟练掌握不等式的性质是解本题的关键.9.(2分)(1998•南京)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据在数轴上表示不等式解集的方法利用排除法进行解答.解答:解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D.故选:C.点评:本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.10.(2分)某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了100名小区内老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况考点:抽样调查的可靠性.分析:抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.解答:解:A、在公园调查了1000名老年人的健康状况,抽查的都是锻炼的老人,没有代表性,故A错误;B、在医院调查了1000名老年人的健康状况,抽查的都是不健康的老人,没有代表性,故B错误;C、调查了100名小区内老年邻居的健康状况,调查没有广泛性,故C错误;D、利用派出所的户籍网随机调查了该地区10%的老年人的健康状况,调查由广泛性、代表性,故D正确;故选:D.点评:本题考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.二、细心填一填(共8小题,每小题3分,满分24分)11.(3分)9的算术平方根是3.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.解答:解:∵32=9,∴9算术平方根为3.故答案为:3.点评:此题主要考查了算术平方根,其中算术平方根的概念易与平方根的概念混淆而导致错误.12.(3分)已知是方程kx﹣2y﹣1=0的解,则k的值为3.考点:二元一次方程的解;立方根.分析:根据二元一次方程解的定义,直接把代入方程kx﹣2y﹣1=0中,得到关于k 的方程,然后解方程就可以求出k的值.解答:解:把代入方程kx﹣2y﹣1=0,得5k﹣14﹣1=0,解得k=3.故答案为:3.点评:此题主要考查了二元一次方程的解的定义,利用定义把已知的解代入原方程得到关于k的方程,解此方程即可.13.(3分)点(﹣3,6)到x轴的距离是6.考点:点的坐标.分析:求得点的纵坐标绝对值即可求得点到x轴的距离.解答:解:∵|6|=6,∴点到x轴的距离是6,故答案为6.点评:考查点的坐标的相关知识;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.14.(3分)若点A(a+3,a﹣2)在y轴上,则点A的坐标为(0,﹣5).考点:点的坐标.分析:根据y轴上点的横坐标为0列方程求出a,再求解即可.解答:解:∵点A(a+3,a﹣2)在y轴上,∴a+3=0,解得a=﹣3,所以,a﹣2=﹣5,所以,点A的坐标为(0,﹣5).故答案为:(0,﹣5).点评:本题考查了点的坐标,熟练掌握y轴上的点的坐标特征是解题的关键.15.(3分)如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=40度.考点:平行线的性质;角平分线的定义.专题:计算题.分析:本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.解答:解:∵AD∥BC,∴∠BCD=180°﹣∠D=80°,又CA平分∠BCD,∴∠ACB=∠BCD=40°,∴∠DAC=∠ACB=40°.点评:本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.16.(3分)如图,△ABC沿射线AC方向平移2cm得到△A′B′C′,若AC=3cm,则A′C=1cm.考点:平移的性质.分析:先根据平移的性质得出AA′=2cm,再利用AC=3cm,即可求出A′C的长.解答:解:∵将△ABC沿射线AC方向平移2cm得到△A′B′C′,∴AA′=2cm,又∵AC=3cm,∴A′C=AC﹣AA′=1cm.故答案为:1.点评:本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键.17.(3分)计算:5﹣3=2.考点:二次根式的加减法.分析:直接利用二次根式加减运算法则求出即可.解答:解:5﹣3=2.故答案为:2.点评:此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.18.(3分)若关于x的不等式组的解集是x>2,则m的取值范围是m≤2.考点:不等式的解集.分析:根据不等式组的解集,可判断m与2的大小.解答:解:因为不等式组的解集是x>2,根据同大取较大原则可知:m<2,当m=2时,不等式组的解集也是x>2,所以m≤2.故答案为:m≤2.点评:主要考查了不等式的运用.根据题意分别求出对应的值,利用不等关系求解.三、用心算一算(共7小题,满分56分)19.(6分)解方程组.考点:解二元一次方程组.专题:计算题.分析:观察本题中方程的特点本题用代入法较简单.解答:解:,由①得:x=3+y③,把③代入②得:3(3+y)﹣8y=14,所以y=﹣1.把y=﹣1代入③得:x=2,∴原方程组的解为.点评:这类题目的解题关键是掌握方程组解法中的代入消元法.20.(7分)解不等式组:,并把它的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:不等式可化为:,即;在数轴上表示为:故不等式组的解集为:﹣2≤x<1.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.21.(7分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积为5.考点:坐标与图形变化-平移.专题:网格型.分析:(1)A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;(2)让三个点的横坐标减2,纵坐标加1即为平移后的坐标;(3)△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.解答:解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.点评:用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;格点中的三角形的面积通常用长方形的面积减去若干直角三角形的面积表示.22.(8分)如图,EF⊥CD于F,GH⊥CD于H,已知∠1=70°,求∠3的度数.考点:平行线的判定与性质;垂线.分析:根据垂直定义求出∠EFC=∠GHC=90°,根据平行线的判定得出EF∥GH,根据平行线的性质得出∠2=∠1=70°即可.解答:解:∵EF⊥CD,GH⊥CD,∴∠EFC=∠GHC=90°,∴EF∥GH,∴∠2=∠1=70°,∴∠3=∠2=70°.点评:本题考查了垂直定义,平行线的性质和判定的应用,解此题的关键是求出∠2=∠1.23.(8分)如图,已知:DF∥AC,∠C=∠D.求证:BD∥CE.考点:平行线的判定与性质.专题:证明题.分析:先根据两直线平行,内错角相等得DF∥AC得∠C=∠CEF,由于∠C=∠D,则∠D=∠CEF,然后根据同位角相等,两直线平行可判断BD∥CE.解答:证明:∵DF∥AC,∴∠C=∠CEF,∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE.点评:本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.24.(10分)将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数分布表(未完成):数据段30~40 40~50 50~60 60~70 70~80 总计频数10 40 80 50 20 200百分比5% 20% 40% 25% 10% 100%注:30~40为时速大于等于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此路段汽车时速超过60千米即为违章,则违章车辆共有多少辆?考点:频数(率)分布直方图;频数(率)分布表.专题:图表型.分析:(1)用30~40的频数除以百分比求出总频数,然后分别计算求出相应的频数或百分比,然后填表即可;(2)根据(1)的数据补全直方图即可;(3)求出后两组的频数之和即可.解答:解:(1)总频数为10÷5%=200,40~50,×100%=20%,50~60,200×40%=80,200﹣10﹣40﹣80﹣20=50,×100%=25%;填表如上;(2)补全频数分布直方图如图所示;(3)违章车辆共有50+20=70(辆).点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(10分)一家服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元.问A、B两种型号的服装每件分别为多少元?考点:二元一次方程组的应用.分析:根据题意可知,本题中的相等关系是“A种型号服装9件,B种型号服装10件,需要1810元”和“A种型号服装12件,B种型号服装8件,需要1880元”,列方程组求解即可.解答:解:设A种型号服装每件x元,B种型号服装每件y元.依题意可得,解得,答:A种型号服装每件90元,B种型号服装每件100元.点评:本题考查了二元一次方程组的应用.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。
2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。
2016-2017学年河北省保定市高阳县七年级(下)期末数学试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.(2分)点M(5,3)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限2.(2分)4的平方根是()A.2 B.±2 C.16 D.±163.(2分)若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D.+1>+14.(2分)下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解神州飞船的设备零件的质量情况,选择抽样调查C.为了了解某公园全年的游客流量,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查5.(2分)如图,数轴上点P表示的数可能是()A.B.C. D.6.(2分)如图,能判定AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠3 D.∠2=∠47.(2分)下列说法正确的是()A.﹣(﹣8)的立方根是﹣2B.立方根等于本身数有﹣1,0,1C.的立方根为﹣4D.一个数的立方根不是正数就是负数8.(2分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°9.(2分)已知是二元一次方程组的解,则a﹣b的值为()A.3 B.2 C.1 D.﹣110.(2分)在如图的方格纸上,若用(﹣1,1)表示A点,(0,3)表示B点,那么C点的位置可表示为()A.(1,2) B.(2,3) C.(3,2) D.(2,1)11.(2分)若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤612.(2分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上)13.(3分)不等式≤1的解集是.14.(3分)若是方程2x+y=0的一个解,则6a+3b﹣2=.15.(3分)已知线段MN平行于x轴,且MN的长度为5,若M(2,﹣2),则点N的坐标.16.(3分)如图,若∠1=∠D=39°,∠C=51°,则∠B=°.17.(3分)已知5x﹣2的立方根是﹣3,则x+69的算术平方根是.18.(3分)在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P(m+2,m﹣1)在第四象限,则m的值为.19.(3分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看错了方程组②中的b得到方程组的解为,若按正确的a,b 计算,则原方程组的解为.20.(3分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.(10分)计算(1)﹣﹣+(2)|1﹣|﹣|﹣|.22.(12分)计算(1)解方程组(2)解不等式组.23.(8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为,a=%,b=%,“常常”对应扇形的圆心角为°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?24.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点坐标为A (2,﹣1),C(6,2),AB∥x轴,点M为y轴上一点,△MAB的面积为6,且MD<MA;请解答下列问题:(1)顶点B的坐标为;(2)求点M的坐标;(3)在△MAB中任意一点P(x0,y0)经平移后对应点为P1(x0﹣5,y0﹣1),将△MAB作同样的平移得到△M1A1B1,则点M1的坐标为.25.(10分)课上教师呈现一个问题:已知:如图,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:;分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.26.(12分)对于有理数a,b,定义min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min{1,﹣2}=﹣2,min{﹣3,﹣3}=﹣3.(1)min{﹣1,2}=;(2)求min{x2+1,0};(3)已知min{﹣2k+5,﹣1}=﹣1,求k的取值范围;(4)已知min{ 5,2m﹣4n﹣m2﹣n2}=5.直接写出m,n的值.27.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2016-2017学年河北省保定市高阳县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.(2分)点M(5,3)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点M(5,3)在第一象限.故选:A.2.(2分)4的平方根是()A.2 B.±2 C.16 D.±16【解答】解:∵±2的平方等于4,∴4的平方根是:±2.故选:B.3.(2分)若a>b,则下列不等式正确的是()A.3a<3b B.ma>mb C.﹣a﹣1>﹣b﹣1 D.+1>+1【解答】解:∵a>b,∴3a>3b,∴选项A不正确;∵a>b,∴m<0时,ma<mb;m=0时,ma=mb;m>0时,ma>mb,∴选项B不正确;∵a>b,∴﹣a<﹣b,∴﹣a﹣1<﹣b﹣1,∴选项C不正确;∵a>b,∴>,∴+1>+1,∴选项D正确.故选:D.4.(2分)下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解神州飞船的设备零件的质量情况,选择抽样调查C.为了了解某公园全年的游客流量,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【解答】解:为了了解某一品牌家具的甲醛含量,选择抽样调查,A错误;为了了解神州飞船的设备零件的质量情况,选择全面调查,B错误;为了了解某公园全年的游客流量,选择抽样调查,C正确;为了了解一批袋装食品是否含有防腐剂,选择抽样调查,D错误,故选:C.5.(2分)如图,数轴上点P表示的数可能是()A.B.C. D.【解答】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选:B.6.(2分)如图,能判定AB∥CD的条件是()A.∠1=∠2 B.∠3=∠4 C.∠1=∠3 D.∠2=∠4【解答】解:A.根据∠1=∠2推不出AB∥CD,所以此选项错误;B.根据∠3=∠4推不出AB∥CD,所以此选项错误;C.∵∠1=∠∠3,∴AD∥BC,但推不出AB∥CD,所以此选项错误;D.∵∠2=∠4,∴AB∥CD,所以此选项正确,故选:D.7.(2分)下列说法正确的是()A.﹣(﹣8)的立方根是﹣2B.立方根等于本身数有﹣1,0,1C.的立方根为﹣4D.一个数的立方根不是正数就是负数【解答】解:(A)﹣(﹣8)=8,所以8的立方根为2,故A错误;(C)﹣=﹣8,所以﹣8的立方根为﹣2,故C错误;(D)一个数的立方根正数或负数或0,故D错误;故选:B.8.(2分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选:B.9.(2分)已知是二元一次方程组的解,则a﹣b的值为()A.3 B.2 C.1 D.﹣1【解答】解:把x=2.y=1代入方程组得:①+②得:4a=8,解得:a=2,把a=2代入①得:4+b=7,解得:b=3,a﹣b=2﹣3=﹣1,故选:D.10.(2分)在如图的方格纸上,若用(﹣1,1)表示A点,(0,3)表示B点,那么C点的位置可表示为()A.(1,2) B.(2,3) C.(3,2) D.(2,1)【解答】解:建立平面直角坐标系如图所示,点C的位置可表示为(1,2).故选:A.11.(2分)若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6【解答】解:解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<6.故选:C.12.(2分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选:C.二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上)13.(3分)不等式≤1的解集是x≤5.【解答】解:不等式≤1去分母得,x﹣2≤3,移项并合并同类项得,x≤5.14.(3分)若是方程2x+y=0的一个解,则6a+3b﹣2=﹣2.【解答】解:∵是方程2x+y=0的一个解,∴2a+b=0,∴6a+3b﹣2=3(2a+b)﹣2=0﹣2=﹣2;故答案为:﹣2.15.(3分)已知线段MN平行于x轴,且MN的长度为5,若M(2,﹣2),则点N的坐标(7,﹣2)或(﹣3,﹣2).【解答】解:MN平行于x轴,故N的纵坐标不变,是﹣2,点N在点M的左边时,横坐标为2﹣5=﹣3,点N在点M的右边时,横坐标为2+5=7,所以,点N的坐标为(7,﹣2)或(﹣3,﹣2).故答案为:(7,﹣2)或(﹣3,﹣2).16.(3分)如图,若∠1=∠D=39°,∠C=51°,则∠B=129°.【解答】解:∵∠1=∠D,∴AB∥CD,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣51°=129°,故答案为:129.17.(3分)已知5x﹣2的立方根是﹣3,则x+69的算术平方根是8.【解答】解:∵5x﹣2的立方根是﹣3,∴5x﹣2=﹣27,解得:x=﹣5,∴x+69=﹣5+69=64,∴x+69的算术平方根是8;故答案为:8.18.(3分)在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P(m+2,m﹣1)在第四象限,则m的值为0.【解答】解:点P(m+2,m﹣1)是第四象限的整点,得m+2>0且m﹣1<0,解得﹣2<m<2,m=﹣1,0,1;故答案为0.19.(3分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为.【解答】解:将代入②得,﹣12+b=﹣2,b=10;将代入①,5a+20=15,a=﹣1.故原方程组为,解得.故答案为:.20.(3分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【解答】解:根据题意得:;故答案为:.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.(10分)计算(1)﹣﹣+(2)|1﹣|﹣|﹣|.【解答】解:(1)原式=﹣3﹣3﹣1+2=﹣7+2=﹣5;(2)原式=1﹣()=1﹣+=2﹣1.22.(12分)计算(1)解方程组(2)解不等式组.【解答】解:(1)把②代入①,可得:6y﹣7﹣y=13,解得y=4,∴x=6×4﹣7=17,∴原方程组的解是.(2)解不等式①,得x<3,解不等式②,得x≥1,∴这个不等式组的解集是1≤x<3.23.(8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为200,a=12%,b=36%,“常常”对应扇形的圆心角为108°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?【解答】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.24.(8分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点坐标为A(2,﹣1),C(6,2),AB∥x轴,点M为y轴上一点,△MAB的面积为6,且MD<MA;请解答下列问题:(1)顶点B的坐标为(6,﹣1);(2)求点M的坐标;(3)在△MAB中任意一点P(x0,y0)经平移后对应点为P1(x0﹣5,y0﹣1),将△MAB作同样的平移得到△M1A1B1,则点M1的坐标为(﹣5,1).【解答】解:(1)∵A(2,﹣1),C(6,2),AB∥x轴,四边形ABCD是矩形,∴B(6,﹣1).故答案为(6,﹣1).(2)设M(0,m),由题意×4×|m+1|=6,解得m=2或﹣4,∴M(0,2)或(0,﹣4)(舍弃不合题意).∴M(0,2).(3)将点M(0,2)向左平移5个单位,向下平移1好单位得到M1(﹣5,1),故答案为(﹣5,1).25.(10分)课上教师呈现一个问题:已知:如图,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG 的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:过点P作PN∥EF交AB于点N;分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.【解答】解:(1)根据乙同学所画的图形:辅助线:过点P作PN∥EF交AB于点N,分析思路:(1)欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;(2)欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数;(3)又已知∠1的度数,所以只需求出∠2的度数;(4)由已知EF⊥AB,可得∠4=90°;(5)由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;(6)从而可以求出∠EFG的度数.(2)选择丙同学所画的图形:过点O作ON∥FG,交CD于点N,∵ON∥FG,∠1=30°,∴∠4=∠1=30°,∵AB∥CD,∴∠2=∠4=30°,又∵EF⊥AB,∴∠EON=∠3+∠2=90°+30°=120°,∵ON∥FG,∴∠EFG=∠EON=120°.26.(12分)对于有理数a,b,定义min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min{1,﹣2}=﹣2,min{﹣3,﹣3}=﹣3.(1)min{﹣1,2}=﹣1;(2)求min{x2+1,0};(3)已知min{﹣2k+5,﹣1}=﹣1,求k的取值范围;(4)已知min{ 5,2m﹣4n﹣m2﹣n2}=5.直接写出m,n的值.【解答】解:(1)min{﹣1,2}=﹣1.故答案为:﹣1;(2)∵x2≥0,∴x2+1>0.∴min{x2+1,0}=0.(3)∵当a≥b时,min{a,b}=b,min{﹣2k+5,﹣1}=﹣1,∴﹣2k+5≥﹣1.∴k≤3.(4)因为min{ 5,2m﹣4n﹣m2﹣n2}=5,可得:2m﹣4n﹣m2﹣n2=5,解得:m=1,n=﹣2.27.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(30﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.点P (2,1)在平面直角坐标系中所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限2.计算05的结果是A .0B .1C .50D .53.人体中成熟的红细胞平均直径为0.00077厘米,将数字0.00077用科学记数法表示为A .37.710-⨯B .47710-⨯C .37710-⨯D .47.710-⨯4.下列计算正确的是A .3362a a a ⋅=B .336a a a +=C .3521a a a ÷=D .()336a a =5.已知a b <,下列变形正确的是A .33a b -->B .3131a b -->C .33a b -->D .33a b >6.如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°, 那么∠2的度数为 A .10°B .15°C .20°D .25°7.在下列命题中,为真命题的是A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直8.如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么a 的值为 A .1 B .2 C .3D .09.右图是某市 10 月 1 日至10 月 7 日一周内的“日平均气温变化统计图”.在“日平均气温”这组数据中,众数和中位数气温(℃)12分别是 A .13,13 B .14,14 C .13,14D .14,1310.如图,在平面直角坐标系xOy 中,点P (1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至 点P 2(-1,1),第3次向上跳动1个单位至 点P 3,第4次向右跳动3个单位至点P 4,第 5次又向上跳动1个单位至点P 5,第6次向左 跳动4个单位至点P 6,…….照此规律,点P 第100次跳动至点P 100的坐标是 A .(-26,50) B .(-25,50) C .(26,50) D .(25,50)二、填空题(本题共24分,每小题3分)11.如果把方程32x y +=写成用含x 的代数式表示y 的形式,那么y = . 12.右图中四边形均为长方形,根据图形,写出一个正确的等式: . 13.因式分解:34a a -= .14.如果∠1与∠2互余,∠3与∠2互余,∠1=35°,那么∠3 = 度.15.如果关于x ,y 二元一次方程组3+1,33x y a x y =+⎧⎨+=⎩的解满足2x y +<,那么a 的取值范围是 .16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两; 牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5只羊,值金8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金 x 两,每只羊值金 y 两,可列方程组为 . 17.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,如果∠FOD = 28°, 那么∠AOG = 度.18.学完一元一次不等式解法后,老师布置了如下练习:解不等式1532x -≥7x -,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步 去分母,得 ()15327x x --≥,第二步 去括号,得 153142x x --≥, 第三步 移项,得 321415x x -+-≥, 第四步 合并同类项,得 1x --≥, 第五步 系数化为1,得 1x ≥. 第六步 把它的解集在数轴上表示为:老师看后说:“小明的解题过程有错误!”问:请指出小明从第几步开始出现了错误,并说明判断依据.答: . 三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算:(1)()()212a a a ---; (2)()()()()643223x x x x -+++-.20.解下列方程组:ABCD EFGOABCDEF12(1)5,22;y x x y =-⎧⎨-=⎩ (2)233,327.x y x y -=⎧⎨-=⎩21.已知12x =,13y =,求()()()232x y x y x y x y xy +++--÷的值.22.解不等式组 ()41710853x x x x ⎧++⎪⎨--⎪⎩,<≤并写出它的所有非负整数....解.23.完成下面的证明:已知:如图,D 是BC 上任意一点,BE ⊥AD ,交AD 的延长线于点E ,CF ⊥AD ,垂足为F . 求证:∠1=∠2.证明:∵ BE ⊥AD (已知),∴ ∠BED = °( ). 又∵ CF ⊥AD (已知), ∴ ∠CFD = °. ∴ ∠BED =∠CFD (等量代换).∴ BE ∥CF ( ). ∴ ∠1=∠2( ).24.为了更好的开展“我爱阅读”活动,小明针对某校七年级学生(共16个班,480名学生)课外阅读喜欢图书的种类(每人只能选一种书籍)进行了调查.(1)小明采取的下列调查方式中,比较合理的是 ;理由是: .A .对七年级(1)班的全体同学进行问卷调查;B .对七年级各班的语文科代表进行问卷调查;C .对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:① 在扇形统计图中,“其它”所在的扇形的圆心角等于 度; ② 补全条形统计图;③ 根据调查结果,估计七年级课外阅读喜欢“漫画”的同学有 人.25.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买人数806040漫画科普常识其他种类小说020其它40%小说30% 科普常识漫画3台B型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.四、解答题(本题共13分,26题7分,27题6分)26.已知:△ABC和同一平面内的点D.(1)如图1,点D在BC边上,过D作DE∥BA交AC于E,DF∥CA交AB于F.①依题意,在图1中补全图形;②判断∠EDF与∠A的数量关系,并直接写出结论(不需证明).(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A.判断DE与BA的位置关系,并证明.(3)如图3,点D是△ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA 交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).F图1 图2 图327.定义一种新运算“a b ☆”的含义为:当a b ≥时,a b a b =+☆;当a b <时,a b a b =-☆.例如:()()34341-=+-=-☆,()()111666222-=--=-☆.(1)填空:()43-=☆ ;(2)如果()()()()34283428x x x x -+=--+☆,求x 的取值范围;(3)填空:()()222325x x x x -+-+-=☆ ;(4)如果()()37322x x --=☆,求x 的值.三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算(本小题满分6分) (1)()()212a a a ---;解:原式22212a a a a =-+-+,…………………………………………………………2分1.=…………………………………………………………………………………3分 (2)()()()()643223x x x x -+++-.解:原式2222449x x x =--+-,………………………………………………………2分28220.x x =---………………………………………………………………3分20.解下列方程组(本小题满分6分) (1)5,22;y x x y =-⎧⎨-=⎩①② 解:把①代入②得 ()252x x --=,……………………………………………………1分 解得 4.x =把4x =代入得① 54 1.y =-=………………………………………………………2分∴ 原方程组的解为41.x y =⎧⎨=⎩……………………………………………………………3分(2)233,327x y x y -=⎧⎨-=⎩①②. 解:由①得 699x y -= ③由②得 6414x y -= ④………………………………………………………………1分 ③-④得 94914y y -+=-,解得 1.y =………………………………………………………………………………2分 把1y =代入①得 233x -=, 解得 1.x =∴ 原方程组的解为31.x y =⎧⎨=⎩……………………………………………………………3分21.(本小题满分4分)解:()()()232.x y x y x y x y xy +++--÷2222222x xy y x y x =+++--,2.xy =……………………………………………………………………………………3分∴ 当12x =,13y =时,原式1112.233=⨯⨯=………………………………………………………………………4分22.(本小题满分4分)解:()4171085.3x x x x ⎧++⎪⎨--⎪⎩①,< ②≤ 由①得 2x ≥-,…………………………………………………………………………1分 由②得 72x <,…………………………………………………………………………2分∴ 原不等式组的解集是72.2x -≤<…………………………………………………………3分∴ 原不等式组的所有非负整数解为0,1,2,3. …………………………………………4分 23.(本小题满分4分)证明:略. ……………………………………………………………………………………4分24.(本小题满分4分)解:略. ………………………………………………………………………………………4分 25.(本小题满分5分) 解:(1)由题意,得 2,23 6.x y x y -=⎧⎨-=-⎩ ………………………………………………………2分解得12,10.x y =⎧⎨=⎩………………………………………………………………………3分(2)设治污公司决定购买A 型设备a 台,则购买B 型设备(10-a )台.由题意,得 ()121010105.a a +-≤解得 5.2a ≤所以,该公司有以下三种方案: A 型设备0台,B 型设备为10台; A 型设备1台,B 型设备为9台;A 型设备2台,B 型设备为8台. …………………………………………………4分(3)由题意,得 ()240200102040.a a +-≥解得: 1.a ≥所以,购买A 型设备1台,B 型设备9台最省钱. ……………………………5分四、解答题(本题共13分,26题7分,27题6分) 26.(本小题满分7分)解:(1)① 补全图形;………………………………………………………………………1分② ∠EDF =∠A . ……………………………………………………………………2分 (2)DE ∥BA . ……………………………………………………………………………3分证明:如图,延长BA 交DF 与G .∵ DF ∥CA , ∴ ∠2=∠3. 又∵ ∠1=∠2, ∴ ∠1=∠3.∴ DE ∥BA . ………………………………………………………………5分(3)∠EDF =∠A ,∠EDF +∠A =180°.…………………………………………7分 、27.(本小题满分6分)解:(1)7-;…………………………………………………………………………………1分 (2)由题意得 3428x x -+<,………………………………………………………2分解得 12.x <∴ x 的取值范围是12.x <………………………………………………………3分 (3)2-;………………………………………………………………………………4分1F A BC DEG23七年级数学试卷 第 11 页 共 11 页 (4)当3732x x --≥,即2x ≥时, 由题意得 ()()37322x x --=+,解得 6.x =…………………………………………………………………………5分 当3732x x --<,即2x <时,由题意得 ()()37322x x --=-,解得 125x =(舍). ∴ x 的值为6. ……………………………………………………………………6分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2017-2018学年河北省七年级(下)期末数学试卷一、选择题1.下列实数是负数的是()A.B.3 C.0 D.﹣12.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20° B.30° C.40° D.50°3.2的平方根是()A.±B.±4 C.D.44.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣5.﹣是的()A.绝对值B.相反数C.倒数D.算术平方根6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠47.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.88.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客D.正在荡秋千的小明9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30° B.40° C.50° D.60°11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2016的值等于()A.﹣1 B.1 C.52016 D.﹣5201612.在下列各式中,正确的是()A. =±2 B. =﹣0.2 C. =﹣2 D.(﹣)2+()3=0 13.不等式x<2的解集在数轴上表示为()A.B. C.D.14.若关于x的一元一次的不等式组有解,则m的取值范围是()A.m>B.m C.m>1 D.m≤115.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是,最小的值是.在画频数分布直方图时,如果设组距为1.5,则应分成组.三、解答题21.(10分)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.22.(10分)解方程组或不等式组①;②.23.(10分)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE 于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.24.(12分)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?25.(12分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是,明年年底电动车的数量是万辆.(用含x的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)26.(12分)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:(2)组距是多少?组数是多少?(3)跳绳次数x在120≤x<180范围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.参考答案与试题解析一、选择题1.下列实数是负数的是( )A .B .3C .0D .﹣1【考点】实数.【分析】根据小于零的数是负数,可得答案.【解答】解:由于﹣1<0,所以﹣1为负数.故选D .【点评】本题考查了实数,小于零的数是负数.2.如图,AO ⊥OB ,若∠AOC=50°,则∠BOC 的度数是( )A .20°B .30°C .40°D .50°【考点】垂线.【分析】根据OA ⊥OB ,可知∠BOC 和∠AOC 互余,即可求出∠BOC 的度数.【解答】解:∵AO ⊥OB ,∴∠AOB=90°.又∵∠AOC=50°,∴∠BOC=90°﹣∠AOC=40°.故选C .【点评】本题考查了垂线,余角的知识.要注意领会由垂直得直角这一要点.3.2的平方根是( )A .±B .±4C .D .4【考点】平方根.【分析】依据平方根的性质求解即可.【解答】解:2的平方根是±.故选:A .【点评】本题主要考查的是平方根的性质,掌握平方根的性质是解题的关键.4.如图,数轴上的点P表示的数可能是()A.﹣2.3 B.﹣C.D.﹣【考点】实数与数轴.【分析】根据数轴得:点P表示的数大于﹣1且小于﹣2,A、﹣2.3<﹣2,B、﹣2<﹣<﹣1,C、>1,D、﹣<﹣2.【解答】解:由数轴可知:点P在﹣2和﹣1之间,即点P表示的数大于﹣1且小于﹣2,故选B.【点评】本题考查了实数和数轴,实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.5.﹣是的()A.绝对值B.相反数C.倒数D.算术平方根【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣是的相反数,故选:B.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,与∠5是同旁内角的是()A.∠1 B.∠2 C.∠3 D.∠4【考点】同位角、内错角、同旁内角.【分析】根据图象可以得到各个角与∠1分别是什么关系,从而可以解答本题.【解答】解:由图可知,∠1与∠5是同旁内角、∠2与∠5没有直接关系,∠3与∠5是内错角、∠4与∠5是邻补角,故选A.【点评】本题考查同位角、内错角、同旁内角,解题的关键是明确题意,利用数形结合的思想解答.7.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】先找出与60最为接近的两个完全平方数,然后分别求得它们的算术平方根,从而可求得n的值.【解答】解:∵49<60<64,∴7<<8.∴n=7.故选:C.【点评】本题主要考查的是估算无理数的大小,明确被开放数越大,对应的算术平方根也越大是解题的关键.8.下列生活现象中,不是平移现象的是()A.站在运行着的电梯上的人B.左右推动推拉窗C.躺在火车上睡觉的旅客D.正在荡秋千的小明【考点】生活中的平移现象.【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,可得答案.【解答】解:根据平移的性质,D正在荡秋千的小明,荡秋千的运动过程中,方向不断的发生变化,不是平移运动.故选:D.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻折.9.下列语句中,是真命题的是()A.若ab>0,则a>0,b>0 B.内错角相等C.若ab=0,则a=0或b=0 D.相等的角是对顶角【考点】命题与定理.【分析】可以判定真假的语句是命题,根据其定义对各个选项进行分析,从而得到答案.【解答】解:A,不是,因为可以判定这是个假命题;B,不是,因为可以判定其是假命题;C,是,因为可以判定其是真命题;D,不是,因为可以判定其是假命题;故选C.【点评】此题主要考查学生对命题的理解及运用,难度较小,属于基础题.10.如图,AB∥CD,若∠C=30°,则∠B的度数是()A.30° B.40° C.50° D.60°【考点】平行线的性质.【分析】两直线平行,内错角相等.根据平行线的性质进行计算.【解答】解:∵AB∥CD,∴∠B=∠C,又∵∠C=30°,∴∠B的度数是30°,故选(A).【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.11.若|a+b+5|+(2a﹣b+1)2=0,则(a﹣b)2016的值等于()A.﹣1 B.1 C.52016 D.﹣52016【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.【解答】解:∵|a+b+5|+(2a﹣b+1)2=0,∴,解得,∴(a﹣b)2016=1.故选B.【点评】本题考查的是非负数的性质,熟知几个非负数的和为0时,每一项必为0是解答此题的关键.12.在下列各式中,正确的是()A. =±2 B. =﹣0.2 C. =﹣2 D.(﹣)2+()3=0【考点】立方根;算术平方根.【分析】分别利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=2,故此选项错误;B、无法化简,故此选项错误;C、=﹣2,正确;D、(﹣)2+()3=4,故此选项错误.故选:C.【点评】此题主要考查了立方根以及算术平方根,正确把握定义是解题关键.13.不等式x<2的解集在数轴上表示为()A.B. C.D.【考点】在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示方法可画出图形.【解答】解:不等式x<2的解集在数轴上表示方法应该是:2处是空心的圆点,向左画线.故应选B.【点评】本题考查在数轴上表示不等式的解集,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.14.若关于x的一元一次的不等式组有解,则m的取值范围是()A.m>B.m C.m>1 D.m≤1【考点】不等式的解集.【分析】根据不等式有解,可得关于m的不等式,根据解不等式,可得答案.【解答】解:解不等式组,得3﹣m<x<2m.由题意,得3﹣m<2m,解得m>1,故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.在平面直角坐标系下,若点M(a,b)在第二象限,则点N(b,a﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,然后解答即可.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,∴a﹣2<0,∴点N(b,a﹣2)在第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).16.下列调查中,适宜采用全面调查方式的是()A.调查市场上某灯泡的质量情况B.调查某市市民对伦敦奥运会吉祥物的知晓率C.调查某品牌圆珠笔的使用寿命D.调查乘坐飞机的旅客是否携带了违禁物品【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查市场上某灯泡的质量情况适宜采用抽样调查方式;调查某市市民对伦敦奥运会吉祥物的知晓率适宜采用抽样调查方式;调查某品牌圆珠笔的使用寿命适宜采用抽样调查方式;调查乘坐飞机的旅客是否携带了违禁物品适宜采用全面调查方式,故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题(共4小题,每小题3分,满分12分)17.不等式4﹣3x>2x﹣6的非负整数解是0,1 .【考点】一元一次不等式的整数解.【分析】求出不等式2x+1>3x﹣2的解集,再求其非负整数解.【解答】解:移项得,﹣2x﹣3x>﹣6﹣4,合并同类项得,﹣5x>﹣10,系数化为1得,x<2.故其非负整数解为:0,1.【点评】本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.18.如果把点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,那么得到的对应点是(4,2).【考点】坐标与图形变化-平移.【分析】根据点的坐标平移规律求解.【解答】解:点P(﹣2,﹣3)向右平移6个单位,再向上平移5个单位,则所得到的对应点的坐标为(4,2)故答案为(4,2).【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.19.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是同位角相等,两直线平行.【考点】作图—复杂作图;平行线的判定.【分析】关键题意得出∠1=∠2;∠1和∠2是同位角;由平行线的判定定理即可得出结论.【解答】解:如图所示:根据题意得出:∠1=∠2;∠1和∠2是同位角;∵∠1=∠2,∴a∥b(同位角相等,两直线平行);故答案为:同位角相等,两直线平行.【点评】本题考查了复杂作图以及平行线的判定方法;熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.20.一个样本含有下面10个数据:51,52,49,50,54,48,50,51,53,48.其中最大的值是54 ,最小的值是48 .在画频数分布直方图时,如果设组距为 1.5,则应分成 4 组.【考点】频数(率)分布直方图.【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在51,52,49,50,54,48,50,51,53,48中最大的值是54,最下的值是48,在画频数分布直方图时,如果设组距为1.5,则应分成=4,故答案为:54,48,4.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.三、解答题21.(10分)(2016春•保定期末)计算题.(1)|﹣6|+(﹣3)2;(2)﹣.【考点】实数的运算.【分析】(1)原式利用绝对值的代数意义,以及乘方的意义计算即可得到结果;(2)原式利用平方根、立方根定义计算即可得到结果.【解答】解:(1)原式=6+9=15;(2)原式=7﹣(﹣4)=7+4=11.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(10分)(2016春•保定期末)解方程组或不等式组①;②.【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)①×﹣②得出7y=14,求出y,把y的值代入②求出x即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.【解答】解:①①×2﹣②得:7y=14,解得:y=2,把y=2代入②得:2x﹣6=6,解得:x=6,所以原方程组的解为:;②∵解不等式①得:x>2,解不等式②得:x≤4,∴不等式组的解集是2<x≤4.【点评】本题考查了解一元一次不等式组和解二元一次方程组的应用,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.23.(10分)(2016春•保定期末)将一副三角尺拼图,并标点描线如图所示,然后过点C 作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【考点】平行线的判定.【分析】(1)根据内错角相等,两直线平行进行判定即可;(2)根据三角形EFC的内角和为180°,求得∠EFC的度数.【解答】解:(1)∵CF平分∠DCE,且∠DCE=90°,∴∠ECF=45°,∵∠BAC=45°,∴∠BAC=∠ECF,∴CF∥AB;(2)在△FCE中,∵∠FCE+∠E+∠EFC=180°,∴∠EFC=180°﹣∠FCE﹣∠E,=180°﹣45°﹣30°=105°.【点评】本题主要考查了平行线的判定以及三角形内角和定理的运用,解题时注意:内错角相等,两直线平行.解题的关键是熟知三角板的各角度数.24.(12分)(2016春•保定期末)为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设需购买甲种树苗x棵,需购买乙种树苗y棵,根据“购买两种树苗的总金额为85000”列二元一次方程组求解即可得;(2)设购买甲种树苗a棵,则需购买乙种树苗(400﹣a)棵,根据“购买甲种树苗的金额≥购买乙种树苗的金额”列不等式求解可得.【解答】(1)解:设需购买甲种树苗x棵,需购买乙种树苗y棵,根据题意得:,解得:,答:需购买甲种树苗350棵,需购买乙种树苗50棵;(2)解:设购买甲、乙树苗的棵数分别是x,y.根据题意得:,解得:x≤240.答:至多应购买甲种树苗240棵.【点评】本题主要考查二元一次方程组与一元一次不等式的应用,根据题意抓住相等关系与不等关系列出方程或不等式是解题的关键.25.(12分)(2016春•保定期末)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过12.85万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,而且每年新增电动车数量相同,(1)设从今年年初起,每年新增电动车数量是x万辆,则今年年底电动车的数量是10(1﹣10%)+x ,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x 万辆.(用含x 的式子填空)如果到明年年底电动车的拥有量不超过12.85万辆,请求出每年新增电动车的数量最多是多少万辆?(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少?(结果精确到0.1%)【考点】一元二次方程的应用;近似数和有效数字.【分析】(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.【解答】解:(1)今年年底电动车数量是10(1﹣10%)+x万辆,明年年底电动车的数量是[10(1﹣10%+x)](1﹣10%)+x万辆;根据题意得:[10(1﹣10%+x)](1﹣10%)+x≤12.85,解得:x≤2.5,答:每年新增电动车的数量最多是2.5万辆;(2)今年年底电动车的拥有量是10(1﹣10%)+x=11.5设今年年底到明年年底电动车拥有量的年增长率是y,则11.5(1+y)=12.85,解得:y≈11.7%,答:今年年底到明年年底电动车拥有量的年增长率是11.7%.【点评】此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.26.(12分)(2016春•保定期末)体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:(2)组距是多少?组数是多少?(3)跳绳次数x 在120≤x <180范围的同学有多少?占全班同学的百分之几?(4)画出适当的统计图表示上面的信息.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)将各组频数相加即可得;(2)由频率分布表即可知组数和组距;(3)将120≤x <180范围的两分组频数相减可得,再将其人数除以总人数即可得百分比;(4)根据各分组频数可制成条形图.【解答】解:(1)全班有同学16+25+9+7+3=60(人);(2)组距是30,组数是5;(3)跳绳次数x 在120≤x <180范围的同学有9+7=16人,占全班同学的×100%≈26.7%;(4)如下图所示:【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.;zhjh;蓝月梦;星期八;。
2017-2018学年七年级(下)期末数学试题一、选择题(将正确答案填写在下列表格中,每题3分,共36分)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B.4 C.5 D.63.用科学记数法表示﹣0.0000027记为()A.﹣27×10﹣7B.﹣0.27×10﹣4C.﹣2.7×10﹣6D.﹣270×10﹣84.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=05.下列二次根式中,最简二次根式是()A. B.C.D.6.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2 C.D.7.下列计算正确的是()A.2a5+a5=2a10B.C.[(﹣a)3]2=(﹣a)6=a6D.a5÷a5=a5﹣5=a0=08.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤169.下列计算正确的是()A.B.C.D.10.把根式﹣a化成最简二次根式为()A. B.C.D.﹣11.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.12.如图,一只昆虫在棱长为20cm的正方体的表面上爬行,则它从图中的顶点A爬到顶点B 的最短距离为()A.40cm B.60cm C. D.二、填空题(每题3分,共24分)13.下列分式﹣,的最简公分母为.14.若y=2++2,则x﹣y=.15.若直角三角形的两边长为6和8,则第三边长为.16.分解因式:﹣3x2y+6xy2﹣3y3=.17.若5x=2,5y=3,则53x﹣2y的值为.18.已知关于x的方程=3的解是正数,则m的取值范围是.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B的面积分别为1,2,3,4,则正方形G的面积为.20.计算+++…+的值为:.三、解答题(共60分)21.计算(1)5x2y2•(﹣xy3)﹣x2y•(﹣xy4)(2)﹣6+2x.22.解方程:(1)=1(2)=﹣1.23.已知x=,y=,求x2+xy+y2的值.24.已知a2+b2+4a﹣6b+13=0,分解因式:x2+ax﹣b.25.先化简,再求值:(1)6a2﹣(2a﹣1)(3a+2)+(a+2)(a﹣2),其中a=﹣(2)÷(﹣x﹣2),其中x=﹣3.26.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.折叠时顶点D落在BC边上的点F处(折痕为AE),求此时EC的长度?27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?参考答案与试题解析一、选择题(将正确答案填写在下列表格中,每题3分,共36分)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3【考点】62:分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选C.2.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B.4 C.5 D.6【考点】71:二次根式的定义.【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.【解答】解:①符合二次根式的定义,故正确.②无意义,故错误.③中的a2≥0,符合二次根式的定义,故正确.④(x≥1)中的x﹣1≥0,符合二次根式的定义,故正确.⑤是开3次方,故错误.⑥中的x2+2x+1=(x+1)2≥0,符合二次根式的定义,故正确.故选:B.3.用科学记数法表示﹣0.0000027记为()A.﹣27×10﹣7B.﹣0.27×10﹣4C.﹣2.7×10﹣6D.﹣270×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:﹣0.0000027=﹣2.7×10﹣6,故选:C.4.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0【考点】63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选A.5.下列二次根式中,最简二次根式是()A. B.C.D.【考点】74:最简二次根式.【分析】D选项的被开方数中,含有能开得尽方的因数2;B、C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式;A它的因式的指数都是1,所以D选项符合最简二次根式的要求.【解答】解:∵B、=,C、=,D、=2x,∴这三个选项都可化简,不是最简二次根式.故选A.6.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2 C.D.【考点】29:实数与数轴.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选D.7.下列计算正确的是()A.2a5+a5=2a10B.C.[(﹣a)3]2=(﹣a)6=a6D.a5÷a5=a5﹣5=a0=0【考点】48:同底数幂的除法;35:合并同类项;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=3a5,故A错误;(B)原式=,故B错误;(D)原式=1,故D错误;故选(C)8.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤16【考点】KU:勾股定理的应用.【分析】如图,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高;当吸管底部在A点时吸管在罐内部分a最长,此时a可以利用勾股定理在Rt△ABO中即可求出,进而得出答案.【解答】解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.9.下列计算正确的是()A.B.C.D.【考点】79:二次根式的混合运算.【分析】根据二次根式的加减运算,乘除运算,二次根式的化简,逐一检验.【解答】解:A、与不能合并,本选项错误;B 、=÷=,本选项正确;C、5与不能合并,本选项错误;D、==,本选项错误;故选B.10.把根式﹣a 化成最简二次根式为( ) A.B .C .D .﹣【考点】74:最简二次根式.【分析】根据二次根式的性质,可得答案.【解答】解:﹣a 化成最简二次根式为,故选A .11.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意,下列方程正确的是( )A .B .C .D .【考点】B6:由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x 千米/时,根据“甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半”,可列出方程. 【解答】解:设该长途汽车在原来国道上行驶的速度为x 千米/时,根据题意得=•.故选:D .12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点A 爬到顶点B 的最短距离为( )A .40cmB .60cmC .D .【考点】KV :平面展开﹣最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AB2=202+(20+20)2=5×202,故AB==20cm.故选:C.二、填空题(每题3分,共24分)13.下列分式﹣,的最简公分母为a(a+b)(a﹣b).【考点】69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式﹣,的分母分别是a2﹣ab=a(a﹣b),a2+ab=a(a+b),故最简公分母是a(a+b)(a﹣b).故答案是:a(a+b)(a﹣b).14.若y=2++2,则x﹣y=.【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x的值,再求出y的值,然后相加即可得解.【解答】解:由题意得,x﹣5≥0,且5﹣x≥0,解得x≥5且x≤5,∴x=5,y=2,∴x﹣y=5﹣2=.故答案为:.15.若直角三角形的两边长为6和8,则第三边长为10或2.【考点】KU:勾股定理的应用.【分析】分情况考虑:当较大的数8是直角边时,根据勾股定理求得第三边长是10;当较大的数8是斜边时,根据勾股定理求得第三边的长是=2.【解答】解:①当6和8为直角边时,第三边长为=10;②当8为斜边,6为直角边时,第三边长为=2.故答案为:10或2.16.分解因式:﹣3x2y+6xy2﹣3y3=﹣3y(x﹣y)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3y(x2﹣2xy+y2)=﹣3y(x﹣y)2,故答案为:﹣3y(x﹣y)217.若5x=2,5y=3,则53x﹣2y的值为.【考点】48:同底数幂的除法;47:幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:53x=23=8,52y=32=9,53x﹣2y=53x÷52y=8÷9=,故答案为:.18.已知关于x的方程=3的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【考点】B2:分式方程的解.【分析】首先求出关于x的方程=3的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B的面积分别为1,2,3,4,则正方形G的面积为10.【考点】KQ:勾股定理.【分析】根据勾股定理可知正方形A、B的面积之和等于正方形E的面积,同法可求正方形F、G的面积.【解答】解:记正方形的面积分别为A、B、C、D、E、F、G.根据勾股定理可知:E=A+B=7,F=C+D=3,G=E+F=10,故答案为10.20.计算+++…+的值为:﹣1.【考点】79:二次根式的混合运算.【分析】先分母有理化,然后合并即可.【解答】解:原式=﹣1+﹣+﹣+…+﹣=﹣1.故答案为﹣1.三、解答题(共60分)21.计算(1)5x2y2•(﹣xy3)﹣x2y•(﹣xy4)(2)﹣6+2x.【考点】78:二次根式的加减法;49:单项式乘单项式.【分析】(1)利用单项式乘以单项式及单项式除以单项式法则计算,即可得到结果;(2)根据二次根式的加减运算法则进行解答即可.【解答】解:(1)原式=5×(﹣)x2+1y2+3﹣×(﹣)x2+1y1+4=﹣x3y5+x3y5=;(2)原式=×3﹣+2=(2﹣3+2)=.22.解方程:(1)=1(2)=﹣1.【考点】B3:解分式方程.【分析】(1)分式方程两边同乘(x﹣3)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(2)分式方程两边同乘(x2﹣4)去分母转化为整式方程,求出整式方程的解得到x的值,检验即可.【解答】(1)解:两边同时乘以(x﹣3)得:(1﹣x)﹣1=x﹣3,整理得,2x=3,解得:x=,经检验x=是原方程的解;(2)解:方程两边同时乘以(x2﹣4)得,﹣(x+2)2+16=﹣x2+4,整理得,4x=8,解得:x=2,经检验x=2是原方程的增根,故原方程无解.23.已知x=,y=,求x2+xy+y2的值.【考点】7A:二次根式的化简求值.【分析】根据题意求出x+y和xy的值,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵x=,y=,∴x+y=,xy=×=1,则x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=5﹣1=424.已知a2+b2+4a﹣6b+13=0,分解因式:x2+ax﹣b.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】先将已知等式配方,根据非负性求a、b的值,代入要分解因式的多项式中,利用十字相乘法分解因式即可.【解答】解:a2+b2+4a﹣6b+13=0,(a2+4a+4)+(b2﹣6b+9)=0,(a+2)2+(b﹣3)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴x2+ax﹣b=x2﹣2x﹣3=(x+1)(x﹣3).25.先化简,再求值:(1)6a2﹣(2a﹣1)(3a+2)+(a+2)(a﹣2),其中a=﹣(2)÷(﹣x﹣2),其中x=﹣3.【考点】6D:分式的化简求值;4J:整式的混合运算—化简求值.【分析】(1)先去括号,再合并同类项,代入a的值计算即可;(2)先算括号里面的,再约分,代入x的值计算即可.【解答】接:(1)原式=6a2﹣6a2﹣4a+3a+2+a2﹣2a+2a﹣4,=a2﹣a﹣2,当a=﹣时,原式=;(2)原式=÷(﹣),=÷=•=,当x=﹣3时,原式=.26.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.折叠时顶点D落在BC边上的点F处(折痕为AE),求此时EC的长度?【考点】PB:翻折变换(折叠问题).【分析】由折叠的性质得AF=AD=10cm,DE=EF,先在Rt△ABF中运用勾股定理求BF,再求CF,设EC=xcm,用含x的式子表示EF,在Rt△CEF中运用勾股定理列方程求x即可.【解答】解:∵四边形ABCD是矩形,∴AB=CD=8cm,AD=CB=10cm,由折叠方法可知:AD=AF=10cm,DE=EF,设EC=xcm,则EF=ED=(8﹣x)cm,AF=AD=10cm,在Rt△ABF中,BF===6(cm),则CF=BC﹣BF=10﹣6=4(cm),在Rt△CEF中,CF2+CE2=EF2,即42+x2=(8﹣x)2,解得x=3,即EC=3cm.27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?【考点】B7:分式方程的应用.【分析】(1)设第一批进货的单价为x元/件,根据第二批这种衬衫所购数量是第一批购进数量的2倍,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题;【解答】解:(1)设第一批进货的单价为x元/件,由题意2×=,解得x=80,经检验,x=80是原分式方程的解,且符合题意,答:第一次进货单价为80(元/件),第二次进货单价为88(元/件),(2)第一次进货=100(件),第二次进货量=200(件).总的盈利为:×100+×+10=4200(元)答:商家总盈利为4200元.。
2017-2018学年新课标最新河北省初中七年级下册期末考试数学试题有答案A-精品试卷2017-2018学年度第⼆学期期末质量监测七年级数学试卷注意事项:1.本次考试试卷共6页,试卷总分120分,考试时间90分钟。
2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。
答题前,务必在答题卡规定的地⽅填写⾃⼰的姓名、准考证号,并认真核对答题卡上所粘贴的条形码中姓名、准考证号和本⼈姓名、准考证号是否⼀致。
3.回答第Ⅰ卷时,选出每⼩题答案后,⽤2B 铅笔把答题卡上对应题⽬的答案标号涂⿊,如需改动,⽤橡⽪擦⼲净后,再涂选其它答案标号。
写在本试卷上⽆效。
⼀、精⼼选⼀选,慧眼识⾦(本⼤题共16个⼩题:每⼩题3分,共48分。
在每⼩题给出的四个选项中,只有⼀个是符合题⽬要求的)1.计算23a a ?正确的是A.aB.5aC.6aD.9a2.某种细菌直径约为0.00000067mm ,若将0.00000067mm ⽤科学记数法表⽰为n 107.6?mm (n 为负整数),则n 的值为A.-5B.-6C.-7D.-83.下列三天线段不能构成三⾓形的三边的是A.3cm ,4cm ,5cmB.5cm ,6cm ,11cmC.5cm ,6cm ,10cmD.2cm ,3cm ,4cm4.如图,直线a ,b 被直线c 所截,若a ∥b , =∠?=∠?=∠3702401,则,A.70°B.100°C.110°5.当x <a <0时,2x 与ax 的⼤⼩关系是A.2x >axB.2x ≥axC.2x <axD.2x ≤ax 6.不等式组?≤+x 4-168-x 213x 4>的最⼩整数解是 A.0 B.-1 C.1 D.27.如图,下列能判定AB ∥EF 的条件有①?=∠+∠180BFE B ②21∠=∠③43∠=∠④5∠=∠BA.1个B.2个C.3个D.4个8.当a ,b 互为相反数时,代数式2a +ab-4的值为A.4B.0C.-3D.-49.下列运算正确的是A.222b a b a +=+)( B.(-2ab 3)622b a 4-= C.3a 632a a 2-= D.a 3-a=a (a+1)(a-1)10.(-8)201320148-)(+能被下列整数除的是 A.3 B.5 C.7 D.911.若不等式组?-a x <<x 312的解集是x <2,则a 的取值范围是 A.a <2 B.a ≤2 C.a ≥2 D.⽆法确定12.如图,是三个等边三⾓形(注:等边三⾓形的三个内⾓都相等)随意摆放的图形,则321∠+∠+∠等于A.90°C.150°D.180°13.把三张⼤⼩相同的正⽅形卡⽚A 、B 、C 叠放在⼀个底⾯为正⽅形的盒底上,底⾯未被卡⽚覆盖的部分⽤阴影表⽰,若按图1摆放时,阴影部分的⾯积为S 1;若按图2摆放时,阴影部分的⾯积为S 2,则S 1和S 2的⼤⼩关系是A.S 1>S 2B.S 1<S 2C.S 1=S 2D.⽆法确定14.已知的结果为,则计算:2m -m -m 01-m -m 342+=A.3B.-3C.5D.-515.甲、⼄两⼈从相距24km 的A 、B 两地沿着同⼀条公路相向⽽⾏,如果甲的速度是⼄得速度的两倍,要保证在2⼩时以内相遇,则甲的速度A.⼩于8km/hB.⼤于8km/hC.⼩于4km/hD.⼤于4km/h16.如图,E 是△ABC 中BC 边上的⼀点,且BE=31BC ;点D 是AC 上⼀点,且AD=41AC ,S=-=AD F EF ABC S S ,则24A.1B.2C.3D.4第Ⅱ(⾮选择题,共72分)⼆、细⼼填⼀填,⼀锤定⾳(每⼩题3分,共12分)17.分解因式:2-x 22=。
2017-2018学年七年级(下)期末数学试卷、选择题(共16小题,每小题3分,满分48 分) 已知a >b ,下列不等式中错误的是(0 1如图,已知点D 是厶ABC 的重心,连接BD 并延长,交AC 于点E,若AE=4, 则AC 的长度为( ) A. 6 B. 8 C. 10 D . 12 4. 下列命题:①两点确定一条直线;②两点之间,线段最短;③对顶角相等;④内错角相等; 其中真命题的个数是()A. 1个B. 2个C. 3个D . 4个5. 多项式15m 3n 2+5m 2n - 20m 2n 3的公因式是( )A . 5mnB . 5m 2 n 2C . 5m 2nD . 5mn 26 .已知 二是方程2x - ay=3的一组解,那么a 的值为( )A . - 1B . 3 C. - 3 D . - 157.从下列不等式中选择一个与x+1> 2组成不等式组,如果要使该不等式组的解 集为x > 1,那么可以选择的不等式可以是( )A . x >- 1B . x >2C . x v- 1D . x v 2A . 2.a+1 > b+1 B. a - 2>b - 2 C.- 4a v- 4b D . 2a v 2b ^+3>°的解集在数轴上表示正确的是( 013. 不等式组4 A.川0 1 B.0 1A8 .若△ ABC有一个外角是锐角,则△ ABC—定是()A.钝角三角形B.锐角三角形C.等边三角形D•等腰三角形9 •下列各式中,能用平方差公因式分解的是()E=40°, / A=110°,则/ C 的度数为(A. x2+xB. x2+8x+16C. X2+4D. X - 1A. 60°B. 80°C. 75°D. 70°11. 如图,下列条件:①/ 仁/ 3,②/ 2+Z 4=180°,③/ 4=7 5,④/ 2=7 3,⑤/ 6=7 2+7 3中能判断直线11 // 12的有()A. 5个B. 4个C. 3个D. 2个12. 下列运算正确的是()A. 2a+3b=5abB. 2 (2a- b)=4a-bC.(a+b)(a- b)=a2- b2D.(a+b)2 2 2=a +b13. a是整数,那么a2+a一定能被下面哪个数整除()A. 2B. 3C. 4D. 514. 四边形ABCD的对角线AC和BD相交于点E,如果△ CDE的面积为3, △ BCE的面积为4,A AED的面积为6,那么△ ABE的面积为()A . 7B . 8 C. 9 D . 1015 .在河北某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里1.6元;方案二:起步价调至8元/3公里,而后每公里1.8元.若某乘客乘坐出租车(路程多于3公里)时用方案一比较合算,则该乘客乘坐出租车的路程可能为( )A . 7公里B . 5公里 C. 4公里 D . 3.5公里16•如图,长方形ABCD 中,AB=6,第一次平移长方形 ABCD 沿 AB 的方向向右 平移5个单位,得到长方形 A i B i C i D i ,第2次平移将长方形A i B i C i D i 沿A i B i 的 方向向右平移5个单位,得到长方形A 2B 2C 2D 2…,第n 次平移将长方形A n -i B n -i C n -i D n -i 沿A n -i B n -i 的方向平移5个单位,得到长方形A n B n C n D n ( n >2),若 的长度为20i6,则n 的值为( )耳 FD # g ”* 匚妙.A . 400 B. 40i C. 402 D . 403二、填空题(共4小题,每小题3分,满分12分)17. 在△ ABC 中,/ C=90°, / A :Z B=i : 2,则/ A= _____ 度.18. ______________________________ 若 a m =6,a n =2,则 a m -n 的值为 .19. __________________________________ 已知 |x -2|+y 2+2y+1=0,则 x y 的值为 _________________________________________ .f x u已〉20. 已知关于x 的不等式组一 一..一.:有且只有I 个整数解,a 的取值范围是若 AE// BD,Z A=55, / BDE=i25,求/ C 的度数.2i . 22. 23. 解答题(共6小题,满分60分)卜-3(X- 2)>q求不等式组;」■ I 的整数解.已知 X 2- 2x - 7=0,求(X -2) 2+ (x+3)(X -3)的值. (9分)(9分)女口图,在△ BCD 中,BC=4 BD=5,(i) (9分) 求CD 的取值范围;(2)24. ____ (9分)如图1, 一张三角形ABC纸片,点D、E分别是△ ABC边上两点. 研究(1):如果沿直线DE折叠,使A点落在CE上,则/ BDA与/A的数量关系是_______研究(2):如果折成图2的形状,猜想/ BDA、/ CEA和/A的数量关系是_ 研究(3):如果折成图3的形状,猜想/ BDA、/ CEA和/A的数量关系是 .25. (12分)阅读下列材料,解答下列问题:材料1 •公式法(平方差公式、完全平方公式)是因式分解的一种基本方法•如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式•但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax - 3a2=l+2ax+a2- ai2- 3a2=(x+a)2-(2a)2 =(x+3a)( x - a)材料2 •因式分解:(x+y) 2+2 (x+y) +1解:将“+y”看成一个整体,令x+y=A,则原式=A?+2A+仁(A+1)2再将“ A”原,得:原式=(x+y+1)上述解题用到的是整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把C2- 6c+8分解因式;(2)结合材料1和材料2完成下面小题:①分解因式:(a- b)2+2 (a- b)+1 ;②分解因式:(m+n)(m+n - 4)+3.26. (12分)某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180 元. ( 1 )购买A、 B 两种饮料每瓶各多少元?( 2)实际购买时,恰好超市进行促销活动,如果一次性购买A 种饮料的数量超过20 瓶,则超出部分的价格享受八折优惠,B 种饮料价格保持不变,若购买B 种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?参考答案与试题解析一、选择题(共16小题,每小题3分,满分48分) 1 •已知a >b ,下列不等式中错误的是()A . a+1 > b+1 B. a - 2>b - 2 C.- 4a v- 4b D . 2a v 2b 【考点】不等式的性质.【分析】根据不等式的性质1,可判断A 、B ,根据不等式的性质3,可判断C, 根据不等式的性质2,可判断D .【解答】解:A 、B 、不等式的两边都加或都减同一个整式,不等号的方向不变, 故A 、B 正确;C 、 不等式的两边都乘或除以同一个负数,不等号的方向改变,故 C 正确;D 、 不等式的两边都乘以或除以同一个正数,不等号的方向不变,故 D 错误; 故选:D .【点评】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等 号的方向改变.x+3>02.不等式组*的解集在数轴上表示正确的是( )A ■:Ezm B — .一一 丄才CD. -- 上 0 1 -—卞0 10 1【考点】解一元一次不等式组;在数轴上表示不等式的解集【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x 的取值范围,它们相交的地方就是不等式组的解集二在数轴上可表示为:【解答】解:原不等式可化为:0 1故选A.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.3.如图,已知点D是厶ABC的重心,连接BD并延长,交AC于点E,若AE=4, 则AC 的长度为()AA. 6B. 8C. 10D. 12【考点】三角形的重心.【分析】首先根据D是厶ABC的重心,可得BE是AC边的中线,E是AC的中点; 然后根据AE=4,求出AC的长度是多少即可.【解答】解::D是厶ABC的重心,••• BE是AC边的中线,E是AC的中点;又••• AE=4,••• AC=8故选:B【点评】此题主要考查了三角形的重心的性质和应用,要熟练掌握,解答此题的关键是要明确:三角形的重心是三角形三边中线的交点.4.下列命题:①两点确定一条直线;②两点之间,线段最短;③对顶角相等;④内错角相等;其中真命题的个数是()A. 1个B. 2个C. 3个D. 4个【考点】命题与定理.【分析】利于确定直线的条件、线段公理、对顶角的性质及平行线的性质分别判断后即可确定正确的选项.【解答】解:①两点确定一条直线,正确,是真命题;②两点之间,线段最短,正确,是真命题;③对顶角相等,正确,是真命题;④两直线平行,内错角相等,故错误,是假命题;正确的有3个,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解确定直线的条件、线段公理、对顶角的性质及平行线的性质,难度不大.5 .多项式15m3n2+5m2n- 20m2n3的公因式是()A. 5mnB. 5m2n2C. 5m2nD. 5mn2【考点】公因式.【分析】找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【解答】解:多项式15m3n2+5m2n -20m2n3中,各项系数的最大公约数是5,各项都含有的相同字母是m、n,字母m的指数最低是2,字母n的指数最低是1,所以它的公因式是5m2n.故选C.【点评】本题考查了公因式的确定,熟练掌握找公因式有三大要点是求解的关键.6 .已知是方程2x- ay=3的一组解,那么a的值为()A.- 1B. 3C. - 3D.- 15【考点】二元一次方程的解.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a的值.【解答】解:把:代入方程2x- ay=3,得2-a=3,解得a= - 1.故选:A.【点评】考查了二元一次方程的解解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.7 .从下列不等式中选择一个与x+1> 2组成不等式组,如果要使该不等式组的解集为x> 1,那么可以选择的不等式可以是()A. x>- 1B. x>2C. x v- 1D. x v 2【考点】不等式的解集.【分析】首先计算出不等式x+1> 2的解集,再根据不等式的解集确定方法:大大取大可确定另一个不等式的解集,进而选出答案.【解答】解:x+1 > 2,解得:x> 1,根据大大取大可得另一个不等式的解集一定是x不大于1.故选:A.【点评】此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.8.若△ ABC有一个外角是锐角,则△ ABC—定是()A.钝角三角形B•锐角三角形C.等边三角形D.等腰三角形【考点】三角形的外角性质.【分析】利用三角形的外角与相邻的内角互补的性质计算.【解答】解:•••△ ABC有一个外角为锐角,•••与此外角相邻的内角的值为180°减去此外角,故此角应大于90°,故△ ABC是钝角三角形.故选A【点评】此题考查的是三角形内角与外角的关系,即三角形的外角与相邻的内角互补.9 •下列各式中,能用平方差公因式分解的是( )A、x2+x B. X2+8X+16 C. X2+4 D. x - 1【考点】因式分解-运用公式法.【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A、x2+x=x (x+1),是提取公因式法分解因式,故此选项错误;B、X2+8X+16= (x+4) 2,是公式法分解因式,故此选项错误;C、x2+4,无法分解因式,故此选项错误;D、x2-仁(x+1)( x- 1),能用平方差公因式分解,故此选项正确.故选:D.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.10. 如图AB// CD, / E=40°, / A=110°,则/ C 的度数为()A BA. 60°B. 80°C. 75°D. 70°【考点】平行线的性质.【分析】根据平行线的性质得出/ A+Z AFD=180,求出/ CFE h AFD=70,根据三角形内角和定理求出即可.••• AB// CD,•••Z A+Z AFD=180,vZ A=110°,•••/ AFD=70,•••/ CFE M AFD=70,vZ E=40°,•••/ C=180 -Z E-Z CFE=180- 40°- 70°70°,故选D.【点评】本题考查了平行线的性质的应用,能根据平行线的性质求出Z AFD是解此题的关键.11. 如图,下列条件:①Z 仁Z3,②Z 2+Z 4=180°③Z 4=Z 5,④Z 2=Z 3,⑤Z 6=Z 2+Z 3中能判断直线l i // I2的有( )A. 5个B. 4个C. 3个D. 2个【考点】平行线的判定.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①vZ仁Z 3,.・.l i//l2,故本小题正确;②vZ 2+Z4=180°,二l i//I2,故本小题正确;③vZ 4=Z 5,「.l1//l2,故本小题正确;④Z 2=Z 3不能判定I1//I2,故本小题错误;⑤vZ 6=Z 2+Z 3,:l1//l2,故本小题正确.故选B.【点评】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.12. 下列运算正确的是( )A. 2a+3b=5abB. 2 (2a- b) =4a- bC.( a+b)(a- b) =a2- b2D.( a+b)2=a2+b2【考点】整式的混合运算.【分析】A、利用合并同类项的法则即可判定;B、利用去括号的法则即可判定;C、利用平方差公式即可判定;D、利用完全平方公式判定.【解答】解:A、:2a, 3b不是同类项,二2a+3b M 5ab,故选项错误;B、2 (2a- b) =4a-2b,故选项错误;C、 ( a+b)( a - b) =a2- b2,正确;D、 ( a+b) 2=a2+b2+2ab,故选项错误.故选C.【点评】此题主要考查了整式的运算法则,其中对于平方差公式和完全平方公式的公式结构一定要熟练.13. a是整数,那么a2+a一定能被下面哪个数整除( )A. 2B. 3C. 4D. 5【考点】因式分解的应用.【分析】根据题目中的式子,进行分解因式,根据a是整数,从而可以解答本题. 【解答】解: :a2+a=a (a+1),a是整数,••• a (a+1) 一定是两个连续的整数相乘,••• a (a+1) 一定能被2整除,故选A.【点评】本题考查因式分解的应用,解题的关键是明确题意,巧妙的运用因式分解解答问题.14. 四边形ABCD的对角线AC和BD相交于点E,如果△ CDE的面积为3, △ BCE 的面积为4」AED的面积为6,那么△ ABE的面积为( )A. 7B. 8C. 9D. 10【考点】三角形的面积.【分析】根据三角形的高相等,面积比等于底的比,可得CE AE=;,进而可求出答案.【解答】解:T S\CDE=3, S\ADE=6,••• CE AE=3 6二寺(高相等,面积比等于底的比)S\ BCE S\ ABE=CE AE=.T S\ BCE=4,• S\ ABE=8.故应选:B.【点评】本题考查了三角形的面积,注意弄清题中各个三角形之间面积的关系.15. 在河北某市召开的出租汽车价格听证会上,物价局拟定了两套客运出租汽车运价调整方案.方案一:起步价调至7元/2公里,而后每公里1.6元;方案二:起步价调至8元/3公里,而后每公里1.8元.若某乘客乘坐出租车(路程多于3 公里)时用方案一比较合算,则该乘客乘坐出租车的路程可能为()A. 7公里B. 5公里C. 4公里D. 3.5公里【考点】一元一次不等式的应用.【分析】设该乘客乘坐出租车的路程是x千米,根据题意可得出租车费用,根据乘坐出租车(路程多于3公里)时用方案一比较核算列出不等式求解.【解答】解:设该乘客乘坐出租车的路程是x千米,根据题意得7+1.6 (x- 2)v 8+1.8 (x-3),解得:x>6.所以只有7公里符合题意.故选:A.【点评】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意得出每一种方案的费用,进一步列出不等式进行求解.16. 如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2Q D2…,第n次平移将长方形A n —i B n —iG -i D n-1沿A n-i B n-1的方向平移5个单位,得到长方形A n B nG D n ( n >2),若AR 的长度为2016,则n的值为( )A. 400B. 401C. 402D. 403【考点】平移的性质.【分析】根据平移的性质得出AA i=5, A i A2=5, A2B i=A i B i - A i A2=6- 5=1,进而求出ABi和AB2的长,然后根据所求得出数字变化规律,进而得出AB n= (n+1)x 5+1求出n 即可.【解答】解:T AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2Q D2 …,AAi=5, A1A2=5, A2B1=A1B1- A1A2=6 - 5=1,AB I=AA1+A1A2+A2B1=5+5+1=11 ,•AB2 的长为:5+5+6=16;■/ ABi=2x 5+1=11, AB2=3X 5+1=16,•AB n= (n+1 )x 5+1=2016,解得:n=402.故选C【点评】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5, A1A2=5是解题关键.二、填空题(共4小题,每小题3分,满分12分)17. 在△ ABC中,/ C=90°, / A:Z B=1: 2,则/ A= 30 度.【考点】三角形内角和定理.【分析】已知/ A:Z B=1:2,先设/ A为x,根据三角形内角和定理然后再求解即可.【解答】解:设/ A为x.则90°x+2x=180°,解得x=30°即/ A=30°.【点评】本题主要考查三角形的内角和定理•解答的关键是设未知数/ A为x, 列方程求解即可.18. 若a m=6, a n=2,则a m「n的值为3 .【考点】同底数幕的除法.【分析】逆用同底数幕的除法公式求解即可.【解答】解:a m化a— a n=6十2=3.故答案为:3.【点评】本题主要考查的是同底数幕的除法,逆用公式是解题的关键.19. ____________________________________ 已知|x-2|+y2+2y+1=0,则x7的值为_________________________________________ .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x-2|+ (y+1) 2=0,则x- 2=0, y+1=0,解得,x=2, y=- 1,则x y=R,【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.f x _20. 已知关于x的不等式组*5-2工〉[有且只有1个整数解,a的取值范围是—0【考点】一元一次不等式组的整数解.【分析】首先解每个不等式,然后根据不等式组的整数的个数,确定整数解,从 而确定a 的范围.解①得x >a , 解②得x v 2. 不等式组只有1个整数解,则整数解是1.故 O w a v 1.故答案是:O w a v 1.【点评】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解, 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间 找,大大小小解不了.三、解答题(共6小题,满分60分)[x - 3(x- 2)〉勺21. 求不等式组|的整数解.【考点】一元一次不等式组的整数解.【分析】此题可先根据一元一次不等式组解出 x 的取值,根据x 是整数解得出x的可能取值.则不等式组的解集是:-4v x w 1.则整数解是:-3,— 2,— 1, 0,1.【点评】此题考查的是一元一次不等式的解法和一元一次方程的解, 根据x 的取 【解答】 解:解①得: x w 1,解②得: x >— 4.【解答】值范围,得出x的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22. 已知x2- 2x-7=0,求(x-2) 2+ (x+3)(x- 3)的值.【考点】整式的混合运算一化简求值.【分析】本题应先将原式去括号、合并同类项,将原式化为2x2- 4x- 5,再将已知x2- 2x- 7=0化为x2- 2x=7,再整体代入即可.【解答】解:原式=«- 4x+4+/ - 9=2«- 4x- 5,•/x2- 2x- 7=0••• x2- 2x=7.•••原式=2 (x2- 2x)- 5=9.【点评】本题考查了整式的化简和整体代换的思想.23. 如图,在△ BCD中,BC=4 BD=5,(1)求CD的取值范围;(2)若AE// BD,Z A=55, / BDE=125,求/ C 的度数.【考点】三角形三边关系;平行线的性质.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出/ AEC的度数,再利用三角形内角和定理得出答案. 【解答】解:(1)v在厶BCD中,BC=4 BD=5,• 1 v DC< 9;(2)v AE/ BD,Z BDE=125,•/ AEC=55,又•••/ A=55,•/ C=70.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出/AEC的度数是解题关键.24•如图1,一张三角形ABC纸片,点D、E分别是△ ABC边上两点.研究(1):如果沿直线DE折叠,使A点落在CE上,则/ BDA与/A的数量关系是 / BDA =Z A研究(2):如果折成图2的形状,猜想/ BDA、/CEA和/A的数量关系是 /BDA+/CEA =2 A研究(3):如果折成图3的形状,猜想/ BDA、/CEA和/A的数量关系是 /【分析】研究(1):翻折问题要在图形是找着相等的量.图1中DE为折痕, 有/ A=Z DA A再利用外角的性质可得结论/ BDA =Z A;研究(2):图2中/A与/ DA 是相等的,再结合四边形的内角和及互补角的性质可得结论/ BDA+Z CEA =2A;研究(3):图3中由于折叠/ A与/ DA E是相等的,再两次运用三角形外角的性质可得结论.【解答】解:(1)Z BDA与/ A的数量关系是/ BDA =Z A;(2)Z BDA+Z CEA =2 A,理由:在四边形ADA E中,Z A+Z DA +2 ADA+Z A EA=360•••2 A+Z DA E=36GM ADA -2 A E,vZ BDA+Z ADA =180;2 CEA+Z A EA=180• 2 BDA+Z CEA =36(- Z ADA -Z A E,•Z BDA+Z CEA Z A+Z DA,•••△A' D是由△ ADE沿直线DE折叠而得,•••/ A=Z DA ,•••/ BDA+Z CEA =2 A;(3)2 BDA-2 CEA =2A.理由:DA交AC于点F,v2 BDA = A+2 DFA2 DFA=2 A+2 CEA,•••2 BDA = A+2 A+2 CEA,•••2 BDA-2 CEA 2A+2A,•••△A' D是由△ ADE沿直线DE折叠而得,• 2 A=2 DA ,• 2 BDA-2 CEA=22A.故答案为:2 BDA =2A;2 BDA+2 CEA =2A;2 BDA-2 CEA =2 A.【点评】此题考查了三角形内角和定理,注意此类一题多变的题型,基本思路是相同的,主要运用三角形的内角和定理及其推论进行证明.25. (12分)(2016春?乐亭县期末)阅读下列材料,解答下列问题:材料1 •公式法(平方差公式、完全平方公式)是因式分解的一种基本方法•如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式•但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x +2ax —3a?=#+2ax+a2—ai2—3a2=(x+a)2—(2a)2 =(x+3a)( x —a)材料2 •因式分解:(x+y) 2+2 (x+y) +1 解:将“+y”看成一个整体,令x+y=A,则原式=A?+2A+仁(A+1) 2 再将“A”原,得:原式=(x+y+1) 2.上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c2- 6c+8分解因式;( 2)结合材料 1 和材料 2 完成下面小题:①分解因式:(a- b) 2+2 (a- b) +1 ;②分解因式:(m+n)(m+n - 4) +3. 【考点】因式分解-十字相乘法等.【分析】 (1)利用已知结合完全平方公式以及平方差公式分解因式得出答案;(2)①直接利用完全平方公式分解因式得出答案;②利用已知结合完全平方公式以及平方差公式分解因式得出答案.【解答】解:( 1) c2- 6c+8=c2- 6c+32- 32+8=( c- 3) 2- 1=( c- 3- 1 )( c- 3+1 )=( c- 4)( c- 2);(2)©( a-b) 2+2 (a-b) +1=(a- b+1) 2;®( m+n)( m+n- 4) +3设m+n=t,则t( t- 4) +3=t2- 4t+3=t2- 4t+22- 22+3 =( t - 2) 2- 1 =(t- 1)(t- 3),则(m+n)( m+n —4) +3=(m+n —1) (m+n —3).【点评】此题主要考查了公式法分解因式以及十字相乘法分解因式,熟练应用公式是解题关键.26. ( 12分)(2016?平房区模拟)某班同学组织春游活动,到超市选购A、B 两种饮料,若购买6瓶A种饮料和4瓶B种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变,若购买B 种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)分别利用购买6瓶A种饮料和4瓶B种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元分别得出等式求出即可;(2)分别表示出购买两种饮料的费用,进而得出不等式求出答案.【解答】解:(1)设购进A种饮料每瓶x元,购进B种饮料每瓶y元,根据题意可得:r6x+4y=39t.Z0x+3Qy=18Q,z x=4. 5解得:*「,答:购进A种饮料每瓶4.5元,购进B种饮料每瓶3元;(2)设购进A种饮料a瓶,购进B种饮料(2a+10)瓶,根据题意可得;20X4.5+4.5 (a—20)x 80%+3 (2a+10)< 320,解得:a< 28=,••• a取正整数,二a最大为28,答:最多可购进 A 种饮料28 瓶.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,据题意得出正确等量关系是解题关键.k2360;;zjx111;ZJX;Liuzhx;。
2017-2018学年河北省保定市高阳县七年级(下)期末数学试卷
一、选择题(共16小题,每小题3分,满分43分)
1.(3分)4的算术平方根是()
A.4 B.﹣4 C.2 D.±2
2.(3分)在平面直角坐标系中,已知点P(﹣2,3),则点P在()
A.第一象限B.第二象限C.第三象限D.第四象限
3.(3分)在实数,﹣,,0,π,﹣中,是无理数的有()
A.1个B.2个C.3个D.4个
4.(3分)以下问题,不适合用全面调查的是()
A.旅客上飞机前的安检
B.学校招聘教师,对应聘人员的面试
C.了解全校学生的课外读书时间
D.了解全国中学生的用眼卫生情况
5.(3分)如果c为有理数,且c≠0,下列不等式中正确的是()
A.3c>2c B.C.3+c>2+c D.﹣3c<﹣2c
6.(3分)已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()
A.﹣x2B.2x C.D.x
7.(3分)下列说法正确的是()
A.平方根等于它本身的数是0,1
B.算术平方根等于它本身的数是0,1
C.倒数等于它本身的数只有 1
D.平方等于它本身的数只有0
8.(3分)如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由
“基本图案”经过平移得到的是()
A.B.C.D.
■”遮住的两个数分别是()9.(3分)如果方程组的解为,那么被“★”“
A.10,4 B.4,10 C.3,10 D.10,3
10.(3分)“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头
笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x只,兔为y只,则所列方程组正确的是()
A.B.
C.D.
11.(3分)如图,a∥b,点B在直线b上,且AB⊥BC,∠1=35°,那么∠2=()
A.45°B.50°C.55°D.60°[
12.(2分)若(m﹣2018)x|m|﹣2017+(n+4)y|n|﹣3=2018是关于x,y的二元一次方程,则()A.m=±2018,n=±4 B.m=﹣2018,n=±4 C.m=±2018,n=﹣4 D.m=﹣2018,n=4 13.(2分)不等式组的解集为x<4,则a满足的条件是()
A.a<4 B.a=4 C.a≤4 D.a≥4
14.(2分)下列四种统计图:条形图、扇形图、折线图、直方图,能够显示数据分布情况
的是()
A.B.C.D.
15.(2分)若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线[
16.(2分)如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),……依次扩展下去,则P2018的坐标为()
A.(﹣503,503)B.(504,504)C.(﹣506,﹣506)D.(﹣505,﹣505)
二、填空题(本题4小题,每小题3分,共12分)小于√17的最大正整数是
17.(3分)小于的最大整数是[
18.(3分)如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE的度数为度.
19.(3分)若|x+1|+(2x﹣y)2=0,则x2﹣y=
20.我们规定:相等的实数看作同一个实数.有下列六种说法:
①数轴上有无数多个表示无理数的点;
②带根号的数不一定是无理数;
③每个有理数都可以用数轴上唯一的点来表示;
④数轴上每一个点都表示唯一一个实数;
⑤没有最大的负实数,但有最小的正实数;
⑥没有最大的正整数,但有最小的正整数.
其中说法错误的有(注:填写出所有错误说法的编号)
三、解答题(本题6小题,满分68分)
21.(4分)计算: +++|﹣2|
22.(4分)解方程组.
23.(6分)解不等式组,并把解集在数轴上表示出来.
24.(10分)在下列网格中建立平面直角坐标系如图,每个小正方形的边长均为1个单位长度.已知A(1,1)、B(3,4)和C(4,2).
(1)在图中标出点A、B、C.
(2)将点C向下平移3个单位到D点,将点A先向左平移3个单位,再向下平移1个单位到E点,在图中标出D点和E点.
(3)求△EBD的面积S△EBD.
25.(10分)为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富
多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:
请根据以上信息解答下列问题:
(1)该校对多少名学生进行了抽样调查?
(2)请将图1和图2补充完整;并求出扇形统计图中小说所对应的圆心角度数.
(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢小说人数约为多少人?
26.(12分)已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.
(1)若∠O=40°,求∠ECF的度数;
(2)求证:CG平分∠OCD;
(3)当∠O为多少度时,CD平分∠OCF,并说明理由.
27.(12分)为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,
从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B 型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.
(1)求A、B两种型号家用净水器各购进了多少台;[来源:学科网]
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)
28.(10分)(1)阅读下列材料并填空:
对于二元一次方程组我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解,用数表可表示为,用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:
上行下行
从而得到该方程组的解为x=,y=
(2)仿照(1)中数表的书写格式写出解方程组的过程.
参考答案一、选择题
1.C.
2.B.
3.C.
4.D.
5.C.
6.B.
7.B.
8.B.
9.A.
10.C.
11.C.
12.D.
13.D.
14.D.
15.B.
16.D.
二、填空题
17.4.
18.125.
19.3.
20.⑤.
三、解答题
21.解: +++|﹣2|
=9﹣3+2﹣+2
=10﹣.
22.解:
①×2+②×3得:13x=26,
解得:x=2,
把x=2代入①得:4+3y=1,
解得:y=﹣1,
所以原方程组的解为.
23.解:解不等式x﹣3(x﹣2)≥4,得:x≤1,
解不等式<,得:x>﹣7,
则不等式组的解集为﹣7<x≤1,
将解集表示在数轴上如下:
24.解:(1)如图所示:A、B、C即为所求;
(2)如图所示:点D,E即为所求;
(3)S△EBD=5×6﹣×4×5﹣×1×5﹣×1×6=14.5.
25.解:(1)20÷10%=200(名).
答:该校对200名学生进行了抽样调查.
(2)。