14.13.12年全国高中数学联赛安徽省初赛试卷
- 格式:doc
- 大小:1.23 MB
- 文档页数:5
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试试题(A )一、填空题:本大题共8小题,每小题8分,满分64分.1.若实数m >1满足98m log log =2024,则32m log log 的值为.2.设无穷等比数列{a n }的公比q 满足0<q <1.若{a n }的各项和等于{a n }各项的平方和,则a 2的取值范围是.3.设实数a ,b 满足:集合A ={x ∈R |x 2-10x +a ≤0}与B ={x ∈R |bx ≤b 3}的交集为4,9 ,则a +b 的值为.4.在三棱锥P -ABC 中,若PA ⏊底面ABC ,且棱AB ,BP ,BC ,CP 的长分别为1,2,3,4,则该三棱锥的体积为.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a ,b .若事件a +b =7发生的概率为17,则事件“a =b ”发生的概率为.6.设f (x )是定义域为R 、最小正周期为5的函数.若函数g (x )=f (2x )在区间0,5 上的零点个数为25,则g (x )在区间[1,4)上的零点个数为.7.设F 1,F 2为椭圆Ω的焦点,在Ω上取一点P (异于长轴端点),记O 为△PF 1F 2的外心,若PO ∙F 1F 2 =2PF 1 ∙PF 2 ,则Ω的离心率的最小值为.8.若三个正整数a ,b ,c 的位数之和为8,且组成a ,b ,c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(a ,b ,c )为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a <b <c 的幸运数组(a ,b ,c )的个数为.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ΔABC 中,已知cos C =sinA +cosA 2=B sin +cosB 2,求cos C 的值.10.(本题满分20分)在平面直角坐标系中,双曲线Γ:x 2-y 2=1的右顶点为A .将圆心在y 轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA的所有可能的值.11.(本题满分20分)设复数z ,w 满足z +w =2,求S =z 2-2w +w 2-2z 的最小可能值.2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试试题(A卷)一.(本题满分40分)给定正整数r,求最大的实数C,使得存在一个公比为r的实数等比数列a nn≥1,满足a n≥C对所有正整数n成立.(x 表示实数x到与它最近整数的距离.)二.(本题满分40分)如图,在凸四边形ABCD中,AC平分∠BAD,点E,F分别在边BC,CD上,满足EF||BD,分别延长FA,EA至点P,Q,使得过点A,B,P的圆ω1及过点A,D,Q的圆w2均与直线AC相切.证明:B,P,Q,D四点共圆.(答题时储将图画在答卷纸上)三.(本题满分50分)给定正整数n.在一个3×n的方格表上,由一些方格构成的集合S称为“连通的”,如果对S 中任意两个不同的小方格A,B,存在整数l≥2及S中l个方格A=C1,C2,…,C l=B,满足C i与C i+1有公共边(i=1, 2,⋯,l-1).求具有下述性质的最大整数K:若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S,使得S中的黑格个数与白格个数之差的绝对值不小于K.四.(本题满分50分)设A,B为正整数,S是一些正整数构成的一个集合,具有下述性质:(1)对任意非负整数k,有A K∈S;(2)若正整数n∈S,则n的每个正约数均属于S;(3)若m,n∈S,且m,n互素,则mn∈S;(4)若n∈S,则An+B∈S.证明:与B互素的所有正整数均属于S.。
2008年安徽省高中数学联赛初赛试题1.若函数y=f(x)的图象绕原点顺时针旋转π2后,与函数y=g(x)的图象重合,则( ). (A) g(x)=f−1(−x) (B) g(x)=f−1(x) (C) g(x)=−f −1(−x) (D) g(x)=−f −1(x)2.平面中,到两条相交直线的距离之和为1的点的轨迹为( ) .(A) 椭圆 (B) 双曲线的一部分 (C) 抛物线的一部分 (D) 矩形 3.下列4个数中与cos1∘+cos2∘+...+cos2008∘最接近的是( ). (A)−2008 (B)−1 (C)1 (D)20084.四面体的6个二面角中至多可能有( )个钝角.(A) 3 (B) 4 (C) 5 (D) 6$5.12008写成十进制循环小数的形式12008=0.000498...625498...625...,其循环节的长度为( )(A)30 (B)40 (C)50 (D)606.设多项式(1+x)^2008=a_0+a_1x+...+a_2008x^2008,则a_0,a_1,...,a_2008中共有( )个是偶数. (A) 127 (B) 1003 (C) 1005 (D) 18817.化简多项式sum_{k=m}^{n}C_n^kC_k^mx^(k-m)(1-x)^(n-k)=( ). 8.函数f(x)=frac{3+5sinx}{sqrt(5+4cosx+3sinx)}的值域为( ).9.若数列{a_n}满足a_1>0,a_n=frac{a_1+a_(n-1)}{1-a_1a_(n-1)}(n>=2),且具有最小正周期2008,则a_1=( ). 10.设非负实数a_1,a_2,...,a_2008的和等于1,则a_1a_2+a_2a_3+...a_2007a_2008+a_2008a_1的最大值为( ).11. 设点A(1,1),B,C 在椭圆x^2+3y^2=4上.当直线BC 的方程为( )时,DeltaABC 的面积最大$.13.将6个形状相同的小球(其中红色、黄色、蓝色各2个)随机放入3个盒子中,每个盒子中恰放2个小球,记η为盒中小球颜色相同的盒子的个数,求η的分布.14.设a1≥1,an=[nan −1−−−−−√](n ≥2),其中[x]表示不超过x 的最大整数. 证明:无论a1取何正整数时,不在数列{an}的素数只有有限多个.15.设⊙O1与⊙O2相交于A,B 两点,⊙O3分别与⊙O1,⊙O2外切于C,D ,直线EF 分别与⊙O1,⊙O2相切于点E,F ,直线CE 与直线DF 相交于G ,证明:A,B,G 三点共线.参考答案1.D2.D3.B4. B5.C6.D7.$C_n^m$8.$(-4/5sqrt10,sqrt10]9.(错题)10.$1/4$ 11.$x+3y+2=0 12.2007 13. $P(eta=0)=8/15,P(eta=1)=2/5,P(eta=2)=0,P(eta=3)=1/15$14. 思路:先用反证法证明存在$N,使a_N<=N+1;接着用数学归纳法证n>=N 时,n-2<=a_n<=n+1$;$最后证n>=N 时,a_n<=a_(n+1)<=a_n+1$.这样由$a_n->+oo(n->+oo)知对一切自然数m(>=a_N),m 都在数列{a_n}中,结论正确.15. 利用根轴概念,只需证明$C,D,E,F 四点共圆,以A (或B )为中心进行反演不难得证!2010年全国高中数学联赛安徽赛区预赛试卷 一、填空题(每小题8分,共64分) 1.函数()2f x x =的值域是 .2.函数y = 的图象与xy e =的图象关于直线1x y +=对称.3.正八面体的任意两个相邻面所成二面角的余弦值等于 .4.设椭圆22111x y t t +=+-与双曲线1xy =相切,则t = . 5.设z 是复数,则|1||||1|z z i z -+-++的最小值等于 .6.设a ,b ,c 是实数,若方程320x ax bx c +++=的三个根构成公差为1的等差数列,则a ,b ,c 应满足的充分必要条件是 .7.设O 是ABC ∆的内心,5AB =,6AC =,7BC =,OP xOA yOB zOC =++,0,,1x y z ≤≤,动点P 的轨迹所覆盖的平面区域的面积等于 .8.从正方体的八个顶点中随机选取三点,构成直角三角形的概率是 . 二、解答题(共86分)9.(20分)设数列{}n a 满足10a =,121n n a a -=+,2n ≥.求n a 的通项公式.10.(22分)求最小正整数n 使得224n n ++可被2010整除.11.(22分)已知ABC ∆的三边长度各不相等,D ,E ,F 分别是A ∠,B ∠,C ∠的平分线与边BC ,CA ,AB 的垂直平分线的交点.求证:ABC ∆的面积小于DEF ∆的面积.12.(22分)桌上放有n 根火柴,甲乙二人轮流从中取走火柴.甲先取,第一次可取走至多1n -根火柴,此后每人每次至少取走1根火柴.但是不超过对方刚才取走火柴数目的2倍.取得最后一根火柴者获胜.问:当100n =时,甲是否有获胜策略?请详细说明理由.2010年全国高中数学联赛安徽赛区预赛试卷参考答案及评分标准一、填空题(每小题8分,共64分) 1.答案:4⎡⎤-⎣⎦.提示:因04x ≤≤,设22cos x α-=(0απ≤≤),则4cos 2sin 4)4y αααϕ=-+=++(其中cos ϕ=,sin ϕ=ϕ为锐角),所以当0α=时,max 8y =,当αϕπ+=时,min 4y =-,故4y ⎡⎤∈-⎣⎦.2. 答案:1ln(1)x --提示:因两函数图象关于直线1x y +=对称,所以1x y →-,1y x →-, ∴11yx e --=,解得1ln(1)y x =--.3. 答案:13-提示:正八面体由两个棱长都相等的正四棱锥组成,所以任意两个相邻面所成二面角是正四棱锥侧面与底面所成二面角α的两倍.∵tan α=,∴2211cos 1tan 3αα==+,则21c o s 22c o s 13αα=-=-.4.提示:由椭圆方程22111x y t t +=+-知,1t >,设其参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)代入双曲线方程1xy =,得sin 2θ=.1=,故t =5.答案:1+提示:在复平面上,设(1,0)A -,(1,0)B ,(0,1)C ,则当Z 为ABC ∆的费马点时,|1||||1|z z i z -+-++取得最小值,最小值为11333-++=+6. 答案:213a b =-且3273a a c =-. 提示:设三个根为1α-,α,1α+,则32(1)()(1)x ax bx c x x x ααα+++=-+---,右边展开与左边比较得3a α-=,2(1)(1)(1)(1)31b ααααααα=-++++-=-,(1)(1)c ααα-=-+,消去α得2313273a b a a c ⎧=-⎪⎪⎨⎪=-⎪⎩,这就是所求的充要条件. 7.答案:提示:如图,根据向量加法的几何意义,知点P 在图中的三个平形四边形及其内部运动,所以动点P 的轨迹所覆盖的平面区域的面积等于等于ABC ∆面积的2倍,即8. 答案:67提示:从正方体的八个顶点中随机选取三点,共有38C 个三角形,其中直角三角形有3412C ⨯个,所求“构成直角三角形”的概率是34381267C C ⨯=. 二、解答题(共86分)9. 解:特征根法. 又114221n n n a a a --++=+,11111n n n a a a ----=+,…………(10分)得21212222(2)(2)(2)111nnn n n n n a a a a a a ----+++=-⋅=-==----,于是(2)2(2)1n n n a -+=--.…(20分)10. 解: 22010|24n n ++⇔2222240mod 2240mod 3240mod 5240mod 67n n n n n n n n ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩2220mod 31mod 543mod 67n n n n n n ⎧+=⎪⇔+=⎨⎪+=⎩……(10分) 又20mod30n n n +=⇔=或2mod3,21mod52mod5n n n +=⇔=,243mod6710n n n +=⇔=或56mod67,故所求最小正整数77n =.…………(22分)11. 证明:由题设可证A ,B C ,D ,E ,F 六点共圆. …………(10分)不妨设圆半径为1,则有1(sin 2sin 2sin 2)2ABC S A B C ∆=++,1(sin sin sin )2DEF S A B C ∆=++. 由于sin 2sin 2sin 2A B C ++111(sin 2sin 2)(sin 2sin 2)(sin 2sin 2)222A B B C C A =+++++ sin()sin()sin()sin()sin()sin()A B A B B C B C C A C A =+-++-++- sin()sin()sin()A B B C C A <+++++sin sin sin A B C =++∴ABC ∆的面积小于DEF ∆的面积. …………(22分)12. 解:把所有使得甲没有有获胜策略的初始火柴数目n 从小到大排序为:1n ,2n ,3n ,…,不难发现其前4项分别为2,3,5,8. 下面我们用数学归纳法证明:(1){}i n 满足11i i i n n n +-=+;(2)当i n n =时,乙总可取到最后一根火柴,并且乙此时所取的火柴数目1i n -≤;(3)当1i i n n n +<<时,甲总可取到最后一根火柴,并且甲此时所取的火柴数目i n ≤.……………………………………(10分) 设i k n n =-(4i ≥),注意到212ii i n n n --<<. 当12in k ≤<时,甲第一次时可取k 根火柴,剩余2i n k >根火柴,乙无法获胜. 当12ii n k n -≤<时,21i i n k n --<<,根据归纳假设,甲可以取到第k 根火柴,并且甲此时所取的火柴数目2i n -≤,剩余22i i n n ->根火柴,乙无法获胜.当1i k n -=时,设甲第一次时取走m 根火柴,若m k ≥,则乙可取走所有剩小的火柴;若m k <,则根据归纳假设,乙总可以取到第k 根火柴,并且乙此时所取的火柴数目2i n -≤,剩余22i i n n ->根火柴,甲无法获胜.综上可知,11i i i n n n +-=+.因为100不在数列{}i n ,所以当100n =时,甲有获胜策略. …………(22分)2011年全国高中数学联赛安徽省预赛试题一、填空题(每小题8分,共64分)1.以X 表示集合X 的元素个数. 若有限集合C B A ,,满足20=B A ,30=C B ,40=A C ,则C B A 的最大可能值为 .2.设a 是正实数. 若R ∈++++-=x a ax x a ax x x f ,222252106)(的最小值为10,则=a .3.已知实系数多项式d cx bx ax x x f ++++=234)(满足2)1(=f ,4)2(=f ,6)3(=f ,则)4()0(f f +的所有可能值集合为 . 4.设展开式2011)15(10≥+++=+n x a x a a x n n n , . 若),,,m ax (102011n a a a a =,则=n . 5.在如图所示的长方体EFGH ABCD -中,设P 是矩形EFGH 的中心,线段AP 交平面BDE于点Q . 若3=AB ,2=AD ,1=AE ,则=PQ .6.平面上一个半径r 的动圆沿边长a 的正三角形的外侧滚动,其扫过区域的面积为 .7.设直角坐标平面上的点),(y x 与复数i y x +一一对应. 若点B A ,分别对应复数1,-z z (R ∉z ),则直线AB 与x 轴的交点对应复数 (用z 表示).8.设n 是大于4的偶数. 随机选取正n 边形的4个顶点构造四边形,得到矩形的概率为 .二、解答题(第9—10题每题22分,第11—12题每题21分,共86分)9.已知数列}{n a 满足121==a a ,4121-++-=n n a a a (3≥n ),求n a 的通项公式.10.已知正整数n a a a ,,,21 都是合数,并且两两互素,求证:2111121<+++n a a a . 11.设c bx ax x f ++=3)((c b a ,,是实数),当10≤≤x 时,1)(0≤≤x f . 求b 的最大可能值.12.设点)0,2()0,1()0,1(C B A ,,-,D 在双曲线122=-y x 的左支上,A D ≠,直线CD 交双曲线122=-y x 的右支于点E . 求证:直线AD 与BE 的交点P 在直线21=x 上.解答1. 10.2. 2.3. {32}.4. 2413.5. 417.6. 2π46r ar +.7. zz z z ++1.第5题第6题8. )3)(1(3--n n .9.1221144n n n n a a aa a ---++=-=-1211112222n n n n n a a a a ----⎛⎫⇒-=-== ⎪⎝⎭11212122----=⇒==+=⇒n n n n n n na n a a .10.设k a 的最小素因子k p ,因为k a 不是素数,所以2k k p a ≥. 于是211222211114(21)114(21)1111242nnk k k k n k nk a p k k n ====≤≤+-≤+--=-<∑∑∑∑11.由(0)(1)fc f a b cf c ⎧=⎪⎪=++⎨⎪=+⎪⎩可知2(1)1)(0)b f f =--≤)()(3233x x x f -=满足题设,b 的最大可能值为233.12.设),(),(),(2211y x P y x E y x D ,,,直线CD 的方程)2(-=x k y ,则222(2)1x k x --=,所以221212122241451()114k k x x x x x x k k -++==-=-++--, , ① 1212(1)(1)11y yx y x x x +==-+-, 所以21212121121221212121212211112322341111y y x x x x x x x x x x x y y x x x x x x x x --++-+-+--===-------+-+。
2007年安徽省高中数学竞赛初赛试题一 选择题1.如果集合.A B 同时满足{}1.2.3.4AB ={}1A B =,{}{}1,1A B ≠≠就称有序集对(),A B 为“好集对”。
这里的有序集对(),A B 意指当A B ≠,()(),,A B B A 和是不同的集对,那么“好集对”一共有( )个。
64862AB C D2.设函数()()lg 101x f x -=+,()()122x x f f --=方程的解为( )()()()()2222.log lg21.lg log 101.lg lg21.log log 101A B C D --++3.设100101102499500A =是一个1203位的正整数,由从100到500的全体三位数按顺序排列而成那么A 除以126的余数是( )4.在直角ABC 中, 90C ∠=,CD 为斜边上的高,D为垂足. ,,1AD a BD b CD a b ===-=.设数列{}k u 的通项为()1221,1,2,3,,kk k k k k u a a b a b b k --=-+-+-=则( )2008200720062008200720062008200720082007 2007200820082007.. .. u u u u u u u u u u A B C D =+=-==5.在正整数构成的数列1.3.5.7……删去所有和55互质的项之后,把余下的各项按从小到大的顺序排成一个新的数列{}n a ,易见123451,3,7,9,13a a a a a =====那么2007____________a =192759.. 55 .. A B C D 2831 95976.设A B ==001+cos871-cos87 则():A B =...A B C D 22二.填空题7.边长均为整数且成等差数列,周长为60的钝角三角形一共有______________种. 8.设2007n ≥,且n为使得nn a =取实数值的最小正整数,则对应此n 的783660A B C Dn a 为9.若正整数n 恰好有4个正约数,则称n 为奇异数,例如6,8,10都是奇异数.那么在27,42,69,111,125,137,343,899,3599,7999这10个数中奇异数有_____________________个. 10.平行六面体1111ABCD A B C D -中,顶点A 出发的三条棱1,,AB AD AA的长度分别为2,3,4,且两两夹角都为60那么这个平行六面体的四条对角线1111,,,AC BD DB CA 的长度(按顺序)分别为___________________ 11.函数()(),f x g x 的迭代的函数定义为()()()()()()()12,,fx f x f x f f x ==()()()()()()()()()()()()()()()()()1121,,,n n n n f x f f x g x g x g x g g x g x g g x --====其中n =2,3,4…设()()23,32f x x g x x =-=+,则方程组()()()()()()()()()()()()969696f x g y f y g z f z g x ⎧=⎪⎪=⎨⎪=⎪⎩的解为_________________12.设平行四边形ABCD中,4,2,AB AD BD ===则平行四边形ABCD 绕直线AC 旋转所得的旋转体的体积为_______________三解答题13.已知椭圆22412:3y x +=Γ和点(),0,Q q 直线,l Q A B Γ过且与交于两点(可以重合).1)若AOB ∠为钝角或平角(O 为原点), 4,q =试确定l 的斜率的取值范围.2)设A 关于长轴的对称点为1A ,,4,F q =为椭圆的右焦点试判断1,A F B 和三点是否共线,并说明理由.3)问题2)中,若14,,,q A F B ≠那么三点能否共线?请说明理由.14.数列{}n x 由下式确定:112,1,2,3,,121nn n x x n x x +===+,试求[]20072007l g l g .x k x =整数部分(注[]a 表示不大于a 的最大整数,即a 的整数部分.)15. 设给定的锐角ABC 的三边长,,,,,a b c x y z 正实数满足,ayz bzx cxyp x y z++=其中p为给定的正实数,试求()()()222s b c a x c a b y a b c z =+-++-++-的最大值,并求出当s 取此最大值时, ,,x y z 的取值.2008年安徽省高中数学联赛初赛试题一、选择题1. 若函数()y f x =的图象绕原点顺时针旋转2π后,与函数()y g x =的图象重合,则( ) (A )()()1g x f x -=- (B )()()1g x f x -=(C )()()1g x f x -=--(D )()()1g x f x -=- 2.平面中,到两条相交直线的距离之和为1的点的轨迹为( ) (A )椭圆 (B )双曲线的一部分 (C )抛物线的一部分 (D )矩形3.下列4个数中与cos1cos2cos2008+++最接近的是( ) (A )-2008 (B )-1 (C )1 (D )20084.四面体的6个二面角中至多可能有( )个钝角。
全国高中数学联赛安徽省初赛试卷(考试时间:6月30日上午9:00—11:30)题号一二总分9 10 11 12得分评卷人复核人注意: 1.本试卷共12小题,满分150分;2.请用钢笔、签字笔或圆珠笔作答;3.书写不要超过装订线;4.不得使用计算器.一、填空题(每题8分,共64分,成果须化简)1.设三个复数l,i,z在复平面上相应三点共线,且|z|=5,则z=____.2.设n是正整数,且满足n5=,则n=____.3.函数f(x)=|sin(2x)+sin(3x)+sin(4x)|最小正周期=____.4.设点P,Q分别在函数y=2x和y=log2x图象上,则|PQ|最小值=____.5.从l,2,…,10中随机抽取三个各不相似数字,其样本方差s2≤l概率=____6.在边长为1正方体ABCD-A1B1C1D1内部有一小球,该小球与正方体对角线段AC1相切,则小球半径最大值=____.7.设H是△ABC垂心,且3HA+4HB+5HC=0,则cos∠AHB=____.8.把l,2,…,n2按照顺时针螺旋方式排成n行n列表格T n,第一行是l,2,…,n.例如:T3=.设在T100第i行第j列,则(i,j)= .二、解答题(第9—10题每题21分,第11—12题每题22分,共86分)9.如图所示,设ABCD是矩形,点E,F分别是线段AD,BC中点,点G在线段EF上,点D,H关于线段AG垂直平分线l对称.求证:∠HAB=3∠GAB.10. 设O 是坐标原点,双曲线C :22221x y a b 上动点M 处切线交C 两条渐近线于A ,B两点:(1)求证:△AOB 面积S 是定值.(2)求△AOB 外心P 轨迹方程。
BC DEF G H l11.(1)求证:对于任意实数x,y,z均有222x y z xy yz zx.23(2)与否存在实数k x,y,z下式成立?222x y z xy yz zx23试证明你结论.12.在正边形每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色求此图形中三边颜色都相似三角形最小个数.。
2012年全国高中数学联合竞赛(A 卷)一试一、填空题:本大题共8个小题,每小题8分,共64分。
2012A1、设P 是函数xx y 2+=(0>x )的图像上任意一点,过点P 分别向直线x y =和y 轴作垂线,垂足分别为B A ,,则PB PA ⋅的值是◆答案:1-★解析:设0002(,),p x x x +则直线PA 的方程为0002((),y x x x x -+=--即0022.y x x x =-++由00000011(,).22y xA x x y x x x x x=⎧⎪⇒++⎨=-++⎪⎩又002(0,),B x x +所以00011(,(,0).PA PB x x x =-=-故001() 1.PA PB x x ⋅=⋅-=- 2012A 2、设ABC ∆的内角C B A ,,的对边分别为c b a ,,,且满足c A b B a 53cos cos =-,则BAtan tan 的取值为◆答案:4★解析:由题设及余弦定理得222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=,故222222222222228tan sin cos 2542tan sin cos 5a cb a cA AB c a b ac b c a B B A b c a c b bc+-⋅+-=====+-+-⋅2012A 3、设]1,0[,,∈z y x ,则||||||x z z y y x M -+-+-=的最大值为◆答案:12+★解析:不妨设01,x y z ≤≤≤≤则M =所以 1.M ≤=当且仅当1,0,1,2y x z y x z y -=-===时上式等号同时成立.故max 1.M =2012A 4、在平面直角坐标系xOy 中,抛物线x y 42=的焦点为F ,准线为l ,B A ,是抛物线上的两个动点,且满足3π=∠AFB ,设线段AB 的中点M 在准线l 上的投影为N ,则||||AB MN 的最大值为◆答案:1★解析:由抛物线的定义及梯形的中位线定理得.AF BFMN +=在AFB ∆中,由余弦定理得2222cos3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()AF BFAF BF +≥+-22().AF BFMN +==当且仅当AF BF =时等号成立.故MN AB的最大值为1.2012A 5、设同底的两个正三棱锥ABC P -和ABC Q -内接于同一个球.若正三棱锥ABC P -的侧面与底面所成角为045,则正三棱锥ABC Q -的侧面与底面所成角的正切值为◆答案:4★解析:如图.连结PQ ,则PQ ⊥平面ABC ,垂足H 为正ABC ∆的中心,且PQ 过球心O ,连结CH 并延长交AB 于点M ,则M 为AB 的中点,且CM AB ⊥,易知,PMH QMH ∠∠分别为正三棱锥,P ABC Q ABC --的侧面与底面所成二角的平面角,则45PMH ∠=,从而12PH MH AH ==,因为90,,PAQ AH PQ ∠=⊥所以2,AP PH QH =⋅即21.2AH AH QH =⋅所以24.QH AH MH ==,故tan 4QHQMH MH∠==2012A 6、设函数)(x f 是定义在R 上的奇函数,且当0≥x 时,2)(x x f =.若对任意的]2,[+∈a a x ,不等式)(2)(x f a x f ≥+恒成立,则实数a 的取值范围是◆答案:).+∞★解析:由题设知22(0)()(0)x x f x x x ⎧≥⎪=⎨-<⎪⎩,则2()).f x f =因此,原不等式等价于()).f x a f +≥因为()f x 在R 上是增函数,所以,x a +≥即1).a x ≥又[,2],x a a ∈+所以当2x a =+时,1)x -取得最大值1)(2).a -+因此,1)(2),a a ≥+解得a ≥故a 的取值范围是).+∞2012A 7、满足31sin 41<<n π的所有正整数n 的和为◆答案:33★解析:由正弦函数的凸性,有当(0,6x π∈时,3sin ,x x x π<<由此得131sin ,sin ,1313412124πππππ<<>⨯=131sin ,sin .10103993πππππ<<>⨯=所以11sinsin sin sin sin .134********πππππ<<<<<<故满足11sin 43n π<<的正整数n 的所有值分别为10,11,12,它们的和为33.2012A 8、某情报站有D C B A ,,,四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种。
安徽省高中数学竞赛初赛试题一.选取题1.如果集合.A B 同步满足{}1.2.3.4AB ={}1A B =,{}{}1,1A B ≠≠就称有序集对(),A B 为“好集对”。
这里有序集对(),A B 意指当A B ≠,()(),,A B B A 和是不同集对,那么“好集对”一共有( )个。
64862A B C D2.设函数()()lg 101x f x -=+,()()122x x f f --=方程的解为( )()()()()2222.log lg21.lg log 101.lg lg21.log log 101A B C D --++3.设100101102499500A =是一种1203位正整数,由从100到500全体三位数按顺序排列而成那么A 除以126余数是( )4.在直角ABC 中,90C ∠=,CD 为斜边上高,D 为垂足. ,,1AD a BD b CD a b ===-=.设数列{}k u 通项为()1221,1,2,3,,kkk k k k u a ab a b b k --=-+-+-=则( )2008200720062008200720062008200720082007 2007200820082007.. .. u u u u u u u u u u A B C D =+=-==5.在正整数构成数列1.3.5.7……删去所有和55互质项之后,把余下各项按从小到大顺序排成一种新数列{}n a ,易见123451,3,7,9,13a a a a a =====那么2007____________a =192759.. 55 .. A B C D 2831 95976.设A B ==1+cos871-cos87则():A B =...A B C D 227.边长均为整数且成等差数列,周长为60钝角三角形一共有______________种. 8.设2007n ≥,且n为使得nn a =取实数值最小正整数,则相应此n na 783660A B C D为9.若正整数n 正好有4个正约数,则称n 为奇异数,例如6,8,10都是奇异数.那么在27,42,69,111,125,137,343,899,3599,7999这10个数中奇异数有_____________________个. 10.平行六面体1111ABCD A B C D -中,顶点A 出发三条棱1,,AB AD AA 长度分别为2,3,4,且两两夹角都为60那么这个平行六面体四条对角线1111,,,AC BD DB CA 长度(按顺序)分别为___________________11.函数()(),f x g x 迭代函数定义为()()()()()()()12,,fx f x f x f f x ==()()()()()()()()()()()()()()()()()1121,,,n n n n f x f f x g x g x g x g g x g x g g x --====其中n =2,3,4…设()()23,32f x x g x x =-=+,则方程组()()()()()()()()()()()()969696f x g y f y g z f z g x ⎧=⎪⎪=⎨⎪=⎪⎩解为_________________12.设平行四边形ABCD中,4,2,AB AD BD ===则平行四边形ABCD 绕直线AC 旋转所得旋转体体积为_______________三.解答题13.已知椭圆22412:3y x +=Γ和点(),0,Q q 直线,l Q A B Γ过且与交于两点(可以重叠).1)若AOB ∠为钝角或平角(O 为原点),4,q =试拟定l 斜率取值范畴.2)设A 关于长轴对称点为1A ,,4,F q =为椭圆的右焦点试判断1,A F B 和三点与否共线,并阐明理由.3)问题2)中,若14,,,q A F B ≠那么三点能否共线?请阐明理由. 14.数列{}n x 由下式拟定:112,1,2,3,,121nn n x x n x x +===+,试求[]20072007lg lg .x k x =整数部分(注[]a 表达不不不大于a 最大整数,即a 整数某些.)15. 设给定锐角ABC 三边长,,,,,a b c x y z 正实数满足,ayz bzx cxyp x y z++=其中p 为给定正实数,试求()()()222s b c a x c a b y a b c z =+-++-++-最大值,并求出当s 取此最大值时,,,x y z 取值.安徽省高中数学竞赛初赛答案一、 选取题1.C.2.A.3.C.4.A.5.B6.D. 第1题解答过程 逐个元素考虑归属选取. 元素1必要同步属于A 和B .元素2必要至少属于A 、B 中之一种,但不能同步属于A 和B ,有2种选取:属于A 但不属于B ,属于B 但不属于A . 同理,元素3和4也有2种选取.但元素2,3,4不能同步不属于A ,也不能同步不属于B .因此4个元素满足条件选取共有62222=-⨯⨯种.换句话说,“好集对”一共有6个. 答:C.第2题解答过程 令)110lg(+=-xy ,则0>y ,且y x 10110=+-,11010-=-y x ,)110lg(-=-y x ,)110lg(--=y x .从而)110lg()(1--=-x x f . 令t x =2,则题设方程为)()(1t ft f -=-,即)110lg()110lg(--=+t t ,故 0)]110)(110lg[(=-+t t ,1)110)(110(=-+t t ,2102=t , 2lg 2=t ,解得 2lg 212==t x . 从而 1)2(lg log )2lg 21(log 22-==x . 答:A.第3解答过程注意 972126⨯⨯=,2,7和9两两互质. 由于 0≡A (mod2),)()()()()(005994201101001+++++++++++++++≡ A 500102101100++++≡ 2401500100÷⨯+≡)(6120300≡≡(mod9), 因此6≡A (mod18). (1)又由于1103-≡,nn)1(103-≡(mod7),因此ii i A 3400010)500(⨯-=∑=ii i )(1)500(4000-⨯-≡∑=100)101102()495496()497498()499500(+-++-+-+-≡ 6300≡=(mod7).(2),(1),(2)两式以及7和18互质,知6≡A (mod126). 答:C.另解:632126⨯=,99999963,1109999996-=,)()(11011066--n , ,3,2,1=n 因此499500104974981010310410101102101006118811941200+⨯++⨯+⨯+⨯= A+-⨯++-⨯+-⨯+-⨯=)()()()(1104974981101031041101011021101006118811941200 )(499500497498103104101102100+++++ 2200499500101102100999999÷⨯+++=)(B 60060200100999999++=B60060300999999+=B 60360999999+=C ,其中B ,C 为整数.从而6036063+=D A 663+=E ,其中D ,E 为整数.因此A 除以63余数为6.由于A 是偶数,因此A 除以126余数也为6. 答:C. 第4解答过程易见BD AD CD ⋅=2,即ab b a =-2)(,又已知1=-b a ,故1=ab ,1)1(=-a a ,012=--a a ;1)1(=+b b ,012=++b b .显然k u 是首项为k a ,公比为a bq -=等比数列前1+k 项和.故ba b a q q a u k k k k k +--=--=+++111)(1)1(, 3,2,1=k .即 b a b a b a b a u u k k k k k k +--++--=++++++22111)()(])()([11212++++----++=k k k k b b a a ba)]1()()1([111+---++=++b b a a b a k k ])([12121b b a a b a k k ⋅--⋅+=++ 233])([1+++=--+=k k k u b a b a , 3,2,1=k .故答案为A.(易知别的答案均不成立)另解:易见BD AD CD ⋅=2,即ab b a =-2)(,又已知1=-b a ,故1=ab ,51414)((222=⨯+=+-=+ab b a b a ),5=+b a .解得215+=a , 215-=b . 显然k u 是首项为ka ,公比为abq -=等比数列前1+k 项和,故 ba b a q q a u k k k k k +--=--=+++111)(1)1(])251()251[(5111++--+=k k ,,3,2,1=k . 于是数列{}k u 就是斐波那契数列1,2,3,5,8,13,21,…,它满足递推关系 ,12k k k u u u +=++ ,3,2,1=k . 因此答案为A. 第5题解答过程{}n a 可当作是在正整数数列1,2,3,4,5,6,7,…中删去所有能被2,5或11整除项之后,把余下各项按从小至大顺序排成数列.由三阶容斥原理,1,2,3,4,…,m 中不能被2,5或11整除项个数为⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-=1101022551152m m m m m m m m x m , 其中⎣⎦a 不表达不不不大于a 最大整数,即a 整数某些. 估值:设11010225511522007m m m m m m m m x m -+++---≈=)1111)(511)(211(---⨯=m 11105421⨯⨯⨯=m m 114=,故 55194112007≈⨯≈m . 又因⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢+⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-⎥⎦⎥⎢⎣⎢-=1105519105519225519555519115519555192551955195519x=5519-2759-1103-501+100+250+551-50=,并且5519不是2,5,11倍数,从而知55192007=a . 答:B.又解:{}n a 可当作是在正整数数列1,2,3,4,5,6,7,…中删去所有能被2,5 或11整除项之后,把余下各项按从小至大顺序排成数列.由于2,5,11是质数,它们最小公倍数为110.易见,-54,-53,…,0,1,2,3,…,55中不能被2,5,11整除数为,,;,,,17139731±±±±±±,;2119±± ;,,292723±±±,,,;,,474341393731±±±±±±535149±±±,;,共40个.(或由欧拉公式,1,2,3,…,110中不能被2,5,11整除数个数,等于1,2,3,…,110中与110互质数个数,等于401111511211110110=-⨯-⨯-⨯=∅)()()()(.) 显然1,2,3,…中每持续110个整数,不能被2,5,11整除数均有40个.因此,1,2,3,…,550050110=⨯中,不能被2,5,11整除数有20005040=⨯个.不不大于5500中数不能被2,5,11整除,是5500+1,5500+3,5500+7,5500+9,5500+13,5500+17,5500+19,….因此5519是第个不能被2,5,11整除数,亦即所求55192007=a . 答:B . 第6题解答过程显然 287cos 127cos 123cos 12++++++=A5.43cos 5.5cos 5.3cos 5.1cos ++++=;287cos 127cos 123cos 12-++-+-=B5.43sin 5.5sin 5.3sin 5.1sin ++++=. 注意到)1sin()1sin(1sin cos 2 --+=θθθ, )1cos()1cos(1sin sin 2 +--=θθθ,因此+-+-+-=⨯)5.4sin 5.6(sin )5.2sin 5.4(sin )5.0sin 5.2(sin 21sin 2A)5.42sin 5.44(sin -+ 22sin 5.22cos 25.0sin 5.44sin =-=,+-+-+-=⨯)5.6cos 5.4(cos )5.4cos 5.2(cos )5.2cos 5.0(cos 21sin 2B )5.44cos 5.42(cos -+ 22sin 5.22sin 25.44cos 5.0cos =-=.故5.22cot )22sin 5.22sin 2(:)22sin 5.22cos 2()21sin 2(:)21sin 2(:==⨯⨯=B A B A12+=. 答:D.另解:2A 00005.43cos 5.5cos 5.3cos 5.1cos +++++= ,2B 5.43sin 5.5sin 5.3sin 5.1sin ++++=,++++=+)5.3sin 5.3(cos )5.1sin 5.1(cos 22i i B iA )5.43sin 5.43(cos i ++∑=++=21)2sin 2(cos )5.1sin 5.1(cos k k i i)2sin 2(cos 1)2sin 2(cos 1)5.1sin 5.1(cos 22i i i +-+-+= )2sin 2(cos 1)44sin 44(cos 1)5.1sin 5.1(cosi i i +-+-+=1cos 1sin 21sin 222cos 22sin 222sin 2)5.1sin 5.1(cos 22i i i --+= )1sin 1)(cos 1sin 2()22sin 22)(cos 22sin 2)(5.1sin 5.1(cosi i i i i +-+-+==)5.22sin 5.22(cos 1sin 22sini +. 由于2A 和2B是实数,因此 1sin 5.22cos 22sin 2=A ,1sin 5.22sin 22sin 2=B , 122222222145sin 45cos 15.22cos 5.22sin 25.22cos 25.22sin 5.22cos 2:2:2+=+=+=+====BAB A . 答:D. 第7解答过程解:设△ABC 三边长c b a ,,为整数,c b a c b a c b a ,,,,60≥≥=++成等差数列,A ∠为钝角,则必有c a b +=2,222a cb <+.易解得 b b b c a b c b a 32)(60=+=++=++=,40,20=+=c a b ;222c a b -<))((c a c a -+=,即c a c a -<-<10),(40202.因而a a c a c a <=-++<25,2)()(50,即26≥a .此外,29,30,260,≤<=+>++=>+a a a a a c b a a c b .易检查),,(c b a)11,20,29(),12,20,28(),13,20,27(),14,20,26(=都是钝角三角形. 答:4.第8题解答过程 注意到22-=x ,22+=y 满足4)22()22(22=++-=+y x ,0,>y x ,故可令θcos 2=x ,θsin 2=y ,0<θ<2π.从而22cos 42-=θ,-2cos 422-=θ,-θπθ2cos 43cos 1cos 2222==-=,故83πθ=,83cos )83sin 83(cosπππn i a n n =+=+ 83sin πn i . n a 取实数,当且仅当083sin=πn ,当且仅当k n 8=,∈k Z.满足此条件且2007≥n 最小正整数n 为2008,此时1753cos 820083cos2008-====ππx a a n . 答:-1. 第9题解答过程易见奇异数有两类:第一类是质数立方3p (p 是质数);第二类是两个不同质数乘积21p p (21,p p 为不同质数).由定义可得3327=是奇异数(第一类); 73242⨯⨯=不是奇异数;23369⨯=是奇异数(第二类); 373111⨯=是奇异数(第二类); 35125=是奇异数(第一类);137是质数,不是奇异数;37343=是奇异数(第一类);221301900899-=-=)(130+=2931130⨯=-)(是奇异数(第二类); )(16016013600359922+=-=-=5961160⨯=-)(是奇异数(第二类); 42119)12020)(120(120180007999233⨯=++-=-=-=是奇异数(第二类).答:8. 第10解答过程解:将向量1AA ,,分别记为a ,b ,c . 2==a 3==b 4==c ,且易见c b a AC ++=1, c b a C A ++-=1, c b a BD +-=1, c b a DB -+=1.)(2)(2222⋅+⋅+⋅+++=++=22260cos )(2ca bc ab c b a +++++=ca bc ab c b a +++++=222244332432222⨯+⨯+⨯+++==55, 故551=AC . 类似地,可算得,191=BD ,151=DB ,271=CA =33.答:55,19,15,33. 第11题解答过程 令tx =-3,易见3+=t x ,323)3(232)(+=-+=-=t t x x f ,)32(2)()2(+=t x f 3-32)(,,32)(2+=+=t x f t n n ;令s y =+1,易见1-=s y ,2)1(323)(+-=+=s y y g 13-=s ,,132)13(3)(2)2(-=+-=s s y g ,13)()(-=s y g n n , ,3,2,1=n .因而,题设方程组可化为⎪⎩⎪⎨⎧-+=+--+=+--+=+-)3.(1)1(33)3(2)2(,1)1(33)3(2)1(,1)1(33)3(2696969x z z y y x (1)-(2),(2)-(3),(3)-(1)得⎪⎩⎪⎨⎧-=--=--=-)6).((3)(2)5(),(3)(2)4(),(3)(2696969y x x z x z z y z y y x因此)()23()()23()(2339629696y x x z z y y x -=-=-=-⇒00=-⇒=-z y y x z y x ==⇒.代入(1)得1)1(33)3(269-+=+-x x ,1)1(7293)3(512-+=+-x x ,7287291533512+=-x x , 2261217=-x , 32331=-x , 31323-=x . 因此原方程组解为31323-===z y x . 答:31323-===z y x . 第12题解答过程.以l T V -表达平面图形T 绕直线l 所得旋转体体积.记直线AC 为l ,作l DN BM ⊥,,交l 于F E ,,分别交CD ,AB 于N M ,.过O 作l PQ ⊥,分别交CD AB ,于Q P ,.由于O 是BD 中点,因此Q P ,分别是DM BN ,中点.由对称性,易见所求旋转体体积为)(2l NPQD l ADN l ABCD V V V V --∆-+==平行四边形平行四边形.由于2324===AD BD AB ,,,易见3090=∠=∠DBA ADB ,,73422=+=+=DO AD AO ,72=AC .显然CAB DCA DAC ∠=∠>∠,FNDF >.且21727322==⨯==∆AO DO AD AO S DF ADO ,74716712422==-=-=DF AD AF .从而由圆锥体积公式得 ππππ749167716747123312==⨯⨯=⨯⨯⨯==-∆-∆AF DF V V l ADF l ADN . 又71074147472=-=-=-=AF AC CF ,7==AO CO ,QO DF CO CF ::=, 215171021727=÷⨯=⨯=CF DF CO QO .从而由圆锥体积公式得COQO CF DF V V V V l CQO l CDF l FOQD l NPQD ⨯⨯-⨯⨯=-==-∆-∆--223131ππ梯形平行四边形ππππ71225657122534310007)2574940(7)72521710712(3=-⨯=-=⨯-⨯=.从而17573021225105772)12256574916(72)7122565774916(2πππππ=⨯=+=+=V . 答:所求体积为1757302π:第13题解答过程解:I )可设l :4+=my x ,与Γ联立得03624)43(22=+++my y m . 这是y 一元二次方程,由鉴别式0≥∆解得42≥m .记)(11,y x A ,)(22,y x B ,则4324221+-=+m m y y ,4336221+=m y y . 由题设条件,02121<+=⋅y y x x ,即0)4)(4(2121<+++y y my my ,得 016)(4)1(21212<++++y y m y y m ,即016432444336)1(222<++-⋅++⋅+m mm m m , 即 0)43(424)1(9222<++-+m m m .得02532<+-m , 3252>m , 253)1(2<m ,5353<<-m . 故l 斜率取值范畴为)53,53(-. 由于F (1,0),因此)(111,1y x --=,)(22,1y x -=,从而 12211221)3()3())(1()1(y my y my y x y x +++=---- 04324343362)(32222121=+-⋅++⋅=++=m mm m y y y my . ∴1FA 与共线, 即1A 与F 、B 三点共线.III )假设4≠q ,过)0,(q Q 直线与Γ交于A 、B ,且A 关于长轴对称点为1A ,如果1A 、F 、B 三点共线.咱们另取点)0,4(P .设直线AP 与Γ交于1B ,那么如II )证明,1A 、F 、B 三点必共线.故B 与1B 重叠,从而直线AB 和1AB 重叠,就是AQ 与AP 重叠.因此P 与Q 重叠,4=q ,与假设矛盾.这就是说,4≠q 时,三点1A 、F 、B 不能共线. 第14题解答过程 14.解:n n n n n x x x x x 1212121+=+=+, 22211441nn n x x x ++=+,)1(4112221+=-+n nn x x x , 3,2,1=n . 故∑∑==++=-20061220061221)1(4)11(n n n nn x x x,亦即80244112006122122007∑=+=-n n x x x , 由11=x 得80254120061222007∑=+=n n x x . (*)由于112121<+=+n n n x x x ,,,3,2,1 =n 且显然0>n x ,故{}n x 是递减数列,且 31122112=+=x x x ,11319231122223=+=+=x x x , 故∑∑==++=2006322200612)31(1n n n nx x15120041219911)113(911200632<⨯++=++<∑=n ,由(*)式得 8629802515141802522007=+⨯<<x,,802518629122007<<x 80251lglg 86291lg 22007<<x , 8025lg lg 28629lg 2007-<<-x ,3lg 242007-<<-x ,23lg 22007-<<-x ,∴⎣⎦2lg 2007-==x k .第15题解答过程证明:由于△ABC 是锐角三角形,其三边c b a ,,满足0,,>c b a ,以及222222222,,,,,c b a b a c a c b c b a b a c b c b >+>+>+>+>+>+. 因而,由平均不等式可知222222222222)()()(z c b a y b a c x a c b -++-++-+)()(21)()(21)()(21222222222222222222222222xy y x z c b a z x x z y b a c y z z y x a c b +-+++-+++-+≤ 222222222222zy x c y x z b x z y a ++=)(2)(2222abz cay bcx z cxy y bzx x ayz ++-++=, 从而22222222222)(])[(])[(])[(P zcxy y bzx x ayz z c b a y b a c x a c b =++≤-++-++-+, 亦即2)(P S c b a ≤++,cb a P S ++≤2.上式取等式当且仅当222z y x ==,亦即===z y x cb a P++.因而所求S 最大值为c b a P ++2,当S 取最大值时,===z y x cb a P++.(第13题答图) (第10题答图) (第12题答图)yy AA 1B 1C 1D 1B CDABCD Q M P N O F E安徽高中数学竞赛初赛试题一、选取题1.若函数()y f x =图象绕原点顺时针旋转2π后,与函数()y g x =图象重叠,则( ) (A )()()1g x f x -=- (B )()()1g x f x -= (C )()()1g x f x -=--(D )()()1g x f x -=-2.平面中,到两条相交直线距离之和为1点轨迹为( ) (A )椭圆(B )双曲线一某些(C )抛物线一某些 (D )矩形3.下列4个数中与cos1cos2cos2008+++最接近是( )(A )- (B )-1(C )1(D )4.四周体6个二面角中至多也许有( )个钝角。
2012各省数学竞赛汇集1目录1.2012高中数学联赛江苏赛区初赛试卷------第3页2. 2012年高中数学联赛湖北省预赛试卷(高一年级)---第7页3. 2012年高中数学联赛湖北省预赛试卷(高二年级)---第10页4. 2012年高中数学联赛陕西省预赛试卷------第16页5. 2012年高中数学联赛上海市预赛试卷------第21页6. 2012年高中数学联赛四川省预赛试卷------第28页7. 2012年高中数学联赛福建省预赛试卷(高一年级)---第35页8. 2012年高中数学联赛山东省预赛试卷---第45页9. 2012年高中数学联赛甘肃省预赛试卷---第50页10. 2012年高中数学联赛河北省预赛试卷---第55页11. 2012年高中数学联赛浙江省预赛试卷---第62页12. 2012年高中数学联赛辽宁省预赛试卷---第72页13. 2012年高中数学联赛新疆区预赛试卷(高二年级)---第77页14. 2012年高中数学联赛河南省预赛试卷(高二年级)---第81页15. 2012年高中数学联赛北京市预赛试卷(高一年级)---第83页23 2012高中数学联赛江苏赛区初赛试卷一、填空题(70分)1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____. 6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为_____8、已知等差数列{}n a 和等比数列{}n b 满足:1123,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n-+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明:4 (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|l n|(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <513、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.614、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.72012年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
2020年全国高中数学联赛安徽赛区初赛试题第Ⅰ卷(共64分)一、填空题(每题8分,满分64分,将答案填在答题纸上)1.设三个复数1,i ,z 在复平面上对应的三点共线,且5z =,则z = .2.设n 是正整数,且满足5438427732293n =,则n = .3.函数()()()()sin 2sin 3sin 4f x x x x =++的最小正周期= .4.设点P ,Q 分别在函数2x y =和2log y x =的图象上,则PQ 的最小值= .5.从1,2,,10中随机抽取三个各不相同的数字,其样本方差21s ≤的概率= .6.在边长为1的正方体1111ABCD A B C D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值= .7.设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cos AHB ∠= .8.把21,2,,n 按照顺时针螺旋方式排成n 行n 列的表格n T ,第一行是1,2,,n .例如:3123894765T ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.设2018在100T 的第i 行第j 列,则(),i j = .第Ⅱ卷(共86分)二、解答题 (本大题共4小题,共86分.解答应写出文字说明、证明过程或演算步骤.)9. 如图所示,设ABCD 是矩形,点E ,F 分别是线段AD ,BC 的中点,点G 在线段EF 上,点D ,H 关于线段AG 的垂直平分线l 对称.求证:3HAB GAB ∠=∠.10. 设O 是坐标原点,双曲线2222:1x y C a b-=上动点M 处的切线交C 的两条渐近线于A ,B 两点.(1)求证:AOB ∆的面积S 是定值;(2)求AOB ∆的外心P 的轨迹方程.11. (1)求证:对于任意实数x ,y ,z 都有)22223x y z xy yz zx ++≥++.(2)是否存在实数k >x ,y ,z 下式恒成立?()22223x y z k xy yz zx ++≥++试证明你的结论.12. 在正2018边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色.求此图形中三边颜色都相同的三角形的最小个数.2020年全国高中数学联赛安徽赛区初赛试题参考答案一、填空题1.43i -或34i -+2.2133.2π4.()1ln ln 22ln 2+ 5.115 6.465- 7.66- 8.()34,95二、解答题9.解:由E ,F 分别是AD ,BC 的中点,得//EF AB AD ⊥.设P 是E 关于l 的对称点,则//EP AG l ⊥,故四边形AEPG 是等腰梯形. 进而PAG EGA GAB ∠=∠=∠,APG GEA ∠=∠,从而AP HG ⊥.再由HP DE EA PG ===,得HAP PAG GAB ∠=∠=∠.因此3HAB GAB ∠=∠.10.解:(1)()00,M x y 处的切线方程00221x x y y a b -=. 与渐近线方程联立,得()110000,,a b A x y x y x y a b a b ⎛⎫ ⎪= ⎪ ⎪++⎝⎭,()220000,,a b B x y x y x y a b a b ⎛⎫ ⎪-= ⎪ ⎪--⎝⎭. 从而,122112S x y x y ab =-=是定值. (2)由(1)可设(),A a b λλ,,a b B λλ⎛⎫- ⎪⎝⎭,(),P x y ,λ为非零常数.由PA PO PB ==,得()()222222a b x a y b x y x y λλλλ⎛⎫⎛⎫-+-=+=-++ ⎪ ⎪⎝⎭⎝⎭. 从而有()222ax by a b λ+=+,()2212ax by a b λ-=+. 上述两式相乘,得P 的轨迹方程为()222222214a xb y a b -=+.11.解:(1)由均值不等式,221322x y +≥,221322x z +≥,221322y z +≥.故)22223x y z xy yz zx ++≥++.(2)()222222222232322442k k k k k x y z k xy yz zx x y z y z k yz ⎛⎫⎛⎫⎛⎫⎛⎫++-++=--+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭上式0≥恒成立当且仅当2204k -≥且2222423244k k k k ⎛⎫⎛⎫⎛⎫-≤-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.化简得k ≤326240k k -+≥.显然,2k =>. 12.设N 是此图形中三边颜色都相同的三角形数目,M 是此图形中三边颜色不全相同的三角形数目,i x 是以第i 个顶点为端点的红色线段数目,则有32018M N C +=,()2018120172i ii x x M =-=∑. 当且仅当每个1008i x =或1009时,N 取得最小值32320181009100910082C C -⨯=.310092N C =是可以取到的,例如把线段()mod201812018,1504i i j i j →±≤≤≤≤染成红色,其它线段染成蓝色.。
高中数学竞赛初赛试题一 选择题1. 如果集合.A B 同时满足{}1.2.3.4AB ={}1A B =,{}{}1,1A B ≠≠就称有序集对(),A B 为“好集对”。
这里的有序集对(),A B 意指当A B ≠,()(),,A B B A 和是不同的集对,那么“好集对”一共有()个64862ABCD2.设函数()()lg 101xf x -=+,()()122x x f f --=方程的解为()()()()()2222.log lg21.lg log 101.lg lg21.log log 101A B C D --++3.设100101102499500A =是一个1203位的正整数,由从100到500的全体三位数按顺序排列而成那么A 除以126的余数是( )4.在直角ABC 中, 90C ∠=,CD 为斜边上的高,D 为垂足.,,1AD a BD b CD a b ===-=.设数列{}ku 的通项为()1221,1,2,3,,kk k k k k u a a b a b b k --=-+-+-=则( )2008200720062008200720062008200720082007 2007200820082007.. .. u u u u u u u u u u A B C D =+=-==5.在正整数构成的数列1.3.5.7……删去所有和55互质的项之后,把余下的各项按从小到大的顺序排成一个新的数列{}na ,易见123451,3,7,9,13a a a a a =====那么2007____________a =192759.. 55 .. A B C D 2831 959778366ABCD6.设A B ==1+cos871-cos87 则():A B =...A B C D 22二.填空题7.边长均为整数且成等差数列,周长为60的钝角三角形一共有______________种. 8.设2007n ≥,且n为使得nn a =取实数值的最小正整数,则对应此n 的na 为9.若正整数n 恰好有4个正约数,则称n 为奇异数,例如6,8,10都是奇异数.那么在27,42,69,111,125,137,343,899,3599,7999这10个数中奇异数有_____________________个.10.平行六面体1111ABCD A B C D -中,顶点A 出发的三条棱1,,AB AD AA 的长度分别为2,3,4,且两两夹角都为60那么这个平行六面体的四条对角线1111,,,AC BD DB CA 的长度(按顺序)分别为___________________ 11.函数()(),f x g x 的迭代的函数定义为()()()()()()()12,,f x f x f x f f x ==()()()()()()()()()()()()()()()()()1121,,,n n n n f x f f x g x g x g x g g x g x g g x --====其中n =2,3,4…设()()23,32f x x g x x =-=+,则方程组()()()()()()()()()()()()969696f x g y f y g z f z g x ⎧=⎪⎪=⎨⎪=⎪⎩的解为_________________12.设平行四边形ABCD中,4,2,AB AD BD ===则平行四边形ABCD绕直线AC旋转所得的旋转体的体积为_______________ 三解答题 13.已知椭圆22412:3y x+=Γ和点(),0,Q q 直线,l Q A BΓ过且与交于两点(可以重合).1)若AOB ∠为钝角或平角(O 为原点), 4,q =试确定l 的斜率的取值范围.2)设A 关于长轴的对称点为1A ,,4,F q =为椭圆的右焦点试判断1,A F B 和三点是否共线,并说明理由.3)问题2)中,若14,,,q A F B ≠那么三点能否共线?请说明理由.14. 数列{}nx 由下式确定:112,1,2,3,,121nn n x x n x x +===+,试求[]20072007lg lg .x k x =整数部分(注[]a 表示不大于a 的最大整数,即a的整数部分.)15. 设给定的锐角ABC的三边长,,,,,a b c x y z 正实数满足,ayz bzx cxyp x y z++=其中p为给定的正实数,试求()()()222s b c a x c a b y a b c z =+-++-++-的最大值,并求出当s取此最大值时, ,,x y z 的取值.安徽省高中数学联赛初赛试题 一、选择题1. 若函数()y f x =的图象绕原点顺时针旋转2π后,与函数()y g x =的图象重合,则( )(A )()()1g x fx -=- (B )()()1g x f x -=(C )()()1g x fx -=--(D )()()1g x f x -=-2.平面中,到两条相交直线的距离之和为1的点的轨迹为( )(A )椭圆 (B )双曲线的一部分 (C )抛物线的一部分 (D )矩形 3.下列4个数中与cos1cos2cos2008+++最接近的是( )(A )-2008 (B )-1 (C )1 (D )2008 4.四面体的6个二面角中至多可能有( )个钝角。
全国高中数学联赛安徽省初赛试题解答及评分参考一、填空题,每题8分1.设1sin cos 2+=x x ,则33sin cos +=x x 解答:由1sin cos 2+=x x ,可得112sin cos 4+=x x ,故3sin cos 8=-x x ,从而33sin cos +=x x 221311(sin cos )(sin cos sin cos )(1)2816+-+=+=x x x x x x2.设i 为虚数单位,化简20162016(1)(1)++-=i i解答:由2(1)2+=i i ,可得20161008(1)2+=i ,同理可得20161008(1)2-=i 故201620161009(1)(1)2++-=i i3.已知等差数列121000,,a a a 的前100项之和为100,最后100项之和为1000,则1=a解答:设等差数列的公差为d ,则有11004950100+=a d ,1100949501000+=a d 解得10.505=a4. 集合[][][]{}{}231,2,,100++∈x x x x R 共有 个元素,其中[]x 表示不超过x 的最大整数。
解答:设[][][]()23=++f x x x x 则有(1)()6+=+f x f x ,当01≤<x 时,()f x 的所有可能值为0,1,2,3.由此()f x 得值域{}6,61,62,63=+++∈S k k k k k Z ,[][][]{}{}231,2,,100417167++∈=⨯-=x x x x R 个元素。
5.若关于x 的方程2=x x ae 有三个不同的实根,则实数a 的取值范围是 解答:设2()-=xf x x e,则2'()(2)-=-xf x x x e当0≤x 时,2()-=xf x x e单调递减,当02≤≤x 时,2()-=x f x x e 单调递增,当2≥x 时,2()-=x f x x e 单调递减,(0)0=f ,2(2)4-=f e ,当→+∞x 时()0→f x 因此,2()-==xf x x e a 有三个不同的实根当且仅当204-<<a e6.在如图所示的单位正方体1111-ABCD A B C D 中,设O 为正方体的中心,点,M N 分别在棱111,A D CC 上,112,23==A M CN ,则四面体1OMNB 的体积等于解答:以A 为原点,1,,AB AD AA 为,,x y z 轴建立空间直角坐标系,则有11112(,,0),(0,,1),(1,1,),(1,0,1)2223O M N B 由此四面体1OMNB 的体积1111672=⨯⨯=V OB ON OM 7.已知抛物线P 以椭圆E 的中心为焦点,P 经过E 的两个焦点,并且P 与E 恰有三个交点,则E 得离心率等于解答:不妨设椭圆E 的方程为22221(0)+=>>x y a b a b ,P 经过E 的两个焦点,222=+x cy c 222=+a b c ,P 与E 恰有三个交点,所以2=c b ,则E得离心率等于==c e a 8. 等可能地随机产生一个正整数{}1,2,,2016∈x ,则x 在二进制下的各位数字之和不超过8的概率等于 解答:设{}1,2,,2016∈x 的二进制表示是109102()x x x x 即102==∑i i i x x 其中{}0,1∈i x我们考查满足108=>∑ii x的x 的个数。