高二下期末复习当堂测试 (立体几何 、 导数)
- 格式:doc
- 大小:130.50 KB
- 文档页数:2
高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
高二导数练习题及答案文库导数是高中数学中的重要知识点之一,掌握导数的概念和运算方法对学生的数学学习至关重要。
为了帮助高二学生更好地巩固导数知识,提高解题能力,本文整理了一些高二导数练习题及其详细答案,供学生参考和练习。
一、基础练习题1. 求函数f(x) = 3x² - 2x + 1的导数f'(x)。
解:根据导数的定义,可得:f'(x) = lim(Δx→0)[f(x + Δx) - f(x)] / Δx代入函数f(x)的表达式,展开并化简:f'(x) = lim(Δx→0)[(3(x + Δx)² - 2(x + Δx) + 1) - (3x² - 2x + 1)] / Δx= lim(Δx→0)[3x² + 6xΔx + 3(Δx)² - 2x - 2Δx + 1 - 3x² + 2x - 1] /Δx= lim(Δx→0)(6xΔx + 3(Δx)² - 2Δx) / Δx= lim(Δx→0)(6x + 3Δx - 2) = 6x - 2所以,函数f(x) = 3x² - 2x + 1的导数f'(x)为6x - 2。
2. 已知函数g(x) = 4x³ + 2x² - x的导数g'(x),求g'(1)的值。
解:根据导数的定义,g'(x) = lim(Δx→0)[g(x + Δx) - g(x)] / Δx代入函数g(x)的表达式,展开并化简:g(x + Δx) = 4(x + Δx)³ + 2(x + Δx)² - (x + Δx)= 4x³ + 12x²Δx + 12xΔx² + 4(Δx)³ + 2x² + 4xΔx + 2(Δx)² - x - Δx= 4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx代入导数的定义:g'(x) = lim(Δx→0)[(4x³ + 2x² - x + 12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) - (4x³ + 2x² - x)] / Δx= lim(Δx→0)(12x²Δx + 12xΔx² + 4(Δx)³ + 4xΔx + 2(Δx)² - Δx) / Δx= lim(Δx→0)(12x² + 12xΔx + 4(Δx)² + 4x + 2Δx - 1)= 12x² + 4x - 1将x = 1代入上述导数表达式,可得:g'(1) = 12(1)² + 4(1) - 1 = 15所以,g'(1)的值为15。
高二数学导数专题训练一、选择题1. 一个物体的运动方程为S=1+t+2t 其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒B 6米/秒C 5米/秒D 8米/秒 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( )A.1B.2C.-1D. 03 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A ()f x =2()g xB ()f x -()g x 为常数函数C ()f x =()0g x =D ()f x +()g x 为常数函数 4. 函数3y x x =+的递增区间是( )A )1,(-∞B )1,1(-C ),(+∞-∞D ),1(+∞5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( )A. f(x) 〉0B.f(x)〈 0C.f(x) = 0D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A (1,0)B (2,8)C (1,0)和(1,4)--D (2,8)和(1,4)-- 8.函数313y x x =+- 有 ( )A.极小值-1,极大值1B. 极小值-2,极大值3C.极小值-1,极大值3D. 极小值-2,极大值29. 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A (0)(2)2(1)f f f +<B (0)(2)2(1)f f f +≤ C(0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +>10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .0二、填空题11.函数32y x x x =--的单调区间为___________________________________. 12.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________.14.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 . 三、解答题:15.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程16.如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大?17.已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-,请解答下列问题:(1)求)(x f y =的解析式; (2)求)(x f y =的单调递增区间。
高二下期期末立体几何专项练习一、选择题:1.已知相交直线,l m 都在平面α内;且都不在平面β内;若p :,l m 中至少有一条与β相交;q :α与β相交;则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 2.下面几个命题:①“直线//a 直线b ”的充要条件是“a 平行于b 所在的平面”; ②“直线l ⊥平面α内所在直线”的充要条件是“l ⊥α”③“直线a 、b 为异面直线”的充分不必要条件是“直线a 、b 不相交”;④“平面//α平面β”的必要不充分条件是“α内存在不共线的三点到β的距离相等”。
其中正确的命题是A .①②B .②③C .③④D .②④ 3若,m n 是两条异面直线;则总存在一个确定的平面α;满足A .//m α;//n αB .m α⊂;//n αC .m α⊥;n α⊥D .m α⊂;n α⊥ 4.在四棱锥S ABCD -中;为了推出AB BC ⊥;需从下列条件:①SB ⊥面ABCD ; ②SC CD ⊥;③//CD 面SAB ;④BC CD ⊥ 中选出部分条件;这些条件可能是 A .②③ B .①④ C .②④ D .③④ 5.设a 、b 是两条不同直线;α、β是两个不同平面;则下列命题 ①,//a b a b αα⊥⊥⇒ ②//,a a ααββ⊥⇒⊥ ③,//a a βαβα⊥⊥⇒ ④,,a b a b αβαβ⊥⊥⊥⇒⊥ 其中正确的命题的个数是A .0个B .1个C .2个D .3个 6.设l 是直线;α、β是平面;给出下列三个条件:①l α⊥;②//l β;③αβ⊥ 以其中两个作为题设;另一个作为结论;则可构成三个命题;这三个命题中正确的个数为 A .3个 B .2个 C .1个 D .0个 7.如图是一个正方体的平面展开图;在这个正方体中 ①//BM ED ②CN 与BM 成60角 ③CN 与BM 为异面直线 ④DM BN ⊥ 以上四个命题中;正确的序号是A .①②③B .②④C .③④D .②③④ 8.在正方体1AC 中;各面对角线所在的12条直线中与对角线1AC 所在直线异面且垂直的有 A .2条 B .4条 C .6条 D .8条 9.如图;一个无盖的正方体盒子的表面展开图;A 、B 、C 为其上 的三点;则在正方体盒子中ABC ∠= A .45︒ B .60︒ C .90︒ D .120︒10.在侧棱垂直于底面的三棱柱111ABC A B C -中;AC BC =;M 、N 分别为11A B 、AB的中点;点P 在线段1B C 上;则NP 与平面1AMC 的位置关系为AB C DFEMNABCA.垂直B.平行C.相交但不垂直D.由点P的位置而定11.已知AB是⊙O的直径;PA⊥面⊙O;C是⊙O上一点(不包括,A B两点);则二面角A PC B--的平面角是A.锐角B.直角C.钝角D.不能确定12.正方体1AC的棱长为a;EF在AB上滑动;且()EF b b a=<;点Q在11D C上滑动;则四面体1A EFQ-的体积A.与E、F位置有关B.与点Q位置有关C.与,,E F Q位置都有关D.定值13.一个水平放置的图形的斜二测直观图是底角为45︒;腰和上底均为1的等腰梯形;则原图形的面积为A B1C D214.过棱长为1的正方体同一顶点的三条棱的中点作一截面;将正方体截下一角;则剩余部分的体积为A.78B.1516C.2324D.474815.球面上有四个点,,,P A B C;若,,PA PB PC两两互相垂直;且PA PB PC a===;那么这个球队的球面面积为A2a B.232aπC.23aπD216.在棱长为1的正方体1AC中;O是底面1111A B C D的中心;则O到平面11ABC D的距离为A.12B C D17.如图;扇形的中心角为90;弦AB周;所得的旋转体体积12,V V的比为A.1:1B.C.1:2D.18.两个完全相同的长方体的长、宽、高分别为5cm、A B.C.19.已知底面为正三角形的三棱锥P ABC-E为PB与PC的点;则△ADE的周长最小值为A.12B.C.D.620.正方体1AC中;在侧面11ABB A内有一动点P;它到直线11A B与到直线BC的距离相等;则点P的轨迹是下图中的A BB1AA BB1A1A BB1A1A BB1A1A .B .C .D .二、填空题:21.设平面α、β和直线a 、b ;给出下列命题:① 若//a b ;b α⊂;则//a α ② 若//a α;//b α;a b A ⋂=;则//αβ ③ 若//a α;b α⊂;则//a b ④ 若//b α;c αβ⋂=;a β⊂;则//a c ⑤ 若//a α;b αβ⋂=;则//a b其中正确命题的序号是_____________.(将所有正确结论的序号都写上)22.如图;两个正方形ABCD 和ADEF 所在平面互相垂直;设M 、N 分别是BD 和AE 的中点;那么① AD MN ⊥;② //MN 面CDE ;③ //MN CE ;④ MN 、CE 异面其中正确结论的序号是_____________.23.正方体1AC 中;E 为1DD 的中点;则1BD 与面ACE 的位置关系为_____________.24.如图;四棱锥P ABCD -中;ABCD 为正方形;PA ⊥底面ABCD ;那么在该图中;互相垂直的平面有___________对.25.在正方体1AC 中;O 为底面ABCD 的中心;E 、F 、G 、H 分别为棱1AA 、1BB 、1CC 、1DD 的中点;请写出一个与1AO 垂直的正方体的截面_____________.(截面以给定的字母表示;不必写出所有情况) 26.设x 、y 、z 表示空间的不同直线或平面;且直线不在平面内;给出下列五个命题: ①x 为直线;y 、z 为平面;② x 、y 、z 为平面;③ x 、y 为直线;z 为平面;④x 、y 为平面;z 为直线;⑤ x 、y 、z 为直线。
高二数学立体几何一、选择题: (本大题共12小题,每小题3分,共36分.) 1、已知),1,2,1(),1,1,0(-=-=则a 与b 的夹角等于 A .90°B .30°C .60°D .150°2、设M 、O 、A 、B 、C 是空间的点,则使M 、A 、B 、C 一定共面的等式是 A .0=+++OMB .OC OB OA OM --=2C .413121++= D .0=++MC MB MA 3、下列命题不正确的是A .过平面外一点有且只有一条直线与该平面垂直;B .如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直;C .两异面直线的公垂线有且只有一条;D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。
4、若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭②//m m n n αα⊥⎫⇒⎬⊥⎭③//m m n n αα⊥⎫⇒⊥⎬⎭④//m n m n αα⎫⇒⊥⎬⊥⎭A .1个B .2个C .3个D .4个 5、四棱锥成为正棱锥的一个充分但不必要条件是A .各侧面是正三角形B .底面是正方形C .各侧面三角形的顶角为45度D .顶点到底面的射影在底面对角线的交点上6、若点A (42+λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为A .1,-4,9B .2,-5,-8C .-3,-5,8D .2,5,8 7、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 A .2F+V=4 B .2F -V=4 C .2F+V=2 (D )2F -V=2 8、侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 A .239 B .433 C .233 D .439 9、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是θ,则A .θ=600B .θ=450C .52cos =θ D .52sin =θ10、已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是A .2∶πB .1∶2πC .1∶πD .4∶3π11、设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅,0=⋅,0=⋅,则△BCD 是A .钝角三角形B .直角三角形C .锐角三角形D .不确定12、将B ∠=600,边长为1的菱形ABCD 沿对角线AC 折成二面角θ,若∈θ[60°,120°], 则折后两条对角线之间的距离的最值为A .最小值为43, 最大值为23B .最小值为43, 最大值为43C .最小值为41, 最大值为43D .最小值为43, 最大值为23二、填空题:(本大题共6题,每小题3分,共18分) 13、已知向量a 、b 满足|a | =31,|b | = 6,a 与b 的夹角为3π,则3|a |-2(a ·b )+4|b | =________; 14、如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为 时,体积V P-AEB恒为定值(写上你认为正确的一个答案即可).ABCDEP15、若棱锥底面面积为2150cm ,平行于底面的截面面积是254cm ,底面和这个截面的距离是12cm ,则棱锥的高为 ;16、一个四面体的所有棱长都是2,四个顶点在同一个球面上,则此球的表面积为 . 三、解答题:(本大题共6题,共46分)17.在如图7-26所示的三棱锥P —ABC 中,PA ⊥平面ABC , PA=AC=1,PC=BC ,PB 和平面ABC 所成的角为30°。
高二数学期末19题满分专练1.(★★)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB 的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD 的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.2.(★★)如图,三棱锥P﹣ABC中,PC,AC,BC两两垂直,BC=PC=1,AC=2,E,F,G分别是AB,AC,AP的中点.(1)证明:平面GEF∥平面PCB;(2)求直线PF与平面PAB所成角的正弦值.【解答】(1)证明:∵E,F,G分别是AB,AC,AP的中点,∴EF∥BC,又BC⊂平面PBC,EF⊄平面PBC,∴EF∥平面PBC,同理可得:GF∥平面PBC,又EF⊂平面GEF,GF⊂平面GEF,GF∩EF=F,∴平面GEF∥平面PBC.(2)以C为坐标原点,以CA,CB,CP为坐标轴建立空间直角坐标系如图所示:则P(0,0,1),A(2,0,0),B(0,1,0),F(1,0,0),∴=(2,0,﹣1),=(﹣2,1,0),=(1,0,﹣1),设平面PAB的法向量=(x,y,z),1,2,2),则,∴,令x=1可得=(1,2,2).∴cos<,>===﹣.设PF与面PAB所成角为θ,则sinθ=|cos<,>|=.∴PF与面PAB所成角的正弦值为.3.(★★)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB=1,点E为棱PC的中点.AD ⊥AB,AB∥DC,AD=DC=AP=2.(1)证明:BE⊥DC;(2)求二面角E﹣AB﹣P的大小.【解答】证明:(1)取PD中点F,连接AF,EF,∵E,F分别是PC,PD的中点,∴EF∥CD,EF=CD,∵AB∥CD,AB=CD,∴EF∥AB,EF=AB,∴四边形ABEF是平行四边形,∴BE∥AF,∴PA⊥面ABCD,∴PA⊥CD,∴AB⊥AD,AB∥CD,∴AD⊥CD,∴PA∩AD=A,∴CD⊥面PAD,∴CD⊥AF,∴CD⊥BE.﹣﹣﹣﹣﹣﹣﹣﹣(4分)解:(2)以点A为坐标原点建立如图所示空间直角坐标系A﹣xyz,则A(0,0,0),B(1,0,0),P(0,0,2),C(2,2,0),E(1,1,1),﹣﹣﹣﹣﹣﹣﹣﹣(6分)=(1,1,2),=(1,0,0),设面EAB的法向量为=(x,y,z),由,令=(0,﹣1,1),﹣﹣﹣﹣﹣﹣﹣﹣(9分)面PBC的一个法向量=(0,1,0),设二面角E﹣AB﹣P的大小为θ,则cosθ=|cos<>|=,∴二面角E﹣AB﹣P的大小.﹣﹣﹣﹣﹣﹣﹣﹣(12分)4.(★★)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=2,AB=2.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)求锐二面角D﹣A1C﹣E的余弦值.【解答】解:(Ⅰ)连结AC1,交A1C于点O,连结DO,则O为AC1的中点,因为D为AB的中点,所以OD∥BC1,又因为OD⊂平面A1CD,BC1⊄平面A1CD,∴BC1∥平面A1CD…(4分)(Ⅱ)由,可知AC⊥BC,以C为坐标原点,方向为x轴正方向,方向为y轴正方向,方向为z轴正方向,建立空间直角坐标系Cxyz,则D(1,1,0),E(0,2,1),A1(2,0,2),,,设是平面A1CD的法向量,则即可取.…(6分)同理,设是平面A1CE的法向量,则,可取.…(8分)从而…(10分)所以锐二面角D﹣A1C﹣E的余弦值为…(12分)5.(★★)如图,正三棱柱的所有棱长都为2,D为CC1中点.用空间向量进行以下证明和计算:(1)求证:AB1⊥面A1BD;(2)求二面角A﹣A1D﹣B的正弦值;(3)求点C到面A1BD的距离.【解答】(本小题满分12分)证明:(1)取BC中点O为原点,OB为x轴,在平面BB1C1C内过O作BB1的平行线为y轴,OA为z轴,建立如图所示空间直角坐标系,则,B(1,0,0),C(﹣1,0,0),A1(0,2,),B1(1,2,0),C1(﹣1,2,0),D(﹣1,1,0),=(1,2,﹣),=(﹣2,1,0),=(1,﹣2,﹣),∴=0,=0,∴AB1⊥BD,AB1⊥A1B,又BD∩A1B=B,∴AB1⊥平面AB1D.解:(2)∵AB1⊥平面AB1D,∴==(1,2,﹣)是面BA1D的法向量,设面AA1D的法向量=(x,y,z),=(0,2,0),=(﹣1,1,﹣),则,取x=﹣3,得=(﹣3,0,)设二面角A﹣A1D﹣B的平面角为θ,则cos<>==﹣,∴sinθ==,∴二面角A﹣A1D﹣B的正弦值为.(3)==(1,2,﹣)是面BA1D的法向量,向量=(2,0,0),∴点C到面A1BD的距离为d===.6.(★★)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F 是CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.【解答】(1)证:取CE中点P,连接FP、BP,∵F为CD的中点,∴FP∥DE,且FP=.又AB∥DE,且AB=.∴AB∥FP,且AB=FP,∴ABPF为平行四边形,∴AF∥BP.…(2分)又∵AF⊄平面BCE,BP⊂平面BCE,∴AF∥平面BCE.…(4分)(2)∵△ACD为正三角形,∴AF⊥CD.∵AB⊥平面ACD,DE∥AB,∴DE⊥平面ACD,又AF⊂平面ACD,∴DE⊥AF.又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE.…(6分)又BP∥AF,∴BP⊥平面CDE.又∵BP⊂平面BCE,∴平面BCE⊥平面CDE.…(8分)(3)由(2),以F为坐标原点,FA,FD,FP所在的直线分别为x,y,z轴(如图),建立空间直角坐标系F﹣xyz.设AC=2,则C(0,﹣1,0),.…(9分)设n=(x,y,z)为平面BCE的法向量,则令z=1,则n=(0,﹣1,1).…(10分)显然,m=(0,0,1)为平面ACD的法向量.设平面BCE与平面ACD所成锐二面角为α,则.α=45°,即平面BCE与平面ACD所成锐二面角为45°.…(12分)7.(★★★★)如图所示三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,AC⊥CD.(Ⅰ)若AA1=AC,求证:AC1⊥平面A1B1CD;(Ⅱ)若A1D与BB1所成角的余弦值为,求二面角C﹣A1D﹣C1的余弦值.【解答】证明:(Ⅰ)若AA1=AC,则四边形ACC1A1为正方形,则AC1⊥A1C,∵AD=2CD,AC⊥CD,∴△ACD为直角三角形,则AC⊥CD,∵AA1⊥平面ABC,∴CD⊥平面ACC1A1,则CD⊥A1C,∵A1C∩CD=C,∴AC1⊥平面A1B1CD;解:(Ⅱ)∵AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,AC⊥CD.∴建立以C为坐标原点,CD,CB,CC1分别为x,y,z轴的空间直角坐标系,如图,设CD=1,则AD=2,AC=,∵A1D与BB1所成角的余弦值为,∴=,又,解得A1D=,∴AA1=,则C(0,0,0),D(1,0,0),A(0,,0),C1(0,0,),A1(1,2,),=(0,﹣2,﹣),=(﹣1,﹣2,﹣),=(﹣1,﹣2,0),设平面A1DC的法向量=(x,y,z),则,取x=,得=(,,﹣2),设平面A1DC1的法向量=(a,b,c),则,取a=2,得=(2,﹣,﹣4),设二面角C﹣A1D﹣C1的平面角为θ,则cosθ===.∴二面角C﹣A1D﹣C1的余弦值为.8.(★★★★)直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.【解答】(1)证明:∵AE⊥A1B1,A1B1∥AB,∴AE⊥AB,又∵AA1⊥AB,AA1⊥∩AE=A,∴AB⊥面A1ACC1,又∵AC⊂面A1ACC1,∴AB⊥AC,以A为原点建立如图所示的空间直角坐标系A﹣xyz,则有A(0,0,0),E(0,1,),F(,,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且λ∈[0,1],即(x,y,z﹣1)=λ(1,0,0),则D(λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF⊥AE;(2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.9.(★★★★)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=2,,PD⊥AD,PD⊥DC.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)∵PD⊥AD,PD⊥CDAD∩CD=D,AD⊂平面ABCDCD⊂平面ABCD∴PD⊥平面ABCD,BC⊂平面ABCD∴PD⊥BC…(2分)又∴又∴,∠ADB=90°,AD⊥BD,又AD∥BC∴BC⊥BD…(4分)又∵PD∩BD=D,BD⊂平面PBD,PD⊂平面PBD∴BC⊥平面PBD而BC⊂平面PBC,∴平面PBC⊥平面PBD…(6分)解:(Ⅱ)由(Ⅰ)所证,BC⊥平面PBD∴∠PBD即为二面角P﹣BC﹣D的平面角,即∠PBD=而,所以PD=1…(8分)分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系.则A(1,0,0),,,P(0,0,1)∴,=(﹣1,0,0),,设平面PBC的法向量为,则,即,取y=1,得…(10分)∴AP与平面PBC所成角的正弦值为:.…(12分)10.(★★★★)如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求二面角F﹣BE﹣D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.【解答】证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC.因为ABCD是正方形,所以AC⊥BD,从而AC⊥平面BDE.…(4分)解:(Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D﹣xyz如图所示.因为BE与平面ABCD所成角为600,即∠DBE=60°,所以.由AD=3,可知,.则A(3,0,0),,,B(3,3,0),C(0,3,0),所以,.设平面BEF的法向量为=(x,y,z),则,即.令,则=.因为AC⊥平面BDE,所以为平面BDE的法向量,.所以cos.因为二面角为锐角,所以二面角F﹣BE﹣D的余弦值为.…(8分)(Ⅲ)点M是线段BD上一个动点,设M(t,t,0).则.因为AM∥平面BEF,所以=0,即4(t﹣3)+2t=0,解得t=2.此时,点M坐标为(2,2,0),即当时,AM∥平面BEF.…(12分)11.(★★★★)如图,四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2(1)求直线DC与平面ADB1所成角的大小;(2)在棱上AA1是否存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,若存在,确定P的位置,若不存在,说明理由.【解答】解:(1)∵四棱柱ABCD﹣A1B1C1D1中,A1D⊥平面ABCD,底面为边长为1的正方形,侧棱AA1=2,∴以点D为坐标原点O,DA,DC,DA1分别为x,y,z轴,建立空间直角坐标系,…..(2分)D(0,0,0),A(1,0,0),B1(0,1,),C(0,1,0),,=(0,1,),=(0,1,0),设平面ADB1的法向量为,则,取z=1,得=(0,﹣,1),…..(4分)设直线DC与平面所ADB1成角为θ,则sinθ=|cos<>|==,∵θ∈[0,],∴θ=,∴直线DC与平面ADB1所成角的大小为.…..(6分)(2)假设存在点P(a,b,c),使得二面角A﹣B1C1﹣P的大小为30°,设=,由A1(0,0,),得(a﹣1,b,c)=λ(﹣a,﹣b,),∴,解得,B1(0,1,),C1(﹣1,1,),=(﹣1,0,0),=(,﹣1,﹣),设平面的法向量为=(x,y,z),则,取z=1,得=(0,﹣,1),….(9分)由(1)知,平面AB1C1D的法向量为=(0,﹣,1),∵二面角A﹣B1C1﹣P的大小为30°,∴cos30°===.由λ>0,解得λ=2,所以棱AA1上存在一点P,使得二面角A﹣B1C1﹣P的大小为30°,且AP=2PA1.12.(★★★★)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.【解答】证明:(I)∵PA⊥底面ABCD,AD⊥AB,以A为坐标原点,建立如图所示的空间直角坐标系,∵AD=DC=AP=2,AB=1,点E为棱PC的中点.∴B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(1,1,1)∴=(0,1,1),=(2,0,0)∵•=0,∴BE⊥DC;(Ⅱ)∵=(﹣1,2,0),=(1,0,﹣2),设平面PBD的法向量=(x,y,z),由,得,令y=1,则=(2,1,1),则直线BE与平面PBD所成角θ满足:sinθ===,故直线BE与平面PBD所成角的正弦值为.(Ⅲ)∵=(1,2,0),=(﹣2,﹣2,2),=(2,2,0),由F点在棱PC上,设=λ=(﹣2λ,﹣2λ,2λ)(0≤λ≤1),故=+=(1﹣2λ,2﹣2λ,2λ)(0≤λ≤1),由BF⊥AC,得•=2(1﹣2λ)+2(2﹣2λ)=0,解得λ=,即=(﹣,,),设平面FBA的法向量为=(a,b,c),由,得令c=1,则=(0,﹣3,1),取平面ABP的法向量=(0,1,0),则二面角F﹣AB﹣P的平面角α满足:cosα===,故二面角F﹣AB﹣P的余弦值为:13.(★★★★)如图,在正方体ABCD﹣A1B1C1D1,O是AC的中点,E是线段D1O上一点,且=λ.(1)若λ=,求异面直线DE与CD1所成角的余弦值;(2)若二面角D1﹣CE﹣D为π,求λ的值.【解答】解:(1)设正方体的棱长为1,分别以DA、DC、DD1为x,y,z轴,建立空间直角坐标系,则A(1,0,0),O(,0),C(0,1,0),D1(0,0,1),D(0,0,0),设E(x0,y0,z0),∵=,∴=,∴(x0,y0,z0﹣1)=(,,﹣x0),解得x0=,y0=,z0=,E(,,),∴=(,,),CD1=(0,﹣1,1),∴cos<,>==,∴异面直线DE与CD1所成角的余弦值为.(2)设平面CD1E的法向量为=(x,y,z),=(,0),=(0,﹣1,1),=(0,1,0),则,取z=1,得=(1,1,1),由=λ,0≤λ≤1,得E(,,),=(,,),设平面CDE的法向量=(x,y,z),则,取x=﹣2,得=(﹣2,0,λ),∵二面角D1﹣CE﹣D为π,∴|cos|==,由0≤λ≤1,解得λ=8﹣2.14.(★★★★)如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于?若存在,试确定点N的位置;若不存在,请说明理由.【解答】(Ⅰ)证明:∵平面ABCD⊥平面ABEP,平面ABCD∩平面ABEP=AB,BP⊥AB ∴BP⊥平面ABCD,又AB⊥BC,∴直线BA,BP,BC两两垂直,以B为原点,分别以BA,BP,BC为x轴,y轴,z轴建立如图所示的空间直角坐标系.则P(0,2,0),B(0,0,0),D(2,0,1),E(2,1,0),C(0,0,1),∴M(1,1,),∴=(﹣1,0,),=(0,2,0).∵BP⊥平面ABCD,∴为平面ABCD的一个法向量,∵=﹣1×0+0×2+=0,∴⊥.又EM⊄平面ABCD,∴EM∥平面ABCD.(Ⅱ)解:当点N与点D重合时,直线BN与平面PCD所成角的正弦值为.理由如下:∵=(2,﹣2,1),=(2,0,0),设平面PCD的法向量为=(x,y,z),则.令y=1,得=(0,1,2).假设线段PD上存在一点N,使得直线BN与平面PCD所成角α的正弦值等于.设=λ=(2λ,﹣2λ,λ)(0≤λ≤1),∴=+=(2λ,2﹣2λ,λ).∴|cos<,>|==.∴9λ2﹣8λ﹣1=0,解得λ=1或(舍去).∴当N点与D点重合时,直线BN与平面PCD所成角的正弦值等于.。
人教版高三数学第二学期立体几何多选题单元 期末复习专项训练学能测试一、立体几何多选题1.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A D A B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.2.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE所成的角的正切为15 【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan 5DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确;对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且EC ED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 5511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 所成的角的正切为15,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.3.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==,2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯⨯=,四边形面积是22242⨯=,故截面面积是52. 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.4.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 的距离为217D .三棱锥C BEF -5π 【答案】ABC 【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE ,C 正确.D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误. 【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE ,OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD 平面ABEF AB =,AD ⊂平面ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥ AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =, 所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===, //DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,BF =2CF ==,DF ===2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高2==,122CDF S =⨯=△ //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC平面ADF ,点C 到平面ADF 的距离为BF = 111122DAF S =⨯⨯=△,C DAF A CDF V V --=,设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,111323h ⨯=,所以h =,故C 正确. 取DB 的中点M ,则//MO AD ,12MO =,所以MO ⊥平面CDFE ,所以21512ME MF MB MC ⎛⎫====+= ⎪⎝⎭所以M 是三棱锥C BEF -外接球的球心,其半径5, 三棱锥C BEF -外接球的体积为334455533V r πππ⎛⎫==⨯= ⎪ ⎪⎝⎭,故D 错误, 故选:ABC. 【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以Q , 平面PAD 的一个法向量为(0,1,0)m =,6(2QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则36022260n AQ xz n AC⎧⋅=+=⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B正确; 三棱锥B ACQ-的体积为1132B ACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=, 所以C 不正确;设四棱锥Q ABCD -外接球的球心为(0,3,)M a ,则MQ MD =,所以()()()222222632363a a ⎛⎫⎛⎫++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即(0,3,0)M 为矩形ABCD 对角线的交点, 所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以222362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为234243x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQB .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin23PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQSPS PQ PS PQ π=⋅=⋅,13sin 234PQRSPQ PR PQ PR π=⋅=⋅, ()3S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅, ∴()33sin 1212PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD. 【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.7.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC ,所成角的余弦值为66D .若点E 到平面11ACC A 的距离等于32EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误;对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002aA ⎛⎫ ⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以122a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,122a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即222022a a b ⎛⎫⎛⎫--+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得b =. 因为//DE 平面11ABB A ,则动点E的轨迹的长度等于1BB =.选项B 正确. 对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,002B a ⎛⎫ ⎪ ⎪⎝⎭,,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,1222a BC a ⎛⎫=- ⎪ ⎪⎝⎭,-,,因为2111cos ,6||||a BC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA 所成角C 正确. 对于选项D,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A EB ,即有1E F EB =,又因为在1CE F ∆中,11E F C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.8.如图,在正方体ABCD﹣A1B1C1D1中,点P在线段B1C上运动,则()A.直线BD1⊥平面A1C1DB.三棱锥P﹣A1C1D的体积为定值C.异面直线AP与A1D所成角的取值范用是[45°,90°]D.直线C1P与平面A1C1D6【答案】ABD【分析】在A中,推导出A1C1⊥BD1,DC1⊥BD1,从而直线BD1⊥平面A1C1D;在B中,由B1C∥平面A1C1D,得到P到平面A1C1D的距离为定值,再由△A1C1D的面积是定值,从而三棱锥P ﹣A1C1D的体积为定值;在C中,异面直线AP与A1D所成角的取值范用是[60°,90°];在D 中,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线C1P与平面A1C1D 6.【详解】解:在A中,∵A1C1⊥B1D1,A1C1⊥BB1,B1D1∩BB1=B1,∴A1C1⊥平面BB1D1,∴A1C1⊥BD1,同理,DC1⊥BD1,∵A1C1∩DC1=C1,∴直线BD1⊥平面A1C1D,故A正确;在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D , ∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确; 在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1), 设平面A 1C 1D 的法向量(),,n x y z =, 则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为:11||||||C P n C P n ⋅⋅=22(1)3a a +-⋅=21132()22a ⋅-+, ∴当a =12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为6,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.9.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确. 对于D 选项,四棱锥A MENF -的体积111212336M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2 )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD 【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断. 【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。
一、选择题1. 已知函数f(x) = 2x^3 - 3x^2 + 4,求f'(x)的值。
答案:f'(x) = 6x^2 - 6x。
解析:根据导数的定义,f'(x) = lim(h→0)[f(x+h) - f(x)] / h。
将f(x) = 2x^3 - 3x^2 + 4代入,得到f'(x) = lim(h→0)[2(x+h)^3 - 3(x+h)^2 + 4 - (2x^3 - 3x^2 + 4)] / h。
化简后得到f'(x) = 6x^2 - 6x。
2. 已知函数f(x) = x^2 + 2lnx,求f'(x)的值。
答案:f'(x) = 2x + 2/x。
解析:f(x) = x^2 + 2lnx,根据导数的运算法则,f'(x) = (x^2)' + (2lnx)'。
其中,(x^2)' = 2x,(2lnx)' = 2/x。
因此,f'(x) = 2x + 2/x。
3. 已知函数f(x) = e^x - sinx,求f'(x)的值。
答案:f'(x) = e^x - cosx。
解析:f(x) = e^x - sinx,根据导数的运算法则,f'(x) = (e^x)' - (sinx)'。
其中,(e^x)' = e^x,(sinx)' = cosx。
因此,f'(x) = e^x - cosx。
二、填空题1. 已知函数f(x) = x^3 - 6x^2 + 9x - 1,求f'(2)的值。
答案:f'(2) = 2。
解析:根据导数的定义,f'(x) = lim(h→0)[f(x+h) - f(x)] / h。
将f(x) = x^3 - 6x^2 + 9x - 1代入,得到f'(x) = 3x^2 - 12x + 9。
24届高二立体几何期末复习卷(一)一、单选题1、已知圆锥的表面积为29cm π,且它的侧面展开图是一个半圆,则圆锥的底面半径为()A .322cm B .C D .2、已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A .83πB .323πC .16πD .32π3、一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为()A .2B .C .4D .84、球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为()A .803πB .32πC .42πD .48π5、在空间四边形ABCD 中,E ,F 分别为AB ,AD 上的点,且::1:4AE EB AF FD ==,H ,G 分别为BC ,CD 的中点,则()A .BD ∥平面EFG ,且四边形EFGH 是平行四边形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是平行四边形D .EH ∥平面ADC ,且四边形EFGH 是梯形6、已知S 为四边形ABCD 外一点,,G H 分别为,SB BD 上的点,若//GH 平面SCD ,则()A .//GH SAB .//GH SDC .//GH SCD .以上均有可能7、设m 、n 是平面α内的两条不同直线,1l 、2l 是平面β内的两条相交直线,则以下能够推出//αβ的是()A .//m β且1//l αB .1//m l 且2//n l C .//m β且//n βD .//m β且2//n l 8、有两条不同的直线,m n 与两个不同的平面.αβ,下列结论中正确的是()A .,//m n αβ⊥,且//αβ,则m n ⊥B .,m n αβ⊥⊥,且αβ⊥,则//m nC .//,m n αβ^,且αβ⊥,则//m nD .//,//m n αβ,且//αβ,则//m n9、若,m n 为两条不重合的直线,,αβ为两个不重合的平面,则下列说法中正确的是()A .若,m n 都平行于平面α,则,m n 一定不是相交直线B .若,m n 都垂直于平面α,则,m n 一定是平行直线C .已知,αβ互相平行,,m n 互相平行,若//m α,则//n βD .若,m n 在平面α内的正投影互相平行,则,m n 互相平行10、已知正三棱锥S ABC -的所有棱长均为2,则侧面与底面所成二面角的余弦值为()A .223B .3-C .13D .13-11、如图,已知六棱锥P ABCDEF -的底面是正六边形,,2PA ABC PA AB ⊥=平面,则下列结论正确的是()A .PB AD ⊥B .平面PAB PBC ⊥平面C .直线BC ∥平面PAED .45PD ABC ︒直线与平面所成的角为12、在正方体1111ABCD A B C D -中,下列几种说法不正确的是()A .11A C BD⊥B .B 1C 与BD 所成的角为60°C .二面角1A BC D --的平面角为45D .1AC 与平面ABCD 所成的角为4513、已知边长为ABCD 中,060A ∠=,现沿对角线BD 折起,使得二面角A BD C --为120°,此时点,,,A B C D 在同一个球面上,则该球的表面积为()A .20πB .24πC .28πD .32π14、如图,在四边形ABCD 中,AD ∥BC ,AD=AB ,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A-BCD ,则在三棱锥A-BCD 中,下列结论正确的是()A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC15、直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于()A .30°B .45°C .60°D .90°16、已知矩形ABCD ,AB =2,BC =将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,()A .存在某个位置,使得直线BD 与直线AC 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线BC 与直线AD 垂直D .对任意位置,三对直线“AC 与BD ”、“CD 与AB ”、“AD 与BC ”均不垂直17、在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30 ,则该长方体的体积为()A .8B .C .D .18、平面α过正方体ABCD—A 1B 1C 1D 1的顶点A ,,ABCD m α⋂=平面,11ABB A n α⋂=平面,则m ,n 所成角的正弦值为()A 2B .2C D .13二、多选题19、正三棱锥S ABC -的外接球半径为2,底面边长为3AB =,则此三棱锥的体积为()A B .4C .4D .220、如图,在四棱锥P ABCD -中,M 、N 分别为AC 、PC 上的点,且//MN 平面PAD ,则()A .//MN PDB .//MN 平面PABC .//MN AD D .//MN PA21、如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60DAB ∠=︒,侧面PAD 为正三角形,且平面PAD ⊥平面ABCD ,则下列说法正确的是()A .在棱AD 上存在点M ,使AD ⊥平面PMB B .异面直线AD 与PB 所成的角为90°C .二面角P BC A --的大小为45°D .BD ⊥平面PAC三、填空题22、某工厂现将一棱长均为4的三棱柱毛坯件切割成一个圆柱体零件,则该圆柱体体积的最大值为______.23、已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.24、已知三棱锥,3,1,4,A BCD AB AD BC BD -====A BCD -的体积最大时,则外接球的表面积为___________.25、如图所示﹐在三棱柱ABC A B C '''-中,截面A B C ''与平面ABC 交于直线a ,则直线a 与直线A B ''的位置关系为______.26、已知正三棱柱ABC -A 1B 1C 1中,G 是A 1C 1的中点,过点G 的截面与侧面ABB 1A 1平行,若侧面ABB 1A 1是边长为4的正方形,则截面周长为________.27、如图,过正方体1111ABCD A B C D -的顶点1B 、1D 与棱AB 的中点P 的平面与底面ABCD 所在平面的交线记为l ,则l 与11B D 的位置关系为_________.28、过两平行平面α、β外的点P 两条直线AB 与CD ,它们分别交α于A 、C 两点,交β于B 、D 两点,若PA =6,AC =9,PB =8,则BD 的长为_______.29、如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是________.30、如图所示,在直三棱柱中ABC -111A B C ,底面是以∠ABC 为直角的等腰三角形,AC 2a =,13BB a =,D 是11A C 的中点,点E 在棱1AA 上,要使CE ⊥平面1B DE ,则AE =___________.。
高二下期末复习随堂测试
1.如图,直四棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且o
60ABC ∠=,E 为棱CD 的中点. (1)求证:1//AC 平面1AED ; (2)求证:平面1AED ⊥平面1C D D
; (3)求二面角1D AE D --平面角的正切值。
2.三棱柱111ABC A B C -的侧棱与底面边长都相等,1A
在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值=
3.正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值=
4.三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面
ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值=
5.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为
6.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3
,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于
7.且对角线与底面所成角的余弦值为
3
,则该正四棱柱的体积等于_______
8.已知函数2()ln (0)f x x ax x a =-->, (1)若曲线()y f x =在点(1,(1))f 处的切线斜率为2-,求a 的值以及切线方程;
(2)若()f x 是单调函数,求a 的取值范围。
9.已知函数
2()e ()x f x x ax a =+-,其中a 是常数. (1)当1a =时,求()f x 在点(1,(1))f 处的切线方程; (2)求()f x 在区间[0,)+∞上的最小值.
10.已知函数2()ln f x a x bx =+图象上点(1,(1))P f 处的切线方程为230x y --=.
(1)求函数()y f x =的解析式;
(2)函数()()ln 4g x f x m =+-,若方程()0g x =在1[,2]e
上恰有两解,求实数m 的取值范围.。