直线和圆的方程测试题(含答案解析)
- 格式:doc
- 大小:112.50 KB
- 文档页数:6
高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y x C. 01=-+y x D. 052=--y x2.圆012222=+--+y x y x上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+3.圆0422=-+x y x在点)3,1(P 处的切线方程( )A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x4.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( )A .1-或3 B .1或3 C .2-或6 D .0或45.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y x C .03222=-++x y xD .0422=-+x y x6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22- C .12- D .12+7.两圆229x y +=和228690x y x y +-++=的位置关系是( )A .相离B .相交C .内切D .外切8.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y xB .0=-y x C .01=++y x D .0=+y x9.若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2 10.若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23-D .1或3- 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A.4)1()3(22=-++y x B. 4)3()1(22=-++y xC.4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是( )A .相交B .相交或相切C .相交或相切或相离D .与k 值有关二、填空题(每小题4分,共16分)13.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 。
直线与圆的方程检测卷一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点在直线上,则直线的倾斜角为A.B.C.D.【答案】C2.已知直线l:在轴和轴上的截距相等,则的值是A.1 B.-1C.2或1 D.-2或1【答案】C【解析】当时,直线方程为,显然不符合题意,当时,令时,得到直线在轴上的截距是,令时,得到直线在轴上的截距为,根据题意得,解得或,故选C.【名师点睛】本题主要考查了直线方程的应用及直线在坐标轴上的截距的应用,其中正确理解直线在坐标轴的截距的概念,利用直线方程求得直线的截距是解答的关键,着重考查了推理与运算能力,以及分类讨论的数学思想.3.直线截圆所得弦的长度为4,则实数的值是A.-5 B.-4C.-6 D.【答案】A【名师点睛】本题主要考查了直线与圆的位置关系以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.4.若3π2π2α<<, A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B【解析】令0x =,得sin 0y α=<,令0y =,得cos 0x α=>,直线过()()0,sin cos ,0αα,两点,因而直线不过第二象限.本题选择B 选项.5.已知直线()()1:424240l m x m y m --++-=与()()2:1210l m x m y -+++=,则“2m =-”是“12l l ∥”的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B【解析】2m =-时,可得12:680,:310,l x l x --=-+=所以12l l ∥;12l l ∥时,可得()()()()422410m m m m -+++-=,解得2m =或2m =-,2m ∴=-是12l l ∥的充分不必要条件,故选B.6.若圆C 与y 轴相切于点()0,1P ,与x 轴的正半轴交于,A B 两点,且2AB =,则圆C 的标准方程是A .(()2212x y +++= B .()(2212x y +++=C .(()2212x y +-=D .()(2212x y -+=【答案】C【解析】设AB 中点为D ,则1AD CD ==,∴)1r AC C==,故选C .7.若直线过点,斜率为1,圆上恰有3个点到的距离为1,则的值为 A . B .C .D .【答案】D【名师点睛】本题主要考查了直线与圆的位置关系的应用,解答是要注意直线与圆的位置关系的合理应用,同时注意数形结合法在直线与圆问题的中应用,着重考查了分析问题和解答问题的能力,属于基础题.8.若过点()0,1A -的直线l 与圆()2234x y +-=的圆心的距离记为d ,则d 的取值范围为A .[]0,4B .[]0,3 C .[]0,2D .[]0,1【答案】A【解析】由已知,点()0,1A -在圆()2234x y +-=外,当直线l 经过圆心()0,3时,圆心到直线l 的距离最小为0,圆心到点()0,1A -的距离,是圆心到直线l 的最大距离,此时4d ==,故选A.9.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a ∈R ,b ∈R ,且0ab ≠,则2211a b+的最小值为 A .49 B .109C .1D .3【答案】C【名师点睛】解答本题的关键是准确理解题设中恰有三条切线这一信息,并进一步等价转化为“在2249a b +=,即224199a b +=的前提下,求2211a b +的最小值问题”.求解时充分借助题设条件,巧妙地将2249a b +=化为224199a b +=,再运用基本不等式从而使得问题的求解过程简捷、巧妙. 10.直线2(0)x y m m +=>与圆O :225x y +=交于A ,B 两点,若||2||OA OB AB +>,则实数m 的取值范围是 A .(,2)B .(2,)C .(,5)D .(2,)【答案】B【解析】设AB 中点为D ,则OD AB ⊥,∵2OA OB AB +>2x y m +=(0m >)与22:5O x y += 交于不同的两点A B 、,∴25OD < B.二、填空题(本题共4小题,每小题5分,共20分)11.求经过圆的圆心,且与直线平行的直线的一般式方程为________________. 【答案】【名师点睛】本题主要考查了直线的位置关系的应用,以及圆的标准方程的应用,其中解答中根据两直线的位置关系,合理设出方程是解答的关键,着重考查了推理与运算能力.12.已知直线:20l x y +-=和圆22:12120C x y x y m +--+=相切,则m 的值为___________.【答案】22【解析】由题设知圆的圆心坐标与半径分别为()6,6,C r =,则圆心()6,6C 到直线20x y +-=的距离d ===,解之得22m =,应填22.13.如果圆()()228x a y a -+-=上总存在到原点的距离为的点,则实数的取值范围是__________.【答案】[3,1][1,3]-- 【解析】圆心到原点的距离为,圆()()228x a y a -+-=上总存在到原点的距离为的点,则3a ≤≤≤≤,则或.14.设直线1y kx =+与圆2220x y x my ++-=相交于,A B 两点,若点,A B 关于直线:0l x y +=对称,则AB =__________.【解析】因为点,A B 关于直线:0l x y +=对称,所以直线1y kx =+的斜率1k =,即1y x =+,圆心(−1,2m)在直线:0l x y +=上,所以2m =.所以圆心为(−1,1),圆心到直线1y x =+的距离为2d =,【名师点睛】(1)圆上两点关于直线对称,则直线过圆心;(2)两点关于直线对称,两点所在的直线与该直线垂直,且两点的中点在该直线上.三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤) 15.已知直线:43100l x y ++=,半径为2的圆与相切,圆心在轴上且在直线的上方.(1)求圆的标准方程;(2)过点的直线与圆交于两点(在轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)当点N 的坐标为()4,0时,能使得ANM BNM ∠=∠成立.【解析】(1)设圆心()5,0()2C a a >-,则4102055a a a +=⇒==-或(舍去).所以圆C 的标准方程为224x y +=.16.斜率为的直线与抛物线交于两点,且的中点恰好在直线上.(1)求的值; (2)直线与圆交于两点,若,求直线的方程.【答案】(1)1;(2)【解析】(1)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由22y kx m x y=+⎧⎨=⎩得,x 2-2kx -2m =0, ∆=4k 2+8m >0,x 1+x 2=2k ,x 1x 2=-2m ,因为AB 的中点在x =1上,所以x1+x2=2.即2k=2,所以k=1.。
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。
A。
$-2$B。
$-1$C。
$1$D。
$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。
A。
$-0.25$B。
$1$C。
$-1$D。
$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。
A。
$(-3,1)$B。
$(3,1)$C。
$(3,-1)$D。
$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。
A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。
A。
$\left[\frac{3}{4},1\right]$B。
$\left[\frac{3}{4},+\infty\right)$C。
$(1,+\infty)$D。
$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。
一、选择题1.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,22.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.已知两点()1,2A -、()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( ) A .3,44ππ⎡⎤⎢⎥⎣⎦ B .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ C .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦4.已知圆M :22(1)(2)5x y -+-=和点(3,5)P ,过点P 做圆M 的切线,切点分别为A 、B ,则下列命题:①4PA PB k k ⋅=-;②PA =;③AB 所在直线方程为:23130x y +-=;④PAB △外接圆的方程为2247130x y x y +--+=.其中真命题的个数为( ) A .1B .2C .3D .45.赵州桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵具古称赵州而得名.赵州桥始建于隋代,是世界上现存年代久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是20米,拱顶离水面4米;当水面上涨2米后,桥在水面的跨度为( )A .10米B .米C .米D .6.已知点()1,0A m -,()()1,00B m m +>,若圆C :2288280x y x y +--+=上存在一点P ,使得PA PB ⊥,则实数m 的取值范围是( ) A .3m ≥ B .3m 7≤≤ C .27m -<≤D .46m ≤≤7.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .38.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解9.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条10.已知11(,)P x y 是直线1:(,)0l f x y =上一点,22(,)Q x y 是l 外一点,则方程(,)f x y =1122(,)(,)f x y f x y +表示的直线( )A .与l 重合B .与l 交于点PC .过Q 与l 平行D .过Q 与l 相交11.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++= D .2430x y ++=12.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,124二、填空题13.已知三条直线的方程分别为0y=0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.15.若实数x ,y 满足关系10x y ++=,则式子S =______.16.当直线:(21)(1)740()l m x m y m m R +++--=∈被圆22:(1)(2)25C x y -+-=截得的弦最短时,m 的值为____________.17.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.18.已知点A (0,2),O (0,0),若圆()()22:21C x a y a -+-+=上存在点M ,使3MA MO ⋅=,则圆心C 的横坐标a 的取值范围为________________.19.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知ABC 的顶点(2,0),(0,4)A B ,其“欧拉线”的直线方程为20x y -+=,则ABC 的顶点C 的坐标__________.20.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知一圆经过点()3,1A ,()1,3B -,且它的圆心在直线320x y --=上. (1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点()3,0C ,求线段CD 的中点M 的轨迹方程. 22.在平面直角坐标系中,已知射线OA :0(0)x y x -=≥,OB :20(0)x y x +=≥.过点(1,0)P 作直线分别交射线,OA OB 于点A ,B .(1)当AB 的中点在直线20x y -=上时,求直线AB 的方程; (2)当AOB 的面积取最小值时,求直线AB 的方程; (3)当||||PA PB ⋅取最小值时,求直线AB 的方程.23.已知直线l :2830mx y m ---=和圆C :22612200x y x y +-++=. (1)求圆C 的圆心、半径(2)求证:无论m 为何值,直线l 总与圆C 有交点;(3)m 为何值时,直线l 被圆C 截得的弦最短?求出此时的弦长.24.(1)已知点(,)a b 在直线3210x y ++=上,则直线20ax by ++=必过定点M ,求定点M 的坐标.(2)已知直线1l 过(1)中的定点M ,且与直线2:4l y x =相交于第一象限内的点A ,与x 正半轴交于点B ,求使△OAB 面积最小时的直线1l 的方程.25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程.26.在①经过直线1:20l x y -=与直线2:210l x y +-=的交点.②圆心在直线20x y -=上.③被y 轴截得弦长AB =;从上面这三个条件中任选一个,补充下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问题:是否存在圆Q ,且点()2,1A --,()1,1B -均在圆上?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5,故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a-≤≤-解得3a ≤-或2a ≥.【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.C解析:C 【分析】作出图形,求出直线PA 、PB 的斜率,数形结合可得出直线l 的斜率的取值范围,进而可求得直线l 的倾斜角的取值范围. 【详解】 如下图所示:直线PA 的斜率为21110PA k -+==--,直线PB 的斜率为11120PB k +==-, 由图形可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-. 因此,直线l 的倾斜角的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 故选:C. 【点睛】关键点点睛:求直线倾斜角的取值范围的关键就是求出直线的斜率的取值范围,结合图象,利用直线PA 、PB 的斜率可得所要求的斜率的取值范围.4.D解析:D 【分析】设出斜率k ,得出切线方程,利用相切可得2+2440k k -=,即可得出4PA PB k k ⋅=-,判断①;由22PA PM MA =-②;可得,,,P A B M 四点共圆,圆心为PM 中点,即72,2⎛⎫ ⎪⎝⎭,半径为1322PM =,写出圆的方程可判断④;两圆相减可得直线AB 方【详解】可知切线的斜率存在,设斜率为k ,则切线方程为53y k x ,即350kx y k ,=2+2440k k -=,可得,PA PB k k 是该方程的两个根,故4PA PB k k ⋅=-,故①正确; 又PM ==PA MA ⊥,PA ∴==故②正确;,PA MA PB MB ⊥⊥,,,,P A B M ∴四点共圆,且圆心为PM 中点,即72,2⎛⎫⎪⎝⎭,半径为22PM =, 故PAB △外接圆的方程为22713(2)()24x y -+-=,即2247130x y x y +--+=,故④正确;将两圆方程相减可得23130x y +-=,即直线AB 方程,故③正确. 故选:D. 【点睛】本题考查过圆外一点作圆的切线问题,解题的关键是利用相切关系得出圆心到直线的距离为半径,且,,,P A B M 四点共圆.5.C解析:C 【分析】根据题意,建立圆拱桥模型,设圆O 半径为R , 当水面跨度是20米,拱顶离水面4米,分析可得22100(4)R R =--,求出R ,当水面上涨2米后,可得跨度2CD CN =,计算可得解. 【详解】根据题意,建立圆拱桥模型,如图所示:设圆O 半径为R ,当水面跨度是20米,拱顶离水面4米,此时水面为AB ,M 为AB 中点,即20AB =,4OM R =-,利用勾股定理可知,22222AB AM OA OB ==-,即22100(4)R R =--,解得292R =,当水面上涨2米后,即水面到达CD ,N 为CD 中点,此时2ON R =-, 由勾股定理得2222(2)66CD CN R R ==--=.故选:C 【点睛】关键点睛:本题考查圆的弦长,解题的关键是利用已知条件建立模型,利用数形结合求解,考查学生的转化能力与运算求解能力,属于基础题.6.B解析:B 【分析】根据题意,分析圆C 的圆心坐标以及半径,设AB 的中点为M ,由AB 的坐标分析M 的坐标以及|AB |的值,可得以AB 为直径的圆;进而分析,原问题可以转化为圆C 与圆M 有公共点,结合圆与圆的位置关系,分析可得答案. 【详解】根据题意,圆2288280C x y x y +--+=:,即()()22444x y -+-=;其圆心为()4,4,半径2r =, 设AB 的中点为M ,又由点()()1,0,1,0,A m B m -+则()1,0,2M AB m =, 以AB 为直径的圆为()2221x y m -+=,若圆2288280C x y x y +--+=:上存在一点P ,使得PA ⊥PB ,则圆C 与圆M 有公共点,又由22(14)(04)5MC =-+-=, 即有25m -≤且25m +≥,即37m ≤≤, 又0,37m m >∴≤≤,故选:B. 【点睛】本题考查直线与圆的位置关系,注意将圆问题转化为圆与圆的位置关系,属于基础题.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.B解析:B 【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解. 【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-,∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确;若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误.故选:B . 【点睛】本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.9.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.10.C解析:C 【分析】由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,根据当两直线方程的一次项系数相等,但常数项不相等时,两直线平行,得出结论. 【详解】解:由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,则方程(f x ,1)(y f x -,12)(y f x -,2)0y =即(f x ,2)(y f x -,2)0y =,它与直线:(,)0l f x y =的一次项系数相等,但常数项不相等,故(f x ,2)(y f x -,2)0y =表示过Q 点且与l 平行的直线, 故选:C . 【点睛】根据平行直线系方程,即两直线方程10Ax By C ++=与20Ax By C ++=互相平行.11.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.12.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离 解析:(0,3)30,33)(3)- 【分析】先画出图形,求出3),(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得3),(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :3(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组03(1)3xy x =⎧⎪⎨=+⎪⎩得交点为3(0,); ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与 解析:(,12)(221,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.15.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的解析:2【分析】=,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】=,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离, 从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离,由点到直线的距离公式,可得2d ==,所以S 的最小值为min 2S d ==故答案为:2. 【点睛】形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.16.【分析】先求得直线过定点分析可知当直线与CM 垂直时直线被圆截得的弦长最短进而利用斜率的关系即可求得m 的值【详解】直线的方程可化为所以直线会经过定点解得定点坐标为圆C 圆心坐标为当直线与CM 垂直时直线被解析:34-【分析】先求得直线过定点()3,1M ,分析可知当直线l 与CM 垂直时,直线被圆截得的弦长最短 ,进而利用斜率的关系即可求得m 的值. 【详解】直线l 的方程可化为()2740x y m x y +-++-=所以直线l 会经过定点27040x y x y +-=⎧⎨+-=⎩,解得定点坐标为()3,1M ,圆C 圆心坐标为()1,2当直线l 与CM 垂直时,直线被圆截得的弦长最短211132CM k -==-- ,211l m k m +=-+ 所以121121CM l m k k m +⎛⎫⎛⎫⨯=-⨯-=- ⎪ ⎪+⎝⎭⎝⎭,解方程得34m =-【点睛】本题考查了直线与圆的位置关系,根据斜率关系求得参数的值,属于基础题.17.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = . 当定点A 为()2,1时,22111m d m +===+ ,符合题意; 当定点A 为()2,3 时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.18.【解析】【分析】设利用可得的轨迹方程以为圆心2为半径的圆利用圆上存在点可得两圆相交或相切建立不等式即可求出实数的取值范围【详解】解:设因为A(02)O(00)所以因为所以化简得:所以点的轨迹是以为圆 解析:[0,3]【解析】 【分析】设(),M x y ,利用 3MA MO ⋅= ,可得M 的轨迹方程以()0,1 为圆心,2为半径的圆,利用圆C 上存在点M ,可得两圆相交或相切,建立不等式,即可求出实数a 的取值范围. 【详解】解:设(),M x y ,因为 A (0,2),O (0,0), 所以(,2)MA x y =-- ,(,)MO x y =-- . 因为3MA MO ⋅= ,所以()()()()23x x y y --+--= ,化简得:22(1)4x y +-= ,所以M 点的轨迹是以()0,1 为圆心,2为半径的圆. 因为M 在()()22:21C x a y a -+-+= 上, 所以两圆必须相交或相切.所以13≤≤ ,解得03a ≤≤.所以圆心C 的横坐标a 的取值范围为: [0,3]. 故答案为:[0,3]. 【点睛】本题主要考查求轨迹方程,考查圆与圆的位置关系,确定M 的轨迹方程是解题的关键,属于中档题.19.【分析】设由题意结合重心的性质可得求得AB 的中垂线方程与欧拉线方程联立可得外心由外心的性质可得解方程即可得解【详解】设由重心坐标公式得的重心为代入欧拉线方程得整理得①因为AB 的中点为所以AB 的中垂线 解析:(4,0)-【分析】设(),C m n ,由题意结合重心的性质可得40m n -+=,求得AB 的中垂线方程,与欧拉=可得解. 【详解】设(),C m n ,由重心坐标公式得ABC 的重心为24,33m n ++⎛⎫⎪⎝⎭,代入欧拉线方程得242033m n++-+=整理得40m n -+=①, 因为AB 的中点为()1,2,40202AB k -==--,所以AB 的中垂线的斜率为12,所以AB 的中垂线方程为()1212y x -=-即230x y -+=, 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,∴ABC 的外心为()1,1-,=,联立①②得4,0m n =-=或0,4m n ==, 当0,4m n ==时,点B 、C 两点重合,舍去; ∴4,0m n =-=即ABC 的顶点C 的坐标为()4,0-. 故答案为:()4,0-. 【点睛】本题考查了直线方程的求解与应用,考查了两点间距离公式的应用,关键是对题意的正确转化,属于中档题.20.【分析】根据AOB 是直角三角形解得圆心O 到直线ax +by =1距离即得ab 关系式再根据两点间距离公式代入消去根据二次函数性质以及的范围求最值【详解】因为是直角三角形且所以O 到直线ax +by =1距离为因1【分析】根据AOB 是直角三角形,解得圆心O ax +by =1距离,即得a ,b 关系式,再根据两点间距离公式,代入消去a ,根据二次函数性质以及b 的范围求最值 【详解】因为AOB 是直角三角形,且||||1AO OB ==,所以O ax +by =1,因此22222a b =+= 设点P (a ,b )与点(0,1)之间的距离为d ,d ====因为22,b b ≤≤≤b =d 取最大值为1=+1 【点睛】本题考查直线与圆位置关系、利用二次函数性质求最值,考查综合分析求解能力,属中档题.三、解答题21.(1) 22(2)(4)10x y -+-=(2) ()2255222x y ⎛⎫-+-= ⎪⎝⎭ 【分析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M 的坐标,利用中点得到点D 坐标,代入圆的方程整理化简得到的中点M 的轨迹方程. 【详解】(1)由已知可设圆心N (a ,3a -2),又由已知得|NA |=|NB |,=,解得:a =2.于是圆N 的圆心N (2,4),半径r ==所以,圆N 的方程为22(2)(4)10x y -+-=,(2) 设M (x ,y ),D ()11,x y ,则由C (3,0)及M 为线段CD 的中点得:113202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得11232x x y y=-⎧⎨=⎩又点D 在圆N :22(2)(4)10x y -+-=上,所以有()()222322410x y --+-=,化简得:()2255222x y ⎛⎫-+-= ⎪⎝⎭. 故所求的轨迹方程为()2255222x y ⎛⎫-+-= ⎪⎝⎭.【点睛】方法点睛:与圆相关的点的轨迹问题,一般可以考虑转移法(相关点法),设动点的坐标,根据条件,用动点坐标表示圆上点的坐标,再根据圆上点的坐标满足圆的方程求解即可.22.(1)7470x y --=(2)440x y --=(3)3)10x y --= 【分析】(1)设11(,)A x x ,22(,2)B x x -,根据AB 的中点在直线20x y -=上求出125x x =,利用斜率公式求出直线AB 的斜率,再由点斜式可求出直线AB 的方程; (2)设直线AB 的方程为1x my =+,求出,A B 的坐标,利用AOBAOPBOPSSS=+求出面积关于m 的解析式,再根据基本不等式求最值可得m 和直线AB 的方程;(3)利用(2)中,A B 的坐标求出||PA 、||PB ,得到||||PA PB 关于m 的函数关系式,再换元利用基本不等式求出||||PA PB 取最小值时的m ,从而可得直线AB 的方程. 【详解】(1)设11(,)A x x ,22(,2)B x x -,则AB 的中点为12122(,)22x x x x +-, 因为AB 的中点在直线20x y -=上,所以121222022x x x x +--⨯=,即125x x =, 所以直线AB 的斜率12212227744x x x k x x x +===-, 所以直线AB 的方程为7(1)4y x =-,即7470x y --=. (2)设直线AB 的方程为1x my =+,联立10x my x y =+⎧⎨-=⎩,得11x y m ==-,所以11(,)11A m m --(1)m <, 联立120x my x y =+⎧⎨+=⎩,得121x m =+,221y m =-+1()2m >-,所以12(,)2121B m m -++, 所以AOB AOP BOP S S S =+112||()2121OP m m =+-+112221m m =+-+,因为220,210m m ->+>,所以112221m m +-+112221()22213m m m m -++=+⨯-+ 12122(11)32221m m m m +-=+++-+14(233≥+=, 当且仅当14m =时,等号成立, 所以AOB S的最小值为43,此时14m =,直线AB 的方程为114x y =+,即440x y --=.(3)由(2)知,||PA ==||PB =21m =+, 所以||||PA PB ⋅=222212121m m m m m +=-+-++222(1)2(1)3m m m +=-+++ 22321m m =+-++, 令53(,4)2m t +=∈,则2231(3)1m t m t +=+-+21106106t t t t t ==-++-≤=,当且仅当=t3m =时,231m m ++取得最大值,||||PA PB ⋅取得最小值,此时直线AB的方程为3)1x y =+,即3)10x y --=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 23.(1)圆心(3,6)C -,半径5R =(2)证明见解析(3)16m =-时,直线l 被圆C 截得的弦最短,弦长为【分析】(1)利用6,12,20D E F =-==可求得结果; (2)利用直线l 经过的定点在圆C 内可证结论成立;(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,根据弦长公式可知d 最大即CM l ⊥时,弦长最短,由此可求得结果. 【详解】(1)因为6,12,20D E F =-==所以6322D --=-=,12622E -=-=-,所以(3,6)C -,所以半径5R ===. (2)由2830mx y m ---=得(28)(3)0x m y --+=,由28030x y -=⎧⎨+=⎩得4,3x y ==-,所以直线l 经过定点M (4,3)-,5=<,所以定点M (4,3)-在圆C 内, 所以无论m 为何值,直线l 总与圆C 有交点.(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,则||AB =d 最大值时,弦长||AB 最小,因为||d CM ≤==,当且仅当CM l ⊥时,d ,||AB取最小值=111236343CMm k =-=-=--+-,所以16m =-.所以16m =-时,直线l 被圆C 截得的弦最短,弦长为 【点睛】关键点点睛:第(2)问的关键是证明直线经过的定点在圆内,第(3)问的关键是推出CM l ⊥时,弦长最短.24.(1)(6,4);(2)10x y +=.【分析】(1)点(,)a b 在直线3210x y ++=上,所以213b a +=-,代入直线20ax by ++=得6(32)0x b y x -+-=可得答案;(2)讨论直线的斜率存在和不存在情况,分别求出三角形的面积比较,并求较小时直线的【详解】(1)因为点(,)a b 在直线3210x y ++=上,所有3210a b ++=,即213b a +=-, 代入直线20ax by ++=得21203b x by +-++=,整理得6(32)0x b y x -+-=, 所以60320x y x -=⎧⎨-=⎩解得64x y =⎧⎨=⎩,定点(6,4)M . (2)设(,)A m n (0,0)m n >>,(,0)(0)B c c >,所以M 、A 、B 三点共线, 当1l 与x 轴垂直时,(4,24)A ,(4,0)B ,112444822OAB SOB AB =⨯⨯=⨯⨯=, 当1l 与x 轴不垂直时,所以AM BM k k =,即44066n m c --=--,644n m c n -=-, 因为在直线2:4l y x =上,所以4n m =,所以64541n m m c n m -==--, 因为0,0m c >>,所以501m c m =>-,所以1m , 2115101101222111OAB A m m S y OB n m m m m ⎛⎫=⨯⨯=⨯⨯==-++ ⎪---⎝⎭()102240≥⨯+=,当且仅当111m m -=-即2m =时等号成立,此时48n m ==,所以(2,8)A ,因为48>40,所以△OAB 面积最小时直线1l 与x 轴不垂直,且1l 的斜率为84126AM k -==--,所以直线1l 的方程为8(2)y x -=--,即为100x y +-=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.25.(1)142x y +=;(2)280x y -+=. 【分析】(1)设出直线的截距式方程1x y a b+=,代入点的坐标,求解出参数的值,从而截距式方程可求;(2)先求解出A 关于直线y x =的对称点A ',然后根据A '在BC 上求解出C 点坐标,再根据高所在直线的斜率与AB 斜率的关系,从而可求解出AB 的高所在直线的一般式方程.(1)设AB 的方程为1x y a b +=,代入点()51,,4,02A B ⎛⎫- ⎪⎝⎭, 所以1512401a b a b-⎧+=⎪⎪⎨⎪+=⎪⎩,所以42a b =⎧⎨=⎩,所以AB 的截距式方程为:142x y +=; (2)设A 关于y x =的对称点为A ',所以5,12A ⎛⎫'- ⎪⎝⎭且A '在直线BC 上, 又因为()4,0B ,所以()()01:04542A B l y x '---=--,即2833y x =-, 又因为C 在y x =上,也在2833y x =-上,所以2833y x y x =⎧⎪⎨=-⎪⎩,所以88x y =-⎧⎨=-⎩,所以()8,8C --, 又因为5012142AB k -==---,设AB 的高所在直线的一般式方程为20x y m -+=,代入点()8,8C --,所以1680m -++=,所以8m =,所以AB 的高所在直线的一般式方程为280x y -+=.【点睛】思路点睛:点关于直线l 的对称点坐标的求解步骤(直线的斜率存在且不为零,已知点()11,A x y ,直线l 的斜率k ):(1)设出对称点的坐标(),A a b ';(2)AA '的中点11,22x a y b ++⎛⎫ ⎪⎝⎭必在l 上,由此得到第一个方程; (3)根据1AA k k '=-得到第二个方程;(4)两个方程联立可求解出(),A a b '.26.答案见解析【分析】由点()2,1A --,()1,1B -均在圆上,可知圆心在直线AB :1y =-的垂直平分线上,即12x =-,设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭,半径为r ,若选①,求出直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选②,由已知得圆心1,12⎛⎫-- ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选③,由弦长AB =,可得半径及圆心,即可求出圆的方程.【详解】因为点()2,1A --,()1,1B -均在圆上,所以圆心在直线AB 的垂直平分线上, 又直线AB 的方程为1y =-,直线AB 垂直平分线所在直线方程为:21122x -+==-,则可设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭;设圆的半径为r , 若选①,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上.由20210x y x y -=⎧⎨+-=⎩解得2515x y ⎧=⎪⎪⎨⎪=⎪⎩,即直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,则圆过点21,55⎛⎫ ⎪⎝⎭, 所以()222221211112552r b b ⎛⎫⎛⎫⎛⎫=--+-=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得1b =-,则294r =, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选②,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 由圆心在直线20x y -=上可得1202b ⎛⎫⨯--= ⎪⎝⎭,则1b =-, 所以()2221911124r ⎛⎫=--+-+= ⎪⎝⎭, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选③,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 若圆被y轴截得弦长AB =,根据圆的性质可得,22219224AB r ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 由()222191124r b ⎛⎫=--++= ⎪⎝⎭,解得1b =-, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭;综上,存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭ 【点睛】方法点睛:本题考查求圆的标准方程,常用的方法有:(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法:若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;。
直线与圆的方程测试卷(含答案) 单元检测(七) 直线和圆的方程一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分)1.若直线 x+ay-a=0 与直线 ax-(2a-3)y-1=0 垂直,则 a 的值为()A。
2B。
-3 或 1C。
2 或 1D。
解析:当 a=0 时,显然两直线垂直;a≠0 时,则 -1/a=2a-3,解得 a=2.故选 C。
2.集合M={(x,y)|y=1-x^2,x、y∈R},N={(x,y)|x=1,y∈R},则M∩N 等于()A。
{(1,0)}B。
{y|0≤y≤1}C。
{1,0}D。
1/a解析:y=1-x^2 表示单位圆的上半圆,x=1 与之有且仅有一个公共点 (1,0)。
答案:A3.菱形 ABCD 的相对顶点为 A(1,-2),C(-2,-3),则对角线BD 所在直线的方程是…()A。
3x+y+4=0B。
3x+y-4=0C。
3x-y+1=0D。
3x-y-1=0解析:由菱形的几何性质,知直线 BD 为线段 AC 的垂直平分线,AC 中点O(-1/2,-5/2),斜率k=2/3,在BD 上,k=-3,代入点斜式即得所求。
答案:A4.若直线 3x+y=1 经过点M(cosα,sinα),则……()A。
a^2+b^2≤1B。
a^2+b^2≥1C。
a^2+b^2≤1/2D。
a^2+b^2≥1/2解析:直线 3x+y=1 经过点M(cosα,sinα),我们知道点 M在单位圆上,此问题可转化为直线 x/a+y/b=1 和圆 x^2+y^2=1有公共点,圆心坐标为 (0,0),由点到直线的距离公式,有|a/b-cosα/sinα|=|1/b|,即a^2+b^2≤1.答案:A5.当圆 x^2+y^2+2x+ky+k^2=0 的面积最大时,圆心坐标是()A。
(0,-1)B。
(-1,0)C。
(1,-1)D。
(-1,1)解析:将圆的方程化为标准形式(x+1)^2+(y-1)^2=4-k^2/4,由于圆心坐标为 (-1,1),故圆心到直线 y=1 的距离最大,即k=0,此时 r^2=4,面积最大。
专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。
一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 2.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A.B .C .D .3.过点()1,0P 作圆22(2)(2)1x y -+-=的切线,则切线方程为( ) A .1x =或3430x y +-= B .1x =或3430x y --= C .1y =或4340x y -+=D .1y =或3430x y --=4.已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6 B .7C .8D .95.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( )A .1B .2CD .6.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A.5B.5CD11.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,12412.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1二、填空题13.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 14.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.15.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.16.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.17.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.直线:20180l x y +-=的倾斜角为__________; 20.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.以点1(),C m m为圆心的圆与x 轴相交于点O ,A ,与y 轴相交于点,O B (O 为坐标原点).(1)求证OAB 的面积为定值,并求出这个定值;(2)设直线23y x =-+与圆C 相交于点,P Q ,且||||OP OQ =,求圆C 的方程. 23.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.24.圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上. (1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.25.当实数m 的值为多少时,关于,x y 的方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆?26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 的最大值为5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.C解析:C 【分析】做出圆22(3)(2)2x y ++-=关于x 轴的对称圆,进而根据图形得AC BC AP r+≥-即可求解. 【详解】解:如图,圆22(3)(2)1x y ++-=的圆心()3,2-,其关于x 轴的对称圆的圆心为()3,2P --, 由图得AC BC AP r +≥-52242=-=.故选:C. 【点睛】解题的关键在于求圆关于x 轴的对称圆圆心P ,进而将问题转化AC BC AP r +≥-求解.3.B解析:B 【分析】按照过点P 的直线斜率是否存在讨论,结合直线与圆相切的性质及点到直线的距离公式即可得解. 【详解】圆22(2)(2)1x y -+-=的圆心为()2,2,半径为1,点P 在圆外,当直线的斜率不存在时,直线方程为1x =,点()2,2到该直线的距离等于1,符合题意; 当直线的斜率存在时,设直线方程为()1y k x =-即kx y k 0--=,1=,解得34k =,所以该切线方程为3430x y --=; 所以切线方程为1x =或3430x y --=. 故选:B. 【点睛】方法点睛:求过圆外一点()00,x y 的圆的切线方程的方法几何法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程;代数法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.4.D解析:D 【分析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r ==-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立,因此,2211a b +的最小值为9. 故选:D. 【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r .(1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.9.D【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C.关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.11.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.14.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.15.【分析】利用对称性作点关于轴的对称点利用数形结合求的最小值【详解】作点关于轴的对称点则最小值即为到直线的距离所以的最小值为故答案为:【点睛】关键点点睛:本题的关键是利用对称性作点关于轴的对称点则再利解析:5【分析】利用对称性,作点(3,1)A -关于x 轴的对称点(3,1)A '--,||||||||AM MN A M MN '+=+,利用数形结合求AM MN +的最小值.【详解】作点(3,1)A -关于x 轴的对称点(3,1)A '--,则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,12555d ==,所以||||AM MN +的最小值为55. 125【点睛】关键点点睛:本题的关键是利用对称性作点(3,1)A -关于x 轴的对称点(3,1)A '--,则AM A N '=,再利用点到直线的距离比其他折线都短,计算||||AM MN +的最小值. 16.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4, 即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案为:x +4y -4=0. 【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.17.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个.【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=±∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.【分析】把直线的一般方程化为斜截式方程得到斜率即可求出倾斜角【详解】由可得:所以斜率即所以倾斜角为故填【点睛】本题主要考查直线的斜率及倾斜角属于基础题解析:34π 【分析】 把直线的一般方程化为斜截式方程,得到斜率,即可求出倾斜角. 【详解】由20180x y +-=可得:2008y x =-+ ,所以斜率1k =-,即tan 1α=-,所以倾斜角为34π,故填34π. 【点睛】本题主要考查直线的斜率及倾斜角,属于基础题.20.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = .当定点A 为()2,1 时,22111m d m +===+ ,符合题意; 当定点A 为()2,3时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭,∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+, (2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上,所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-, 所以AC 所在直线方程为280x y -+=.【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)证明见解析;定值为2;(2)225((2x y -+=. 【分析】(1)由题可得出圆的方程,即可得出,A B 坐标,进而可求出面积; (2)由题可得OC PQ ⊥,利用斜率可求出m . 【详解】解:(1)由已知圆的半径r OC ==, 故圆C 的方程为222211()()x m y m m m-+-=+, 即22220x y mx y m +--=, ∴(2,0)A m ,2(0,)B m, ∴112||||2222OABSOA OB m m=⋅=⨯⋅=, ∴OAB 的面积为定值2.(2)∵||||OP OQ =,||||CP CQ =,∴OC PQ ⊥,而2PQ k =-,∴2112OC k m==,∴m =∴圆C 的方程为225((22x y +-=或225(()22x y +++=当圆C 为225((22x y ++=时,圆心到直线23y x =-+的距离|3|352d --==>, 此时直线与圆相离,故舍去.∴圆C 的方程为225((22x y +-=. 【点睛】关键点睛:本题考查圆中三角形面积的定值问题以及求圆的标准方程,解题的关键是将点A ,B 都用m 表示出来,根据||||OP OQ =得出OC PQ ⊥. 23.(1)22(2)(2)9x y ++-=;(2)11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)由三条直线得到三交点,,A B C 构成直角三角形,联立方程组,求得,A C 点的坐标,得到圆心坐标和半径,进而求得圆的方程;(2)由两圆相交,得到|3|||43||a a -<<+,即可求得a 的取值范围. 【详解】(1)由题意,三条直线123:20,:20,:210l x y l x l x y -=+=+-=, 可得2l 平行于y 轴,1l 与3l 互相垂直,三交点,,A B C 构成直角三角形, 经过,,A B C 三点的圆就是以AC 为直径的圆. 由方程组2020x y x -=⎧⎨+=⎩,解得21x y =-⎧⎨=-⎩,所以点A 的坐标是(2,1)--.由方程组20210x x y +=⎧⎨+-=⎩,解得25x y =-⎧⎨=⎩,所以点C 的坐标是(2,5)-.可得线段AC 的中点坐标是(2,2)-,又由||6AC =,所以ABC 外接圆的方程为22(2)(2)9x y ++-=.(2)由圆222:()D x a y a -+=与22(2)(2)9x y ++-=相交,所以|3|||43||a a -<<+,化简得6||146||1a a a -+<<+, 当0a <时,12a <-;当0a >时,110a >. 综上可得,a 的取值范围是11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.24.(1)22(2)25x y ++=;(2)5x =或34170x y -+=. 【分析】(1)联立点A 和B 的中垂线与直线l ,求出圆心坐标,算出圆心与A 距离,写出圆的标准方程即可;(2)讨论斜率存在与不存在,将直线与圆相切转化为d r =,解出k ,代回直线方程化简即可. 【详解】(1)根据题意可得2113(4)AB k -==---,,A B 中点坐标为73(,)22-,所以AB 的中垂线为7322y x ⎛⎫=-++ ⎪⎝⎭,即2y x =--, 联立方程202x y y x --=⎧⎨=--⎩可得圆心坐标(0,2)-,又222(0(3))(22)25r =--+--=, 所以圆C 的方程为22(2)25x y ++=.(2)①过点P 斜率不存在的直线为5x =,与圆C 相切; ②过点P 斜率存在的直线设斜率为k , 则(5)8y k x =-+,即580kx y k --+= 圆心(0,2)-到切线的距离为5=,解得34k =综上,切线的方程为5x =或34170x y -+=. 【点睛】求圆的方程的两种方法:(1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; (2)待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F ,代入标准方程或一般方程.25.3m =-【分析】圆的方程中22,x y 系数需相等,可得22212m m m m +-=-+,解方程即可得答案; 【详解】要使方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆,需满足22212m m m m +-=-+,得2230m m +-=, 所以3m =-或1m =.①当1m =时,方程为2232x y +=-不合题意,舍去;②当3m =-时,方程为2214141x y +=,即22114x y +=为半径的圆.综上,3m =-满足题意. 【点睛】圆的一般方程形式为2222(4)00x y Dx Ey F D E F ++++=+->,注意方程的特点是求解的关键.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=. 【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程. 【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=.所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =, 此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k =∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。
一、选择题1.如果直线:5l y kx =-与圆22240x y x my +-+-=交于M 、N 两点,且M 、N 关于直线20x y +=对称,则直线l 被圆截得的弦长为( )A .2B .3C .4D .2.已知圆22:3C x y +=,从点()2,0A -观察点()2,B a ,要使视线不被圆C 挡住,则a 的取值范围是 ( )A .⎛⎫-∞⋃+∞ ⎪⎝⎭B .()(),22,-∞-+∞C .((),23,-∞-+∞D .((),-∞-⋃+∞3.过点()引直线l 与曲线y =A ,B 两点,O 为坐标原点,当OA OB ⊥值时,直线l 的斜率等于( ).A .3B .3-C .3±D 4.已知圆221:4420C x y x y +---=,圆222:2880C x y x y +++-=,则圆1C 与圆2C 的位置关系是( )A .内切B .外切C .相交D .相离5.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0B .2x +y -1=0C .2x -y +1=0D .2x +y +1=06.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-7.在平面直角坐标系xOy 中,直线240x y +-=与两坐标轴分别交于点A 、B ,圆C 经过A 、B ,且圆心在y 轴上,则圆C 的方程为( ) A .226160x y y ++-= B .226160x y y +--= C .22890x y y ++-=D .22890x y y +--=8.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-9.若直线y x b =+与曲线3y =2个公共点,则b 的取值范围是( )A .[1-+B .(11]--C .[3,1+D .[1,3]-10.已知直线0(0)x y a a +-=>与圆224x y +=交于不同的两点,,A B O 是坐标原点,且有||||OA OB AB +≥,那么a 的取值范围是( )A .)+∞B .(2,)+∞C .[2,D .11.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或512.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D二、填空题13.已知圆C 过点(8,1),且与两坐标轴都相切,则面积较小的圆C 的方程为________. 14.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.15.已知点P 为直线3450x y +-=上的任意一个动点,则点P 到点()3,0A 的距离的最小值是______.16.将直线:10l x y +-=,20l nx y n +-=:,3:0l x ny n +-=(n *∈N ,2n ≥)围成的三角形面积记为n S ,则n n lim S →∞=___________.17.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2=MA MO ,则实数a 的取值范围是__________.18.设圆222:()0O x y r r +=>,定点(3,4)A ,若圆O 上存在两点到A 的距离为2,则r 的取值范围是________.19.已知点M 为直线1:20l x y a +-=与直线2:210l x y -+=在第一象限的交点,经过点M 的直线l 分别交x ,y 轴的正半轴于A ,B 两点,O 为坐标原点,则当AOBS 取得最小值为1425时,a 的值为________.20.已知x ∈R ______.三、解答题21.在平面几何中,通常将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.最小覆盖圆满足以下性质:①线段AB 的最小覆盖圆就是以AB 为直径的圆; ②锐角ABC 的最小覆盖圆就是其外接圆.已知曲线W :244x y +=,()0,A t ,()2,0B ,(C ,()2,0D -为曲线W 上不同的四点.(1)求实数t 的值及ABC 的最小覆盖圆的方程; (2)求四边形ABCD 的最小覆盖圆的方程; (3)求曲线W 的最小覆盖圆的方程.22.已知直线l :2830mx y m ---=和圆C :22612200x y x y +-++=. (1)求圆C 的圆心、半径(2)求证:无论m 为何值,直线l 总与圆C 有交点;(3)m 为何值时,直线l 被圆C 截得的弦最短?求出此时的弦长.23.已知圆M 过点)P,且与圆222:(1)(2)(0)N x y r r -+-=>关于直线0:20x y l +-=对称.(1)求两圆的方程;(2)若直线1:70l x y +-=,在1l 上取一点A ,过点A 作圆M 的切线,切点为B ,C .证明:BC ≠.24.已知直线l :240x y +-=,圆C 的圆心在x ,且圆心C到直线l . (1)求圆C 的方程;(2)直线l 上是否存在一点Q 作圆C 的两条切线,切点分别为,M N 直线MN 恒过定点,并求定点坐标.25.已知圆心为C 的圆经过A (1,1)和B (2,-2),且圆心C 在直线l :10x y -+=上.(1)求圆心为C 的圆的一般式...方程;(2)是否存在过原点的直线l ′与⊙C 交于E 、F 两点且使EF 为直径的圆过点M (0),若存在,求出直线l ′方程,若不存在说明理由.26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意推出圆心在直线上,求出m ,求出圆的半径与弦心距,利用圆心距、半径、半弦长满足勾股定理,求出弦长. 【详解】因M 、N 关于直线20x y +=对称,故圆心(1,)2m-在直线20x y +=上,4m ∴=. 又因为直线20x y +=与:5l y kx =-垂直,21K ∴-⨯=-,12K ∴=, 设圆心(1,2)-,到直线1502x y --=的距离为d ,d ∴==圆的半径为3r ==.4MN ∴==.故选:C . 【点睛】关键点点睛:本题的关键是利用对称性可知圆心在直线20x y +=上.2.D解析:D 【分析】设过点与圆相切的直线为()2y k x =+,则圆心到直线的距离解得k =,可得切线方程为)2y x =+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,即a 大于B 点在x 轴上方的纵坐标或者小于B 点在x 轴上方的纵坐标即可. 【详解】设过点()2,0A -与圆22:3C x y +=相切的直线为()2y k x =+,则圆心()0,0到直线的=k =∴切线方程为)2y x =+,由A 点向圆C 引2条切线,只要点B 在切线之外,那么就不会被遮挡,B 在2x =的直线上,在)2y x =+中,取2x =,得y =±,从A 点观察B 点,要使视线不被圆C 挡住,需43a >或43a <-, ∴a 的取值范围是()(),4343,-∞-⋃+∞, 故选:D.【点睛】本题主要考查直线与圆的位置关系,关键点是求过A 点且与圆相切时的直线方程,考查分析问题解决问题的能力.3.A解析:A 【分析】方法一:利用AOB 的面积,求点到直线的距离,再求直线的斜率;方法二:设直线方程20kx y k -+=,利用点到直线的距离求弦长以及面积,利用三角形的面积取得最大值时,求直线的斜率.. 【详解】方法一:根据三角形的面积公式和圆的弦的性质求解. 由于21y x =-,即()2210x y y +=≥,直线l 与()2210x y y +=≥交于AB 两点,如图所示,11sin 22ACB S AOB =∠≤△,且当90AOB ∠=︒时,AOBS取得最大值,此时2AB =,点O到直线l 的距离为22, 则30OCB ∠=︒,所以直线l 的斜角为30°,则斜率为3. 方法二:由21y x =-,得()2210x y y +=≥.所以曲线21y x =-表示单位圆在x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合, 则01k <<,直线l 的方程为(02y k x -=+,即20kx y k -+=. 则原点O 到l 的距离221k d k =+,l 被半圆截得的半弦长为222221111k k k k ⎛⎫--= ⎪ ⎪++⎝⎭则()()22222222211111ABO kk k k S k k k--==+++△()()()22222216141k k k-+++-=+()22246211k k =-+-++令211t k =+,则3462ABO S t t =-+-△,当3t 4=,即21314k =+时,ABO S 有最大值为12.此时由21314k =+,解得k = 故选:A 【点睛】思路点睛:本题考查直线与圆的位置关系,本题第一种方程,重点是分析几何关系,即点到直线的距离后就可知道斜率,第二种方程,重点是由条件可知当OA OB ⊥时,此时AOB 的面积最小,即用斜率k 表示面积,求最值,得到直线的斜率. 4.C解析:C 【分析】把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距,大于半径之差,而小于半径之和,可得两个圆位置关系. 【详解】解:圆221:4420C x y x y +---=,22(2)(2)10-+-=x y ,()12,2C ,1r =, 圆222:2880C x y x y +++-=,22(1)(4)25x y +++=,()21,4C --,25r =,125r r +=,215r r -=12C C ==55-<<+,∴两圆相交.故选:C. 【点睛】方法点睛:先把圆的一般方程化为标准方程,求出圆心和半径,再求出两圆的圆心距、半径之和、半径之差,根据三者之间的大小关系即可得到两圆的位置关系.5.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC 的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.6.C解析:C 【分析】根据勾股定理由切线长最小值求出||PC C 到直线l 的距离为l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC ==所以圆心C 到直线l ,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --===22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l 的距离是解题关键.7.A解析:A 【分析】求出点A 、B 的坐标,设圆心坐标为()0,b ,由AC BC =可求出圆心C 的坐标,并求出圆的半径,由此可求得圆C 的方程. 【详解】易知,直线240x y +-=交x 轴于点()4,0A ,交y 轴于点()0,2B ,设圆心C 的坐标为()0,b ,由AC BC =2b =-,解得3b =-, 所以,圆C 的半径为325BC =--=,因此,圆C 的方程为()22325x y ++=,即为226160x y y ++-=.故选:A.【点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.8.D解析:D 【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()001,322mm d -+==∈,解得322m -<<-或232m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.9.B解析:B 【分析】将234y x x =--化为22(2)(3)4-+-=x y (3y ≤),作出直线与半圆的图形,利用两个图形有2个公共点,求出切线的斜率,观察图形可得解. 【详解】由234y x x =--得22(2)(3)4-+-=x y (3y ≤),所以直线y x b =+与半圆22(2)(3)4-+-=x y (3y ≤)有2个公共点,作出直线与半圆的图形,如图:当直线经y x b =+过点(4,3)时,341b =-=-,当直线与圆22(2)(3)4-+-=x y 2=,解得1b =-或1b =+由图可知,当直线y x b =+与曲线3y =2个公共点时,11b -<≤-,故选:B 【点睛】关键点点睛:作出直线与半圆的图形,利用切线的斜率表示b 的范围是解题关键.10.C解析:C 【分析】设AB 的中点为C ,由||||OA OB AB +,可得||||OC AC ,则222||||4AC OC =≤+,再结合直线与圆相交列不等式,即可求出实数a 的取值范围. 【详解】设AB 的中点为C , 因为||||OA OB AB +,所以||||OC AC ,因为||OC =,所以222||||4AC OC =≤+,所以2a -或2a ,2<,所以a -<<因为0a >,所以实数a 的取值范围是[2,, 故选:C . 【点睛】本题考查直线与圆的位置关系、平面向量的加法运算,考查点到直线的距离公式,考查学生的计算能力,属于中档题.11.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;12.B解析:B 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA bk a =-, AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”11=,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.二、填空题13.【分析】设圆的方程为代入点求得或进而得到圆的方程【详解】由题意圆过点且与两坐标轴都相切设圆的方程为将点代入圆的方程可得整理得解得或当时圆的面积较小所以圆的方程为故答案为:【点睛】求解圆的方程的两种方 解析:()()225525x y -+-=【分析】设圆的方程为222()()(0)x a y a a a -+-=>,代入点(8,1),求得5a =或13a =,进而得到圆的方程. 【详解】由题意,圆C 过点(8,1),且与两坐标轴都相切, 设圆的方程为222()()(0)x a y a a a -+-=>, 将点(8,1)代入圆的方程,可得222(8)(1)a a a -+-=, 整理得218650a a -+=,解得5a =或13a =,当5a =时,圆C 的面积较小,所以圆的方程为()()225525x y -+-=. 故答案为:()()225525x y -+-=. 【点睛】求解圆的方程的两种方法:几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; 待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组;③解出,,a b r 或,,D E F 的值,代入标准方程或一般方程.14.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与解析:(,11,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.15.【分析】利用点到直线距离公式可求得点A 到直线的距离即为直线上点到点A 距离的最小值【详解】根据点到直线的距离公式可得结合图像点到直线的距离为即直线上一动点到的距离的最小值为故答案为:【点睛】关键点点睛解析:45【分析】利用点到直线距离公式,可求得点A 到直线的距离,即为直线上点到点A 距离的最小值. 【详解】根据点到直线的距离公式可得,结合图像点()3,0A 到直线3450x y +-=的距离为2233054534⨯+-==+d ,即直线3450x y +-=上一动点P 到()3,0A 的距离的最小值为45, 故答案为:45. 【点睛】关键点点睛:本题考查了点到直线距离公式的应用,解题的关键是分析题意,结合图像将直线上动点P 到点A 的距离的最小值转化为点A 到直线的距离,考查学生的逻辑推理能力与转化思想,属于基础题.16.【分析】求出三条直线的交点坐标从而可求得三角形的面积再求极限即可【详解】由得即同理可得到直线的距离为∴∴故答案为:【点睛】本题考查数列的极限解题关键是求出三角形的面积 解析:12【分析】求出三条直线的交点坐标,从而可求得三角形的面积n S ,再求极限即可。
一、选择题1.如图一所示,在平面内,点P 为圆O 的直径AB 的延长线上一点,2AB BP ==,过动点Q 作圆的切线QR ,满足2PQ QR =,则QAP 的面积的最大值为( )A .83B 83C .163D 1632.过点()0,0A 、()2,2B 且圆心在直线24y x =-上的圆的标准方程为( ) A .()2224x y -+= B .()2224x y ++= C .()()22448x y -+-=D .()()22448x y ++-=3.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为( ) A .72B .4C .1D .54.已知(,0)A a ,(3,0)B a +,直线31x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-5.若点()1,1P --为圆2260x y x ++=的弦MN 的中点,则弦MN 所在直线的方程为( )A .230x y +-=B .210x y --=C .230x y +-=D .210x y -+=6.设P 为直线2x +y +2=0上的动点,过点P 作圆C :x 2+y 2-2x -2y -2=0的两条切线,切点分别为A ,B ,则四边形PACB 的面积的最小值时直线AB 的方程为( ) A .2x -y -1=0 B .2x +y -1=0C .2x -y +1=0D .2x +y +1=07.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( )A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=0 8.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 9.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或510.圆心为1,32C ⎛⎫-⎪⎝⎭的圆与直线:230l x y +-=交于P 、Q 两点,O 为坐标原点,且满足0OP OQ ⋅=,则圆C 的方程为( ) A .2215()(3)22x y -+-= B .2215()(3)22x y -++= C .22125()(3)24x y ++-=D .22125()(3)24x y +++=11.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若点()1,1P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为( ) A .230x y +-= B .210x y -+= C .230x y +-=D .210x y --=二、填空题13.已知直线3x +4y -12=0与x 轴,y 轴相交于A ,B 两点,点C 在圆x 2+y 2-10x -12y +52=0上移动,则△ABC 面积的最大值和最小值之差为________.14.已知圆C 的方程是2220x y y +-=,圆心为点C ,直线:20λλ+-=l x y 与圆C 交于A 、B 两点,当ABC 面积最大时,λ=______.15.若实数x ,y 满足关系10x y ++=,则式子S =______.16.过圆226430x y x y +-+-=的圆心,且垂直于2110x y ++=的直线方程是______.17.动直线1y kx =-与曲线y k 的取值范围是_____. 18.点P(2,5)关于直线x +y =1的对称点的坐标是____________.19.已知直线l 过点(4,1)A -20y -+=的夹角为30°,则直线l 的方程为____________.20.若直线y x b =+与曲线y =b 的范围______________.三、解答题21.已知圆C :()()22344x y +++=,直线l 过定点()1,0A -.(1)若l 与圆相切,求l 的方程;(2)若l 与圆相交于PQ 两点,PQ 线段中点为M ,又l 与0l :220x y +-=交点为N ,求证:AM AN ⋅为定值.22.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点()2,4A .(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC OA =,求直线l 的方程;23.已知直线l :x +2y -4=0,圆C 的圆心在x 2,且圆心C 到直线l 的距离为655. (1)求圆C 的方程;(2)由直线l 上一点Q 作圆C 的两条切线,切点分别为M ,N ,若直线MN 的斜率为1,求点Q 的坐标.24.根据所给条件求直线的方程:(1)直线过点()3,4-,且在两坐标轴上的截距之和为12;(2)直线m :3260x y --=关于直线l :2310x y -+=的对称直线m '的方程. 25.当实数m 的值为多少时,关于,x y 的方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆?26.我们定义一个圆的圆心到一条直线的距离与该圆的半径之比,叫做直线关于圆的距离比,记作λ.已知圆1C :221x y +=,直线:340l x y m -+=. (1)若直线l 关于圆1C 的距离比2λ=,求实数m 的值;(2)当0m =时,若圆2C 与y 轴相切于点()0,3A ,且直线l 关于圆2C 的距离比65λ=,试判断圆1C 与圆2C 的位置关系,并说明理由【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系,利用两点间距离公式推导出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,由此能求出QAP 的面积的最大值. 【详解】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系, 因为2AB BP ==,所以()3,0P,设(),Q x y因为过动点Q 作圆的切线QR ,满足2PQ QR =,()2224PQ QO OR =-所以()()2222341x y x y -+=+-,整理得:()221613x y ++=, 所以点Q 的轨迹是以()1,0-3所以当点Q 在直线1x =-上时,3y =此时点Q 到AP 距离最大,QAP 的面积的最大,所QAP 的面积最大为11834223333QAPS AP =⨯=⨯==, 故选:B 【点睛】关键点点睛:本题的关键点是建立直角坐标系,设(),Q x y ,利用()222244PQ QR OQ OR ==-,即可求出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,即为三角形高最大,从而QAP 的面积最大.2.A解析:A 【分析】设圆心的坐标为(),24a a -,根据圆心到点A 、B 的距离相等可得出关于实数a 的等式,求出a 的值,可得出圆心的坐标,并求出圆的半径,由此可得出所求圆的标准方程. 【详解】设圆心为(),24C a a -,由AC BC ==整理可得20a -=,解得2a =,所以圆心()2,0C ,所求圆的半径为2AC =,因此,所求圆的标准方程为()2224x y -+=.故选:A. 【点睛】方法点睛:求圆的方程常见的思路与方法如下:(1)求圆的轨迹方程,直接设出动点坐标(),x y ,根据题意列出关于x 、y 的方程即可; (2)根据几何意义直接求出圆心坐标和半径,即可写出圆的标准方程;(3)待定系数法,可以根据题意设出圆的标准方程或一般方程,再根据所给条件求出参数即可.3.C解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.B解析:B 【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线1x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解. 【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+,整理可得()2214x a y -++=,则直线1x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线1x =与圆()2214x a y -++=相切,2=,解得2a =-或6.故选:B. 【点睛】关键点睛:解决本题的关键是将题转化为直线1x +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解.5.D解析:D 【分析】连接圆心与弦中点,根据垂径定理的逆定理得到直线AP 与弦所在的直线垂直,由圆的标准方程求出圆心A 的坐标,再由弦中点P 的坐标,求出直线AP 的斜率,根据两直线垂直斜率的乘积为1-,求出弦所在直线的斜率,再由弦中点P 的坐标及求出的斜率,写出弦所在直线的方程即可. 【详解】解:由题意,知圆的标准方程为()2239x y ++=,圆心为()30A -,. 因为点()1,1P --为弦MN 的中点,所以AP MN ⊥. 又AP 的斜率101132k --==--+,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为()121y x +=+,即210x y -+=. 故选:D 【点睛】此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,垂径定理,直线斜率的求法,两直线垂直时斜率满足的关系,以及直线的点斜式方程,解题的关键是连接圆心与弦中点,根据垂径定理的逆定理得到直线AP 与弦所在的直线垂直.6.D解析:D 【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求直线AB 的方程. 【详解】由于,PA PB 是圆()()22:114C x y -+-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小, 此时PC :11(x 1)2y -=-,即210.y x --= 联立210,220y x x y --=⎧⎨++=⎩得1,,(1,0),0x P y =-⎧-⎨=⎩PC 的中点为1(0,),||2PC ==以PC 为直径的圆的方程为2215(),24x y +-=即2210x y y +--=,两圆方程相减可得直线AB 的方程210,x y ++=故选:D.7.D解析:D 【分析】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程. 【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立; 当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=, ∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =-.:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-=故选:D 【点睛】解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.8.C解析:C 【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫- ⎪⎝⎭, 由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C9.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;10.C解析:C 【分析】根据题中所给的圆心坐标,设出圆的标准方程,根据题中所给的条件,求得2r 的值,得出结果. 【详解】 因为圆心为1,32C ⎛⎫-⎪⎝⎭, 所以设圆的方程为:2221()(3)2x y r ++-=, 将直线方程代入圆的方程,得到228552004y y r -+-=, 设1122(,),(,)P x y Q x y ,则有21212174,45r y y y y +=⋅=-,因为0OP OQ ⋅=,所以12120x x y y +=, 所以1212(32)(32)0y y y y -⋅-+=,整理得121296()50y y y y -++=,即2179645()045r -⨯+⨯-=,求得2254r =, 所以圆C 的方程为:22125()(3)24x y ++-=, 故选:C. 【点睛】该题考查的是有关圆的方程的求解,涉及到的知识点有圆的标准方程,关于垂直条件的转化,属于简单题目.11.D解析:D【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.D解析:D 【分析】求得圆心坐标为(3,0)C ,根据斜率公式求得PC k ,再由根据圆的弦的性质,得到2MN k =,结合直线点斜式方程,即可求解.【详解】由题意,圆2260x y x +-=,可得22(3)9x y -+=,所以圆心坐标为(3,0)C ,半径为3, 又由斜率公式,可得011312PC k -==--, 根据圆的弦的性质,可得1PC MN k k ⋅=-,所以2MN k =, 所以弦MN 所在直线方程为12(1)y x -=-,即210x y --=, 所以弦MN 所在直线方程为210x y --=. 故选:D. 【点睛】本题主要考查了直线方程的求解,以及圆的弦的性质,其中解答中熟练应用圆的弦的性质是解答的关键,着重考查推理与运算能力.二、填空题13.15【分析】根据直线3x +4y-12=0可求得的坐标及利用圆心到直线的距离求出点C 到直线的距离的最小值和最大值利用面积公式可求得结果【详解】令得令得所以A (40)点B (03)∴|AB|=5由x2+y解析:15【分析】根据直线3x +4y -12=0可求得,A B 的坐标及||AB ,利用圆心到直线的距离求出点C 到直线AB 的距离的最小值和最大值,利用面积公式可求得结果. 【详解】令0y =得4x =,令0x =得3y =,所以A (4,0),点B (0,3), ∴|AB |=5,由x 2+y 2-10x -12y +52=0得22(5)(6)9x y -+-=, 所以圆的半径为3,圆心为(5,6), 圆心(5,6)到直线AB 的距离d ==275, 所以点C 到直线AB 的距离的最小值为2712355-=,最大值为2742355+=, 所以ABCS的最大值为14252125⨯⨯=,最小值为1125625⨯⨯=, 所以△ABC 面积的最大值和最小值之差为21615-=. 故答案为:15 【点睛】关键点点睛:利用圆心到直线的距离求出点C 到直线AB 的距离的最小值和最大值是解题关键.14.或【分析】由三角形面积公式知当面积最大时即为等腰直角三角形再利用点到直线的距离公式和半径的关系可得答案【详解】圆C 的方程即圆心半径由面积公式知当时面积最大即为等腰直角三角形此时圆心C 到直线的距离为则解析:1λ=或17λ=. 【分析】由三角形面积公式in 12s S ab C =知,当ABC 面积最大时,90ACB ∠=,即ABC 为等腰直角三角形,再利用点到直线的距离公式和半径的关系可得答案. 【详解】圆C 的方程即22(1)1x y +=-,圆心(0,1)C ,半径1R =,由面积公式21sin 2ABCSR ACB =∠知,当90ACB ∠=时面积最大, 即ABC 为等腰直角三角形,此时圆心C 到直线:20λλ+-=l x y 的距离为d =1==,解得1λ=或17λ=,故答案为:1λ=或17λ=. 【点睛】本题考查了直线和圆的位置关系及求三角形面积最大值的问题.15.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的解析:2【分析】=,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】=,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离, 从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离,由点到直线的距离公式,可得2d ==,所以S 的最小值为min 2S d ==故答案为:2. 【点睛】形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.16.【分析】求出圆心坐标由垂直设出直线方程为代入圆心坐标求出参数得直线方程【详解】圆的标准方程是圆心坐标为垂直于的直线方程为则∴所求直线方程为故答案为:【点睛】方法点睛:本题考查由垂直求直线方程解题方法 解析:280x y --=【分析】求出圆心坐标,由垂直设出直线方程为20x y m -+=,代入圆心坐标求出参数m ,得直线方程. 【详解】圆226430x y x y +-+-=的标准方程是22(3)(2)10x y -++=,圆心坐标为(3,2)-,垂直于2110x y ++=的直线方程为20x y m -+=,则23(2)0m ⨯--+=,8m =-, ∴所求直线方程为280x y --=. 故答案为:280x y --=. 【点睛】方法点睛:本题考查由垂直求直线方程,解题方法有两种:(1)由垂直得斜率乘积为1-,得出所求主直线的斜率,再由写出点斜式方程, (2)与直线0Ax By C ++=垂直的直线方程可设为0Bx Ay m -+=,代入已知点坐标求出参数m 后可得.17.【分析】作出图形可知曲线为圆的上半圆数形结合可得出的取值范围【详解】在等式两边平方并整理得由可知所以曲线为圆的上半圆如下图所示:当直线过点时则可得由图象可知当直线与曲线的交点在第一象限时;当直线过点 解析:(][),11,-∞-+∞【分析】作出图形,可知曲线21y x =-为圆221x y +=的上半圆,数形结合可得出k 的取值范围.【详解】在等式21y x =-两边平方并整理得221x y +=,由21y x =-可知0y ≥, 所以,曲线21y x =-为圆221x y +=的上半圆,如下图所示:当直线1y kx =-过点1,0A 时,则10k -=,可得1k =,由图象可知,当直线1y kx =-与曲线21y x -1k >; 当直线1y kx =-过点()1,0B -时,则10k --=,可得1k =-.由图象可知,当直线1y kx =-与曲线21y x -1k <-. 综上所述,k 的取值范围是(][),11,-∞-+∞.故答案为:(][),11,-∞-+∞.【点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.本题是利用直线与半圆的交点个数求参数,要注意动直线所过的一些关键点,利用一些临界点来进行分析.18.(-4-1)【分析】设对称点的坐标为根据点P 关于直线对称列出方程组即可求解【详解】设对称点的坐标为则解得所以所求对称点的坐标为【点睛】本题主要考查了点关于直线的对称点的求解问题其中解答中根据点关于直解析:(-4,-1) 【分析】设对称点的坐标为00(,)x y ,根据点P 关于直线1x y +=对称,列出方程组,即可求解. 【详解】设对称点的坐标为00(,)x y ,则00005(1)1225122y x x y -⎧⋅-=-⎪-⎪⎨++⎪+=⎪⎩,解得0041x y =-⎧⎨=-⎩,所以所求对称点的坐标为(4,1)--.【点睛】本题主要考查了点关于直线的对称点的求解问题,其中解答中根据点关于直线对称,列出相应的不等式求解是解答的关键,着重考查了推理与计算能力,属于基础题.19.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由题直线的倾斜角为则直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为时直线为故答案为:或【点睛】本题考解析:4x =-330y -+= 【分析】分析可得已知直线的倾斜角为60︒,则直线l 的倾斜角为30或90︒,分类讨论,并利用点斜式方程求解即可 【详解】 由题,直线2y =+的倾斜角为60︒,则直线l 的倾斜角为30或90︒,当倾斜角为30时,直线l为)143y x -=+,330y -+=; 当倾斜角为90︒时,直线l 为4x =-, 故答案为:4x =-330y -+= 【点睛】本题考查直线倾斜角与斜率的关系,考查求直线方程,考查分类讨论思想20.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或22b = 【分析】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<. ②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.三、解答题21.(1)1x =-或3430x y -+=;(2)证明见解析. 【分析】(1)设直线l 的方程为1x ty =-,由圆心到直线距离等于半径可求得参数,得直线方程; (2)设直线l 的方程为1x ty =-,与0l 方程联立解得N 点坐标,PQ 线段中点为M ,则CM PQ ⊥,设直线CM 的方程为()43y t x +=-+,与l 方程联立求得M 点坐标,由,,A M N 共线,得AM AN ⋅AM AN =⋅,即得结论.【详解】解:(1)由题意知直线的斜率不为0,设直线l 的方程为1x ty =-,则由l 与圆相切得:2d ==,解得:0t =或43,故l 的方程为1x =-或3430x y -+=.(2)∵l 与圆相交于PQ 两点,故l 斜率存在且不为0.设直线l 的方程为1x ty =-,联立122x ty x y =-⎧⎨+=⎩得31232t x t y t ⎧=-⎪⎪+⎨⎪=⎪+⎩,故331,22t N t t ⎛⎫- ⎪++⎝⎭; ∵PQ 线段中点为M ,∴CM PQ ⊥,设直线CM 的方程为()43y t x +=-+,联立14(3)x ty y t x =-⎧⎨+=-+⎩,得2222411241t tx t t y t ⎧--=-⎪⎪+⎨--⎪=⎪+⎩,故22224241,11t t t M t t ⎛⎫----- ⎪++⎝⎭; ∴2222424,11t t t AM t t ⎛⎫----= ⎪++⎝⎭,33,22tAN t t ⎛⎫= ⎪++⎝⎭, ∴6AM AN ⋅=-,又由于A ,M ,N 三点共线, ∴6AM AN ⋅=得证,AM AN ⋅为定值.. 【点睛】关键点点睛:本题在计算AM AN ⋅时,利用A ,M ,N 三点共线,这样有AM AN ⋅AM AN =⋅,为此求出,M N 的坐标即可,设出l 方程为1x ty =-,由直线相交得交点坐标,M 是弦PQ 中点,利用CM PQ ⊥,由l 方程写出CM 方程后可得交点M 坐标,由坐标运算求得向量的数量积,22.(1)()()22611x y -+-=;(2)250x y -+=或2150x y --=. 【分析】(1)设()06,N y ,由圆与x 轴相切、与圆M 外切可得0075y y -=+,进而可得01y =,即可得解;(2)由直线平行的性质可设直线l 的方程为20x y m -+=,利用垂径定理、点到直线的距离公式即可得解. 【详解】圆M 的标准方程为()()226725x y -+-=,所以圆心()6,7M ,半径为5,(1)由圆心N 在直线6x =上,可设()06,N y . 因为圆N 与x 轴相切,与圆M 外切,所以007y <<,于是圆N 的半径为0y ,从而0075y y -=+,解得01y =, 因此,圆N 的标准方程为()()22611x y -+-=;(2)因为直线//l OA ,所以直线l 的斜率为40220-=-, 设直线l 的方程为2y x m =+,即20x y m -+=,则圆心M 到直线l 的距离d ==,因为BC OA ===,而2222BC MC d ⎛⎫=+ ⎪⎝⎭,所以()252555m +=+,解得5m =或15m =-,故直线l 的方程为250x y -+=或2150x y --=.【点睛】关键点点睛:解决本题的关键是转化直线与圆、圆与圆的位置关系及垂径定理的应用. 23.(1)22(2)2++=x y ;(2)(8,6)-Q . 【分析】(1)设出圆心坐标(,0)(0)C a a <,再根据圆心C 到直线l 的距离为5,列式即可求出a ,从而得到圆C 的方程;(2)设(2,2)-Q t t ,根据圆系知识可知,直线MN 即为以QC 为直径的圆与圆C 的公共弦所在直线,先求出以QC 为直径的圆的方程为(2)(2)(2)0x x t y y t +-+-+=,于是得到直线MN 的方程为(22)(2)240+--++=t x t y t ,再根据其斜率为1,即可解出t ,得到点Q 的坐标. 【详解】(1)依题意设圆心(,0)(0)C a a <5=,解得2a =-或10a =. 由于0a <,∴2a =-.∴圆的方程为22(2)2++=x y .(2)设(2,2)-Q t t ,以QC 为直径的圆的方程为(2)(2)(2)0,+-+-+=x x t y y t 即22(22)(2)40++-+--=x y t x t y t ①,22420x y x +++=② 由②-①得直线MN 的方程为(22)(2)240+--++=t x t y t .又∵221,12MN tK t +=∴=-,即4t =-. ∴点Q 的坐标为(8,6)-Q .本题主要考查圆的方程的求法以及圆系知识的应用,意在考查学生的数学运算能力和转化能力,属于中档题.圆的方程常用求法有:待定系数法,几何法;直线与圆系:设直线:0l Ax By C ++=,圆22:0C x y Dx Ey F ++++=,则经过直线l 与圆C 的交点的圆系方程可设为:()220x y Dx Ey F Ax By C λ+++++++=; 圆与圆系:设圆221111:0C x y D x E y F ++++=,222222:0C x y D x E y F ++++=,当圆1C 与圆2C 相交时,则经过圆1C 与圆2C 交点的圆系方程可设为:()22221112220x y D x E y F x y D x E y F λ+++++++++=(除去圆2C ),当1λ=-时,其表示两圆公共弦所在直线的方程:()()()1212120D x E D E y F F -+-+-=.24.(1)4160x y -+=或390x y +-=;(2)9461020x y -+= 【分析】(1)设出截距式方程,由条件列出式子即可求出;(2)在直线m 上取一点,如()2,0M ,求出()2,0M 关于直线l 的对称点M ',求出m 与l 的交点,即可求出直线方程. 【详解】(1)由已知得直线不过原点,设直线方程为1x ya b+=, 则可得34112a ba b -⎧+=⎪⎨⎪+=⎩,解得416a b =-⎧⎨=⎩或93a b =⎧⎨=⎩, 则直线方程为1416x y+=-或193x y +=,整理可得4160x y -+=或390x y +-=; (2)在直线m 上取一点,如()2,0M ,则()2,0M 关于直线l 的对称点M '必在直线m '上,设(),M a b ',则2023*******23a b b a ++⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪-⎩,解得630,1313M '⎛⎫⎪⎝⎭, 设直线m 与l 的交点为N ,则联立方程32602310x y x y --=⎧⎨-+=⎩可解得()4,3N ,则m '的方程为34306341313y x --=--,即9461020x y -+=.方法点睛:关于轴对称问题:(1)点(),A a b 关于直线0Ax By C ++=的对称点(),A m n ',则有1022n b A m a B a m b n A B C ⎧-⎛⎫⨯-=- ⎪⎪⎪-⎝⎭⎨++⎪⋅+⋅+=⎪⎩;(2)直线关于直线的对称可转化为点关于直线的对称问题来解决. 25.3m =-【分析】圆的方程中22,x y 系数需相等,可得22212m m m m +-=-+,解方程即可得答案; 【详解】要使方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆,需满足22212m m m m +-=-+,得2230m m +-=, 所以3m =-或1m =.①当1m =时,方程为2232x y +=-不合题意,舍去;②当3m =-时,方程为2214141x y +=,即22114x y +=为半径的圆.综上,3m =-满足题意. 【点睛】圆的一般方程形式为2222(4)00x y Dx Ey F D E F ++++=+->,注意方程的特点是求解的关键.26.(1)10±;(2)外切或相离,答案见解析. 【分析】(1)根据新定义的要求即可求出m 的值;(2)先设圆2C 的方程222()(3)x a y a -+-=,然后根据新定义可求出a 的值,再根据a的值判断两圆的位置关系. 【详解】(1)由直线关于圆的距离的比的定义 得25m =,所以10m =±(2)当0m =时,直线:340l x y -= 圆2C 与y 轴相切点于(0,3)A 所以可设2C :222()(3)x a y a -+-=3126545a a a -=⇒=-或43①当4a =-时,2C :22(4)(3)16x y ++-=两圆的圆心距5d =,两圆半径之和为145+=,因此两圆外切 ②当43a =时,2C :22416()(3)39x y -+-=两圆的圆心距48433d =-+=大于两圆的半径之和47133+=,因此两圆外离 【点睛】关键点点睛:本题的关键点是利用新定义圆的圆心到一条直线的距离与该圆的半径之比,叫做直线关于圆的距离比,可求出m 的值,利用圆2C 与y 轴相切于点()0,3A 设出其方程为222()(3)x a y a -+-=根据新定义可求出a 的值,再比较圆心距与半径之和、差,可判断两圆的位置关系.。
第二章直线和圆的方程【压轴题专项训练】一、单选题1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPSAB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.2.已知点()()2,3,3,2A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .15k <-D .344k -≤≤【答案】A 【详解】()()110m x y -+-=,所以直线l 过定点()1,1P ,所以34PB k =,4PA k =-,直线在PB 到PA 之间,所以34k ≥或4k ≤-,故选A .3.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为A .1B .3C .19D .49【答案】A 【详解】试题分析:由题意得两圆22()4x a y ++=与22(2)1x y b y +-=相外切,即222149a b =+⇒+=,所以22222222221111(4)141()[5][5]1999a b a b a b a b b a ++=+=++≥+=,当且仅当22224=a b b a 时取等号,所以选A.考点:两圆位置关系,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.过圆22:1O x y +=内一点11,42⎛⎫⎪⎝⎭作直线交圆O 于A ,B 两点,过A ,B 分别作圆的切线交于点P ,则点P 的坐标满足方程()A .240x y +-=B .240x y -+=C .240x y --=D .240x y ++=【答案】A 【分析】设出P 点坐标,求解出以OP 为直径的圆M 的方程,将圆M 的方程与圆O 的方程作差可得公共弦AB 的方程,结合点11,42⎛⎫⎪⎝⎭在AB 上可得点P 的坐标满足的方程.【详解】设()00,P x y ,则以OP 为直径的圆()()00:0M x x x y y y -+-=,即22000x y x x y y +--=①因为,PA PB 是圆O 的切线,所以,OA PA OB PB ⊥⊥,所以A ,B 在圆M 上,所以AB 是圆O 与圆M 的公共弦,又因为圆22:1O x y +=②,所以由①-②得直线AB 的方程为:0010x x y y +-=,又点11,42⎛⎫⎪⎝⎭满足直线AB 方程,所以00111042x y +-=,即240x y +-=.故选:A.5.在平面直角坐标系中,已知点(),P a b 满足1a b +=,记d 为点P 到直线20x my --=的距离.当,,a b m 变化时,d 的最大值为()A .1B .2C .3D .4【答案】C 【分析】根据直线:20l x my --=过定点A 确定出对于给定的一点P ,d 取最大值时PA l ⊥且max d PA =,然后根据点P 为正方形上任意一点求解出max PA ,由此可知max d .【详解】直线:20l x my --=过定点()2,0A ,对于任意确定的点P ,当PA l ⊥时,此时d PA =,当PA 不垂直l 时,过点P 作PB l ⊥,此时d PB =,如图所示:因为PB AB ⊥,所以PA PB >,所以max d PA =,由上可知:当P 确定时,max d 即为PA ,且此时PA l ⊥;又因为P 在如图所示的正方形上运动,所以max max d PA =,当PA 取最大值时,P 点与()1,0M -重合,此时()213PA =--=,所以max 3d =,故选:C.【点睛】关键点点睛:解答本题的关键在于利用图像分析d 取最大值时PA 与直线l 的位置关系,通过位置关系的分析可将问题转化为点到点的距离问题,根据图像可直观求解.6.若实数,x y 满足x -=x 最大值是()A .4B .18C .20D .24【答案】C 【分析】当0x =时,解得0y =;当0x >,令t =22x t -+=,设()22x f t t =-+,()g t =()f t 和()g t 有公共点,观察图形可求解.【详解】当0x =时,解得0y =,符合题意;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为22xt -+=,设()22xf t t =-+,()g t =t ⎡∈⎣,则()f t 表示斜率为2-的直线,()g t则问题等价于()f t 和()g t有公共点,观察图形可知,=20x =,当直线过点(时,2x=4x =,因此,要使直线与圆有公共点,[]4,20x ∈,综上,[]{}4,200x ∈⋃,故x 的最大值为20.故选:C.【点睛】关键点睛:解题得关键是令t =()22xf t t =-+与圆有公共点.7.已知圆222:()(21)2C x m y m m -+-+=,有下列四个命题:①一定存在与所有圆都相切的直线;②有无数条直线与所有的圆都相交;③存在与所有圆都没有公共点的直线;④所有的圆都不过原点.其中正确的命题个数是A .1B .2C .3D .4【答案】C 【分析】①可先设出切线方程,利用圆心到直线距离等于半径建立等式求解.②③根据直线与两条切线的相对位置,可找出与圆相交和相离的直线④假设过原点,有解【详解】由圆222:()(21)2C x m y m m -+-+=知圆心坐标为(),21m m -,半径|r m =,圆心在直线21y x =-上,①假设存在直线与所有圆均相切,设为y kx b =+则(),21m m -到y kx b =+的距离为|r m =可得|r m ==直线与所有圆均相切,故切线应与m 无关,可取1b =-=解得2k =-±即(21y x -±=-所以,存在与所有圆均相切的直线,故①正确;过点()0,1-介于两相切直线之间的直线,均与所有圆相交,故②正确;过点()0,1-在两相切直线之外部区域的直线,与所有圆均没有交点,故③正确;假设过原点,则222()(21)2m m m -+-+=,得1m =或13m =,故④错误.故选:C 【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.已知,x y R ∈)AB .3C.D .6【答案】C 【分析】将问题转化为“点()0,y 到点()2,1的距离加上点(),0x 到点()2,1的距离加上点(),0x 到点()0,y 的距离之和的最小值”,采用分类讨论的方法并画出辅助图示求解出最小值.【详解】()0,y 到点()2,1(),0x 到点()2,1的距离,表示点(),0x 到点()0,y 的距离,设()()()2,1,,0,0,A B x C y ,表示AB BC AC ++的长度和,显然当点(),0x 与点()0,y 在,x y 轴的非负半轴上,对应原式的结果更小,当()(),0,0,x y 均不在坐标原点,如下图所示:考虑到求解最小值,所以2,1x y ≤≤,设,B A 关于原点的对称点为,B A '',所以AB BC AC AC B C A B AB A B AA '''''''++=++≥+>==当()(),0,0,x y 其中一个在坐标原点,如下图所示:此时分别有2AC BC AB AC AC AC ++>+==2AC BC AB AB AB AB ++>+==,所以AC BC AB ++>当()(),0,0,x y 都在坐标原点时,AB AC BC ++==的最小值为故选:C.【点睛】(1)先将问题转化为点到点的距离之和问题;(2)画出图示,必要时借助点关于直线的对称点知识进行分析;(3)根据距离之和的最小值得到原式的最小值.二、多选题9.下列说法正确的是()A .直线21y ax a =-+必过定点(2,1)B .直线3240x y -+=在y 轴上的截距为-2C10y ++=的倾斜角为120°D .若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-【答案】ACD 【分析】代入点的坐标判断A ,求出纵截距判断B ,求出斜率得倾斜角,判断C ,写出平移直线后的方程,与原方程一致,由此求得ba-,判断D .【详解】2211z a -+=,所以点(2,1)在直线上,A 正确;对3240x y -+=,令0x =,得2y =,直线3240x y -+=在y 轴上截距为2,B 错误;10y ++=的斜率为120︒,C 正确;设直线l 方程为0ax by c ++=,沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后得(3)(2)0a x b y c ++-+=,即320ax by c a b +++-=它就是0ax by c ++=,所以320a b -=,所以23a kb =-=-,D 正确.故选:ACD .【点睛】关键点点睛:本题考查直线方程,利用直线方程研究直线的性质是解析几何的基本方法.掌握直线的概念与特征是解题关键.10.已知点P 是直线3450x y -+=上的动点,定点()1,1Q ,则下列说法正确的是()A .线段PQ 的长度的最小值为45B .当PQ 最短时,直线PQ 的方程是3470x y +-=C .当PQ 最短时P 的坐标为1341,2525⎛⎫⎪⎝⎭D .线段PQ 的长度可能是23【答案】AC 【分析】当PQ 垂直直线3450x y -+=时,PQ 最短,即可判断A 、D ,设出P 坐标,根据最短使PQ 与直线垂直求解P 坐标,即可判断C ,由两点式求出直线方程,即可判断B .【详解】解:当PQ 垂直直线3450x y -+=时,PQ 最短,Q 到直线的距离为223454534-+=+,故A 正确;故PQ 的长度范围为4,5⎡⎫+∞⎪⎢⎣⎭,2435<,故D 错误;设35,4m P m +⎛⎫ ⎪⎝⎭,则3514413PQ m k m +-==--,解得1325m =,故P 为1341,2525⎛⎫⎪⎝⎭,故C 正确;此时直线PQ 的方程是114113112525y x --=--,即4370x y +-=,故B 错误,故选:AC .11.(2021•佛山模拟)已知圆2221:C x y r +=,圆2222:()()C x a y b r -+-=,(0r >,且a ,b 不同时为0)交于不同的两点1(A x ,1)y ,2(B x ,2)y ,下列结论正确的是A .221122ax by a b +=+B .1212()()0a x x b y y -+-=C .12x x a +=,12y y b+=D .M ,N 为圆2C 上的两动点,且||3MN r =,则||OM ON +的最大值为22a b r ++【答案】ABC【解析】根据题意,圆2221:C x y r +=和圆2222:(?)(?)(0)C x a y b r r +=>交于不同的两点A ,B ,∴两圆方程相减可得直线AB 的方程为:22220a b ax by +--=,即22220ax by a b +--=,分别把点1(A x ,1)y ,2(B x ,2)y 两点坐标代入22220ax by a b +--=得:221122??0ax by a b +=,222222??0ax by a b +=,所以选项A 正确,上面两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,所以选项B 正确,两圆的半径相等,∴由圆的性质可知,线段AB 与线段12C C 互相平分,则有120222x x a a++==,12022y y bb ++==,变形可得12x x a +=,12y y b +=,C 正确;M ,N 为圆2C 上的两动点,且||3MN r =,设MN 的中点为D ,则2C D MN ⊥,所以22231()22C D r r r =-=,所以MN 的中点D 的轨迹为以2(,)C a b 为圆心,12r 为半径的圆,所以MN 的中点D 的轨迹方程为2221()()4x a y b r -+-=,又||2||OM ON OD +=,所以||OM ON +的最大值为222212()22a b r a b r +=+,故D 错误.故选ABC .三、填空题12.已知C 为圆:()2211x y -+=上一动点,点B 坐标为(3,点A 坐标为()4,0,则3AC BC +的最小值为_________.【答案】27【分析】设圆心为M ,由圆的方程得到圆心和半径,取4,03D ⎛⎫⎪⎝⎭,可证得CMDAMC ,得到3AC CD =,可知()333AC BC CD BC BD +=+≥,利用两点间距离公式可求得最小值.【详解】设圆:()2211x y -+=的圆心为M ,则()1,0M ,半径1MC =,取4,03D ⎛⎫ ⎪⎝⎭,13MD MC MCMA==,CMD CMA ∠=∠,CMD AMC ∴,3AC CD ∴=,()333AC BC CD BC BD ∴+=+≥(当且仅当,,B C D 三点共线且C 在线段BD 上时取等号),BD =,3AC BC ∴+≥即3AC BC +的最小值为故答案为:【点睛】关键点点睛:本题考查圆部分的最值问题的求解,解题关键是能够利用三角形相似将问题转化为三角形两边之和大于第三边的问题,由此确定三点共线时取得最小值.13.已知函数()f x ax b =--,其中a ,b R ∈,()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为___________.【答案】12【分析】数形结合分析可知(,)M a b 的最小值为()[]0,1g x x =∈与()h x ax b x =+=-纵向距离,从而可以求出结果.【详解】函数()(),f x ax b M a b =-≤,即四分之一圆[]0,1y x =∈上的点到直线1x y +=上的最大距离为12-,此时圆上的点记为P ,如图:只有过PN 的中点且平行于直线1x y +=的直线才满足条件,所以当211,2a b =-=时,(,)M a b 的最小值为()[]0,1g x x =∈与()212h x ax b x +=+=-的纵向距离,即(,)M a b 的最小值为1⎛- ⎝⎭故答案为:212.【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.14.已知直线()()()11410a x a y a -++-+=(其中a 为实数)过定点P ,点Q 在函数1y x x=+的图像上,则PQ 连线的斜率的取值范围是___________.【答案】[3)-+∞,【分析】把直线方程整理成a 的多项式,根据恒等式的知识求出定点P 的坐标,【详解】由()()()11410a x a y a -++-+=得(4)40x y a x y -+-++-=∴4040x y x y -+-=⎧⎨+-=⎩,解得0,4x y =⎧⎨=⎩,∴(0,4)P 。
直线和圆的方程测试题题目一:直线的方程1. 给定两个点A(2, 3)和B(4, 1),求过这两个点的直线方程。
解析:首先计算两点的斜率k\[k = \frac{y_2-y_1}{x_2-x_1} = \frac{1-3}{4-2} = -1\]进一步,我们可以使用点斜式方程:\[y-y_1 = k(x-x_1)\]\[y-3 = -1(x-2)\]\[y-3 = -x+2\]\[x+y = 5\]所以,过点A(2, 3)和B(4, 1)的直线方程为 \(x+y = 5\)。
题目二:圆的方程2. 以点C(5, 3)为圆心,半径为r = 2的圆,求圆的方程。
解析:对于以点C(x, y)为圆心,半径为r的圆,圆的方程可以表示为:\[(x-x_0)^2 + (y-y_0)^2 = r^2\]将圆心C(5, 3)和半径r=2代入,得到:\[(x-5)^2 + (y-3)^2 = 4\]所以,以点C(5, 3)为圆心,半径为r = 2的圆的方程为 \((x-5)^2 + (y-3)^2 = 4\)。
题目三:直线和圆的交点3. 已知直线方程为 \(3x-y = 2\),以点D(1, 0)为圆心,半径为r = 1的圆。
求直线和圆的交点坐标。
解析:我们可以使用联立方程的方法来求解直线和圆的交点。
首先,将直线方程转换为一般式方程:\[3x-y-2 = 0\]然后,将直线方程带入圆的方程:\[(x-1)^2 + (y-0)^2 = 1\]通过联立这两个方程,我们可以得到交点的坐标。
将直线方程改写为 \(y = 3x-2\),然后代入圆的方程:\[(x-1)^2 + (3x-2-0)^2 = 1\]展开并整理方程,得到二次方程:\[10x^2 - 22x + 11 = 0\]解这个二次方程,可以得到两个解x1和x2:\[x_1 = \frac{11}{10}, \quad x_2 = 1\]将x值代入直线方程,可以得到对应的y值:\[y_1 = 3\left(\frac{11}{10}\right)-2 = \frac{13}{10}, \quad y_2 = 3(1)-2 = 1\]所以,直线 \(3x-y = 2\) 和圆 \((x-1)^2 + (y-0)^2 = 1\) 的交点坐标为\(\left(\frac{11}{10}, \frac{13}{10}\right)\) 和 (1, 1)。
直线和圆的方程测试题1. 直线方程部分1.1 点斜式方程直线L通过已知点P(x₁, y₁)且斜率为k,求直线L的方程。
解析:直线L的点斜式方程为:y - y₁ = k(x - x₁)1.2 斜截式方程直线L的斜截式方程为y = kx + b,已知直线L经过点P(x₁, y₁),求直线L的方程。
解析:直线L的斜率k可通过已知点P(x₁, y₁)和直线方程的斜率形式得到。
将已知点P(x₁, y₁)代入直线方程中,得到方程:y₁ = kx₁ + b从而求解得到斜截式方程y = kx + b。
2. 圆方程部分2.1 标准方程圆C的圆心为点O(h, k),半径为r,求圆C的方程。
解析:圆C的标准方程为:(x - h)² + (y - k)² = r²2.2 一般方程圆C的圆心为点O(h, k),半径为r,求圆C的一般方程。
解析:一般方程形式为:x² + y² + Dx + Ey + F = 0带入圆心坐标O(h, k),得到方程:(x - h)² + (y - k)² = r²展开并整理,可得一般方程。
3. 测试题部分测试题一:已知圆C的圆心为O(-2, 3),半径为5,请写出圆C的标准方程和一般方程。
解析:圆C的标准方程为:(x - (-2))² + (y - 3)² = 5²展开并整理得到:x² + y² + 4x - 6y - 12 = 0因此,圆C的一般方程为:x² + y² + 4x - 6y - 12 = 0测试题二:已知直线L通过点P(3, 4)且斜率为 -2,请写出直线L的点斜式方程和斜截式方程。
解析:直线L的点斜式方程为:y - 4 = -2(x - 3)直线L的斜截式方程为:y = -2x + b为了求解斜截式方程中的截距b,将已知点P(3, 4)代入斜截式方程中得:4 = -2(3) + b求解得到b = 10因此,直线L的斜截式方程为:y = -2x + 10通过以上题目和解析,我们掌握了直线和圆的方程及其不同形式的表示方法。
..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。
直线与圆的方程测试题(含答案)一.选择题1.经过圆0y x 2x 22=++的圆心C ,且与直线0y x =+垂直的直线方程是( )A .01y x =++B .01y x =-+C .01y x =+-D .01y x =--2. 如果()1,3A 、()k ,2B -、()11,8C 在同一直线上,那么k 的值是( )A.-6B.-7C.-8D.-93. 如果直线09by x =++经过直线017y 6x 5=--与直线02y 3x 4=++的交点,那么b 等于( )A.2B.3C.4D.54.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A B C D5.直线06ay x :l 1=++与直线()0a 2y 3x 2a :l 2=++-平行,则a 的值等于( )A.–1或3B.1或3C.–3D.–16.已知A(-4,-5)、B(6,-1),则以线段AB 为直径的圆的方程是( )A .(x +1)2+(y -3)2=29B .(x -1)2+(y +3)2=29C .(x +1)2+(y -3)2=116D .(x -1)2+(y +3)2=1167.已知0,0ab bc <<,则直线ax by c +=通过()A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.若实数n ,m 满足1n m 2=-,则直线0n y 3mx =+-必过定点( )A .⎪⎭⎫ ⎝⎛31,2B .⎪⎭⎫ ⎝⎛-31,2C .⎪⎭⎫ ⎝⎛-31,2D .⎪⎭⎫ ⎝⎛--31,29.点M 在圆(x -5)2+(y -3)2=9上,点M 到直线3x +4y -2=0的最短距离为( )A .9B .8C .5D .210.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( )A .10B .10或-68C .5或-34D .-68 11.已知圆C 1:(x +1)2+(y -3)2=25,圆C 2与圆C 1关于点(2,1)对称,则圆C 2的方程是( )A .(x -3)2+(y -5)2=25B .(x -5)2+(y +1)2=25x y O x y O x y O xyO34C .(x -1)2+(y -4)2=25D .(x -3)2+(y +2)2=2512.已知函数kx )x (g ,12x )x (f =+-=,若方程)x (g )x (f =有两个不相等的实数根,则 实数k 的取值范围为( ) A .⎪⎭⎫ ⎝⎛21,0B .⎪⎭⎫ ⎝⎛1,21C .()2,1D .()+∞,2二、填空题13.过点(1,2)且在两坐标轴上的截距相等的直线方程为__x 2y =或03y x =-+_______14.两圆221x y +=和22(4)()25x y a ++-=相切,则实数a 的值为0或52±15.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 取值范围为[-3,1]16.已知点()y ,x P 是直线4x 22y -=上一动点,PM 与PN 是圆()11y x :C 22=-+的两条切线,M,N 为切点,则四边形PMCN 的最小面积为三、解答题 17.已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点. (1) 当l 经过圆心C 时,求直线l 的方程;(2) 当弦AB 被点P 平分时,写出直线l 的方程;(3)当直线l 的倾斜角为45º时,求弦AB 的长.解:(1)已知圆C :()2219x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2, 直线l 的方程为y=2(x-1),即 2x-y-20.(2)当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为12(2)2y x -=--, 即 x+2y-6=0 (3)当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0圆心C 到直线l 3,弦AB 18.已知实数y ,x 满足方程01x 4y x 22=+-+(1)求xy 的最大值和最小值 (2)求x y -的最大值和最小值 (3)求22y x +的最大值和最小值解:(1)原方程可化为()3y 2x 22=+-,表示以()0,2为圆心,3为半径的圆 x y 的几何意义是点()y ,x 与原点连线的斜率,设k xy =,即kx y = 当直线与圆相切时,斜率k 取得最大值或最小值,此时31k 0k 22=+-,解得3k ±=所以xy 的最大值是3,最小值是3- (2)x y -可以看作直线b x y +=在y 轴上截距的最大值或最小值, 此时32b02=+-,解得62b ±-=,所以x y -的最大值是62+-,最小值是62--(3)22y x +表示点()y ,x 与原点距离的平方,由平面几何知识可知,原点与圆心的连线所在直线与圆的两个交点处取得最大值或最小值,又圆心到原点的距离为2所以()()34732y x 2max 22+=+=+,()()34732y x 2min 22-=-=+ 19.已知圆C 经过()3,2A 、()1,6B 两点,且圆心在直线2y x =上.(1)求圆C 的方程;(2)若直线l 经过点()1,3P -且与圆C 相切,求直线l 的方程.解:(1)因为()3,2A 、()1,6B ,所以线段AB 中点D 的坐标为()2,4,直线AB 的斜率62213AB k -==--, 因此直线AB 的垂直平分线l '的方程是()1422y x -=-,即260x y -+=. 圆心C 的坐标是方程组260,2x y y x -+=⎧⎨=⎩的解. 解此方程组,得2,4.x y =⎧⎨=⎩即圆心C 的坐标为()2,4.圆心为C 的圆的半径长r AC === 所以圆C 的方程为()()22245x y -+-=.(2)由于直线l 经过点()1,3P -,当直线l 的斜率不存在时,1x =-与圆C()()22245x y -+-=相离. 当直线l 的斜率存在时,可设直线l 的方程为()31y k x -=+, 即:30kx y k -++=.因为直线l 与圆C 相切,且圆C 的圆心为()2,4= 解得2k =或12k =-. 所以直线l 的方程为()321y x -=+或()1312y x -=-+, 即:250x y -+=或250x y +-=.20.已知圆03y 4x 2y x :C 22=+-++(1)求圆心C 的坐标及半径r 的大小 (2)已知不过原点的直线l 与圆C 相切,且在x 轴和y 轴上的截距相等,求直线l 的方程(3)从圆C 外一点()11y ,x P 向该圆引一条切线,切点为M ,O 为坐标原点,且有PO PM =,求点P 的轨迹方程21.已知直线l :kx -y +1+2k =0(k ∈R).(1)求直线l 的定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为4,求直线l 的方程.解:(1)直线l 的方程可化为y =k(x +2)+1,故无论k 取何值,直线l 总过定点(-2,1). (2)直线l 的方程可化为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧ k ≥0,1+2k ≥0,解得k 的取值范围是k ≥0.(3)依题意,直线l 在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k , ∴A(-1+2k k ,0),B(0,1+2k),又-1+2k k<0且1+2k>0,∴k>0, 故S =12|OA||OB|=12×1+2k k (1+2k)=12(4k +1k+4)=4, 即k =12,直线l 的方程为x -2y +4=0. 22.在平面直角坐标系xoy 中,已知圆032x 12y x 22=+-+的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同的两点A 、B.(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA OB + 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由..解:(Ⅰ)圆的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,,过(02)P ,且斜率为k的直线方程为2y kx =+.代入圆方程得22(2)12320x kx x ++-+=,整理得22(1)4(3)360k x k x ++-+=. 直线与圆交于两个不同的点A B ,等价于 2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->,解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭,. (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,,由方程①, 1224(3)1k x x k -+=-+ ② 又1212()4y y k x x +=++. ③而(02)(60)(62)P Q PQ =- ,,,,,.所以OA OB + 与PQ 共线等价于1212()6()x x y y +=+,将②③代入上式,解得34k =-. 由(Ⅰ)知304k ⎛⎫∈ ⎪⎝⎭,,故没有符合题意的常数k .。
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3 B.33 C.3- D.3 4. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π) 5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是( )A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( ) A.平行 B.重合 C.相交不垂直 D.相交且垂直10.下列命题错误..的是( ) A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( ) A.2 B.-2 C. 21 D. 21- 13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( ) A.1 B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( ) A.(x+1)2+y 2=5 B. (x+1)2+y 2=25 C. (x-1)2+y 2=5 D. (x-1)2+y 2=25 16. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分.19. 计算M 1(2,-5),M 2(5,-1)两点间的距离是20. 已知点(0,2)是点(-2,b)与点(2,4)的对称中心,则b=21. 直线x-y=0的倾斜角是22. 圆(x-1)2+y 2 -2=0的半径是23. 过圆x 2+y 2=4上一点(3,1)的圆的切线方程是三、解答题(本大题共6小题,第24~27小题各9分,第28、29小题每小题11分,共58分)解答应写出文字说明、证明过程或演算步骤.24. 已知直线m 过点(3,0),在y 轴上的截距是-2,求直线m 的方程.25.已知直线3x+(1-a)y+5=0与x-y=0平行,求a 的值及两条平行线之间的距离.26.已知直线l经过直线2x-y=0与直线x+y-3=0的交点P且与直线3x+2y-1=0垂直,①求点P的坐标;②求直线l的方程.27. 已知点A(2,5),B(8,3),求以线段AB为直径的圆的标准方程.28. 求过三点P(2,2),M(5,3),N(3,-1)的圆的方程,并求出圆心和半径.29.过原点O作圆C:(x-1)2+(y-2)2=1的切线l,求切线l的方程.直线与圆的方程测试题参考答案一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1~5:CACAD 6~10:CCABB 11~15:DABDB 16~18:BAC二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
19.5 20. 0 21.45° 22.2 23. 3x+y-4=0三、解答题(本大题共6小题,第24~27小题各9分,第28、29小题每小题11分,共58分)解答应写出文字说明、证明过程或演算步骤。
24. 已知直线m 过点(3,0),在y 轴上的截距是-2,求直线m 的方程.解:∵直线过点(3,0),且在y 轴上的截距是-2,∴直线m 过点(3,0)和(0,-2) ………2分将它们代入斜率公式,得 k=323002=---………4分 又知,直线m 在y 轴上的截距是-2,即b= -2………5分将它们代入斜截式方程,得 y=2x 32-………7分 化简,得2x-3y-6=0这就是所求直线m 的方程………9分25.已知直线3x+(1-a)y+5=0与x-y=0平行,求a 的值及两条平行线之间的距离.解:当a=1时,直线3x+(1-a)y+5=0与y 轴平行,显然,与x-y=0不平行. ………1分 当a ≠1时,直线3x+(1-a)y+5=0的斜率为a13-………2分 因为直线x-y=0的斜率为1,而两直线平行………3分所以1a13=-………4分 解得:a= -2………5分故第一条直线方程为3x+3y+5=0在直线x-y=0上取一点P(0,0) ………6分则点P 到直线3x+3y+5=0的距离d 就是两条平行线间的距离因62533|50303|d 32=++⨯+⨯=………8分故两条平行线之间的距离是625………9分26.已知直线l 经过直线2x-y=0与直线x+y-3=0的交点P 且与直线3x+2y-1=0垂直,①求点P 的坐标;②求直线l 的方程.解:①因点P 坐标是以下方程组的解⎩⎨⎧=-+=-03y x 0y x 2………2分 解之得:x=1,y=2所以点P(1,2) ………4分②因直线3x+2y-1=0可化为21x 23y +-= 故其斜率为23- 因直线l 与直线3x+2y-1=0垂直 所以直线l 的斜率为32………6分 因直线l 过点P ,由点斜式方程可得 y-2=32(x-1) ………8分 所以直线l 的方程是:2x-3y+4=0 ………9分27. 已知点A(2,5),B(8,3),求以线段AB 为直径的圆的标准方程.解:设所求圆的标准方程为:(x-a)2+(y-b)2=r 2根据已知,设C(a,b)是线段AB 的中点,因此点C 的坐标为………2分 282a +==5,235b +==4 ………5分 根据两点间的距离公式,得圆的半径为 r=|CA|=22)54()25(-+-=10………8分将a,b,r 代入所设方程,得(x-5)2+(y-4)2=10这就是所求以线段AB 为直径的圆的标准方程………9分28. 求过三点P(2,2),M(5,3),N(3,-1)的圆的方程,并求出圆心和半径.解:设圆的方程为x 2+y 2+Dx+Ey+F=0 ………1分因为P ,M ,N 三点都在圆上,所以它们的坐标都是方程的解.将它们的坐标依次代入上面的方程,得到关于D ,E ,F 的三元一次方程组 2D+2E+F= -8,5D+3E+F= -343D-E+F= -10 ………4分解这个方程组,得D= -8,E= -2,F=12 ………7分故所求圆的方程为x 2+y 2-8x-2y+12=0………8分配方可得(x-4)2+(y-1)2=5 ………10分故所求圆的圆心为(4,1),半径为5………11分说明:该题若设圆的方程为标准方程,则参照以上分值给分.29.过原点O 作圆C :(x-1)2+(y-2)2=1的切线l ,求切线l 的方程.解:设所求切线方程为y=kx ,则有方程组………1分⎩⎨⎧=-+-=1)2y ()1x (kx y 22………3分 将一次方程代入二次方程,得(x-1)2+(kx-2)2=1………4分整理,得(k 2+1)x 2-2(2k+1)x+4=0. ………5分其中,△=[-2(2k+1)]2-4×(k 2+1)×4=0………6分解得 43k =………7分 即所求切线方程为y=43x ………8分 另外,由于方程组⎩⎨⎧=-+-=1)2y ()1x (0x 22 ………10分 也只有一个解,所以x=0也是圆C 的切线方程故所求圆的切线有两条,它们分别是y=43x 和x=0………11分 说明:该题若利用圆心到切线距离等于半径来计算,则参照以上分值给分.。