2021年武汉市新洲区新人教版七年级(下)期末数学试卷(含答案解析)(A卷全套)
- 格式:docx
- 大小:178.95 KB
- 文档页数:14
2020-2021学年湖北省武汉市七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 16的算术平方根是( )A. 4B. ±4C. 2D. 02. 如图,直线AC 和直线BD 相交于点O ,若∠1+∠2=70°,则∠BOC 的度数是( )A. 100°B. 115°C. 135°D. 145°3. 方程组{x +2y =−43x +y =−7的解是( ) A. {x =1y =−10 B. {x =2y =1 C. {x =−2y =−1 D. {x =0y =−2 4. 某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图,其中其他部分对应的圆心角是36°,则步行部分所占百分比是( )A. 10%B. 35%C. 36%D. 40%5. 下列各式正确的是( )A. 若m −c <n −c ,则m >nB. 若m >n ,则−m >−nC. 若mc 2>nc 2,则m >nD. 若m >n ,则m 2>n 26. 下列四个图形中,由∠1=∠2能判断AB//CD 的有( )A. 1个B. 2个C. 3个D. 4个7. 某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A. {6y =x +37y =x +5B. {6y =x −37y +5=xC. {6y =x +37y +5=xD. {6y =x −37y =x +5 8. 将点A(−2,1)向右平移3个单位,再向下平移2个单位后,得到点B ,则点B 的坐标为( )A. (−5,−1)B. (1,3)C. (−5,3)D. (1,−1)9. 10.若∠a 与∠β的两边分别平行,且∠a =(2x −30)°,∠β=(60+x)°,则∠a 的度数为( ▲ )A. 50°B. 70°C. 70°或150°D. 50°或90°10. 不等式组{x >−2x <−1的解集为( ) A. x >−2 B. x <−1 C. −2<x <−1 D. 无解二、填空题(本大题共6小题,共18.0分)11. 若x 2=64,则x 的立方根为______.81的算术平方根是______.12. 一个多面体的棱数是24,则其顶点数为______ .13. 调查一批电视机的使用寿命,适合采用的调查方式是______.(填“普查”或“抽样调查”)14. 工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐,这个事实说明的原理是 ;15. 已知抛物线y =a(x −ℎ)2+k 经过坐标原点,顶点在抛物线y =x 2−x 上,若−2≤ℎ<1且ℎ≠0,则a 的取值范围是______.16. 足球比赛的计分规则为:胜一场积3分,平一场积1分,负1场积0分.初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分,那么这支足球队胜了______场.三、计算题(本大题共1小题,共8.0分)17. 21.(6分) 3月28日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:▲这次抽取了名学生的竞赛成绩进行统计,其中:,;▲补全频数分布直方图;▲若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?四、解答题(本大题共7小题,共64.0分)18.计算:(−2)2−(π−1)0−√9+|√2−3|.19.解不等式组:{x−3(x−2)≥5 2x+43−1<x−12.20.某中学八年级(1)班去体育用品商店买一些篮球和排球,供班上同学阳光体育课间使用,共买了3个篮球和5个排球,花570元,并且每个排球比篮球便宜30元.(1)求篮球和排球的单价各是多少?(2)商店里搞活动,有两种套餐,①套装打折:五个篮球和五个排球为一套装,套装打八折;②满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?21.如图,一条直线分别与直线BE、直线CE、直线CF、直线BF相交于点A,G,D,H且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.22.两种移动电话计费方式如表:全球通神州行月租费30元/月0本地通话费0.10元/分钟0.30元/分钟设一个月累计通话t分钟,则:(1)若用全球通收费多少元,用神州行收费多少元?(两空均用含t的式子表示).(2)如果两只计费方式所付话费一样,则通话时间t等于多少分钟?(列方程解题).23.完成推理填空:如图,已知∠A=∠F,∠C=∠D,试说明∠2+∠3=180°,解:因为∠A=∠F,所以______(内错角相等,两直线平行),所以∠D=∠1(两直线平行,内错角相等).又因为∠C=∠D,所以______(等量代换),所以BD//CE(同位角相等,两直线平行),所以∠2+∠3=180°(______).24.求物1的对称轴和函数解析式;把抛物1的象右平移3个单位,再向下平移m单位得到物C2,记点为M,并与y 轴交于F(0,−1)求线C2的函数解析;在的础上Gy轴上点,当△F与△FMG相似时,求点G的坐标.答案和解析1.【答案】A【解析】解:∵42=16,∴16的算术平方根是4.故选:A .根据算术平方根的定义求解即可求得答案.此题考查了算术平方根的定义.题目很简单,解题要细心.2.【答案】D【解析】【分析】本题考查了邻补角、对顶角的应用,主要考查学生的计算能力.根据对顶角和邻补角的定义即可得到结论.【解答】解:∵∠1=∠2,∠1+∠2=70°,∴∠1=∠2=35°,∴∠BOC =180°−∠1=145°,故选:D .3.【答案】C【解析】解:{x +2y =−4 ①3x +y =−7 ②, ②×2−①得:5x =−10,解得:x =−2,把x =−2代入①得:y =−1,则方程组的解为{x =−2y =−1, 故选:C .方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.【答案】D×100%=10%,【解析】解:∵其他部分对应的百分比为36360∴步行部分所占百分比为1−(35%+15%+10%)=40%,故选:D.先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比,即可解答.本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键.5.【答案】C【解析】解:A.若m−c<n−c,则m<n,故本选项错误;B.若m>n,则−m<−n,故本选项错误;C.若mc2>nc2,则m>n,故本选项正确;D.若m>n,则m2>n2不一定成立,故本选项错误;故选:C.依据不等式的基本性质进行分析,即可得到正确结论.本题主要考查了不等式的基本性质,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.【答案】A【解析】解:第一个图中,∠1、∠2不是两条直线被第三条直线所截的角,不能判定AB//CD;第二个图中,∠1、∠2是内错角,能判定AB//CD;第三个图中,∠1、∠2不是两条直线被第三条直线所截的角,不能判定AB//CD;第四个图中,∠1、∠2不是两条直线被第三条直线所截的角,不能判定AB//CD;故选:A.在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.本题考查了平行线的判定,解题的关键是注意平行判定的前提条件必须是三线八角.7.【答案】D【解析】解:设运动员人数为x 人,组数为y 组,由题意得{6y =x −37y =x +5. 故选:D .根据关键语句“若每组6人,余3人”可得方程6y =x −3;“若每组7人,则缺5人.”可得方程7y =x +5,联立两个方程可得方程组.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.8.【答案】D【解析】解:将点A(−2,1)向右平移3个单位,再向下平移2个单位后,得到点B , 则点B 的坐标为(−2+3,1−2),即(1,−1),故选:D .根据点的平移方法可得点B 的坐标为(−2+3,1−2),再计算即可.此题主要考查了坐标与图形变化--平移,关键是掌握点的坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.【答案】C【解析】解:∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x −30)°=(60+x)°,解得x =90,∠α=(2×90−30)°=150°,②∠α+∠β=180°,∴(2x −30)°+(60+x)°=180°,解得x =50,∠α=(2×50−30)°=70°,综上所述,∠α的度数为70°或150°.故选C .10.【答案】C【解析】解:不等式组{x >−2x <−1的解集为−2<x <−1, 故选:C .根据“大小小大中间找”可确定不等式组的解集.本题主要考查不等式的解集,解题的关键是掌握确定不等式组解集的口诀. 11.【答案】±2 9【解析】解:若x 2=64,∴x =±8,则x 的立方根为±2.81的算术平方根是9,故答案为:±2;9利用平方根、立方根定义计算即可求出所求.此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键. 12.【答案】13或16【解析】解:这个多面体可能是八棱柱,它有16个顶点,这个多面体也可能是十二棱锥,它有13个顶点.故答案为13或16.多面体的棱数是24,这个多面体可能是八棱柱,也可能是十二棱锥,由此不能解决问题.本题考查立体图形,解题的关键是理解题意,知道多面体的棱数是24,这个多面体可能是八棱柱,也可能是十二棱锥.13.【答案】抽样调查【解析】解:调查一批电视机的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.【答案】经过两点有一条直线,并且只有一条直线【解析】两个木桩看作是两个点,经过两点有一条直线,并且只有一条直线. 15.【答案】a >0或a ≤−32【解析】解:∵抛物线y =a(x −ℎ)2+k 经过坐标原点,∴aℎ2+k =0,∵抛物线y =a(x −ℎ)2+k 的顶点为(ℎ,k)点A 在抛物线y =x 2−x 上,∴k =ℎ2−ℎ,又k =−aℎ2,∴ℎ=11+a ,∵−2≤ℎ<1,∴−2≤11+a <1,①当1+a >0时,即a >−1时,{11+a <111+a≥−2,解得a >0, ②当1+a <0时,即a <−1时,{11+a <111+a≥−2,解得a ≤−32, 综上所述,a 的取值范围a >0或a ≤−32,故答案为a >0或a ≤−32.根据条件列出关于a 的不等式即可解决问题.本题考查二次函数图象和系数的关系、不等式等知识,解不等式要注意讨论,属于中考压轴题. 16.【答案】9【解析】解:设这支足球队胜了x 场,平了y 场,依题意,得:{x +y +4=173x +y =31, 解得:{x =9y =4. 故答案为:9.设这支足球队胜了x 场,平了y 场,根据“初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论. 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.【答案】200;70;0.12;420【解析】试题分析:(1)利用50.5--60.5的人数除以频率即可得到抽取总人数;m=总人数减去各分数段的人数;n=24除以抽取的总人数;(2)根据(1)中计算的m的值补图即可;(3)利用样本估计总体的方法,用总人数1500×抽取的学生中成绩在70分以下(含70分)的学生所占的抽取人数的百分比计算即可.(1)抽取的学生数:16÷0.08=200(名),m=200−16−40−50−24=70;n=24÷200=0.12;(2)如图所示:(3)1500×=420(人),答:该校安全意识不强的学生约有420人.18.【答案】解:原式=4−1−3+3−√2=3−√2.【解析】直接利用算术平方根的性质以及绝对值的性质和零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:解不等式x−3(x−2)≥5,得:x≤12,解不等式2x+43−1<x−12,得:x<−5,∴不等式组的解集为x<−5.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.【答案】解:(1)设篮球的单价是x 元,排球的单价为y 元,根据题意得:{x −y =303x +5y =570, 解得:{x =90y =60, 答:篮球的单价是90元,排球的单价为60元,(2)按照套装①打折,买15个篮球和15个排球需付款:15×90×0.8+15×60×0.8=1800(元), 按照套装②打折,15个篮球需付款:15×90=1350(元),13个排球需付款:13×60=780(元),共需付款:1350+780−200=1930(元),即按照套装①购买更划算,答:按照套装①购买更划算.【解析】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程是解题的关键.(1)设篮球的单价是x 元,排球的单价为y 元,根据“共买了3个篮球和5个排球,花570元,并且每个排球比篮球便宜30元”,列出关于x 和y 的二元一次方程组,解之即可,(2)根据“商店里搞活动,有两种套餐,①套装打折:五个篮球和五个排球为一套装,套装打八折;②满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品”,分别列出按照套装①和套装②购买所需付款,即可求得答案.21.【答案】解:(1)CE//BF ,AB//CD.理由:∵∠1=∠2,∴CE//FB ,∴∠C=∠BFD,∵∠B=∠C,∴∠B=∠BFD,∴AB//CD;(2)由(1)可得AB//CD,∴∠A=∠D.【解析】(1)根据同位角相等,两直线平行可得CE//FB,进而可得∠C=∠BFD,再由条件∠B=∠C可得∠B=∠BFD,从而可根据内错角相等,两直线平行得AB//CD;(2)根据(1)可得AB//CD,再根据两直线平行,内错角相等可得∠A=∠D.此题主要考查了平行线的判定和性质,关键是掌握平行线的判定定理和性质定理.22.【答案】解:(1)一个月累计通话t分钟时,全球通的费用为(30+0.1t)元,神州行的费用为0.3t元;.(2)根据题意有:30+0.1t=0.3t,解得:t=150,即当通话时间t等于150分钟时,两种方式所付话费是一样的.【解析】解:(1)一个月累计通话t分钟时,全球通的费用为(30+0.1t)元,神州行的费用为0.3t元;(2)根据题意有:30+0.1t=0.3t,解得:t=150,即当通话时间t等于150分钟时,两种方式所付话费是一样的.(1)根据两种方案下费用与通话时间的关系,即全球通方案下费用=30元+0.10元×通话时间,神州行方案下费用=0.30元×通话时间,列出式子即可;(2)令两种方案收费相等,求出通话时间即可.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【答案】DF//AC∠C=∠1两直线平行,同旁内角互补【解析】解:∵∠A =∠F ,∴DF//AC(内错角相等,两直线平行),∴∠D =∠1(两直线平行,内错角相等),∵∠C =∠D ,∴∠C =∠1,∴BD//CE ,∴∠2+∠3=180°(两直线平行,同旁内角互补),故答案为:DF//AC ,∠C =∠1,两直线平行,同旁内角互补.根据平行线的判定得出DF//AC ,根据平行线的性质得出∠D =∠1,求出∠C =∠1,根据平行线的判定得出BD//CE 即可.本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键. 24.【答案】解:将抛物C 1:y =a +4ax +c 方,得ya(x +224a +c,当△APF △MFG ,AP MF =PF FG ,即√2√2=2FG .AB =,、点B 关于x =−2对称,得由勾股定理得P =√2,F =√2.由点的距离得PF =2.由OA =,得点C(03),{x B −x A=2x A +x B 2=−2.解得{x A =−3x B =−1. y(+2−3)2−1−m.C2与y 点F(0,1),得点A(−,0),点B −1,0.解得{a =1c =3. 抛物线数解式y =x2+4x3;又抛线C :x24x +配方,得y =(x +2)2−1,如图解得F =2,点G 1的坐标0,);将AC 点标代入C 1得,{−3+c =0c =3. FG =,点G 的坐标(,0).【解析】根配方法,可得顶点函数解析,据函图象右移,向平移y 减,可得y =x +2−3)21m ,根自变量的值,可应的函数值;类讨:当△AF∽△MG ,当△APF∽GFM ,根据相似三角形性,可得F 长,再根据点F 的标,可得答.本题考查二次数合,函值相等两点关于称对称,待定系数法求函数解式;先化成顶点,再进行平移:向右平移x 减,向下平移y 减利三角形的质,分讨论是题关.。
2020-2021学年湖北省武汉市七年级(下)期末数学试卷 题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分)1. 下列实数是无理数的是( ) A. √−273 B. 13 C. 3.14159 D. √62. 3.在平面直角坐标系中,点P(−3,4)到轴的距离是A. −3B. 3C. −4D. 43. 下列各数中是无理数的是( )A. 0.2⋅03⋅B. −√93C. √4D. 1.0100100014. 下列调查中,适宜采用普查方式的是( )A. 质检部门对市场上某品牌饮料的质量的调查B. 电视台对正在播出的某电视节目收视率的调查C. 环保部门对长江某段水域的水污染情况的调查D. 企业在给职工做工作服前进行尺寸大小的调查5. 不等式2x −1>0的解集是( )A. x >12B. x <12C. x >−12D. x <−12 6. 、已知m 、n 均为非零有理数,下列结论正确的是( )A. 若m ≠n ,则m 2≠n 2B. 若m 2=n 2,则m =nC. 若m >n >0,则>,D. 若m >n >0,则m 2>n 27. 已知a =2−√5,b =√5−2,c =5−2√5,那么a ,b ,c 的大小顺序是( )A. a <b <cB. a <c <bC. b <a <cD. c <a <b8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB 交AB于点D ,AE//DC 交BC 的延长线于点E ,已知∠BAC =32°,求∠E 的度数为( )A. 48°B. 42°C. 37°D. 32°9.不等式组{x−1≤06−3x>0的解集为()A. x≤1B. x>−2C. −2≤x≤1D. 无解10.建立平面直角坐标系选择一个适当的参照点为(),确定x轴、y轴的正方向.A. 坐标B. 原点C. 单位长度D. 图形二、填空题(本大题共6小题,共18.0分)11.在−227,0,+3.141592,2.95,π2,√25,√3,−0.2020020002…(两个非零数之间依次多一个0),其中无理数有______个.12.已知关于x的方程的解是负数,则n的取值范围为。
2020-2021学年湖北省武汉市七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分) 1. 与a −b 互为相反数的是( )A. b −aB. a −bC. −a −bD. a +b2. 若√10−2x 在实数范围内有意义,则x 的取值范围是( )A. x <5B. x >5C. x ≥5D. x ≤53. 已知点A(−1,0),B(1,1),C(0,−3),D(−1,2),E(0,1),F(6,0),其中在坐标轴上的点有( )A. 1个B. 2个C. 3个D. 4个4. 在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点Q(−2,1),则点P 的坐标是( )A. (3,−2)B. (3,4)C. (−7,4)D. (−7,−2)5. 下列哪种情况下,直线a 与b 不一定是平行线( )A. a 与b 是不相交的两条直线B. a 与b 被直线c 所截,且内错角互补C. a 与b 都平行于直线cD. a 与b 被直线c 所截,且同位角相等6. 方程x −2y =−3和2x +3y =1的公共解是( )A. {x =−3y =0B. {x =0y =13C. {x =−3y =13D. {x =−1y =17. 下列命题中,假命题的是( )A. 四边形的外角和等于360B. 对角线互相平分的四边形是平行四边形C. 矩形的四个角都是直角D. 相似三角形的周长比等于相似比的平方8. 一支.部队第一天行军4小时,第二天行军5小时,两天共行军98km ,第一天比第二天少走4km.设第一天、第二天平均行军速度分别为xkm/ℎ,ykm/ℎ,依题意得方程组( )A. {4x +5y =985y −4x =4 B. {4x −5y =44x +5y =98 C. {x +y =45x +4y =98D. {x +y =44x −5y =989. 关于x 的不等式组{x −a ≥05−2x >1只有五个整数解,则实数a 的取值范围是( )A. −4<a <−3B. −4≤a ≤−3C. −4≤a <−3D. −4<a ≤−310. 当a >b 时,下列不等式中不正确的是( )A. 2a >2bB. a −3>b −3C. 2a +1>2b +1D. −a +2>−b +2二、填空题(本大题共6小题,共18.0分)11. 立方根和平方根都等于本身的数是______.12. 如果二元一次方程组{x +y =3ax −y =9a的解是二元一次方程2x −3y +12=0的一个解,那么a 的值是______.13. 在直角坐标系中,点P(2,−5)在第______象限.14. 若关于x 的不等式a(x −1)+b(x +1)>0的解是x <23,则关于x 的不等式a(x +1)+b(x −1)>0的解是______ .15. 在建立直角坐标系表示给定的点或图形的位置时,一般选择适当的点作为______ ,适当的距离为______ ,这样有助于表示和解决有关问题. 16. 如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A ,C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且OQ =OC ,连接CQ 并延长CQ 交边AB 于点P ,则点P 的坐标为( , ).三、计算题(本大题共2小题,共16.0分) 17. 计算:.18. (1)因式分解:6xy 2+9x 2y +y 3(2)解不等式组:{3(x −1)<5x +1x−12≥2x −4.四、解答题(本大题共6小题,共56.0分)19.如图,在△ABC中,BF是高,点E、F、G分别在BC、AC、AB上,且ED⊥AC,∠1=∠0.试判断GF与BC位置关系,并说明理由.20.某校王老师随机抽取本校八年级一部分学生上学期期末考试的数学成绩作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)请将频数分布表补充完整;(2)请将频数分布直方图补充完整;(3)若该校八年级共有400名学生,请估计成绩超过80分的学生有多少人?21.在平面直角坐标系xOy中,已知点A(0,1),B(4,2),C(2,−2).(1)在网格中画出这个平面直角坐标系;(2)连接CB,平移线段CB,使点C移动到点A,得到线段AD.①画出线段AD,并写出点D的坐标;②连接AC,DB,四边形ACBD的面积是______.22.某书店准备购进甲、乙两种图书共100本,购书款不高于1118元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:甲种图书乙种图书进价(元/本)814售价(元/本)1826请回答下列问题:(1)书店有多少种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)23.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF//BE,交AC的延长线于点F,求∠F的度数.24.解方程组(1){3x−y=2 ①9x+8y=17 ②(2){2m−n=4 ①2m+3n=12 ②答案和解析1.【答案】A【解析】解:与a−b互为相反数的是−(a−b)=b−a.故选:A.根据相反数的表示方法:在一个数的前面添上一个负号,就得到原数的相反数.本题考查了相反数的表示方法及去括号法则.正确根据相反数的定义得出是解题关键.2.【答案】D【解析】解:由题意得,10−2x≥0,解得,x≤5,故选:D.根据二次根式有意义的条件列出不等式,解不等式得到答案.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.3.【答案】D【解析】试题分析:从题干中找到横坐标为0,或者纵坐标为0的点,计算个数即可.在坐标轴上的点有A(−1,0),C(0,−3),E(0,1),F(6,0)共4个点,故选D.4.【答案】A【解析】解:设点P的坐标为(x,y),由题意,得:x−5=−2,y+3=1,求得x=3,y=−2,所以点P的坐标为(3,−2).故选:A.根据横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题.本题考查坐标与图形变化−平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.5.【答案】B【解析】解:A 、a 与b 是不相交的直线,此时两直线可能平行,也可能是异面直线,故本选项错误;B 、因为内错角相等,两直线才平行,故本选项正确;C 、因为平行于同一直线的两直线平行,故本选项错误;D 、因为同位角相等,两直线平行,故本选项错误; 故选B .根据两直线的位置关系,平行线的判定逐个进行判断即可.本题考查了两直线的位置关系,平行线的判定的应用,能理解平行线的判定定理是解此题的关键,此题比较典型,是一道比较容易出错的题目.6.【答案】D【解析】解:联立得:{x −2y =−3 ①2x +3y =1 ②,②−①×2得:7y =7, 解得:y =1,把y =1代入①得:x =−1, 则方程组的解为{x =−1y =1,故选:D .联立两方程组成方程组,求出解即可.此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】解:A 、四边形的外角和等于360°,正确,是真命题; B 、对角线互相平分的四边形是平行四边形,正确,是真命题; C 、矩形的四个角都是直角,正确,是真命题;D 、相似三角形的周长的比等于相似比,故原命题错误,是假命题; 故选:D .利用多边形的外角和、平行四边形的判定、矩形的性质及相似三角形的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解多边形的外角和、平行四边形的判定、矩形的性质及相似三角形的性质,难度不大.8.【答案】A【解析】解:设第一天、第二天平均行军速度分别为xkm/ℎ,ykm/ℎ, 由题意得,{4x +5y =985y −4x =4.故选A .设第一天、第二天平均行军速度分别为xkm/ℎ,ykm/ℎ,根据两天共行军98km ,第一天比第二天少走4km ,列方程组.本题考查了根据实际问题中的条件列二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.【答案】D【解析】解:{x −a ≥0…①5−2x >1…②,解①得:x ≥a , 解②得:x <2,则不等式组的解集是:a ≤x <2. 则整数解是:1,0,−1,−2,−3. 根据题意得:−4<a ≤−3. 故选D .首先解每个不等式,然后确定不等式组的解集,然后根据整数解确定a 的范围. 本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答案】D【解析】解:∵a >b , ∴2a >2b ,∴选项A 不符合题意; ∵a >b , ∴a −3>b −3, ∴选项B 不符合题意;∵a>b,∴2a>2b,∴2a+1>2b+1,∴选项C不符合题意;∵a>b,∴−a<−b,∴−a+2<−b+2,∴选项D符合题意.故选:D.不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此逐项判定即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.11.【答案】0【解析】根据立方根的概念以及平方根的概念解答.立方根等于本身的数有−1;1;0.平方根等于本身的数是0.所以,平方根和立方根都等于它本身的数是0.12.【答案】−47【解析】解:{x+y=3a ①x−y=9a ②,①+②得:2x=12a,即x=6a,①−②得:2y=−6a,即y=−3a,把x=6a,y=−3a代入方程得:12a+9a+12=0,解得:a=−47,故答案为:−47把a看做已知数表示出方程组的解,代入方程计算即可求出a的值.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.【答案】四【解析】解:在直角坐标系中,点P(2,−5)在第四象限,故答案为:四.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).14.【答案】x<−23【解析】解:原不等式a(x−1)+b(x+1)>0,可化为:(a+b)x−(a−b)>0,即(a+b)x>a−b,∵不等式的解集为:x<23,∴a+b<0,即不等式的解集为:x<a−ba+b,即a−ba+b =23.关于x的不等式a(x+1)+b(x−1)>0,可化为:(a+b)x+(a−b)>0,即(a+b)x>−(a−b),∵a+b<0,∴x<−a−ba+b,∵a−ba+b =23,∴原不等式的解集为:x<−23.先求出已知不等式的解集,与原不等式的解集相比较判断出未知数的值,再解所求的不等式即可.此题比较复杂,解答此题的关键是根据已知不等式的解集求出a−ba+b的值及a+b的符号,再求所求不等式的解集即可.15.【答案】坐标原点;单位长度【解析】解:在建立直角坐标系表示给定的点或图形的位置时,一般选择适当的点作为坐标原点,适当的距离为单位长,这样有助于表示和解决有关问题.故答案为坐标原点,单位长度.根据实际问题建立适当的直角坐标系.本题考查了点的坐标:我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b);记住坐标轴上点的坐标特征和各象限内点的坐标特征.16.【答案】。
2020-2021学年湖北省武汉市新洲区七年级(下)期末数学试卷一、选择题(共10小题,每题3分,共30分).1.下列所示的图案分别是奔驰、奥迪、长安、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是()A.B.C.D.2.在平面直角坐标系中,点(﹣3,4)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在实数、0.010********…、、、、中,无理数有()A.2个B.3个C.4个D.5个4.如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为()A.50台B.65台C.75台D.95台5.不等式﹣x﹣5≤0的解集在数轴上表示正确的是()A.B.C.D.6.已知点A(2,5)、点B(2,﹣1),那么线段AB的中点的坐标是()A.(2,3)B.(2,2)C.(2,1)D.(1,2)7.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a8.若方程组的解集是负数,则a的取值范围是()A.﹣3<a<6B.a<6C.a<﹣3D.无解9.如图,AB∥CD∥EF∥GH,AE∥DG,点C在AE上,点F在DG上.设与∠α相等的角的个数为m,与∠β互补的角的个数为n,若α≠β,则m+n的值是()A.8B.9C.10D.1110.如图,直线k∥l,∠3﹣∠2=∠2﹣∠1=d>0.其中∠3<90°,∠1=40°,则∠4的最大整数值是()A.108°B.110°C.114°D.115°二、填空题(每小题3分,共18分)11.的平方根是.12.点P(m+3,m﹣1)在x轴上,则P点坐标为.13.如图,已知DE∥BC,∠2=70°,∠1=40°,则∠EBA的度数是.14.请同学们观察下如表:n0.04410040000…0.2220200…已知≈1.435,≈5.539,运用你发现的规律求≈.15.若+|b+5|=0,那么ab=.16.下列命题:①对顶角相等;②为了了解某校七年级600名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指600名学生的体重;③已知正实数x的平方根是a+b和a+c,若(a+b)2x+(a+c)2x=4042,则x=;④若不等式|a﹣1|+|a﹣4|≥m对一切实数a都成立,则m的最大值是5;其中真命题是:.(请填序号)三、解答题(共8小题,共72分)17.解方程:(1)3(x﹣2)2=27(2)2(x﹣1)3+16=0.18.解方程组19.解不等式组请按下列步骤完成解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.武汉市作为“全国学生近视眼防控工作实验区”,以让学生“不近视、迟近视、慢近视、低近视”,降低学生近视发生率为工作目标.新洲区某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力;并将调查的数据整理绘制成直方图和扇形图.(1)这次共调查了多少名学生?(2)扇形图中的a=%,b=%;(3)补全频数分布直方图;(4)求该校学生视力在1.25~1.55的学生共有多少人?21.如图,每个小正方形的边长为1,△ABC的三个顶点都在格点(小正方形的顶点)上.(1)已知A(﹣3,2),请写出B、C的坐标:B(,),C(,);(2)将△ABC先向右平移6个单位,再向上平移3个单位得△A1B1C1,请画出平移后的△A1B1C1,则点B的对应点B1的坐标为:B1(,);(3)若△MBC的面积为3,则满足条件的格点M有个.22.某园林公司培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该园林公司决定在成本不超过29000元的前提下培育甲、乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21840元,园林公司有哪几种培育方案?23.如图1,点E在直线AB、DC之间,且∠DEB+∠ABE﹣∠CDE=180°.(1)求证:AB∥DC;(2)若点F是直线BA上的一点,且∠BEF=∠BFE,EG平分∠DEB交直线AB于点G,若∠D=20°,求∠FEG的度数;(3)如图3,点N是直线AB、DC外一点,且满足∠CDM=∠CDE,∠ABN=∠ABE,ND与BE交于点M.已知∠CDN=α(0°<α<12°),且BN∥DE,则∠NMB的度数为(请直接写出答案,用含α的式子表示).24.如图,平面直角坐标系中,A(﹣18,2)、B(﹣6,6),AC⊥x轴于点C,连接AB、BC.(1)求△ABC的面积;(2)若点G是线段CB上的一点,且G点的横坐标为﹣14,求证:∠CAG=90°;(3)线段AB以每秒2个单位的速度向右水平移动t秒,A、B的对应点分别M、N,线段MN与y轴交于点D,△MOD的面积记为S△MOD,△NOD的面积为S△NOD.若S△MOD <2S△NOD,请求出t的取值范围.参考答案一、选择题(每小题3分,共30分)1.下列所示的图案分别是奔驰、奥迪、长安、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.解:观察图形可知,图案B可以看作由“基本图案”经过平移得到.故选:B.2.在平面直角坐标系中,点(﹣3,4)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.解:点(﹣3,4)在第二象限.故选:B.3.在实数、0.010********…、、、、中,无理数有()A.2个B.3个C.4个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:是分数,属于有理数;,是整数,属于有理数;无理数有0.010********…、、、,共4个.故选:C.4.如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为()A.50台B.65台C.75台D.95台【分析】观察条形统计图可知甲品牌彩电销售45台,乙品牌彩电销售20台,丙品牌彩电销售30台.故甲、丙两品牌彩电销量之和为45+30=75(台).解:甲、丙两品牌彩电销量之和为45+30=75(台).故选:C.5.不等式﹣x﹣5≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式﹣x﹣5≤0的解集,再在数轴上表示出来即可.解:移项得,﹣x≤5,系数化为1得,x≥﹣5,在数轴上表示为:故选:B.6.已知点A(2,5)、点B(2,﹣1),那么线段AB的中点的坐标是()A.(2,3)B.(2,2)C.(2,1)D.(1,2)【分析】根据中点坐标公式即可直接求得答案.解:设线段AB的中点的坐标是(x,y),由中点坐标公式可得x==2,y==2,故线段AB的中点的坐标是(2,2),故选:B.7.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.解:a=﹣=﹣3,b=﹣|﹣|=﹣,c=﹣=﹣(﹣2)=2,∴c>b>a,故选:D.8.若方程组的解集是负数,则a的取值范围是()A.﹣3<a<6B.a<6C.a<﹣3D.无解【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,然后解出a的范围,即可知道a的取值.解:①﹣②得:y=,把y=代入方程①可得:x=,因为方程组的解集是负数,即x=<0,y=<0,组成不等式组可得,解得a<﹣3.故选:C.9.如图,AB∥CD∥EF∥GH,AE∥DG,点C在AE上,点F在DG上.设与∠α相等的角的个数为m,与∠β互补的角的个数为n,若α≠β,则m+n的值是()A.8B.9C.10D.11【分析】设BA的延长线为AM,由AB∥CD∥EF∥GH,AE∥DG,根据平行线的性质得到与∠α相等的角∠EFG、∠AEF、∠D、∠ACD、∠MAC,因为∠β+∠EFG=180°,即可推出∠β互补的角的个数,即可求出答案.解:设BA的延长线为AM,∵AB∥CD∥EF∥GH,AE∥DG,∴∠a=∠EFG=∠AEF=∠D=∠ACD=∠MAC,∠β+∠EFG=180°,∴与∠β互补的角有∠α,∠EFG,∠AEF,∠D,∠ACD,∠MAC,∴m=5,n=6,∴m+n=11.故选:D.10.如图,直线k∥l,∠3﹣∠2=∠2﹣∠1=d>0.其中∠3<90°,∠1=40°,则∠4的最大整数值是()A.108°B.110°C.114°D.115°【分析】根据平行线的性质和三角形外角性质求出∠4﹣∠3=∠3﹣∠2,根据已知求出∠3=,根据∠3<90°求出∠4的范围,即可得出答案.解:延长CD交直线b于F,延长DC交直线a于B,如图所示:∵k∥l,∴∠ABC=∠DFE,∵∠ABC=∠2﹣∠1,∠DFE=∠4﹣∠3,∴∠4﹣∠3=∠3﹣∠2,∴∠4=2∠3﹣∠2,又∵∠3﹣∠2=∠2﹣∠1,∠1=40°,∴2∠2=∠3+40°,∴2∠4=4∠3﹣2∠2=4∠3﹣∠3﹣40°=3∠3﹣40°,∴∠3=,而∠3<90°,∴<90°,∴∠4<115°,∴∠4的最大可能的整数值是114°.故选:C.二、填空题(每小题3分,共18分)11.的平方根是±2.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵=4∴的平方根是±2.故答案为:±212.点P(m+3,m﹣1)在x轴上,则P点坐标为(4,0).【分析】由x轴上点的纵坐标为0得出关于m的方程,求出m的值,继而可得答案.解:∵点P(m+3,m﹣1)在x轴上,∴m﹣1=0,则m=1,∴点P的坐标为(4,0),故答案为:(4,0).13.如图,已知DE∥BC,∠2=70°,∠1=40°,则∠EBA的度数是30°.【分析】由平行线的性质可得:∠ABC=∠2=70°,∠CBE=∠1=40°,再根据∠EBA =∠ABC﹣∠CBE,代入即可求解.解:∵DE∥BC,∠2=70°,∠1=40°,∴∠ABC=∠2=70°,∠CBE=∠1=40°,∵∠EBA=∠ABC﹣∠CBE,∴∠EBA=70°﹣40°=30°.故答案为:30°.14.请同学们观察下如表:n0.04410040000…0.2220200…已知≈1.435,≈5.539,运用你发现的规律求≈143.5.【分析】根据被开方数扩大10000倍,算术平方根扩大100倍,即可求得所求式子的值.解:已知≈1.435,则≈143.5.故答案为:143.5.15.若+|b+5|=0,那么ab=﹣10.【分析】直接利用算术平方根的性质以及绝对值的性质得出a,b的值,进而得出答案.解:∵+|b+5|=0,∴a﹣2=0,b+5=0,解得:a=2,b=﹣5,故ab=2×(﹣5)=﹣10.故答案为:﹣10.16.下列命题:①对顶角相等;②为了了解某校七年级600名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指600名学生的体重;③已知正实数x的平方根是a+b和a+c,若(a+b)2x+(a+c)2x=4042,则x=;④若不等式|a﹣1|+|a﹣4|≥m对一切实数a都成立,则m的最大值是5;其中真命题是:①②③.(请填序号)【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:①对顶角相等,是真命题;②为了了解某校七年级600名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指600名学生的体重,是真命题;③已知正实数x的平方根是a+b和a+c,若(a+b)2x+(a+c)2x=4042,可化为xx+xx=4042,2x2=4042,则x=,是真命题;④若不等式|a﹣1|+|a﹣4|≥m,可以看作在数轴上,点所表示的数是a,a到1与a到4的距离之和,距离之和的最小值是3,|a﹣1|+|a﹣4|≥3,则m的最大值为3,原命题是假命题;故答案为:①②③.三、解答题(共8小题,共72分)17.解方程:(1)3(x﹣2)2=27(2)2(x﹣1)3+16=0.【分析】根据平方根、立方根的定义,即可解答.解:(1)3(x﹣2)2=27,∴(x﹣2)2=9,∴x﹣2=±3,∴x=5或﹣1.(2)2(x﹣1)3+16=0.2(x﹣1)3=﹣16,(x﹣1)3=﹣8,x﹣1=﹣2,∴x=﹣1.18.解方程组【分析】首先把方程组去括号,化简,再利用加减法解方程组即可.解:整理得:,①﹣②得:4y=28,y=7,把y=7代入①得:3x﹣7=8,x=5,∴方程组的解为:.19.解不等式组请按下列步骤完成解答:(Ⅰ)解不等式①,得x≤1;(Ⅱ)解不等式②,得x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣3≤x≤1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:(Ⅰ)解不等式①,x≤1;(Ⅱ)解不等式②,x≥﹣3;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣3≤x≤1.故答案为:x≤1,x≥﹣3,﹣3≤x≤1.20.武汉市作为“全国学生近视眼防控工作实验区”,以让学生“不近视、迟近视、慢近视、低近视”,降低学生近视发生率为工作目标.新洲区某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力;并将调查的数据整理绘制成直方图和扇形图.(1)这次共调查了多少名学生?(2)扇形图中的a=18%,b=20%;(3)补全频数分布直方图;(4)求该校学生视力在1.25~1.55的学生共有多少人?【分析】(1)用1.25~1.55的频数和百分比即可求出总人数;(2)根据0.65~0.93的频数及调查总数可得b,1减去其他各组的百分比可得a;(3)根据扇形统计图中的数据和调查总数,求出0.35~0.65和0.95~1.25的人数,即可补全频数分布直方图;(4)根据样本估计总体即可解答.解:(1)48÷24%=200(名),答:这次共调查了200名学生;(2)×100%=20%,∴b=20,1﹣20%﹣28%﹣24%﹣10%=18%,∴a=18,故答案为:18,20;(3)0.95~1.25的人数为:200×28%=56(人),0.35~0.65的人数为:200×18%=36(人),补全频数分布直方图如下:(4)该校学生视力在1.25~1.55的学生共有1000×24%=240(人).21.如图,每个小正方形的边长为1,△ABC的三个顶点都在格点(小正方形的顶点)上.(1)已知A(﹣3,2),请写出B、C的坐标:B(﹣5,1),C(﹣2,0);(2)将△ABC先向右平移6个单位,再向上平移3个单位得△A1B1C1,请画出平移后的△A1B1C1,则点B的对应点B1的坐标为:B1(1,4);(3)若△MBC的面积为3,则满足条件的格点M有10个.【分析】(1)根据B,C的位置写出坐标即可.(2)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(3)利用平行线的性质,作出满足条件的点M即可.解:(1)B(﹣5,1),C(﹣2,0),故答案为:﹣5,1,﹣2,0.(2)如图,△A1B1C1即为所求,B1(1,4).故答案为:1,4.(3)如图,满足条件的点M有10个,故答案为:10.22.某园林公司培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该园林公司决定在成本不超过29000元的前提下培育甲、乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21840元,园林公司有哪几种培育方案?【分析】(1)设培育每株甲种花木的成本为x元,培育每株乙种花木的成本为y元,根据“培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设培育甲种花木m株,则培育乙种花木(3m+10)株,根据“培育成本不超过29000元,且总利润不少于21840元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各培育方案.解:(1)设培育每株甲种花木的成本为x元,培育每株乙种花木的成本为y元,依题意得:,解得:.答:培育每株甲种花木的成本为400元,培育每株乙种花木的成本为300元.(2)设培育甲种花木m株,则培育乙种花木(3m+10)株,依题意得:,解得:18≤m≤20.又∵m为整数,∴m可取18,19,20,∴园林公司共有3种培育方案,方案1:培育甲种花木18株,乙种花木64株;方案2:培育甲种花木19株,乙种花木67株;方案3:培育甲种花木20株,乙种花木70株.23.如图1,点E在直线AB、DC之间,且∠DEB+∠ABE﹣∠CDE=180°.(1)求证:AB∥DC;(2)若点F是直线BA上的一点,且∠BEF=∠BFE,EG平分∠DEB交直线AB于点G,若∠D=20°,求∠FEG的度数;(3)如图3,点N是直线AB、DC外一点,且满足∠CDM=∠CDE,∠ABN=∠ABE,ND与BE交于点M.已知∠CDN=α(0°<α<12°),且BN∥DE,则∠NMB的度数为180°﹣15α(请直接写出答案,用含α的式子表示).【分析】(1)过点E作EF∥DC,再证明EF∥AB即可;(2)设∠BEF=∠BFE=m,∠FEG=x,则∠DEG=∠BEG=m+x,可以证明∠DEF=∠CDE+∠EFB,则m+x+x=m+20°,进而可得x=10°;(3)过点N作NP∥DC,过点M作MR∥DC,结合(1)的方法,即可求出∠NMB的度数.【解答】(1)证明:如图1,过点E作EF∥DC,∴∠CDE=∠DEF,∵∠DEB+∠ABE﹣∠CDE=∠DEB+∠ABE﹣∠DEF=180°.∴∠FEB+∠ABE=180°,∴EF∥AB,∴AB∥DC;(2)解:如图2,过点E作EH∥DC,∵AB∥DC,∴AB∥EH,设∠BEF=∠BFE=m,∠FEG=x,则∠DEG=∠BEG=m+x,由(1)知:∠DEF=∠CDE+∠EFB,∴m+x+x=m+20°,解得x=10°;(3)如图,过点N作NP∥DC,过点M作MR∥DC,∴∠PNM=∠CDN=α,∵∠CDM=∠CDE,∠ABN=∠ABE,∵BN∥DE,∴∠DNB=∠MDE=3α,∴∠NBA=∠PNB=4α,∴∠ABE=16α,∵∠DMR=∠CDM=α,∴∠RMB=180°﹣16α,∴∠NMB=180°﹣15α.故答案为:180°﹣15α.24.如图,平面直角坐标系中,A(﹣18,2)、B(﹣6,6),AC⊥x轴于点C,连接AB、BC.(1)求△ABC的面积;(2)若点G是线段CB上的一点,且G点的横坐标为﹣14,求证:∠CAG=90°;(3)线段AB以每秒2个单位的速度向右水平移动t秒,A、B的对应点分别M、N,线段MN与y轴交于点D,△MOD的面积记为S△MOD,△NOD的面积为S△NOD.若S△MOD <2S△NOD,请求出t的取值范围.【分析】(1)根据A、B点的坐标,作出三角形ABC的高即可求出三角形ABC的面积;(2)设GM=m,则S△CBN=S△CGM+S梯形GMNB,根据等式即可求出m的值进而推出AG∥x轴,即可得证∠CAG=90°;(3)根据平移的特点,分别表示出M、N的坐标,再分别表示出S△MOD和S△NOD,由S△MOD<2S△NOD,即可出t的取值范围.解:(1)如图1所示,作出△ABC的高BD,∵A(﹣18,2)、B(﹣6,6),∴AC=2,BD=﹣6﹣(﹣18)=12,∴S△ABC=AC×BD=×2×12=12,(2)证明:如图2所示,过点G作GM⊥x轴于点M,过点B作BN⊥x轴于点N,设GM=m,则S△CBN=S△CGM+S梯形GMNB,即,=+,∵G点的横坐标为﹣14,∴=+,解得:m=2,故G(﹣14,2),∴AG∥x轴,∴∠CAG=90°,(3)由题意得M(﹣18+2t,2)、N(﹣6+2t,6),则,解得:3<t<9,而S△MOD=,S△NOD=(﹣6+2t),由S△MOD<2S△NOD得:<2×,解得:t>5,故综上:5<t<9.。
2021年七年级下册期末考试数 学 试 题满 分:120分 时 间:120分钟亲爱的同学:沉着应试,认真书写,祝你取得满意成绩! 一、选择题(每小题3分,共30分)1.81的值为( )A . 9B . ±9C . 3D . ±32. 下列调查中,适合全面调查方式的是( )A .调查某批次的灯泡的使用寿命B . 了解武汉市空气质量C .了解某班学生对“中国梦的内涵”的知晓率D . 了解长江中鱼的种类3.不等式组⎪⎩⎪⎨⎧-≥-111x x <的解集在数轴上表示正确的是( )A .B .C .D .4.如图,E 在AD 的延长线上,CD ∥AB ,则下列说法错误的是( )A . ∠3=∠AB . ∠1=∠2C . ∠4=∠5D .∠C +∠ABC =180°5. 由方程组⎪⎩⎪⎨⎧=-=+my m x 17可得出x 与y 的关系式是( )A . x +y =8B . x +y =1C . x +y =-1D . x +y =-86.解方程组⎪⎩⎪⎨⎧-=-=+246y cx by ax 时,小郑正确解得⎪⎩⎪⎨⎧==22y x ,而小付只看错了c ,解得⎪⎩⎪⎨⎧=-=42y x ,则a +b +c 的值为( )A . 6B . 4C . 2D . 07.平面直角坐标系中,M (-4,-1)、N (0,1). 将线段MN 平移后得到线段M ′N ′(点M 、N 分别 平移到点M ′、N ′的位置),若点M ′(-2,2),则点N ′的坐标为( )A . (一2,4)B . (一2,3)C . (2,3)D . (2,4)8.在平面直角坐标系中,点(-7,-2m +1)在第三象限,则m 的取值范围是( )A . m <21B . m >-21C . m <-21D . m >219. 如图,将一张正三角形纸片剪成四个全等的正三角形,得到4个小正三角形,称为第一次操作; 然后,将其中的一个正三角形再剪成四个小正三角形, 共得到7个小正三角形,称为第二次操作;再将其中 的一个正三角形再剪成四个小正三角形,共得到10个 小正三角形,称为第三次操作;……,以上操作n 次后, 共得到49个小正三角形,则n 的值为( )A . n =13B . n =14C . n =15D . n =1610.如图,点D 在△ABC 边BC 的延长线上,∠ABC 、∠ACD 的角平分线 交于点M ,将△MBC 以直线BC 为对称轴翻折得到△NBC ,∠NBC 、∠NCB 的角平分线交于点Q ,若∠A =48°,则∠BQC 的度数为( )A .138°B . 114°C .102°D . 100°二、填空题(每小题3分,共18分)11. 将一副直角三角板如图放置,使两直角重合,则∠1=_______.12. 若x +2有意义,则x 的取值范围是__________.13. 把命题“同角的余角相等”改写成“如果…,那么…”形式________________________.14.如图,三角形ABC 的周长为24cm ,将三角形ABC 沿AB 方向平移3cm 至三角形A 1B 1C 1的位置,连接CC 1,则四边形AB 1C 1C 的周长是______.15.关于x 的方程k -2x =3(k -2)的解为非负数,且关于x 的不等式组⎪⎩⎪⎨⎧≥+≤-- 323)12x x k x x (有解,则符合条件的整数k 的值的和为_______________.6.假设万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%, 在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰 好停满;如果开放3个进口和2个出口,2小时车库恰好停满. 今年元日节期间,由于商场人数 增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口, 则从早晨6点开始经过_________小时车库恰好停满.三、解答题(共8小题,共72分) 17. (8分)解方程组:⎪⎩⎪⎨⎧=+=+16210y x y x .……18. (8分)解不等式组:⎪⎩⎪⎨⎧-≥+-1312223x x x x )(>, 并在数轴上表示它的解集.19. (8分)对非负实数x ,“四含五入”到个位的值记为<x >,即:当n 为非负整数时,如果n -21≤x <n +21,则<x >=n . 如: <0.48>=0,<3.5>=4. (1)如果<2x -1>=3,求实数x 的取值范围; (2)如果<x >=34x ,求x 的值.20. (8分)如图,四边形ABCD 中,∠B +∠ADC =180°,CE 平分∠BCD 交AB 于点E ,连结DE . (1)若∠A =50°,∠B =85° ,求∠BEC 的度数; (2)若∠A =∠1,求证:∠CDE =∠DCE .21. (8分)某区去年已经成功创建国家卫生城区,现在正全力争创全国文明城区(简称“创文”). 某街道积极响应“创文”活动,投入一定资金用于绿化一块闲置空地,购买了甲、乙两种树木 共72棵。
七年级(下)期末数学试卷一、选择题(本大题共10小题,共30分)1.如图,A,B,C,D中的哪幅图案可以通过图案①平移得到()A. B. C. D.【答案】D【解析】解:通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D可以通过图案①平移得到.故选:D.根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.下列命题中,真命题的个数是()①同位角相等②√16的平方根是±4③经过一点有且只有一条直线与这条直线平行④点P(a,0)一定在x轴上A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:①两直线平行,同位角相等,错误;②√16的平方根是±2,错误;③经过直线外一点有且只有一条直线与这条直线平行,错误④点P(a,0)一定在x轴上,正确;故选:A.根据同位角,平方根、平行线判定和坐标进行判断即可.本题考查了命题与定理的知识,解题的关键是了解同位角,平方根、平行线判定和坐标,难度不大.3.若a=√3b−1−√1−3b+6,则ab的算术平方根是()A. 2B. √2C. ±√2D. 4【答案】B【解析】解:∵a=√3b−1−√1−3b+6,∴{1−3b≥03b−1≥0∴1−3b=0,∴b=13,∴a=6,∴ab=6×13=2,2的算术平方根是√2,故选:B.先根据二次根式的性质求出b的值,再求出a的值,最后根据算术平方根即可解答.本题考查了二次根式的性质、算术平方根,解决本题的关键是根据二次根式的性质求出b的值.4.如图,已知a//b,a⊥c,∠1=40∘,则∠2度数为()A. 40∘B. 140∘C. 130∘D. 以上结论都不对【答案】C【解析】解:如图,延长c,交b于一点,∵a//b,a⊥c,∴∠3=90∘,又∵∠4=∠1=40∘,∴∠2=∠3+∠4=90∘+40∘=130∘,故选:C.延长c,交b于一点,依据平行线的性质,即可得到∠3的度数,再根据三角形外角性质,即可得到∠2的度数.本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两直线平行,同旁内角互补.5.如果点P(a+b,ab)在第二象限,则点Q(−a,b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵点P(a+b,ab)在第二象限,∴a+b<0,ab>0,∴a、b同为负,∴−a>0,∴点Q(−a,b)在第四象限,故选:D.根据条件可得a+b<0,ab>0,进而判断出a、b同为负,再进一步判断可得点Q(−a,b)所在象限.此题主要考查了点的坐标,关键是掌握各象限内点的坐标符号.6.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A. 1或2B. 2或3C. 3或4D. 4或5【答案】C【解析】解:设该队胜x场,平y场,则负(6−x−y)场,根据题意,得:3x+y=12,即:x=12−y3,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.设该队胜x场,平y场,则负(6−x−y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.7.某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:请你估计这100名同学的家庭一个月节约用水的总量大约是()A. 180tB. 230tC. 250tD. 300t【答案】B【解析】解:利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量=1×6+2×4+3×8+4×220=2.3,∴估计这100名同学的家庭一个月节约用水的总量大约是=2.3×100=230t.故选:B.利用组中值求样本平均数,即可解决问题.本题考查样本平均数、组中值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.若方程组{2x−y=2ax+4=y中的x是y的2倍,则a等于()A. −9B. 8C. −7D. −6【答案】D【解析】解:由题意可得方程组{x+4=y①2x−y=2a②x=2y③,把③代入①得{x=−8y=−4,代入②得a=−6.故选:D.根据三元一次方程组解的概念,列出三元一次方程组,解出x,y的值代入含有a的式子即求出a的值.本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.9.不等式组{x<a5x−3<3x+5的解集为x<4,则a满足的条件是()A. a<4B. a=4C. a≤4D. a≥4【答案】D【解析】解:解不等式组得{x<ax<4,∵不等式组{x<a5x−3<3x+5的解集为x<4,∴a≥4.故选:D.先解不等式组,解集为x<a且x<4,再由不等式组{x<a5x−3<3x+5的解集为x<4,由“同小取较小”的原则,求得a取值范围即可.本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.10.如图,AB//CD,∠P=90∘,设∠A=α、∠E=β、∠D=γ,则α、β、γ满足的关系是()A. β+γ−α=90∘B. α+β+γ=90∘C. α+β−γ=90∘D. α+β+γ=180∘【答案】B【解析】解:过P点作PF//AB,∵AB//CD,∴AB//CD//PF,∴∠EOB=∠EPF,∠FPD=∠PDC,∵∠EPD=90∘,∴∠EPD=∠EPF+∠FPD=∠EOB+∠PDC=∠A+∠E+∠PDC=α+β+γ=90∘,故选:B.过P点作PF//AB,利用平行线的性质解答即可.此题考查平行线的性质,关键是作出辅助线利用平行线的性质解答.二、填空题(本大题共7小题,共21分)11.计算:−12+√643−(−2)×√9+√(−2)2=______.【答案】11【解析】解:−12+√643−(−2)×√9+√(−2)2=−1+4+2×3+2=11.故答案为:11.直接利用立方根的性质以及二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.a、b分别表示5−√5的整数部分和小数部分,则a+b=______.【答案】5−√5【解析】解:∵2<√5<3,∴−3<−√5<−2,∴2<5−√5<3,∴a=2,b=5−√5−2=3−√5;∴a+b=5−√5,故答案为:5−√5先求出√5范围,再两边都乘以−1,再两边都加上5,即可求出a、b.本题考查了估算无理数的大小和有理数的混合运算的应用,关键是根据学生的计算能力进行解答.13.如图,C岛在A岛的北偏东50∘方向,C岛在B岛的北偏西40∘方向,则从C岛看A,B两岛的视角∠ACB等于______度.【答案】90【解析】解:∵C岛在A岛的北偏东50∘方向,∴∠DAC=50∘,∵C岛在B岛的北偏西40∘方向,∴∠CBE=40∘,∵DA//EB,∴∠DAB+∠EBA=180∘,∴∠CAB+∠CBA=90∘,∴∠ACB=180∘−(∠CAB+∠CBA)=90∘.故答案为:90.根据方位角的概念和平行线的性质,结合三角形的内角和定理求解.解答此类题需要从运动的角度,结合平行线的性质和三角形的内角和定理求解.14.已知:如图所示的长方形ABCD沿EF折叠至D1、C1位置,若∠CFC1=130∘,则∠AED1等于______度.【答案】80【解析】解:∵长方形ABCD沿EF折叠至D1、C1位置,∴∠CFC1=∠EFC=130∘,∵四边形ABCD是矩形,∴AB//CD,∴∠BEF=50∘,∴∠D1EF=∠BEF=50∘,∴∠AED1=180∘−100∘=80∘,故答案为:80.先根据翻折变换的性质求出∠EFC的度数,再由平行线的性质求出∠BEF的度数,进而可得出结论.此题主要考查了矩形的性质、平行线的性质以及图形的折叠性质,解题的关键是掌握图形折叠后哪些角是对应相等的.15.如图,AB//DE//GF,∠BCD:∠D:∠B=2:3:4,则∠BCD等于______度.【答案】72【解析】解:∵∠BCD:∠D:∠B=2:3:4,∴设∠BCD=2x∘,∠D=3x∘,∠B=4x∘,∵AB//DE,∴∠GCB=(180−4x)∘,∵DE//GF,∴∠FCD=(180−3x)∘,∵∠BCD+∠GCB+∠FCD=180∘,∴180−4x+2x+180−3x=180,解得x=36,∴∠BCD=72∘,故答案为:72首先设∠BCD=2x∘,∠D=3x∘,∠B=4x∘,根据两直线平行,同旁内角互补即可表示出∠GCB、∠FCD的度数,再根据∠GCB、∠BCD、∠FCD的为180∘即可求得x的值,进而可得∠BCD的度数.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.16.在同一平面内,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=35∘,则∠AOC的度数为______.【答案】55∘【解析】解:如图:∵OE⊥AB,∴∠BOE=90∘,∵∠EOD=35∘,∴∠BOD=∠BOE−∠EOD=90∘−35∘=55∘,∴∠AOC=∠BOD=55∘(对顶角相等),故答案为:55∘先根据垂直的定义求出∠BOE=90∘,然后求出∠BOD的度数,再根据对顶角相等求出∠AOC的度数.本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.17.在平面直角坐标系中,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,按此规律排列,则点A2018的坐标是______.【答案】A2018(1009,1)【解析】解:观察图形可知:A2(1,1),A6(3,1),A10(5,1),A15(7,1),…,∴A4n+2(1+2n,1)(n为自然数).∵2018=504×4+2,∴n=504,∵1+2×504=1009,∴A2018(1009,1).故答案为A2018(1009,1).据图形可找出点A2、A6、A10、A14、…、的坐标,根据点的坐标的变化可找出变化规律“A4n+2(1+2n,1)(n 为自然数)”,依此规律即可得出结论.本题考查了规律型中点的坐标,根据点的变化找出变化规律“A4n+1(2n,1)(n为自然数)”是解题的关键.三、计算题(本大题共1小题,共12分)18.某汽车专卖店销售A,B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型车不少于2辆,购车费不少于130万元,则有哪几种购车方案?(3)试说明在(2)中哪种方案费用最低?最低费用是多少元?【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元、y 万元. 则{2x +y =62x+3y=96, 解得:{y =26x=18,答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)设购买A 型车a 辆,则购买B 型车(6−a)辆,则依题意得 18a +26(6−a)≥130, 解得a ≤314, ∴2≤a ≤314.a 是正整数, ∴a =2或a =3.共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车;(3)方案一的费用为:2×18+4×26=140(万元)、方案二的费用为:3×18+3×26=132(万元), 所以方案二的费用最低,最低费用为132万元.【解析】(1)每辆A 型车和B 型车的售价分别是x 万元、y 万元.构建方程组即可解决问题;(2)设购买A 型车a 辆,则购买B 型车(6−a)辆,则依题意得18a +26(6−a)≥130,求出整数解即可; (3)分别计算出所得方案的费用即可得.本题考查一元一次不等式的应用,二元一次方程组的应用等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.四、解答题(本大题共6小题,共57分)19. (1)计算:|√3−2|+|√3−1|−(1−√2)(2)已知某数的两个平方根分别为a +3和2a −9,求这个数. 【答案】解:(1)|√3−2|+|√3−1|−(1−√2)=2−√3+√3−1−1+√2=√2;(2)∵某数的两个平方根分别为a +3和2a −9, ∴a +3+2a −9=0, 解得:a =−1, 故a +3=2, 则这个数为:4.【解析】(1)直接利用绝对值的性质以及去括号法则化简进而得出答案; (2)直接利用平方根的性质得出a 的值,进而得出答案.此题主要考查了实数运算以及平方根,正确化简各数是解题关键.20. (1)解方程组:{3x −4y =5x+2y=5(2)解不等式组:{2x −3<x1−x 3≤x+126【答案】解:(1){3x −4y =5 ②x+2y=5 ①,①×2+②得5x =15,解得x =3, 把x =3代入①得3+2y =5,解得y =1. 故方程组的解为{y =1x=3; (2){2x −3<x①1−x 3≤x+126②, 解不等式①得x <3, 解不等式②得x ≥−2. 故不等式组的解为−2≤x <3.【解析】(1)根据加减消元法解方程组即可求解;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.同时考查了解二元一次方程组.21. 已知:如图,直线AB 与CD 被EF 所截,∠1=∠2,求证:AB//CD .【答案】证明:∵∠2=∠3(对顶角相等), 又∵∠1=∠2(已知), ∴∠1=∠3,∴AB//CD(同位角相等,两直线平行).【解析】根据对顶角相等,等量代换和平行线的判定定理进行证明即可.本题考查的是平行线的判定,掌握平行线的判定定理是解题的关键.22.已知:AB//CD,∠1:∠2:∠3=1:2:3,求∠BDF的度数.【答案】解:∵∠1:∠2:∠3=1:2:3,∴设∠1=x∘,∠2=2x∘,∠3=3x∘,∵AB//CD,∴∠2+∠3=180∘,∴2x+3x=180,∴x=36,即∠1=36∘,∠2=72∘,∠3=108∘.∵AB//CD,∴∠1+∠2+∠BDF=180∘,∴∠BDF=180∘−∠1−∠2=72∘.【解析】设∠1=x∘,∠2=2x∘,∠3=3x∘,根据平行线的性质得出∠2+∠3=180∘,推出方程2x+3x=180,求出x,再由AB//CD得∠1+∠2+∠BDF=180∘,据此可得答案.本题考查了平行线的性质的应用,用了方程思想,注意:两直线平行,同旁内角互补.23.已知:如图,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P,PE⊥PF,试探索AB与CD的位置关系,并说明理由.【答案】解:AB//CD,理由:∵PE⊥PF,∴∠P=90∘,∵∠PEF+∠PFE+∠P=180∘,∴∠PEF+∠PFE=90∘,又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠BEF=2∠PEF,∠DFE=2∠PFE,∴∠BEF+∠DFE=180∘.∴AB//CD.【解析】依据PE⊥PF,即可得出∠PEF+∠PFE=90∘,再根据∠BEF的平分线与∠DFE的平分线相交于点P,即可得到∠BEF+∠DFE=180∘,即可得到AB//CD.本题主要考查综合运用平行线的性质、角平分线的定义、三角形内角和等知识解决问题的能力,解题时注意:同旁内角互补,两直线平行.24.随着移动终端设备的升级换代,手机己经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天:B.学习:C.购物:D.游戏:E.其他),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):选项频数百分比A10mB n20%C510%D p40%E510%合计100%根据以上信息解答下列问题:(1)m=______,n=______,p=______;(2)补全条形统计图;(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?【答案】20%;10;20【解析】解:(1)因为调查的总人数为5÷0.1=50(人),所以m=10÷50×100%=20%,n=50×0.2=10,p=50×0.4=20.故答案为:20%、10、20.(2)由(1)知总人数为50人,补全图形如下:(3)800×(0.1+0.4)=400(人).答:估计全校学生中利用手机购物或玩游戏的共有400人.(1)先根据C选项频数和频率求出总人数,再根据频率=频数÷总数分别求解可得;(2)根据表格中数据即可补全条形图;(3)总人数乘以样本中D、E的频率之和即可得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.。
七年级(下)期末数学试卷一、选择题(本题共14个题,每题中只有一个答案符合要求,每小题3分,共42分)1.下列选项中能由左图平移得到的是()A.B.C.D.2.下列说法正确的是()A.2是(﹣2)2的算术平方根B.﹣2是﹣4的平方根C.(﹣2)2的平方根是2 D.8的立方根是±23.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.4.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③5.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个D.1个6.方程组,消去y后得到的方程是()A.3x﹣4x﹣10=0 B.3x﹣4x+5=8 C.3x﹣2(5﹣2x)=8 D.3x﹣4x+10=87.下列结论中,正确的是()A.若a>b,则<B.若a>b,则a2>b2C.若a>b,则1﹣a<1﹣b D.若a>b,ac2>bc28.不等式组的解集在数轴上表示正确的是()A. B.C.D.9.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.0<a<2 B.﹣2<a<0 C.a>2 D.a<010.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是()A.B.C.D.11.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣112.己知﹣2x n﹣3m y3与3x7y m+n是同类项,则m n的值是()A.4 B.1 C.﹣4 D.﹣113.为积极响应我市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.D等所在扇形的圆心角为15°B.样本容量是200C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人14.某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折二、填空题(本题共5个小题,每小题3分,共15分)15.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是.16.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2002~2006年,这两家公司中销售量增长较快的是公司.17.已知线段AB的A点坐标是(3,2),B点坐标是(﹣2,﹣5),将线段AB平移后得到点A 的对应点A′的坐标是(5,﹣1),则点B的对应点B′的坐标是.18.已知方程组的解为,则a+b的值为.19.如图,已知∠1=∠2=∠3=65°,则∠4的度数为.三、解答题(本题共7个小题,共63分)20.解方程组:(1)(2).21.解不等式组(1)<6﹣(2).22.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?23.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.24.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?25.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?26.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共14个题,每题中只有一个答案符合要求,每小题3分,共42分)1.下列选项中能由左图平移得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.2.下列说法正确的是()A.2是(﹣2)2的算术平方根B.﹣2是﹣4的平方根C.(﹣2)2的平方根是2 D.8的立方根是±2【考点】算术平方根;平方根;立方根.【分析】根据算术平方根、平方根和立方根的定义判断即可.【解答】解:A、2是(﹣2)2的算术平方根,正确;B、﹣4没有平方根,错误;C、(﹣2)2的平方根是±2,错误;D、8的立方根是2,错误;故选A【点评】此题考查算术平方根、平方根和立方根,关键是根据算术平方根、平方根和立方根的定义来分析.3.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题.【分析】将x、y的值分别代入x﹣2y中,看结果是否等于1,判断x、y的值是否为方程x﹣2y=1的解.【解答】解:A、当x=0,y=﹣时,x﹣2y=0﹣2×(﹣)=1,是方程的解;B、当x=1,y=1时,x﹣2y=1﹣2×1=﹣1,不是方程的解;C、当x=1,y=0时,x﹣2y=1﹣2×0=1,是方程的解;D、当x=﹣1,y=﹣1时,x﹣2y=﹣1﹣2×(﹣1)=1,是方程的解;故选:B.【点评】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.4.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个D.1个【考点】平行线的性质;余角和补角.【专题】几何图形问题.【分析】由互余的定义、平行线的性质,利用等量代换求解即可.【解答】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:C.【点评】此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.6.方程组,消去y后得到的方程是()A.3x﹣4x﹣10=0 B.3x﹣4x+5=8 C.3x﹣2(5﹣2x)=8 D.3x﹣4x+10=8【考点】解二元一次方程组.【分析】先把①两边同时乘以2,使两方程中y的系数相等,再使两式相减便可消去y.【解答】解:①×2得,4x﹣2y=10…③,②﹣③得,3x﹣4x=8﹣10,即3x﹣4x+10=8.故选D.【点评】此题比较简单,考查的是用加减消元法解二元一次方程,当方程两边需要同时乘以一个数或式子时不要漏乘常数项,以免误解.7.下列结论中,正确的是()A.若a>b,则<B.若a>b,则a2>b2C.若a>b,则1﹣a<1﹣b D.若a>b,ac2>bc2【考点】不等式的性质.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、当a>0>b时,<,故本选项错误;B、当a>0,b<0,a<|b|时,a2<b2,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,故本选项正确;D、当c=0时,虽然a>b,但是ac2=bc2,故本选项错误.故选C.【点评】本题考查了不等式的性质,0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:8.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】分别求出①②的解集,再找到其公共部分即可.【解答】解:,由①得,x≤3,由②得,x>﹣2,不等式组的解集为﹣2<x≤3,在数轴上表示为:,故选:B.【点评】本题考查了解一元一次不等式(组)的解集和在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.9.若点P(a,a﹣2)在第四象限,则a的取值范围是()A.0<a<2 B.﹣2<a<0 C.a>2 D.a<0【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限内点的横坐标是正数,纵坐标都是负数列出不等式组,然后求解即可.【解答】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.故选:A.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】几何图形问题.【分析】设小长方形的长为xcm,宽为ycm,根据图形可得:大长方形的宽=小长方形的长+小长方形的宽,小长方形的长=小长方形的宽×4,列出方程中即可.【解答】解:设小长方形的长为xcm,宽为ycm,则可列方程组:.故选:B.【点评】此题考查了由实际问题抽象出二元一次方程,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组,注意弄清小正方形的长与宽的关系.11.若关于x的一元一次不等式组无解,则a的取值范围是()A.a≥1 B.a>1 C.a≤﹣1 D.a<﹣1【考点】解一元一次不等式组.【分析】将不等式组解出来,根据不等式组无解,求出a的取值范围.【解答】解:解得,,∵无解,∴a≥1.故选:A.【点评】本题考查了解一元一次不等式组,会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.12.己知﹣2x n﹣3m y3与3x7y m+n是同类项,则m n的值是()A.4 B.1 C.﹣4 D.﹣1【考点】解二元一次方程组;同类项.【分析】由同类项的定义可知:n﹣3m=7,m+n=3,然后解关于m、n的二元一次方程组求得m、n 的值,然后即可求得m n的值.【解答】解:由同类项的定义可知:,②×3得:3m+3n=9③,③+①得:4n=16.解得:n=4.将n=4代入②得:m=﹣1.所以方程组得解为:.∴m n=(﹣1)4=1.故选:B.【点评】本题主要考查的是二元一次方程组的解法,由同类项的定义列出方程组是解题的关键.13.为积极响应我市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.D等所在扇形的圆心角为15°B.样本容量是200C.样本中C等所占百分比是10%D.估计全校学生成绩为A等大约有900人【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】结合统计图的数据,正确的分析求解即可得出答案.【解答】解:样本容量是50÷25%=200,故B正确,样本中C等所占百分比是=10%,故C正确,估计全校学生成绩为A等大约有1500×60%=900人,故D正确,D等所在扇形的圆心角为360°×(1﹣60%﹣25%﹣10%)=18°,故A不正确.故选:A.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.14.某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A.6折B.7折C.8折D.9折【考点】一元一次不等式的应用.【专题】应用题;压轴题.【分析】根据利润率不低于5%,就可以得到一个关于打折比例的不等式,就可以求出至多打几折.【解答】解:设至多可以打x折1200x﹣800≥800×5%解得x≥70%,即最多可打7折.故选B.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.二、填空题(本题共5个小题,每小题3分,共15分)15.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示的点是P.【考点】估算无理数的大小;实数与数轴.【分析】先估算出的取值范围,再找出符合条件的点即可.【解答】解:∵4<7<9,∴2<<3,∴在2与3之间,且更靠近3.故答案为:P.【点评】本题考查的是的是估算无理数的大小,熟知用有理数逼近无理数,求无理数的近似值是解答此题的关键.16.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2002~2006年,这两家公司中销售量增长较快的是甲公司.【考点】折线统计图.【专题】图表型.【分析】结合折线统计图,求出甲、乙各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2006年的销售量约为510辆,2002年约为100辆,则从2002~2006年甲公司增长了510﹣100=410辆;乙公司2006年的销售量为400辆,2002年的销售量为100辆,则从2002~2006年,乙公司中销售量增长了400﹣100=300辆;则甲公司销售量增长的较快.【点评】本题单纯从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.17.已知线段AB的A点坐标是(3,2),B点坐标是(﹣2,﹣5),将线段AB平移后得到点A 的对应点A′的坐标是(5,﹣1),则点B的对应点B′的坐标是(0,﹣8).【考点】坐标与图形变化-平移.【分析】根据点A、A′的坐标确定出平移规律,然后求解即可.【解答】解:∵点A(3,2)的对应点A′是(5,﹣1),∴平移规律是横坐标加2,纵坐标减3,∴点B(﹣2,﹣5)的(0,﹣8).故答案为:(0,﹣8).【点评】本题考查了坐标与图形变化﹣平移,确定出平移规律是解题的关键.18.已知方程组的解为,则a+b的值为4.【考点】二元一次方程组的解.【专题】计算题.【分析】把x与y的值代入方程组求出a与b的值,即可确定出a+b的值.【解答】解:把代入方程组得:,解得:,则a+b=4,故答案为:4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,已知∠1=∠2=∠3=65°,则∠4的度数为115°.【考点】平行线的判定与性质.【专题】计算题.【分析】根据平行线的判定与性质,可得∠3=∠5=65°,又根据邻补角可得∠5+∠4=180°,即可得出∠4的度数;【解答】解:∵∠1=∠2,∴AB∥CD,∴∠3=∠5,又∠1=∠2=∠3=65°,∴∠5=65°又∠5+∠4=180°,∴∠4=115°;故答案为:115°.【点评】本题主要考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.三、解答题(本题共7个小题,共63分)20.解方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题.【分析】(1)原式利用代入消元法求出解即可;(2)原式利用加减消元法求出解即可.【解答】解:(1),由②得:x=2y③,把③代入①得:2×2y+y=5,∴y=1,把y=1代入③得:x=2,∴原方程组的解为;(2),①×2+②×3得:13x=26,把x=2代入②得:y=3,∴原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.解不等式组(1)<6﹣(2).【考点】解一元一次不等式组;解一元一次不等式.【分析】(1)去分母,去括号,然后移项、合并同类项、系数化成1即可求解;(2)先求出不等式组中每一个不等式的解集,然后求出它们的公共部分即可.【解答】解:(1)去分母得,x﹣3<24﹣2(3﹣4x),去括号得,x﹣3<24﹣6+8x,移项,合并同类项得,7x>﹣21,解得x>﹣3,所以,不等式的解集为x>﹣3;(2)解不等式①,得x>2,解不等式②,得x≤4,故原不等式组的解集为2<x≤4.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.22.多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【考点】坐标确定位置.【专题】作图题.【分析】根据马场的坐标为(﹣3,﹣3),建立直角坐标系,找到原点和x轴、y轴.再找到其他各景点的坐标.【解答】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).【点评】本题考查了坐标位置的确定,由已知条件正确确定坐标轴的位置是解决本题的关键.23.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.【考点】平行线的性质;对顶角、邻补角;垂线.【分析】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.【解答】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.【点评】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.24.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)利用总人数50减去其它组的人数即可求解;(2)根据统计表即可补全直方图;(3)根据优秀率的定义即可求解.【解答】解:(1)a=50﹣4﹣8﹣16﹣10=12;(2)根据题意画图如下:;(3)本次测试的优秀率是×100%=44%,答:本次测试的优秀率是44%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?【考点】二元一次方程组的应用.【专题】方程思想.【分析】(1)设甲、乙班组平均每天掘进x米,y米,根据已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米两个关系列方程组求解.(2)由(1)和在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米分别求出按原来进度和现在进度的天数,即求出少用天数.【解答】解:(1)设甲、乙班组平均每天掘进x米,y米,得,解得.∴甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=(1755﹣45)÷(4.8+4.2)=190(天)b=(1755﹣45)÷(4.8+0.2+4.2+0.3)=180(天)∴a﹣b=10(天)∴少用10天完成任务.【点评】此题考查的知识点是二元一次方程组的应用,解题的关键是根据已知找出相等关系列方程组求解,然后由已知和所求原来进度求出少用天数26.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【考点】二元一次方程组的应用;一元一次方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.。
湖北省武汉市2021年七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,每小题3分,共30分. (共10题;共30分)1. (3分) (2019八下·江苏月考) 下列调查适合作普查的是()A . 了解“嫦娥三号”卫星零部件的状况B . 了解在校大学生的主要娱乐方式C . 日光灯管厂要检测一批灯管的使用寿命D . 了解某市居民对废电池的处理情况2. (3分)(2017·苏州模拟) 有一种细胞直径约为0.000 058cm.用科学记数法表示这个数为()A . 5.8×10﹣6B . 5.8×10﹣5C . 0.58×10﹣5D . 58×10﹣63. (3分) (2019七下·余杭期末) 下列多项式可以用平方差公式分解因式的是()A . 4x2+y2B . -4x2+y2C . -4x2-y2D . 4x3-y24. (3分)如图,AB//CD,AC与BD相交于点O,∠A=30°,∠COD=105°.则∠D的大小是()A . 30°B . 45°C . 65°D . 75°5. (3分)“恒盛”超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“_”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米重量的平均数和极差分别是()A . 0,1.5B . 29.5,1C . 30,1.5D . 30.5,06. (3分)小明去逛商场,发现有他非常喜欢的邮票,小明就把兜里仅有的8元钱全部买了60分和80分的两种邮票.请问:小明购买邮票有几种方案()A . 1种B . 2种C . 3种D . 4种7. (3分)下列四个命题中,真命题的是()A . 同位角相等B . 相等的角是对顶角C . 邻补角相等D . a,b,c是同一平面上的三条直线,且a∥b,b∥c,则a∥c.8. (3分)把,,通分的过程中,不正确的是()A . 最简公分母是(x-2)(x+3)2B .C .D .9. (3分)一个长方形的长2xcm,宽比长少4 cm,若将长和宽都增加3 cm,则面积增大了__________cm2,若x=3,则增加的面积为__________cm2.下列选项不符合题意的是()。
{{{2017-2018 学年湖北省武汉市东湖高新区七年级(下)期末数学试卷副标题题号 一二三四总分得分一、选择题(本大题共 8 小题,共 24.0 分)1. 方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛, …”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 解,1 个大桶加上 5 个小桶 可以盛酒 2 斛,…“则一个大桶和个小桶一共可以盛酒斛,则可列方程组正确的是 ( )5 + = 2A. + 5 = 35 + = 3B. + 5 = 2 5 + = 3C. = 5 + 2 5 = +3D. + 5 = 2 2. 如图,若 CD ∥AB ,则下列说法错误的是()A. ∠3 = ∠A C. ∠4 = ∠5B. ∠1 = ∠2D. ∠C + ∠ABC = 180 ∘3. 下列说法:①-1 是 1 的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;③ 10在两个连续整数 a 和 b 之间,那么 a +b =7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个4. 下列调查中,适宜采用全面调查方式的是( )A. 调查春节联欢晚会在武汉市的收视率B. 调查某班学生对“武汉精神”的知晓率C. 调查某批次汽车的抗撞击能力D. 了解长江中鱼的种类5. 一个数的立方根是它本身,则这个数是( )A. 0B. 1,0C. 1,−1D. 1,−1或 06. 如果关于 x 为不等式 2≤3x -7<b 有四个整数解,那么 b 的取值范围是( ) A. −11 ≤ b ≤ −14 B. 11 < < 14 C. 11 < b ≤ 14 D. 11 ≤ b < 147. 在平面直角坐标系中,点 P (-4,-1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 若 x >y ,则下列式子中错误的是(){x−5 > y−5 x + 4 > y + 4 x> y−6x> −6yA. B. C. 3 3 D.{ { 二、填空题(本大题共 5 小题,共 15.0 分) 9. 令 a 、b 两数中较大的数记作 max|a ,b |,如 max|2,3|=3,已知 k 为正整数且使不等式max|2k +1,-k +5|≤5 成立,则 k 的值是 .10. 计算:3 3+ 12= .11. 学习了平行线后,学霸君想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示,由操作过程可知学霸君画平行线的依据可以是(把下列所有正确结论的序号都填在横线上)①两直线平行,同位角相等 ②同位角相等,两直线平行 ③内错角相等,两直线平行 ④同旁内角互补,两直线平行;12. 如图,直线 AB 、CD 相交于点 O ,EO ⊥AB ,垂足为O ,DM ∥AB ,若∠EOC =35°,则∠ODM = 度.+ 2= 7= 5{ = 313. 解方程组cx−dy = 4时,一学生把 a 看错后得到y = 1,而正确的解是y = −1,则 a +c +d = .三、计算题(本大题共 1 小题,共 8.0 分) {= + 514. 解方程组: 3x−5y = 1四、解答题(本大题共 6 小题,共 54.0 分)15. 如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为 A (a ,0), B(0,b ),C (2,4),且方程 3x 2a +b +11-2y 3a -2b +9=0 是关于 x ,y 的二元一次方程.(1)求A、B 两点坐标;1(2)如图1,设D 为坐标轴上一点,且满足S△ABD=2S△ABC,求D 点坐标.(3)平移△ABC 得到△EFG(A 与E 对应,B 与F 对应,C 与G 对应),且点E4的横、纵坐标满足关系式:5x E-y E=4,点F 的横、纵坐标满足关系式:3x F-y F=4,求G 的坐标.16.已知:△ABC 中,点D 为线段CB 上一点,且不与点B,点C 重合,DE∥AB 交直线AC 于点E,DF∥AC 交直线AB 于点F.(1)请在图1 中画出符合题意的图形,猜想并写出∠EDF 与∠BAC 的数量关系;(2)若点D 在线段CB 的延长线上时,(1)中的结论仍成立吗?若成立,请给予证明,若不成立,请给出∠EDF 与∠BAC 之间的数量关系,并说明理由.(借助图2 画图说明)(3)如图3,当D 点在线段BC 上且DF 正好平分∠BDE,过E 作EG∥BC,EH平分∠GEA 交DF 于H 点,请直接写出∠DHE 与∠BAC 之间存在怎样的数量关系.17.完成下列推理过程如图,M、F 两点在直线CD 上,AB∥CD,CB∥DE,BM、DN 分别是∠ABC、∠EDF 的平分线,求证:BM∥DN.证明:∵BM、DN 分别是∠ABC、∠EDF 的平分线1∠l=2∠ABC,∠3= (角平分线定义)∵AB∥CD∴∠1=∠2,∠ABC= ()∵CB∥DE∴∠BCD= ()∴∠2= ()∴BM∥DN()18.(1)请在下面的网格中建立适当的平面直角坐标系,使得A、B 两点的坐标分别为(-2,4)、(3,4).(2)点C(-2,n)在直线l 上运动,请你用语言描述直线与y 轴的关系为:.(3)在(1)(2)的条件下,连结BC 交线段OA 于G 点,若△AGC 的面积与△GBO 的面积相等(O 为坐标原点)则C 的坐标为.19.某校举行“汉字听写”比赛,每位学生听写汉字39 个,比赛结束后随即抽查部分组别正确字数x 人数A 0≤x<8 10B 8≤x<16 15C 16≤x<24 25D 24≤x<32 mE 32≤x<40 20根据以上信息解决下列问题:(1)在统计表中,m= ,n= 并补全直方图(2)扇形统计图中“C 组”所对应的圆心角的度数是.(3)若该校共有964 名学生,如果听写正确的个数少于16 个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数有多少人?2x + 3 ≥ x + 42x+ 5−2<3−x20.解不等式组 3 ,并在数轴上表示其解集.{答案和解析1.【答案】B【解析】解:设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据题意得:,故选:B.设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据“5 个大桶加上1 个小桶可以盛酒3 斛,1 个大桶加上5 个小桶可以盛酒2 斛”即可得出关于x、y 的二元一次方程组.本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y 的二元一次方程组是解题的关键.2.【答案】C【解析】解:∵CD∥AB,∴∠3=∠A,∠1=∠2,∠C+∠ABC=180°,故选:C.由CD 与AB 平行,利用两直线平行内错角相等,同位角相等,同旁内角互补,判断即可得到结果.此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.3.【答案】B【解析】解:①-1 是1 的平方根是正确的;②在同一平面内,如果两条直线都垂直于同一直线,那么这两条直线平行,原来的说法是错误的;③在两个连续整数a 和b 之间,那么a+b=3+4=7 是正确的;④所有的实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数,原来的说法是错误的;⑤无理数就是无限不循环的小数,原来的说法是错误的.故选:B.根据估算无理数的大小、实数与数轴、平行线的判定、无理数的定义和特点分别对每一项进行分析,即可得出答案.此题考查了估算无理数的大小、实数与数轴、平行线的判定、实数,熟知有关定义和性质是本题的关键.4.【答案】B【解析】解:A、调查春节联欢晚会在武汉市的收视率适合抽样调查;B、调查某班学生对“武汉精神”的知晓率适合全面调查;C、调查某批次汽车的抗撞击能力适合抽样调查;D、了解长江中鱼的种类适合抽样调查;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【答案】D【解析】解:立方根是它本身有3 个,分别是±1,0.故选:D.如果一个数x 的立方等于a,那么x 是a 的立方根,根据此定义求解即可.本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3 个,分别是±1,0.如立方根的性质:(1)正数的立方根是正数;(2)负数的立方根是负数;(3)0 的立方根是0.6.【答案】C【解析】解:解不等式3x-7≥2,得:x≥3,解不等式3x-7<b,得:x<,∵不等式组有四个整数解,∴6<≤7,解得:11<b≤14,故选:C.可先用b 表示出不等式组的解集,再根据恰有四个整数解可得到关于b 的不等组,可求得b 的取值范围.本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.7.【答案】C【解析】解:由点P(-4,-1),可得P 点第三象限.故选:C.直接利用第三象限点的坐标特点得出答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.【答案】D【解析】解:∵x>y,∴x-5>y-5,x+4>y+4, x>y,-6x<-6y.故选:D.利用不等式的性质对各选项进行判断.本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9.【答案】2 或1【解析】解:①当时,解得:<k≤2;②当时,解得0≤k≤∵k 为正整数,∴使不等式max|2k+1,-k+5|≤5 成立的k 的值是2 或1,故答案为2 或1.根据新定义分、两种情况,分别列出不等式求解即可.本题主要考查对新定义的理解及解一元一次不等式的能力,由新定义会分类讨论是前提,根据题意列出不等式组是关键.310.【答案】5【解析】解:原式=3 +2=5 .故答案为:5 .直接化简二次根式进而计算得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.11.【答案】②③④【解析】解:第一次折叠后,得到的折痕AB 与直线m 之间的位置关系是垂直;将正方形纸展开,再进行第二次折叠(如图(4)所示),得到的折痕CD 与第一次折痕之间的位置关系是垂直;∵AB⊥m,CD⊥m,∴∠1=∠2=∠3=∠4=90°,∵∠3=∠1,∴AB∥CD(同位角相等,两直线平行),∵∠4=∠2,∴AB∥CD(内错角相等,两直线平行),∵∠2+∠3=180°,∴m∥CD(同旁内角互补,两直线平行).故答案为:②③④.根据折叠可直接得到折痕AB 与直线m 之间的位置关系是垂直,折痕CD 与第一次折痕之间的位置关系是垂直;然后根据平行线的判定条件可得,由③∠3=∠1 可得m∥CD;由④∠4=∠2,可得m∥CD;由∠2+∠3=180°,可得m∥CD.此题主要考查了平行线的判定,以及翻折变换,关键是掌握平行线的判定定理.12.【答案】125【解析】解:∵EO⊥AB,∴∠EOB=90°,∴∠BOC=∠BOE+∠EOC=90°+35°=125°,∵DM∥AB,∴∠ODM=∠BOC=125°.故答案为125°.利用垂直的定义得到∠EOB=90°,则∠BOC=125°,然后利用平行线的性质得到∠ODM=∠BOC=125°.本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.13.【答案】5【解析】解:将x=5,y=1;x=3,y=-1 分别代入cx-dy=4 得:,解得:,将x=3,y=-1 代入ax+2y=7 中得:3a-2=7,解得:a=3,则a=3,c=1,d=1,把a=3,c=1,d=1 代入a+c+d=3+1+1=5,{ {故答案为:5.将 x=5,y=1 代入第二个方程,将 x=3,y=-1 代入第二个方程,组成方程组求出 c 与 d 的值,将正确解代入第一个方程求出 a 即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14. 【答案】解:,把①代入②得:3x -5x -25=1,解得:x =-13,把 x =-13 代入①得:y =-8, x = −13则方程组的解为y = −8. 【解析】方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2 + + 11 = 1 15.【答案】解:(1)由题意得, 3a−2b + 9 = 1, 解得,{b a == −−42,则 A 点的坐标为(-4,0),B 点的坐标为(0,-2);(2)∵△ABC 的三个顶点坐标分别为 A (-4,0),B (0,-2),C (2,4),1 1 1 ∴S △ABC =2×(2+6)×6-2×2×4-2×2×6=14,当点 D 在 x 轴上时,设 D 点坐标为(x ,0),1 1由题意得,2×|x +4|×2=2×14,解得,x =3 或 x =-11,此时点 D 的坐标为(3,0)或(-11,0),当点 D 在 y 轴上时,设 D 点坐标为(0,y ),1 1由题意得,2×|y +2|×4=2×14,3 11解得,y =2或 y =- 2 ,3 11此时点 D 的坐标为(0,2)或(0,- 2 ),3 11综上所述,点 D 的坐标为(3,0)或(-11,0)或(0,2)或(0,- 2 );{ {4(3)设点E 的坐标为(m,m+4),点F 的坐标为(n,3n-4),−4−m= 0−n5m−4−0 = 4n−(−2)由平移的性质得, 3 ,= 2解得,= 6,则点E 的坐标为(2,6),点F 的坐标为(6,2),∵A 点的坐标为(-4,0),B 点的坐标为(0,-2),∴平移规律是先向右平移6 个单位,再向上平移平移6 个单位,∵点C 的坐标为(2,4),∴G 的坐标为(8,10).【解析】(1)根据二元一次方程的定义列出方程组,解方程组求出a、b,得到A、B 两点坐标;(2)根据坐标与图形的性质求出S△ABC,分点D 在x 轴上、点D 在y 轴上两种情况,根据三角形的面积公式计算即可;(3)点E 的坐标为(m,m+4),点F 的坐标为(n, n-4),根据平移规律列出方程组,解方程组求出m、n,得到点E 的坐标、点F 的坐标,根据平移规律解答.本题考查的是二元一次方程的定义、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.16.【答案】解:(1)结论:∠EDF=∠BAC.理由:∵DE∥AB,DF∥AC,∴四边形AEDF 是平行四边形,∴∠EDF=∠BAC.(2)结论不成立.∠EDF+∠BAC=180°.理由:∵DE∥AB,DF∥AC,∴四边形AEDF 是平行四边形,∴∠EDF=∠EAF,∵∠BAC+∠EAF=180°,∴∠EDF+∠BAC=180°.(3)结论:∠BAC=2∠DHE.理由:∵∠HDE=∠HDB,∠HDE=∠A,∴∠HDB=∠A,∵DH∥AC,EG∥BC,∴∠C=∠HDB=∠AEG,∴∠A=∠AEG,∵∠DHE=∠AEH,∠AEG=2∠AEH,∴∠A=2∠DHE.【解析】(1)根据要求画出图形即可;(2)结论不成立.∠EDF+∠BAC=180°.理由平行四边形的性质、邻补角的性质即可解决问题;(3)结论:∠BAC=2∠DHE.想办法证明∠A=∠AEG,∠AEG=2∠DHE 即可;本题考查作图,平行线的性质、平行四边形的判定和性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.117.【答案】2∠EDF;∠BCD;两直线平行,内错角相等;∠EDF;两直线平行,同位角相等;∠3;等量代换;同位角相等,两直线平行【解析】证明:∵BM、DN 分别是∠ABC、∠EDF 的平分线∠l= ∠ABC,∠3= ∠EDF(角平分线定义)∵AB∥CD∴∠1=∠2,∠ABC=∠BCD(两直线平行,内错角相等)∵CB∥DE∴∠BCD=∠EDF(两直线平行,同位角相等)∴∠2=∠3(等量代换)∴BM∥DN(同位角相等,两直线平行)故答案为:∠EDF;∠BCD;两直线平行,内错角相等;∠EDF;两直线平行,同位角相等;∠3;等量代换;同位角相等,两直线平行.根据平行线的判定和性质解答即可.此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.18.【答案】直线l 平行于y 轴且到y 轴距离为2 个单位长度;(-2,0)【解析】解:(1)平面直角坐标系如图所示;(2)点C(-2,n)在直线l 上运动,直线l 平行于y 轴且到y 轴距离为2 个单位长度;故答案为:直线l 平行于y 轴且到y 轴距离为2 个单位长度;(3)如图,若△AGC 的面积与△GBO 的面积相等(O 为坐标原点)则C 的坐标为(-2,0),故答案为(-2,0).(1)以点A 向下4 个单位,向右2 个单位为坐标原点建立平面直角坐标系即可;(2)根据图象即可得出结论;(3)如图所示,△AGC 的面积与△GBO 的面积相等,此时C 的坐标为(2,0).本题考查了坐标和图形的性质、三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键19.【答案】30;25%;72°【解析】解:(1)∵被调查的总人数为10÷10%=100 人,∴m=100×30%=30,n=1-(10%+15%+20%+30%)=25%,补全图形如下:故答案为:30、25%;(2)扇形统计图中“C组”所对应的圆心角的度数是360°×20%=72°,故答案为:72°;(3)估计这所学校本次比赛听写不合格的学生人数有964×(10%+15%)=241(人).(1)根据A 组频数及其所占百分比求得总人数,总人数乘以D 组百分比可得m,根据百分比之和为1 可得n 的值;(2)用360°乘以C 组百分比可得;(3)总人数乘以样本中A、B 组百分比之和可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计{图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2x + 3 ≥ x + 4①2x + 5−2<3−x ②20.【答案】解: 3 ∵解不等式①得:x ≥1,解不等式②得:x <2,∴不等式组的解集为 1≤x <2,在数轴上表示为:.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
湖北省2021-2022学年度七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列几何图形中,既是轴对称图形,又是中心对称图形的是()A . 等腰三角形B . 正三角形C . 平行四边形D . 正方形2. (2分)(2015·义乌) 有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .3. (2分)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A . 摸出的三个球中至少有一个球是黑球B . 摸出的三个球中至少有一个球是白球C . 摸出的三个球中至少有两个球是黑球D . 摸出的三个球中至少有两个球是白球4. (2分) (2016八上·海盐期中) 下列各组数不可能是一个三角形的边长的是()A . 5,12,13B . 5,7,12C . 5,7,7D . 4,6,95. (2分)下列计算,正确的是()A . (2x2)3=8x6B . a6÷a2=a3C . 3a2×2a2=6a2D . (m+n)2=m2+n26. (2分)数轴上原点和原点左边的点表示的数是()A . 负数B . 正数C . 非负数D . 非正数7. (2分) (2020七下·古田月考) 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是()A . 第一次右拐50°,第二次左拐130°B . 第一次左拐50°,第二次右拐50°C . 第一次左拐50°,第二次左拐130°D . 第一次右拐50°,第二次右拐50°8. (2分) (2021七上·綦江期末) 如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A . 3 cmB . 6 cmC . 11 cmD . 14 cm二、填空题 (共6题;共6分)9. (1分) (2020七上·宜春期中) 的倒数是________.10. (1分) 42500000用科学记数法表示为________.11. (1分) (2016八上·通许期末) 在△ABC中,AB=BC,AD平分∠BAC,AE=AB,△CDE的周长为8cm,那么AC长________.12. (1分)(2019·广西模拟) 某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为 ________13. (1分) (2020八上·青山期末) 如图,在长方形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于 AC的长为半径作弧两弧相交于点M和N②作直线MN交CD于点E.若DE=3,CE=5,则AD的长为________。
湖北省2021-2022学年度七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·怀宁期中) 下列语句写成数学式子正确的是()A . 9是81的算术平方根:± =9B . 5是(-5)2的算术平方根:± =5C . ±6是36的平方根: =±6D . -2是4的负的平方根:- =-22. (2分) (2020七下·江汉月考) 下列四个数:中,无理数是()A .B . 3.14C .D .3. (2分) (2018七上·皇姑期末) 下列调查中,调查方式选择合理的是()A . 调査嘉陵江的水质情况,采用抽样调查的方式B . 调查市场上某品牌电脑的使用寿命,采用普查的方式C . 调查你所在班级同学的身高,采用抽样调查方式D . 要了解全国初中学生的业余爱好,采用普查的方式4. (2分) (2019七下·龙岩期末) 已知a∥b ,将等腰直角三角形ABC按如图所示的方式放置,其中锐角顶点B ,直角顶点C分别落在直线a , b上,若∠1 15°,则∠2的度数是()A . 15°B . 22.5°C . 30°D . 45°5. (2分)(2019·威海) 为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A . 条形统计图B . 频数直方图C . 折线统计图D . 扇形统计图6. (2分)关于x的不等式-x+a≥1的解集如图所示,则a的值为()A . -1B . 0C . 1D . 27. (2分) (2020七下·和平期中) 点A为直线a外一点,点B是直线 a上一点,点 A到直线a的距离为5cm,则AB的长度可能为()A . 2cmB . 3cmC . 4cmD . 18cm8. (2分) (2019七下·南县期末) 有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价14元,2枝大圆珠笔和3枝小圆珠笔的售价11元.设大圆珠笔为x元/枝,小圆珠笔为y元/枝,根据题意,列方程组正确的是()A .B .C .D .9. (2分) (2020八下·南海月考) 若下列说法正确的是()A .B .C .D .10. (2分)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).以A为对称中心作点P(0,2)的对称点P1 ,以B为对称中心作点P1的对称点P2 ,以C为对称中心作点P2的对称点P3 ,以D为对称中心作点P3的对称点P4 ,…,重复操作依次得到点P1 , P2 ,…,则点P2010的坐标是()A . (2010,2)B . (2010,-2)C . (2012,-2)D . (0,2)二、填空题 (共6题;共22分)11. (1分) (2020七下·天台月考) 已知点M(a,b),且ab>0,a+b<0,则点M在第________象限.12. (5分)若方程2x﹣y=3写成用含x的式子表示y的形式:________;写成用含y的式子表示x的形式:________.13. (5分)某中学要了解八年级学生的视力情况,在全校八年级学生中抽取了100名进行检测,在这个问题中,总体是________,样本是________,样本容量是________.14. (5分) (2019七下·苏州期末) 如图,,将三角尺的直角顶点落在直线上,若 ,,则 =________.15. (1分) (2020七上·河南期末) 对于有理数、,定义一种新运算“ ”: .当,在数轴上的位置如图所示时,化简 ________.16. (5分) (2017八下·富顺竞赛) 为常数,且对任何实数都有成立,则=________ .三、解答题 (共9题;共66分)17. (5分)(2012·河池) 计算.18. (5分) (2020七下·莘县期末) 解下列方程组:(1)(2)19. (5分) (2019七下·防城期末) 解不等式组,并求出不等式组的非负整数解.20. (10分)(2016·济宁) 如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD= ,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21. (5分) (2020七下·思明月考) 厦门是全国著名的旅游城市,“厦门蓝”已经成为厦门一张亮丽的城市名片.去年厦门市空气质量在全国74个主要城市空气排名中,创下历史新高,排名第二,其中优(一级以上)的天数是202天.如果今年优的天数要超过全年天数(366天)的60%,那么今年空气质量优的天数至少要比去年增加多少?22. (5分) (2019七上·涡阳月考) 小明和小丽两人同时到一家水果店买水果,小明买了1kg苹果和2kg香蕉,共花了20元;小丽买了3kg苹果和1kg香蕉,共花了30元.苹果和香蕉的价格各为多少?23. (11分)(2016·兴化模拟) 学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.(1)学校采用的调查方式是________;学校共选取了________名学生;(2)补全统计图中的数据:条形统计图中羽毛球________人、乒乓球________人、其他________人、扇形统计图中其他________ %;(3)该校共有1100名学生,请估计喜欢“篮球”的学生人数.24. (5分) (2019七下·阜阳期中) 如图,∠E= 50°∠BAC= 50° ∠D= 110°,求∠ABD的度数.25. (15分) (2019八上·泗阳期末) 已知,在中,点D在BC上,点E在BC的延长线上,且,.(1)如图1,若,,试求的度数;(2)若,,则的度数为________ 直接写出结果;(3)如图2,若,其余条件不变,探究与之间有怎样的数量关系?参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共22分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共66分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
湖北省2021-2022学年度七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题3分,共36分)[ (共12题;共35分)1. (3分) (2020七下·新罗期末) 25的算术平方根是()A . 5B .C . 12D . -12.52. (3分)如图,下列说法不正确的是()A . ∠1和∠3是对顶角B . ∠1和∠4是内错角C . ∠3和∠4是同位角D . ∠1和∠2是同旁内角3. (2分) (2020七下·北京期末) 下列条件:①∠C =∠BFD,②∠AEC=∠C,③∠BEC+∠C=180° 其中能判断的是()A . ①②③B . ①③C . ②③D . ①4. (3分)(2020·昆明模拟) 下列说法正确的是()A . “任意画一个六边形,它的内角和是720度”,这是一个随机事件B . 为了解全国中学生的心理健康情况,应该采用全面调查的方式C . 一组数据6,8,7,9,7,10的众数和中位数都是7D . 若甲组数据的方差S甲2=0.04,乙组数据的方差S乙2=0.05,为则甲组数据更稳定5. (3分)(2016·铜仁) 下列命题为真命题的是()A . 有公共顶点的两个角是对顶角B . 多项式x2﹣4x因式分解的结果是x(x2﹣4)C . a+a=a2D . 一元二次方程x2﹣x+2=0无实数根6. (3分)已知方程组的解是;则关于x,y的方程组的解是()A .B .C .D .7. (3分) (2019七下·凉州期中) 已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为()A . (1,2)B . (2,9)C . (5,3)D . (–9,–4)8. (3分) (2017七下·抚宁期末) 由方程组可得出x与y的关系式是()A . x+y=9B . x+y=3C . x+y=-3D . x+y=-99. (3分) (2021七上·西湖期末) 如图,点A表示的实数是a ,则下列判断正确的是()A .B .C .D .10. (3分)如图,在数轴上标注了四段范围,则表示的点落在()A . ①段B . ②段C . ③段D . ④段11. (3分)某牧场放养的鸵鸟和绵羊一共70只,已知鸵鸟和绵羊的腿数之和为196条,则鸵鸟比绵羊多()A . 20只B . 14只C . 15只D . 13只12. (3分) (2019八上·西安月考) 如图,等腰中,,,且边在直线上,将绕点顺时针旋转到位置可得到点,此时;将①位置的三角形绕点顺时针旋转到②位置,可得到点,此时;将②位置的三角形绕点顺时针旋转到③位置,可得到点,此时;…,按此规律垂线旋转,直至得到点为止,则().A .B .C .D .二、填空题(本大题共6小题,每小题3分,满分18分.) (共6题;共18分)13. (3分) (2019七下·老河口期中) 如图,已知AB⊥CD,垂足为点O,直线EF经过点O,若∠1=35°,则∠AOE的度数为________度.14. (3分) (2020八下·北京期中) 若点在第四象限,且到原点的距离是5,则a=________.15. (3分) (2020七下·安源月考) 一棵树高h(米)与年数n(年)之间的关系如下表:n(年)2468…h(米) 2.6 3.2 3.8 4.4…写出用n表示h的关系式:________.16. (3分) (2016七下·抚宁期末) 若3﹣2a>3﹣2b,则a________b(填“>”“<”或“=”).17. (3分) (2020七上·普宁期末) 在一个样本中,100个数据分布在5个组内,第一、二、四、五组的频数分别为9,16,40,15,若用扇形图对这些数据进行统计,则第三组对应的扇形圆心角的度数为________.18. (3分) (2019·邹平模拟) 已知二元一次方程组,则x-y=________.三、解答题(本大题共8题,共66分.) (共8题;共67分)19. (6分)求下列各式中x的值(1)(2x﹣1)2=9(2) 2x3﹣6= .20. (6分)如图,直线AB和CD相交于点O,OD平分∠BOF,OE⊥CD于点O,∠AOC=40°,求∠EOF的度数.21. (2分) (2019八下·锦江期中) 解下列不等式或不等式组,并把解集在数轴上表示出来:(1) 2(x-1)+5≤3x(2)22. (8.0分) (2019八下·焦作期末) 如图,在平面直角坐标系内,三个顶点的坐标分别为,, .(1)①平移,使点B移动到点,画出平移后的,并写出点A1 , C1的坐标;②画出关于原点O对称的;(2)线段的长度为________.23. (8分) (2020七上·兴县期末) 已知:如图,为直线上一点,,平分.(1)求出的度数;(2)试判断是否平分,并说明理由.24. (15分)(2020·新都模拟) 某校随机抽查了部分九年级女生进行1分钟仰卧起坐测试,并将测试的结果绘制成了如图的不完整的统计表和频数分布直方图(注:在频数分布直方图中,每组含左端点,但不含右端点):仰卧起坐次数15~2020~2525~3030~35的范围(次)频数31012频率(1) 30~35的频数是________、25~30的频率是________.并把统计图补充完整________;(2)被抽查的所有女同学仰卧起坐次数的中位数是多少?25. (10.0分) (2019七下·东方期中) 解下列不等式组,并把解集在数轴上表示出来:(1)(2)26. (12分) (2020七下·覃塘期末) 已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和辆B型车装满货物一次可运货11吨某公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且每辆车恰好装满货物.根据以上信息解答下列问题:(1) 1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该公司设计共有几种租车方案?参考答案一、选择题(本大题共12小题,每小题3分,共36分)[ (共12题;共35分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题(本大题共6小题,每小题3分,满分18分.) (共6题;共18分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题(本大题共8题,共66分.) (共8题;共67分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
湖北省七年级下学期期末考试数学试卷【一】选择题(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的).【1】下列各数中,是无理数的是().A.38B. 3.14 C.4D.8【答案】 D.【解析】试题分析:根据无理数是无限不循环小数,逐一进行分析,A、38=2是有理数,故A错误;B、3.14是有理数,故B错误;C、4=2是有理数,故C错误;D、8=22是无理数,故D正确;故选:D.【难易程度】易【知识点】无理数.【能力类型】认知.【2】如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为().A.1 B.2 C.3 D.4【答案】 C.【解析】试题分析:先根据平行线的性质得出∠END=∠EMD,再由对顶角相等得出∠END=∠CNF,∠EMB=∠AMN,由此可得∠END=∠CNF=∠EMB=∠AMN.则图中与∠END相等的角(∠END除外)的个数为3个.故选:C.【难易程度】中【知识点】平行线的性质.【能力类型】运算.【3】点(﹣202X,202X)在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】B . 【解析】 试题分析:首先根据202X >0,﹣202X <0,可得点的横坐标小于0,纵坐标大于0,然后根据每个象限的点的横坐标、纵坐标的正负,可得点在第二象限.学科网 故选:B .【难易程度】 易【知识点】点的坐标.【能力类型】认知.【4】已知23x y =⎧⎨=-⎩是二元一次方程4x+ay=7的一组解,则a 的值为( ). A .﹣5B .5C .13D .﹣13 【答案】C .【解析】 试题分析:把23x y =⎧⎨=-⎩代入方程得:8﹣3a=7,解得:a=13. 故选:C .【难易程度】 中【知识点】二元一次方程的解.【能力类型】运算.【5】若x >y ,则下列式子中错误的是( ).A .x ﹣3>y ﹣3B .3﹣x >3﹣yC .2x >2yD .﹣4x <-4y 【答案】 B .【解析】 试题分析:∵x >y ,∴x ﹣3>y ﹣3,∴选项A 正确;∵x >y ,∴﹣x <﹣y ,∴3﹣x <3﹣y ,∴选项B 错误;∵x >y ,∴2x >2y ,∴选项C 正确;∵x >y ,∴﹣,∴选项D 正确.故选:B .【难易程度】 中【知识点】【能力类型】认知,运算,逻辑思维,空间想象,综合应用【6】要反映某种股票的涨跌情况,最好选择( ).A .条形统计图B .折线统计图C .扇形统计图D .列表 【答案】 B .【解析】 试题分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.要反映某种股票的涨跌情况,最好选择折线统计图.故选:B.【难易程度】易【知识点】统计图的选择.【能力类型】认知.【7】把不等式组21123xx+-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是().A.B. C.D.【答案】 B.【解析】试题分析:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选:B.【难易程度】中【知识点】解一元一次不等式组;在数轴上表示不等式的解集.【能力类型】运算.【8】下列命题错误的有().①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个【答案】C.【解析】试题分析:实数与数轴上的点一一对应,所以①为真命题;无限不循环小数是无理数,所以②为假命题;直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以③为假命题;两条平行直线被第三条直线所截,同旁内角互补,所以④为假命题.故选:C.【难易程度】中【知识点】命题与定理.【能力类型】综合应用【9】下列说法中正确的是().A.实数﹣a2是负数 B2a a= C. |﹣a|一定是正数 D.实数﹣a的绝对值是a 【答案】 B.=,符【解析】试题分析:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、2a a合二次根式的意义,故选项正确;C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选:B.【难易程度】中【知识点】实数.【能力类型】运算.【10】如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是().A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°【答案】 C.【解析】试题分析:过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,所以∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),所以∠A﹣∠C+∠D+∠E=180°.故选:C.【难易程度】难【知识点】平行线的性质.【能力类型】综合应用【二】填空题(每小题3分,共计18分)x-+|y+3|=0,则x+y的值为.【11】已知实数x、y满足1【答案】﹣2.【解析】试题分析:根据非负数的性质得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.【难易程度】易【知识点】非负数的性质:算术平方根;非负数的性质:绝对值.【能力类型】运算.【12】一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.【答案】 10.【解析】试题分析:求出最大值和最小值的差,143﹣50=93,然后除以组距,93÷10=9.3,所以应该分成10组.故答案为:10.【难易程度】中【知识点】频数(率)分布表.【能力类型】运算.【13】如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y= .【答案】 125°.【解析】试题分析:先根据AB∥CD,∠x=80°,∠z=25°得出∠CEF=80°﹣25°=55°,再由CD∥EF即可得出∠y=180°﹣55°=125°.故答案为:125°.【难易程度】中【知识点】平行线的性质.【能力类型】运算.【14】根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.【答案】 20;2.【解析】试题分析:本题存在两个等量关系,即每件T恤价格×2+每瓶矿泉水的价格×2=44,每件T恤价格+每瓶矿泉水的价格×3=26.根据这两个等量关系可列出方程组.设每件T恤价格和每瓶矿泉水的价格分别为x元,y元,则2244326x yx y+=⎧⎨+=⎩,解得202xy=⎧⎨=⎩.故每件T恤和每瓶矿泉水的价格分别是20元和2元.故答案为:20;2.【难易程度】中【知识点】二元一次方程组的应用.【能力类型】运算.【15】若方程组521x ax-≥⎧⎨-⎩只有四个整数解,则实数a的取值范围.【答案】﹣3<a≤﹣2.【解析】试题分析:首先解不等式组得a≤x<2,,根据不等式组只有四个整数解,即1,0,﹣1,﹣2.则﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.【难易程度】难【知识点】一元一次不等式组的整数解.【能力类型】运算.【16】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A202X的坐标是.【答案】(504,504).【解析】试题分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.202X÷4=503…3,∴顶点A202X与顶点A3所在的象限相同,其坐标为:横坐标是503+1=504,纵坐标是503+1=504,∴A202X(504,504).故答案为:(504,504).【难易程度】难【知识点】规律型:点的坐标.【能力类型】综合应用.【三】解答题(本大题共8个小题,共72分)【17】383433227⨯.(6分)【答案】 2﹣3. 【解析】 试题分析:本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:解:原式=3×(2-3)×﹣(2﹣3)=4﹣23﹣2+3=2﹣3.【难易程度】 易【知识点】实数的运算.【能力类型】运算.【18】(1)解方程组422x y x y +=⎧⎨-=⎩;(4分) (2)解不等式组235324x x +⎧⎨-≤⎩.(4分)【答案】(1) 22x y =⎧⎨=⎩;(2) 1<x ≤2. 【解析】 试题分析:(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可。
湖北省七年级下学期期末考试数学试题一、选择题(每小题3分,共30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号内.)1.下列实数中,无理数是()A.2 B.﹣1 C.D.2.下列命题中是假命题的是()A.负数的平方根是负数B.平移不改变图形的形状和大小C.对顶角相等D.若a∥b,a⊥c,那么b⊥c3.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>04.若点P(1﹣2a,a)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限5.为了了解某校七年级260名男生的身高情况,从中随机抽查了30名男生,对他们的身高进行统计分析,发现这30名男生身高的平均数是160cm,下列结论中不正确是()A.260名男生的身高是总体B.抽取的30名男生的身高是总体的一个样本C.估计这260名男生身高的平均数一定是160cmD.样本容量是306.将正整数按如图的规律排列,若用有序数对(m,n)表示从上到下第m行,和该行从左到右第n个数,如(4,2)表示整数8,则(8,4)表示的整数是()A.31 B.32 C.33 D.417.若关于x,y的二元一次方程组的解也是二元一次方程x﹣2y=10的解,则k的值为()A.2 B.﹣2 C.0.5 D.﹣0.58.如图,若AB∥CD,∠BEF=70°,则∠ABE+∠EFC+∠FCD的度数是()A.215° B.250° C.320° D.无法知道9.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个B.2个C.3个D.4个10.在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组()A.B.C.D.二、填空题(每小题3分,共15分)11.写一个生活中运用全面调查的例子.12.的绝对值是;大于小于2的所有整数是.13.线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣2).则平移后点A的对应点的坐标为.14.已知|a|=5,b=|3|,且|a﹣b|=b﹣a,那么a+b=.15.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有填序号)三、解答题(9个小题,共75分)16.计算:.17.解不等式组,并把解集在数轴上表示出来.18.已知方程组与方程组的解相同.求(2a+b)2004的值.19.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.20.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.21.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?22.如图,已知∠1+∠2=180°,∠3=∠B,试说明∠DEC+∠C=180°.请完成下列填空:解:∵∠1+∠2=180°(已知)又∵∠1+=180°(平角定义)∴∠2=(同角的补角相等)∴(内错角相等,两直线平行)∴∠3=(两直线平行,内错角相等)又∵∠3=∠B(已知)∴(等量代换)∥()∴∠DEC+∠C=180°()23.王明决定在暑假期间到工厂打工.一天他到某长了解情况,下面是厂方有关人员的谈话内容:厂长说:我厂实行计件工资制,就是在发给每人相同生活费基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;工人甲说:我上个月完成了450件产品,月收入是2850元;工人乙说:我上个月完成了300件产品,月收入是2100元.根据上述内容,完成下面问题:(1)设该厂工人每生产一件产品得a元,每月生活费为b元,求a,b的值;(2)厂长决定聘用王明.由于王明工作非常认真,一个月收入高达3166元,问他该月的产量是多少?24.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入题后的括号内.)1.下列实数中,无理数是()A.2 B.﹣1 C.D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是整数,是有理数,选项错误;B、是整数,是有理数,选项错误;C、正确;D、=3,是整数,是有理数,选项错误.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列命题中是假命题的是()A.负数的平方根是负数B.平移不改变图形的形状和大小C.对顶角相等D.若a∥b,a⊥c,那么b⊥c考点:命题与定理.分析:利用平方根的知识、平移的性质、对顶角的性质等知识分别判断后即可确定正确的选项.解答:解:A、负数没有平方根,故错误,是假命题;B、平移不改变图形的形状和大小,正确,是真命题;C、对顶角相等,正确,是真命题;D、若a∥b,a⊥c,那么b⊥c,正确,是真命题,故选A.点评:本题考查了命题与定理的知识,解题的关键是了解平方根的知识、平移的性质、对顶角的性质等知识,难度不大.3.把一个不等式组的解集表示在数轴上,如图所示,则该不等式组的解集为()A.0<x≤1 B.x≤1 C.0≤x<1 D.x>0考点:在数轴上表示不等式的解集.分析:根据在数轴上表示不等式解集的方法进行解答即可.解答:解:∵0处是空心圆点且折线向右;1处是实心圆点且折线向左,∴该不等式组的解集为:0<x≤1.故选A.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心原点的区别是解答此题的关键.4.若点P(1﹣2a,a)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据互为相反数的两个数的和为0,应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P(1﹣2a,a)的横坐标与纵坐标互为相反数,∴1﹣2a=﹣a,解得a=1,即1﹣2a=﹣1,∴点P的坐标是(﹣1,1),∴点P在第二象限.故选:B.点评:此题主要考查了平面直角坐标系中各个象限内点的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),比较简单.5.为了了解某校七年级260名男生的身高情况,从中随机抽查了30名男生,对他们的身高进行统计分析,发现这30名男生身高的平均数是160cm,下列结论中不正确是()A.260名男生的身高是总体B.抽取的30名男生的身高是总体的一个样本C.估计这260名男生身高的平均数一定是160cmD.样本容量是30考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解答:解:A、B、D正确;C、估计这260名男生身高的平均数约是160cm,则命题错误.故选:C.点评:考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.将正整数按如图的规律排列,若用有序数对(m,n)表示从上到下第m行,和该行从左到右第n个数,如(4,2)表示整数8,则(8,4)表示的整数是()A.31 B.32 C.33 D.41考点:规律型:数字的变化类.分析:根据(4,2)表示整数8,对图中给出的有序数对进行分析,可以发现:对所有数对(m,n)【n≤m】有:(m,n)=(1+2+3+…+m﹣1)+n=m(m﹣1)+n,由此代入求得答案即可.解答:解:若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,对如图中给出的有序数对和(4,2)表示整数8可得,(4,2)=×4×(4﹣1)+2=8;…由此可以发现,对所有数对(m,n)【n≤m】有:(m,n)=(1+2+3+…+m﹣1)+n=m(m﹣1)+n,所以则(8,4)表示的整数是×8×(8﹣1)+4=32.故选:B.点评:此题主要考查数字变化的规律,解答此类题目的关键是根据题目中给出的图形、数值、数列等已知条件,认真分析,找出规律,一般难度较大.7.若关于x,y的二元一次方程组的解也是二元一次方程x﹣2y=10的解,则k的值为()A.2 B.﹣2 C.0.5 D.﹣0.5考点:二元一次方程组的解.专题:计算题.分析:将k看做已知数,表示出x与y,根据题意代入方程x﹣2y=10中计算,即可求出k 的值.解答:解:,①+②得:x=3k,将x=3k代入①得:y=﹣k,将x=3k,y=﹣k代入x﹣2y=10中得:3k+2k=10,解得:k=2.故选A.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.8.如图,若AB∥CD,∠BEF=70°,则∠ABE+∠EFC+∠FCD的度数是()A.215° B.250° C.320° D.无法知道考点:平行线的性质.分析:分别过点E、F作EG∥AB,HF∥CD,再根据平行线的性质即可得出结论.解答:解:分别过点E、F作EG∥AB,HF∥CD,则AB∥EG∥HF∥CD,∵AB∥EG,∴∠ABE=∠BEG,又∵EG∥HF,∴∠EFH=∠GEF,∴∠ABE+∠EFH=∠BEG+∠GEF=∠BEF=70°,∵∠HFC+∠FCD=180°,∠EFH+∠HFC=∠EFC,∴∠ABE+∠EFC+∠FCD=180°+70°=250°.故选B.点评:本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.9.如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个B.2个C.3个D.4个考点:平行线的性质;角平分线的定义;余角和补角.分析:根据平行线的性质、角平分线的定义、余角的定义作答.解答:解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.点评:此题难度中等,需灵活应用平行线的性质、角平分线的定义、余角的定义等知识点.10.在一次小组竞赛中,遇到了这样的情况:如果每组7人,就会余3人;如果每组8人,就会少5人.问竞赛人数和小组的组数各是多少?若设人数为x,组数为y,根据题意,可列方程组()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:每组人数乘以组数加上剩余的人数或减去缺少的人数等于总人数.解答:解:若每组7人,则7y=x﹣3;若每组8人,则8y=x+5.故选C.点评:本题难点为:根据每组的人数与人数总量的关系列出方程.二、填空题(每小题3分,共15分)11.写一个生活中运用全面调查的例子为了了解某校某班同学是否给爸妈洗过脚,采用全面调查.考点:全面调查与抽样调查.专题:开放型.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:由适合全面调查的特点可得:为了了解某校某班同学是否给爸妈洗过脚,采用全面调查,故答案为:为了了解某校某班同学是否给爸妈洗过脚,采用全面调查.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.的绝对值是2;大于小于2的所有整数是﹣1,0,1.考点:估算无理数的大小;实数的性质.分析:利用开立方及绝对值求出的绝对值,再利用﹣2<<﹣1求出大于小于2的所有整数.解答:解:∵=﹣2,∴的绝对值是2.∵﹣2<<﹣1,∴大于小于2的所有整数是﹣1,0,1.故答案为:2;﹣1,0,1.点评:本题主要考查了估算无理数的大小及实数的性质,解题的关键是明确﹣2<<﹣1.13.线段AB两端点的坐标分别为A(2,4),B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣2).则平移后点A的对应点的坐标为(0,0).考点:坐标与图形变化-平移.分析:各对应点之间的关系是横坐标减2,纵坐标减4,那么让点A的横坐标减2,纵坐标减4即为平移后点A的对应点的坐标.解答:解:∵B(5,2),点B的对应点为点C(3,﹣2).∴变化规律是横坐标减2,纵坐标减4,∵A(2,4),∴平移后点A的对应点的坐标为(0,0),故答案为(0,0).点评:考查坐标与图形变化﹣平移;得到一对对应点的变换规律是解决本题的关键.14.已知|a|=5,b=|3|,且|a﹣b|=b﹣a,那么a+b=﹣2或﹣8.考点:绝对值.专题:计算题.分析:已知|a|=5,b=|3|,根据绝对值的性质先分别解出a,b,然后根据|a﹣b|=b﹣a,判断a与b的大小,从而求出a+b.解答:解:∵|a|=5,b=|3|,∴a=±5,b=±3,∵|a﹣b|=b﹣a≥0,∴b≥a,①:当b=3,a=﹣5时,a+b=﹣2②:当b=﹣3,a=﹣5时,a+b=﹣8故答案为:﹣2或﹣8.点评:此题主要考查绝对值的性质及其应用,解题关键是判断a与b的大小.15.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有①②③填序号)考点:平行线的性质;角平分线的定义;垂线.分析:由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=20°,则∠BOF=∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=20°,则∠POE=∠BOF;根据∠POB=70°﹣∠POE=50°,∠DOF=20°,可知④不正确.解答:解:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°﹣40°=140°,∵OE平分∠BOC,∴∠BOE=×140°=70°;所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣70°=20°,∴∠BOF=∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=20°,∴∠POE=∠BOF;所以③正确;∴∠POB=70°﹣∠POE=50°,而∠DOF=20°,所以④错误.故答案为①②③.点评:本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.三、解答题(9个小题,共75分)16.计算:.考点:实数的运算.分析:根据开方运算,可得化简根式,根据是数的运算,可得答案.解答:解:原式=﹣4﹣+1+0=﹣3.点评:本题考查了实数的运算,先化简,再进行实数的运算.17.解不等式组,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.解答:解:,由①得,x>;由②得,x≥4,故此不等式组的解集为:x≥4,在数轴上表示为:点评:本题考查的是解一元一次不等式组及在数轴上表示不等式的解集,解答此类题目时要注意实心圆点与空心圆点的区别.18.已知方程组与方程组的解相同.求(2a+b)2004的值.考点:同解方程组.分析:因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.最后求出(2a+b)2004的值.解答:解:因为两个方程组的解相同,所以解方程组,解得.代入另两个方程,得解得.∴原式=(2×1﹣3)2004=1.点评:解题关键是根据两个方程组的解相同,可列出新的方程组求解.再把x和y的值代入求出a和b的值.19.已知:如图,AD∥BE,∠1=∠2,求证:∠A=∠E.考点:平行线的判定与性质.专题:证明题.分析:由于AD∥BE可以得到∠A=∠3,又∠1=∠2可以得到DE∥AC,由此可以证明∠E=∠3,等量代换即可证明题目结论.解答:证明:∵AD∥BE,∴∠A=∠3,∵∠1=∠2,∴DE∥AC,∴∠E=∠3,∴∠A=∠EBC=∠E.点评:此题考查的是平行线的性质,然后根据平行线的判定和等量代换转化求证.20.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.考点:坐标确定位置.专题:网格型;开放型.分析:此题答案不唯一,建立的直角坐标系的原点不一样,答案不一样.解答:解:以南门的位置作为原点建立直角坐标系,则动物们的位置分别表示为:南门(0,0),马(﹣3,﹣3);两栖动物(4,1);飞禽(3,4);狮子(﹣4,5).点评:主要考查了建立直角坐标系确定点的位置.21.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?考点:条形统计图;扇形统计图.分析:(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.解答:解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.点评:此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.22.如图,已知∠1+∠2=180°,∠3=∠B,试说明∠DEC+∠C=180°.请完成下列填空:解:∵∠1+∠2=180°(已知)又∵∠1+∠4=180°(平角定义)∴∠2=∠4(同角的补角相等)∴AB∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠ADE=∠B(等量代换)DE∥BC(同位角相等,两直线平行)∴∠DEC+∠C=180°(两直线平行,同旁内角互补)考点:平行线的判定与性质.专题:推理填空题.分析:根据补角的性质,平行线的性质与判定方法即可解答.解答:解::∵∠1+∠2=180°(已知)又∵∠1+∠4=180°(平角定义)∴∠2=∠4(同角的补角相等)∴AB∥EF(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠ADE=∠B(等量代换)DE∥BC(同位角相等,两直线平行)∴∠DEC+∠C=180°(两直线平行,同旁内角互补)点评:本题考查了平行线的性质定理以及判定定理,理解定理是关键.23.王明决定在暑假期间到工厂打工.一天他到某长了解情况,下面是厂方有关人员的谈话内容:厂长说:我厂实行计件工资制,就是在发给每人相同生活费基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;工人甲说:我上个月完成了450件产品,月收入是2850元;工人乙说:我上个月完成了300件产品,月收入是2100元.根据上述内容,完成下面问题:(1)设该厂工人每生产一件产品得a元,每月生活费为b元,求a,b的值;(2)厂长决定聘用王明.由于王明工作非常认真,一个月收入高达3166元,问他该月的产量是多少?考点:二元一次方程组的应用.分析:(1)根据厂长所说的工资制度,对工人甲和乙的工作任务及收入列出方程组,进行求解即可;(2)根据(1)中所求得的该厂工人每生产一件产品得的钱数,以及每月的生活费用,设其该月的产量为x件,然后列出方程即可求解.解答:解:(1)设该厂工人每生产一件产品得a元,每月生活费为b元,根据题意得:,①和②式联立得:;(2)由于王明的收入为3166>3100元,故王明生产的件数超过500件,设其完成x件,根据题意得:600+500×5+(x﹣500)×(5+0.5)=3166,解得:x=512.答:该月王明的产量为512件.点评:本题考查二元一次方程组的实际应用,解题关键是首先求出a和b的值,明确王明该月的产量要超过500件,然后列方程进行求解,有一定难度.24.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?考点:一元一次不等式的应用.专题:方案型.分析:(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.解答:解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80﹣3x)台,根据题意得1200×2x+1600x+(80﹣3x)×2000≤132000,解这个不等式得x≥14,答:至少购进乙种电冰箱14台;(2)根据题意得2x≤80﹣3x,解这个不等式得x≤16,由(1)知x≥14,∴14≤x≤16,又∵x为正整数,∴x=14,15,16.所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台,方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台,方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.答:有3种购买方案,分别是甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台,甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台,甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.点评:解决本题的关键是读懂题意,找到符合题意的不等关系式及不等关系式组.要会用分类的思想来讨论问题并能用不等式的特殊值来求得方案的问题.本题的不等关系为:购买三种电冰箱的总金额不超过132 000元;甲种电冰箱的台数不超过丙种电冰箱的台数.。
2017-2018学年湖北省武汉市新洲区七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 下列各数中属于无理数的是( )A. 3.14B. √4C. √53D. 13 【答案】C 【解析】解:3.14,13,√4是有理数,√53是无理数,故选:C .分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.2. √2−x 在实数范围内有意义,则x 的取值范围是( )A. x ≥2B. x >2C. x ≤2D. x <2【答案】C【解析】解:根据题意,得2−x ≥0,解得x ≤2.故选:C .二次根式的被开方数2−x 是非负数.本题考查了二次根式有意义的条件.二次根式的被开方数大于等于0.3. 在平面直角坐标系中,点A(3,−2)到x 轴的距离为( )A. 3B. −2C. −3D. 2【答案】D【解析】解:由题意,得点A(3,−2)到x 轴的距离为|−2|=2,故选:D .根据点到x 轴的距离是纵坐标的绝对值,可得答案.本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值是解题关键.4. 在平面直角坐标系中,点可以由点A(−2,3)通过两次平移得到,正确的是()A. 先向左平移4个单位长度,再向上平移6个单位长度B. 先向右平移4个单位长度,再向上平移6个单位长度C. 先向左平移4个单位长度,再向下平移6个单位长度D. 先向右平移4个单位长度,再向下平移6个单位长度【答案】D【解析】解:把点A(−2,3)先向右平移4个单位,再向下平移6个单位得到点A′(2,−3).故选:D.利用点A与点A′的横纵坐标的关系确定平移的方向和平移的距离.本题考查了坐标与图形变化−平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.5.要反映武汉市某月每天的最低气温的变化趋势,宜采用()A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布统计图【答案】B【解析】解:要反映武汉市某月每天的最低气温的变化趋势,宜采用折线统计图,故选:B.根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.6.如图所示,下列说法不正确的是()A. 线段BD是点B到AD的垂线段B. 线段AD是点D到BC的垂线段C. 点C到AB的垂线段是线段ACD. 点B到AC的垂线段是线段AB【答案】B【解析】解:A、线段BD是点B到AD的垂线段,故A正确;B、线段AD是点A到BC的垂线段,故B错误;C、点C到AB的垂线段是线段AC,故C正确;D、点B到AC的垂线段是线段AB,故D正确;故选:B.根据点到直线的距离的意义,可得答案.本题考查了点到直线的距离,利用点到直线的距离的意义是解题关键.7.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=25∘,则的度数为()A. 122.5∘B. 130∘C. 135∘D. 140∘【答案】A【解析】解:Rt△ABE中,∠ABE=25∘,∴∠AEB=65∘;由折叠的性质知:∠BEF =∠DEF ;而∠BED =180∘−∠AEB =115∘,∴∠BEF =57.5∘;易知∠EBC′=∠D =∠BC′F =∠C =90∘,∴BE//C′F ,∴∠EFC′=180∘−∠BEF =122.5∘.故选:A .由折叠的性质知:∠EBC′、∠BC′F 都是直角,因此BE//C′F ,那么∠EFC′和∠BEF 互补,欲求∠EFC′的度数,需先求出∠BEF 的度数;根据折叠的性质知∠BEF =∠DEF ,而∠AEB 的度数可在Rt △ABE 中求得,由此可求出∠BEF 的度数,即可得解.本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.8. 若{y =5x=1和{y =−2x=0都是方程ax +3y =b 的解,则a ,b 的值分别是( ) A. a =−21,b =−6B. a =1,b =−6C. a =3,b =−1D. a =−21,b =−4【答案】A 【解析】解:根据题意得:{−6=b a+15=b,解得:a =−21,b =−6,故选:A .把{y =5x=1和{y =−2x=0代入方程即可得到一个关于a 、b 的方程组即可求解.本题考查了方程组的解的定义,理解定义是关键.9. 已知关于x 的不等式4x −a >−5的解集如图所示,则a 的值是( )A. −3B. −2C. −1D. 0 【答案】A 【解析】解:解不等式4x −a >−5得:x >a−54, 根据数轴可知:a−54=−2,解得:a =−3,故选:A .先求出不等式的解集,根据数轴得出关于a 的方程,求出方程的解即可.本题考查了解一元一次方程、解一元一次不等式、在数轴上表示不等式的解集等知识点,能得出关于a 的方程是解此题的关键.10. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第100个点的坐标为( )A. (14,0)B. (14,−1)C. (14,1)D. (14,2)【答案】D【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点,并且奇数列点数对称而偶数列点数y 轴上方比下方多一个,所以奇数列的坐标为(n,n−12)(n,n−12−1)…(n,1−n 2); 偶数列的坐标为(n,n 2)(n,n 2−1)…(n,1−n 2),由加法推算可得到第100个点位于第14列自上而下第六行.代入上式得(14,142−5),即(14,2).故选:D .从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n 的有n 个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.此题主要考查了点的规律型,培养学生对坐平面直角坐标系的熟练运用能力,学生也可从其它方面入手寻找规律.二、填空题(本大题共6小题,共18.0分)11. √4的值为______.【答案】2【解析】解:√4=2.故答案为:2.根据算术平方根的定义得出√4即为4的算术平方根,进而求出即可.此题主要考查了算术平方根的定义,熟练利用算术平方根的定义得出是解题关键.12. 已知点A(3,5),B(a,2),C(4,6−b),且BC//x 轴,AB//y 轴,则a −b =______.【答案】−1【解析】解:∵B(a,2),C(4,6−b),且BC//x 轴,∴2=6−b ,解得:b =4,∵点A(3,5),B(a,2),且AB//y 轴,∴3=a ,故a −b =3−4=−1.故答案为:−1.利用平行于x 轴以及平行于y 轴的直线关系得出a ,b 的值进而得出答案.此题主要考查了坐标与图形的性质,正确得出a ,b 的值是解题关键.13. 直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,且∠1:∠2=1:4,则∠DOF 的度数是______.【答案】120∘【解析】解:∵OE 平分∠BOD ,∴∠1=∠DOE ,∵∠1:∠2=1:4,∴设∠1=x ∘,则∠DOE =x ∘,∠2=4x ∘∴x +x +4x =180,解得:x =30,∴∠1=∠DOE =30∘,∴∠BOC =180∘−60∘=120∘,∵OF 平分∠COB ,∴∠BOF =60∘,∴∠DOF =60∘+60∘=120∘.故答案为:120∘首先根据OE 平分∠BOD ,可得∠1=∠DOE ,再根据∠1:∠2=1:4,计算出∠DOB 和∠BOC 的度数,再根据角平分线的定义可得∠BOF =60∘,进而得出∠DOF 的度数.此题主要考查了邻补角的性质和角平分线定义,关键是正确理清图中角之间的和差关系.14. 若{y =2x=1是方程组{bx +cy =12ax+by=7的解,则a 与c 的关系是______.【答案】a −4c =−17【解析】解:把{y =2x=1代入方程组得:{b +2c =12 ②a+2b=7 ①, ①−②×2得:a −4c =−17,故答案为:a −4c =−17把x 与y 的值的方程组,确定出a 与c 的关系.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15. 某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,如图所示的扇形图表示上述分布情况,则∠AOB =______.【答案】60∘。