《幂的乘方与积的乘方》一教案
- 格式:doc
- 大小:67.50 KB
- 文档页数:3
幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律一、教学目标学习指数和幂的乘方、积的乘方规律,掌握指数与幂之间的互相转化方法,培养学生对指数和幂的敏感度,从而提高学生的数学思维能力和应用能力。
二、教学内容1.指数和幂的乘方、积的乘方规律2.指数与幂之间的互相转化方法3.练习与解题三、教学重难点1.指数和幂的乘方、积的乘方规律的应用2.指数与幂之间的互相转化方法的理解和运用四、教学方法1.讲述与演示相结合2.多元素启发式教学方法3.练习与解题五、教学准备1.白板、黑板、笔2.教科书、讲义、试卷3.练习和解题材料4.示范题六、教学过程1.引入从同学们最熟悉的数学公式-乘方式入手,大概介绍指数和幂之间的关系,并且让同学们自己研究一下同底数的幂的乘方有怎样的规律,再加以证明。
2.讲授指数和幂的乘方、积的乘方规律与运用。
2.1.幂的乘方同底数幂的乘方规律:$(a^{m})^{n}$ $=$ $a^{mn}$,即同一底数幂的乘方等于底数不变,指数相乘。
示范题:$(2^{3})^{2}$ $=$ $2^{6}$ $=$ $64$。
2.2.积的乘方如何化简幂的积:$a^{m}$ $\times$ $a^{n}$ $=$ $a^{m+n}$,即相同指数幂的积等于底数不变,指数相加。
示范题:$2^{4}$ $\times$ $2^{3}$ $=$ $2^{7}$。
2.3.指数与幂之间的互相转化方法(1)同底数幂之间的乘和除,可用指数相加、相减:$a^{m} \times a^{n}$ $=$ $a^{m+n}$;$\frac{a^{m}}{a^{n}}$ $=$ $a^{m-n}$。
(2)不同底数幂之间可先化为同底数再变幂:$2^{m}$ $\times$ $3^{m}$ $=$ $(2 \times 3)^{m}$;$\frac{2^{m}}{3^{n}}$ $=$ $\frac{{2^{\left(m-n\right)}}}{3^{n}}$。
8.2 幂的乘方与积的乘方-苏科版七年级数学下册教案一、教学内容本节课主要教授幂的乘方与积的乘方的概念及计算方法。
二、教学目标1.了解幂的乘方与积的乘方的概念;2.熟练掌握幂的乘方与积的乘方的计算方法;3.能够在复杂的算式中加快计算速度。
三、教学重点和难点1.教学重点:幂的乘方与积的乘方的概念及计算方法;2.教学难点:复杂算式的快速计算。
四、教学过程1. 导入新知识•让学生思考以下问题:–2的4次方等于多少?–4的3次方等于多少?•引出幂的乘方及其定义:如果一个数的指数是n,那么这个数的幂就叫做n 的乘方,记作a^n。
•引出积的乘方及其定义:n个数的乘积的乘方等于这n个数的乘方的积,即(a_1 x a_2 x … x a_n)^n = a_1^n x a_2^n x … x a_n^n。
2. 讲解新知识•讲解幂的乘方的计算方法:幂的乘方的计算方法就是先算幂,再算指数。
•举例说明幂的乘方的计算方法:(23)4 = 2^(3x4) = 2^12。
•讲解积的乘方的计算方法:积的乘方的计算方法就是先将各个底数的幂算出来,然后再将它们乘起来。
•举例说明积的乘方的计算方法:(2^3 x 3^2 x 54)2 = 2^(3x2) x 3^(2x2) x5^(4x2) = 2^6 x 3^4 x 5^8。
3. 练习新知识•给学生几个计算题目,让他们自己计算并进行课堂练习。
4. 知识系统化•讲解幂的乘方的性质:a^m x a^n = a^(m+n),即相同底数、不同指数的幂相乘,底数不变、指数相加。
•举例说明幂的乘方的性质:2^3 x 2^4 = 2^(3+4) = 2^7。
•讲解积的乘方的性质:(a_1 x a_2 x … x a_n)^m = a_1^m x a_2^m x … x a_n^m。
•举例说明积的乘方的性质:(2^3 x 3^2 x 54)2 = 2^6 x 3^4 x 5^8。
5. 拓展•引导学生思考:4的4次方可以写成4的2次方的乘方形式吗?为什么?•解答:4的4次方可以写成(4的2次方)的2次方,因为4的4次方等于(4的2次方)的2次方。
幂的乘方与积的乘方教案_说课稿以下是查字典数学网为您推荐的幂的乘方与积的乘方教案,希望本篇文章对您学习有所帮助。
幂的乘方与积的乘方学案一、教学要求、1. 体会幂的意义,会用同底数幂的乘法性质进行计算,并能解决一些实际问题。
2. 会用幂的乘方、积的乘方性质进行计算,并能解决一些实际问题。
二、重点、难点:1. 重点:(1)同底数幂的乘法性质及其运算。
(2)幂的乘方与积的乘方性质的正确、灵活运用。
2. 难点:(1)同底数幂的乘法性质的灵活运用。
(2)探索幂的乘方、积的乘方两个性质过程中发展推理能力和有条理的表达能力。
三. 知识要点:1. 同底数幂的意义几个相同因式a相乘,即,记作,读作a的n次幂,其中a叫做底数,n叫做指数。
同底数幂是指底数相同的幂,如:与,与a,与,与等等。
注意:底数a可以是任意有理数,也可以是单项式、多项式。
2. 同底数幂的乘法性质(m,n都是正整数)这就是说,同底数幂相乘,底数不变,指数相加。
当三个或三个以上同底数幂相乘时,也具有这一性质,例如:(m,n,p都是正整数)3. 幂的乘方的意义幂的乘方是指几个相同的幂相乘,如是三个相乘读作a的五次幂的三次方,是n个相乘,读作a的m次幂的n次方4. 幂的乘方性质(m,n都是正整数)这就是说,幂的乘方,底数不变,指数相乘。
注意:(1)不要把幂的乘方性质与同底数幂的乘法性质混淆,幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变)。
(2)此性质可逆用:。
5. 积的乘方的意义积的乘方是指底数是乘积形式的乘方,如等。
(积的乘方的意义)(乘法交换律,结合律)6. 积的乘方的性质(n为正整数)这就是说,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
注意:(1)三个或三个以上的乘方,也具有这一性质,例如:(2)此性质可以逆用:四、典型例题例1. 计算:(1) (2)(3) (4)解:(1)(2)(3)(4)例2. 已知,求下列各式的值。
幂的乘方与积的乘方教案教学目标:1.理解幂的乘方。
2.能够计算幂的乘方。
3.理解积的乘方。
4.能够计算积的乘方。
教学重点:1.幂的乘方的概念与计算。
2.积的乘方的概念与计算。
教学准备:1.黑板、粉笔和擦子。
2.计算器。
教学过程:一、导入(5分钟)1.教师通过一个简单的问题导入新知识:“假如我现在有3个苹果,每个苹果有4个橘子,你能说出总共有多少个橘子吗?”2.学生回答后,教师引导学生思考如何计算橘子的总数。
二、幂的乘方(20分钟)1.教师写出问题:“如果有3个苹果,每个苹果有4个橘子,你能用幂的乘方表示这个问题吗?”2.学生思考后,教师解释幂的乘方的概念:幂的乘方是指将一个幂作为乘数,连续相乘的操作。
在这个问题中,3个苹果可以表示为3^1,每个苹果有4个橘子可以表示为4^3,所以总共的橘子数可以表示为3^1×4^33.教师用黑板上的例子,如2^3,解释幂的乘方的计算方法:将底数2连乘3次,即2×2×2=8,所以2^3=8、教师帮助学生理解幂的乘方的计算方法。
4.学生进行练习,计算以下幂的乘方:(a)5^2;(b)10^3;(c)3^4三、积的乘方(20分钟)1.教师写出问题:“如果有2组橘子,每组橘子有3个苹果,你能用积的乘方表示这个问题吗?”2.学生思考后,教师解释积的乘方的概念:积的乘方是指将一个积作为乘数,连续相乘的操作。
在这个问题中,2组橘子可以表示为(2×3)^1,每组橘子有3个苹果可以表示为3^2,所以总共的橘子数可以表示为(2×3)^1×3^23.教师用黑板上的例子,如(3×4)^2,解释积的乘方的计算方法:先将两个因数(3×4)相乘,得到12,然后再将12连乘2次,即12×12=144,所以(3×4)^2=144、教师帮助学生理解积的乘方的计算方法。
4.学生进行练习,计算以下积的乘方:(a)(2×5)^2;(b)(4×6)^3;(c)(2×3×4)^2四、扩展应用(25分钟)1.教师给学生提供更复杂的问题,让学生运用幂的乘方和积的乘方来解决。
幂的乘方与积的乘方(一)》说课教案一、教材分析(一)本节内容在教材中的地位与作用。
幂的运算,是把前面学过的数的运算抽象为式的运算,幂的乘方与积的乘方是本章的第二节,是在学生已有的同底数幂的乘法运算性质的基础上,通过做幂的乘方后,再明晰的幂的乘方运算性质,是进一步学习幂的运算的基础,是今后学习整式乘法的重要基础,也是今后学习方程、不等式、函数等知识的储备内容,同时也是学习物理、化学、生物等学科必不可少的解题工具。
因此,本节课的知识承上启下,具有重要作用。
(二)教学目标在本课的教学中,不仅要让学生学会如何进行幂的乘方的运算,更主要地是要让学生掌握研究问题的方法,初步领悟化归的数学思想。
同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。
为此,我确立如下教学目标:知识与技能:理解幂的乘方的运算性质,能熟练的运用性质进行计算,并能说出每一步计算的依据。
过程与方法:经历探索幂的乘方性质的过程,结合探究活动,掌握幂的乘方的运算性质的运用方法和技巧。
情感态度和价值观:进一步体会幂的意义,发展归纳、概括、推理能力和有条理的数学表达能力,增强学数学的信心。
(三)教材重难点由于本节课是探索并运用幂的运算的性质的第二个基本性质,故我确定“以理解并掌握运算性质”作为教学的重点,而将其灵活的运用作为教学的难点。
同时,我将采用让学生通过先“做”,然后思考、猜想、合作探究、媒体演示的方式以及渗透从一般到特殊、从具体到抽象的数学思想方法教学来突出重点、突破难点。
(四)教具准备:相关多媒体课件。
二、教法选择与学法指导本节课主要是理解、掌握性质并运用运算性质计算,故我在课堂教学中将尽量为学生提供“做”中“学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透一些数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自觅规律、自悟原理。
三、教学流程(一)创设情景,激发求知欲望首先,我提出一个趣味性问题:谁能在黑板上写下100个410的乘积?根据经验,同学们发现写不下。
一、知识结构二、重点、难点分析本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用.1.幂的乘方幂的乘方,底数不变,指数相乘,即(都是正整数)幂的乘方的推导是根据乘方的意义和同底数幂的乘法性质.幂的乘方不能和同底数幂的乘法相混淆,例如不能把的结果错误地写成,也不能把的计算结果写成.幂的乘方是变乘方为(底数不变,指数相乘的)乘法,如;而同底数幂的乘法是变(同底数的幂)乘为(幂指数)加,如.2.积和乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即(为正整数).三个或三个以上的积的乘方,也具有这一性质.例如:3.不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,是转化为指数的乘法运算(底数不变);同底数幂的乘法,是转化为指数的加法运算(底数不变).4.同底数幂的乘法、幂的乘方、积的乘方的三个运算性质是整式乘法的基础,也是整式乘法的主要依据.对三个性质的数学表达式和语言表述,不仅要记住,更重要的是理解.在这三个幂的运算中,要防止符号错误:例如,;还要防止运算性质发生混淆:等等.三、教法建议1.幂的乘方导出的根据是乘方的意义和同底数幂的乘法性质.教学时,也要注意导出这一性质的过程.可先以具体指数为例,明确幕的乘方的意义,导出性质,如对于从指数连加得到指数相乘,要根据学生情况多作一些说明.以为例,再一次说明可以写成.这一点是导出幂的乘方性质的关键,务必使学生真正理解.在此基础上再导出性质.2.使学生要严格区分同底数幂乘法性质与幂的乘方性质的不同,不能混淆.具体讲解可从下面两点来说明:(1)牢记不同的运算要使用不同的性质,运算的意义决定了运算的性质.(2)记清幂的运算与指数运算的关系:(同底)幂相乘→指数相加(“乘”变“加”,降一级运算);幂乘方→指数相乘(“乘方”变“乘法”,降一级运算).了解到有关幂的两个重要性质都有“使原运算仅降一级运算”的规律,可使自己更好掌握有关性质.3.在教学的各个环节中,注意启发学生,不仅掌握法则,还要明确为什么.三种运算法则全讲完之后,学生最易产生法则间的混淆,为了解决这个问题除叫学生熟记法则之外,在学生回答问题和写作业时,注意解题步骤,或及时发现问题,说明出现问题的原因;要注意防止两个错误:(1)(-2xy)4=-24x4y4.(2)(x+y)3=x3+y3.幂的乘方与积的乘方(一)一、教学目标1.理解幂的乘方性质并能应用它进行有关计算.2.通过推导性质培养学生的抽象思维能力.3.通过运用性质,培养学生综合运用知识的能力.4.培养学生严谨的学习态度以及勇于创新的精神.5.渗透数学公式的结构美、和谐美.二、学法引导1.教学方法:引导发现法、尝试指导法.2.学生学法:关键是准确理解幂的乘方公式的意义,只有准确地判别出其适用的条件,才可以较容易地应用公式解题.三、重点·难点及解决办法(-)重点准确掌握幂的乘方法则及其应用.(二)难点同底数幂的乘法和幂的乘方的综合应用.(三)解决办法在解题的过程中,运用对比的方法让学生感受、理解公式的联系与区别.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.复习同底数幂乘法法则并进行、的计算,从而引入新课,在探究规律的过程中,得出幂的乘方公式,并加以充分的理解.2.教师举例进行示范,师生共练以熟悉幂的乘方性质.3.设计错例辨析和练习,通过不同的题型,从不同的角度加深对公式的理解.七、教学步骤(-)明确目标本节课重点是掌握幂的乘方运算性质并能进行较灵活的应用(二)整体感知幂的乘方法则的应用关键是判断准其适用的条件和形式.(三)教学过程1.复习引入(1)叙述同底数幂乘法法则并用字母表示.(2)计算:①②2.探索新知,讲授新课(1)引入新课:计算和和提问学生式子、的意义,启发学生把幂的乘方转化为同底数暴的乘法.计算过程按课本,并注明每步计算的根据.观察题目和结论:推测幂的乘方的一般结论:(2)幂的乘方法则语言叙述:幂的乘方,底数不变,指数相乘.字母表示:.(,都是正整数)推导过程按课本,让学生说出每一步变形的根据.(3)范例讲解例1 计算:①②③④解:①②③④例2 计算:①②解:①原式②原式练习:①p97 1,2②错例辨析:下列各式的计算中,正确的是()a.b.c.d.(四)总结、扩展同底数幂的乘法与幂的乘方性质比较:幂运算种类指数运算种类同底幂乘法乘法加法幂的乘方乘方乘法八、布置作业p101 a组1~3; b组1.参考答案略.。
《幂的乘方与积的乘方》之幂的乘方教学案摘要:幂的乘方是初中数学的一个难点,是在教学实践的基础上的再总结。
依纲据本,紧扣学情,化解难点,突破重点,是教学案的主要特点。
关键词:幂;运算;目标;设计一、教材分析本节课是苏科版七年级下册第八章第二节。
幂的乘方是学生在已有同底数幂的乘法法则的基础上,“做”幂的乘方后,再明晰幂的乘方法则。
二、学生分析幂的运算是学习整式乘(除)法的基础,因此教学中应重视对学生进行语言表述,“以理驭算”的训练,为后续学生学习做必要的铺垫。
为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用课后的一个练习作为问题情景,设计一系列问题活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。
三、学习目标(一)知识目标1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义。
2.了解幂的乘方的运算性质,并能解决一些实际问题。
(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力。
2.学习幂的乘方的运算性质,从中感受具体到抽象、特殊到一般的思考方法,发展数感和归纳能力。
(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步激发学习数学的兴趣,培养学习数学的信心,感受数学的内在美。
四、教学重点与难点(一)教学重点理解并正确运用幂的乘方的运算性质。
(二)教学难点幂的乘方的运算性质的探究过程及应用。
五、教学过程(一)创设情境一个正方体的棱长是100 mm,即102 mm,它的体积是多少?设计意图:用练习作为情境,感受乘方的意义,体会进行幂的乘方运算的必要性。
(二)探索新知1.做一做先说出下列各式的意义,再计算下列各式。
设计意图:在学生熟练掌握了幂的乘方的运算性质的基础上,让学生口答,体会幂的乘方公式的逆用,逐步培养学生逆向思维的习惯。
7.试一试(1)若a2n=5求a6n的值。
幂的乘方与积的乘方一、教学目标(一)知识目标1。
经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2。
了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点(一)教学重点幂的乘方的运算性质及其应用.(二)教学难点幂的运算性质的灵活运用。
三、教具准备投影片三张第一张:做一做,记作(§1。
4.1 A)第二张:例题,记作(§1.4。
1 B)第三张:练习,记作(§1.4。
1 C)四、教学过程Ⅰ。
提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。
[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以。
根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。
于是我们就求出了V=106立方毫米,V1=109立方毫米。
我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算。
第三章第4节 幂的乘方与积的乘方(一)东岳中学 兰顺河教学内容 幂的乘方教学目标1. 经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2. 了解幂的乘方的运算性质,能运用“幂的乘方”法则进行运算。
教学重难点1. 重点:幂的乘方法则及用法则进行计算。
2. 难点:幂的乘方法则和同底数幂相乘的法则的区别及这两个法则的混合运用。
教学过程一. 创设情境,提出问题:1.你知道吗如果甲球的半径是乙球的n 倍,那么甲球的体积是乙球的3n 倍。
地球、木星、太阳可以近似地看作是球体。
木星的半径约是地球的10倍,太阳的半径约是地球的210倍,它们的体积分别约是地球的多少倍由学生独立思考后可得出:木星的体积是地球的310倍,太阳的体积是地球的32)10(倍(即610倍)。
引导学生观察电脑展示的上图,通过比较三个球体的大小,体会球体扩大的倍数比半径扩大的倍数大得多。
2.提出问题 4a 的意义是什么把4a 看成底数,则34)(a 的意义是什么怎样计算34)(a 二. 探索规律,得出结论1. 计算下列各式,并说明理由(学生先独立完成计算,后学习小组讨论说明理由,再 电脑展示推理过程)(1)42)6(; (2)32)(a ; (3)2)(m a ; (4)n m a )(。
n m a )(=(•m a •m a •m a …m a •)=m m m a+⋅⋅⋅++ =mn a即 n m a )(=mn a (n m ,都是正整数)2.鼓励学生自己发现幂的乘方性质的特点(如底数和指数发生了什么变化),运用自己的语言进行描述:幂的乘方,底数不变,指数相乘。
3. 让学生回顾这一性质得来的过程,进一步体会幂的意义。
并引导学生剖析法则:(1) 公式中的底数a 可以是具体的数,也可以是代数式。
(2) 注意幂的乘方中指数相乘,而同底数幂的乘法中是指数相加。
三. 运用法则,进行计算例1 计算:(1)32)10(; (2)55)(b ; (3)3)(n a ;(4)m x )(2-; (5)y y •32)(; (6)4362)()(2a a -。
幂的乘方和积的乘方北师大版数学初一下册教案幂的乘方和积的乘方:教案幂的乘方:公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则。
积的乘方:1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么?学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加.幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.知识点1.地球的半径长约为6×103 km,用S,r分别表示赤道所围成的圆的面积和地球半径,则S=πr2,计算赤道所围成的圆的面积约为1.13×108__km2.(π取3.14,结果精确到0.01)2.用公式表示图中阴影部分面积S,并求出当a=1.2×103 cm,r=4×102 cm时,S的值.(π取3.14)《1.2幂的乘法与积的乘方》同步测试一、选择题1.计算:(m3n)2的结果是()A.m6nB.m6n2C.m5n2D.m3n22.计算(x2)3的结果是()A.xB.3x2C.x5D.x63.下列各式计算正确的是()A.(a2)2=a4B.a+a=a2C.3a2+a2=2a2D.a4-a2=a84.下列计算正确的是()A.a3-a4=a12B.(a3)4=a7C.(a2b)3=a6b3D.a3÷a4=a(a≠0)《1.2幂的乘方与积的乘方》课时练习含答案解析一.填空题(a3)2-a4等于;答案:a10解析:解答:(a3)2-a4=a6-a4=a10.分析:先根据幂的乘方算出(a3)2=a6,再同底数幂的乘法法则可完成此题.。
2 幂的乘方与积的乘方路漫漫其修远兮,吾将上下而求索。
屈原《离骚》原创不容易,【关注】店铺,不迷路!第1课时幂的乘方教学目标一、基本目标1.了解幂的乘方的运算法则,并能解决一些实际问题.2.经历探索幂的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行幂的乘方的运算.【教学难点】幂的乘方法则的总结及其运用.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P5~P6的内容,完成下面练习.【3min反馈】1.(1)乘方的意义:32中,底数是3,指数是2,表示2个3相乘.(32)3的意义:3个32相乘;(2)根据幂的意义填空:(32)3=32×32×32(根据幂的意义)=32+2+2(根据同底数幂的乘法法则)=32×3,(am)2=am·am=a2m(根据am·an=am+n),(am)n=am·am·…·am(幂的意义)=am+m+…+m(同底数幂相乘的法则)=amn(乘法的意义);(3)幂的乘方法则:(am)n=amn(m、n都是正整数),即幂的乘方,底数不变,指数相乘.2.已知球体的体积公式为V=43πR3.(1)若乙球的半径为3cm,则乙球的体积V乙=36πcm3.甲球的半径是乙球的10倍,则甲球的体积V甲=36_000πcm3,V甲是V乙的103倍;(2)地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的10倍、100倍,它们的体积分别约是地球的103倍、106倍.3.(教材P6例1)计算:(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.解:(1)原式=106. (2)原式=b25.(3)原式=a3n. (4)原式=-x2m.(5)原式=y7. (6)原式=a12.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-24)3;(2)(xm-1)2;(3)[(24)3]3;(4)(-a5)2+(-a2)5.【互动探索】(引发学生思考)确定各式的底数→利用幂的乘方法则计算.【解答】(1)原式=212.(2)原式=x2(m-1)=x2m-2.(3)原式=24×3×3=236.(4)原式=a10-a10=0.【互动总结】(学生总结,老师点评)(1)运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.(2)在幂的乘方中,底数可以是单项式,也可以是多项式.(3)幂的乘方的推广:((am)n)p=amnp(m、n、p都是正整数).【例2】若92n=38,求n的值.【互动探索】(引发学生思考)比较等式两边的底数→将等式转化为(32)2n=38→建立方程求n值.【解】依题意,得(32)2n=38,即34n=38,所以4n=8,所以n=2.【互动总结】(学生总结,老师点评)解此类题时,可将等式两边化成底数或指数相同的数,再比较.【例3】已知ax=3,ay=4(x、y为整数),求a3x+2y的值.【互动探索】(引发学生思考)将a3x+2y变形,得a3x·a2y,再利用幂的乘方进行解答.【解答】因为ax=3,ay=4,所以a3x+2y=a3x·2y=(ax)3·(ay)2=33×42=27×16=432.【互动总结】(学生总结,老师点评)利用amn=(a)n=(an)m,可对式子进行变形,从而使问题得到解决.活动2 巩固练习(学生独学)1.计算(-a3)2的结果是( A )A.a6 B.-a6C.-a5 D.a52.下列运算正确的是( B )A.(x3)2=x5 B.(-x)5=-x5C.x·x2=x6 D.x2+2x3=5x53.当n为奇数时,(-a2)n+(-an)2=0.4.计算:(1)a2·(-a)2·(-a2)3+a10;(2)x4·x5·(-x)7+5(x4)4-(x8)2.解:(1)原式=a2·a2·(-a6)+a10=-a10+a10=0.(2)原式=x4·x5·(-x7)+5x16-x16=-x 16+5x 16-x 16=316.活动3 拓展延伸(学生对学)【例4】请看下面的解题过程:比较2100与375的大小.解:因为2100=(24)25,375=(33)25,而24=16,33=27,16<27, 所以2100<375.请你根据上面的解题过程,比较3100与560的大小.【互动探索】仔细阅读材料,确定例子的解题方法是将指数化为相同,再比较底数的大小来比较所求两个数的大小.【解答】因为3100=(35)20,560=(53)20,而35=243,53=125,243>125, 所以3100>560.【互动总结】(学生总结,老师点评)此题考查了幂的乘方法则的应用,根据题意得到3100=(35)20,560=(53)20是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)幂的乘方法则⎩⎨⎧ 内容:幂的乘方,底数不变,指数相乘字母表示:am n =amn m 、n 都是正整数推广:am n p =amnp m 、n 、p 都是正整数练习设计请完成本课时对应练习!第2课时 积的乘方教学目标一、基本目标1.了解积的乘方的运算法则,并能解决一些实际问题.2.经历探索积的乘方的运算法则的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.二、重难点目标【教学重点】会进行积的乘方的运算.【教学难点】明确幂的乘方与积的乘方的异同.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P7~P8的内容,完成下面练习.【3min 反馈】1.(1)(3×5)4=3(4 )·5(4 );(2)(3×5)m =3(m )·5(m );(3)(ab )n =a (n )·b (n );(4)(ab )n =(ab )·(ab )·…·(ab n 个ab =a ·a ·…·a n 个a ·b ·b ·…·b n 个b =anbn .2.积的乘方法则:(ab )n =anbn (n 是正整数),即积的乘方等于积的每一个因式分别乘方,再把所得的幂相乘.推广:(abc )n =anbncn (n 是正整数).3.(教材P7例2)计算:(1)(3x )2;(2)(-2b )5;(3)(-2xy )4;(4)(3a 2)n .解:(1)原式=9x 2. (2)原式=-32b 5.(3)原式=16x 4y 4. (4)原式=3na 2n .环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(x 4·y 2)3;(2)(anb 3n )2+(a 2b 6)n ;(3)[(3a 2)3+(3a 3)2]2;(4)⎝ ⎛⎭⎪⎫991002018×⎝ ⎛⎭⎪⎫100992019; (5)0.12515×(23)15.【互动探索】(引发学生思考)先确定运算顺序,再根据积的乘方法则计算.【解答】(1)原式=x 12y 6.(2)原式=a 2nb 6n +a 2nb 6n =2a 2nb 6n .(3)原式=(27a 6+9a 6)2=(36a 6)2=1296a 12.(4)原式=⎝ ⎛⎭⎪⎫99100×100992018×10099=1×10099=10099. (5)原式=⎝ ⎛⎭⎪⎫1815×815=⎝ ⎛⎭⎪⎫18×815=1. 【互动总结】(学生总结,老师点评)(1)~(3)题按先乘方再乘除后加减的运算顺序计算;(4)、(5)题逆用(ab )n =anbn 可使计算简便.活动2 巩固练习(学生独学)1.计算(x 2y )2的结果是( B )A .x 6yB .x 4y 2C .x 5yD .x 5y 22.(am )m ·(am )2不等于( C )A .(am +2)mB .(am ·a 2)mC .am 2+am 2D .(am )3·(am -1)m 3.已知am =2,an =3,则a 2m +3n =108.4.计算:(1)-4xy 2·(xy 2)2·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3;(3)⎝ ⎛⎭⎪⎫232018×⎝ ⎛⎭⎪⎫322019. 解:(1)原式=-4xy 2·x 2y 4·(-8x 6)=32x 9y 6.(2)原式=a 6b 12-a 6b 12=0.(3)原式=⎝ ⎛⎭⎪⎫23×322018×32 =32. 活动3 拓展延伸(学生对学)【例2】太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3) 【互动探索】已知球的体积公式和其半径,代入数据直接计算. 【解答】因为R =6×105千米,所以V =43πR 3=43×3×(6×105)3=8.64×1017(立方千米). 即它的体积大约是8.64×1017立方千米.【互动总结】(学生总结,老师点评)读懂题目信息,理解球的体积公式并熟记积的乘方法则是解此题的关键.环节3 课堂小结,当堂达标(学生总结,老师点评)积的乘方法则⎩⎨⎧内容:积的乘方等于积的每一个因式分 别乘方,再把所得的幂相乘字母表示:ab n =anbn n 是正整数逆用:anbn =ab n n 是正整数练习设计请完成本课时对应练习!【素材积累】 宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。
(湘教版)七年级数学下册:2.1.2《幂的乘方与积的乘方》教案一. 教材分析《幂的乘方与积的乘方》是湘教版七年级数学下册第2章第1节的内容。
本节课主要让学生掌握幂的乘方运算法则和积的乘方运算法则,培养学生运用幂的运算性质解决实际问题的能力。
教材通过引入实例,引导学生发现规律,从而得出幂的乘方与积的乘方的运算法则。
二. 学情分析学生在之前的学习中已经掌握了有理数的乘法、幂的定义及简单的幂的运算。
但对于幂的乘方与积的乘方,学生可能存在理解上的困难。
因此,在教学过程中,教师需要注重引导学生发现规律,让学生在理解的基础上掌握运算法则。
三. 教学目标1.理解幂的乘方与积的乘方的运算法则。
2.能够运用幂的运算性质解决实际问题。
3.培养学生的观察能力、推理能力及运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:幂的乘方与积的乘方的运算法则。
2.教学难点:理解幂的乘方与积的乘方的本质,能够灵活运用运算法则解决实际问题。
五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中发现幂的乘方与积的乘方的规律。
2.引导发现法:教师引导学生观察、分析、推理,从而得出幂的乘方与积的乘方的运算法则。
3.实践操作法:让学生在课堂上动手操作,巩固幂的乘方与积的乘方的运算法则。
六. 教学准备1.教学课件:制作课件,展示幂的乘方与积的乘方的实例及运算法则。
2.教学素材:准备一些实际问题,让学生在解决实际问题的过程中运用幂的运算性质。
3.学生活动材料:为学生提供一些练习题,让学生在课堂上进行实践操作。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,让学生尝试解决。
例如:计算(23)2,32×33等。
引导学生发现这些问题都可以转化为幂的乘方与积的乘方的问题。
2.呈现(10分钟)教师通过课件展示幂的乘方与积的乘方的实例,引导学生发现规律。
如:(a m)n=a mn,(ab)n=a n b n等。
让学生总结出幂的乘方与积的乘方的运算法则。
幂的乘方与积的乘方数学教案
标题:幂的乘方与积的乘方数学教案
一、课程目标:
1. 使学生理解和掌握幂的乘方和积的乘方的运算法则。
2. 培养学生的逻辑思维能力和运算能力。
3. 提高学生在实际问题中运用幂的乘方和积的乘方解决的能力。
二、教学内容:
1. 幂的乘方
- 定义
- 运算规则
- 示例解释
2. 积的乘方
- 定义
- 运算规则
- 示例解释
3. 幂的乘方与积的乘方的关系和区别
4. 应用实例
三、教学方法:
1. 讲解法:对幂的乘方和积的乘方的概念和运算法则进行讲解。
2. 举例法:通过具体例子帮助学生理解幂的乘方和积的乘方的运算法则。
3. 练习法:设计相关练习题,让学生通过实践巩固所学知识。
四、教学过程:
1. 导入新课:回顾幂的概念,引入幂的乘方和积的乘方的概念。
2. 新课讲解:
- 对幂的乘方和积的乘方的概念进行讲解,并通过具体的例子帮助学生理解。
- 解释幂的乘方和积的乘方的运算法则,并给出具体的示例。
3. 实践操作:设计相关的练习题,让学生进行练习,以检验他们对幂的乘方和积的乘方的理解程度。
4. 小结:总结本节课的主要内容,强调幂的乘方和积的乘方的区别和联系。
5. 作业布置:设计一些相关的题目作为课后作业,以便学生进一步理解和掌握幂的乘方和积的乘方。
五、教学评价:
通过课堂练习和课后作业,评估学生对幂的乘方和积的乘方的理解和掌握情况。
六、教学反思:
根据学生的学习情况和反馈,反思教学过程中的优点和不足,以便改进教学方法和策略。
幂的乘方与积的乘方教案学习专用教学目标:1.理解幂的乘方和积的乘方的概念。
2.学习幂的乘方和积的乘方的运算法则。
3.能够应用幂的乘方和积的乘方的运算法则解决实际问题。
教学重点:1.幂的乘方和积的乘方的概念理解。
2.运用幂的乘方和积的乘方的运算法则解决问题。
教学准备:1.黑板、白板和书写工具。
2.习题集以及课堂练习材料。
教学过程:Step 1: 引入幂的乘方和积的乘方的概念(10分钟)教师可以通过一个简单的问题或一个实际的例子来引入幂的乘方和积的乘方的概念。
例如,在我们日常生活中,可以举例解释2的3次幂和3的2次幂的概念。
可以画出一个正方形,每个边长都是2cm,在黑板上记录为2^3,然后解释为2*2*2、同样地,可以画出一个正方形,每个边长都是3cm,记录为3^2,解释为3*3Step 2:讲解幂的乘方的运算法则(20分钟)在黑板上列一些幂的乘方的练习题,例如2^3*2^4,10^2*10^3等,并让学生解答。
之后,教师解答这些问题,展示幂的乘方的运算法则。
-幂的乘方的法则:(a^m)^n=a^(m*n)-幂的乘法法则:a^m*a^n=a^(m+n)Step 3:讲解积的乘方的运算法则(20分钟)在黑板上列一些积的乘方的练习题,例如(2*3)^4,(5*10)^3等,并让学生解答。
之后,教师解答这些问题,展示积的乘方的运算法则。
-积的乘方的法则:(a*b)^n=a^n*b^nStep 4:综合运用幂的乘方和积的乘方的运算法则解决问题(30分钟)教师列举一些实际应用问题,例如一个正方形的边长是10cm,问面积是多少?一个长方形的长是5cm,宽是3cm,问面积是多少?学生利用幂的乘方和积的乘方的运算法则解决这些问题,并进行讨论。
Step 5:小结与课堂练习(15分钟)教师对幂的乘方和积的乘方的运算法则进行小结,并鼓励学生通过课堂习题巩固所学内容。
Step 6:作业布置(5分钟)布置相关的作业,要求学生利用幂的乘方和积的乘方的运算法则解决一些问题,并在下堂课上进行批改和讲解。
幂的乘方与积的乘方(1)教案以下是为您推荐的幂的乘方与积的乘方(1)教案,希望本篇文章对您学习有所帮助。
幂的乘方与积的乘方(1)教案学习目标:1.能说出幂的乘方的运算性质,并会用符号表示.2.能运用幂的乘方法则进行计算,并能说出每一步运算的依据.3.经历探索幂的乘方的运算性质过程,进一步体会幂的意义,从中感受具体到抽象、特殊到一般的思考方法,发展数感和归纳能力.学习重点:理解并掌握幂的乘方法则.学习难点:幂的乘方法则的灵活运用.学习过程:【预习交流】1.预习课本P43到P44,有哪些疑惑?2.104107=______,(-5)7 (-5)3=_______,b2mb4n-2m=_________,27a 3b=_______,(a-b)4(b-a)5=_______.3.若4x=5,4y=3,则4x+y=________.4.(x4)3=_______, (am)2=________, m12=( )2=( )3=( )4,(a2)n (a3)2n=_______.【点评释疑】1.课本P43做一做.(am)n = amn(m,n都是正整数)幂的乘方,底数不变,指数相乘.法则说明:(1)公式中的底数a可以是具体的数,也可以是代数式.(2)注意幂的乘方中指数相乘,而同底数幂的乘法中是指数相加.2.课本P43到P44例1、例2.3.应用探究(1)计算:(2)已知a=266 ,b=355 ,c=444,比较a、b、c的大小.(3)已知23x+2=64,求x的值.(4)已知,求的值.4.巩固练习:课本P44练习1、2、3、4、5.【达标检测】1.若ax=2,则a3x= .若y3n=3,则y9n= .2.若a-b=3,则[(a-b)2]3 [(b-a)3]2=________(用幂的形式表示),2381632= (结果用幂的形式表示)3.32 9m=3( );若4 8m 16m=29 ,则m= .4.已知:248n=213,那么n的值是( )A.2 B.3 C.5 D.85.已知(axay)5=a20 (a0,且a1),那么x、y应满足( )A.x+y=15B.x+y=4C.xy=4D.y=6.已知am=3,an=2,那么am+n+2的值为( )A.8 B.7 C.6a2D.6+a27.如果x满足方程33x-1=2781,求x的值.8.3108与2144的大小关系是 .9.如果2a=3,2b=6,2c=12,那么 a、b、c的关系是 .10. 若x=2m,y=3+4m(m是正整数),则用x的代数式表示y 应是 .11.已知 ,求m的值.12. 已知x满足22x+3-22x+1=48,求x的值.【总结评价】幂的乘方,底数不变,指数相乘.【课后作业】课本P46习题8.2 1(1)(2)(3)、2、3(1)、4.。
第二节 幂的乘方与积的乘方(1)【学习目标】1、经历探索幂的乘方性质,进一步体会幂的乘方。
2、了解幂的乘方运算性质,能利用性质进行计算和解决实际问题。
3、经历自主探索冪的乘方运算性质的过程,能用代数式和文字准确表达性质;通过由特殊到一般的猜想与说理、验证,培养说理能力和归纳表达能力。
【学习方法】 自主探究与合作交流 【学习重点】冪的乘方运算性质。
【学习难点】冪的乘方运算性质的灵活运用。
【学习过程】 模块一 预习反馈 一.学习准备1.幂的意义:na 表示______个______连乘,其中a 是________,n 是_______.2. a m· a n= (m 、n 为正整数)即同底数幂相乘, 不变,指数 . 3.计算下列各式,结果用幂的形式表示。
(1)541010⨯=_______________________(2) 432333⨯⨯=__________________ (3) 441010⨯=______________________(4) 222333⨯⨯=__________________ 二.解读教材 1.你知道()3210等于多少吗?()3210=222101010⨯⨯(根据幂的意义)=22210++ (根据同底数幂的乘法)=610=3210⨯2.计算下列各式,并说明理由。
(1)()426=( )×( )×( )×( )=()()()()()()⨯+++=66(2)32)(a =( )×( )×( )=()()()()()⨯++=a a(3)2)(m a =( )×( )=()()()()⨯+=a a(4)n m a )(=( )×( )×……×( )×( )=()()()()()⨯+++=a a即: 3.例题观摩 (1)6232355)5(==⨯ (2)71663232)(y y y y y y y y ==⋅=⋅=⋅+⨯()n m a =_______________(m 、n 为正整数) 。
1.4幂的乘方与积的乘方(一)教案
年级七年级学科数学课型新课时间主备人张艳苹审核人黄沐审定人程运成
教学目标:
1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.
2.了解幂的乘方的运算性质,并能解决一些实际问题.
教学重点:幂的乘方的运算性质及其应用.
教学难点:幂的运算性质的灵活运用.
教学方法:引导——探究相结合
教师由实际情景引导学生探究幂的乘方的运算性质,并能灵活运用.
教学过程:
Ⅰ.情景问题,引入
1.如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的倍.
2.地球、木星、太阳可以近似地看作是球体,木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约是地球的多少倍?
1 / 3
我们把这样的运算:(102)3叫做幂的乘方.这节课我们就来研究幂的第二个运算性质——幂的乘方.
Ⅱ.探索幂的乘方的运算性质
1.尝试自行完成P17做一做,交流:
⑴由此,你找到解决幂的乘方的方法了吗?
⑵你会怎样描述你的方法呢?
2.尝试自行完成例1与随堂练习,与同桌交流结果。
3. ⑴尝试独立完成习题1.5 同桌互纠、互评
⑵计算:
2
5
)
3
1
(⎥
⎦
⎤
⎢
⎣
⎡与5
2
)
3
1
(⎥
⎦
⎤
⎢
⎣
⎡,你有什么发现?由此,你对
幂的乘方有哪些新的认识?
4.当堂检测:
⑴下列各式中,填入a3能使式子成立的是()
A.a6=()2 B. a6=()4 C. a3=()0 D. a5=()2
⑵下列各式计算正确的()
A. x a·x3=(x3)a
B. x a·x3=(x a)3
C.(x a)4=(x4)a
D. x a· x a· x a=x a+3
⑶如果(9n)2=38,则n的值是()
2 / 3
A.4
B.2
C.3
D.无法确定
⑷下列各式中计算正确的是()
A.(x4)3=x7 B.[(-a)2]5=-a10
C.(a m)2=(a2)m=a m2
D.(-a2)3=(-a3)2=-a6
⑸计算(-a2)3·(-a3)2的结果是()
A.a12 B.-a12 C.-a10 D.-a36
⑹23
a a =_________.
()n
Ⅲ.对照学习目标,你有哪些收获和困惑?
Ⅳ.课后作业:完成导学案中的课后作业
Ⅴ.教学反思
3 / 3。