指数函数基础填空题(含答案)
- 格式:doc
- 大小:156.00 KB
- 文档页数:11
练习题一,选择题1.下列函数是指数函数的是()A.y = -2xB. y = 2x+,C. y = 2_xD. y=l x2.函数y =@—2尸在R上为增函数,则a的取值范围是()A. a>0 且a7^1B. a>3C. a<3D. 2<a<33.函数y=厂2+1@〉0, a^l)的图象必经过点( )A. (0,1)B. (1,1)C. (2,0)D. (2,2)4.f(x)=|jl|x|, xGR,那么班0是()A.奇函数且在(0, + <-)上是增函数B.偶函数且在(0, + 8)上是增函数C.奇函数且在(0, + 8)上是减函数D.偶函数且在(0,5.方程广「命的解为()A. 2B. -2C. -1D. 16.方程4^=令的解为()A. 2B. -2C. -1D. 17.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。
经过3个小时,这种细菌由1个nJ繁殖成()A.511 个B.512 个C.1O23 个D1024 个8.在统一平面直角坐标系中,函数/(兀)8. 设a,b,c,d 都是不等于1的正数,y = a\y = h\y = c\y = d x 在同一•处标系中的图像如图所示,则a,b,c,d 的10. y= 0.3戶的值域是( )4. (-oo,0) B.[l,+x) C.(0,l] 0.(- oo,l]11. 当xe[-l,l]时函数/(x) = 3v -2的值域是()A. --,1 B\-1,1] C. 1,- D.[0,l3 3 2 2 1 1 | £ 512. 化简(/沪)(—3决质)十(丄,沪)的结果 ( ) A . 6a B • -a C . -9a D . 9a 2设指数函数/(x) = a x (a > 0卫主1),则下列等式中不正确的是(0,1] B • (04) C • (0,+o>)13. 14. f(nx) = [f(x)]n (n e Q) f(xyy=[f(x)]n {f(y)Y (n G N") 函数 y = (x-5)°4-(x-2p{x \ x 5,x 工 2} B . {x\x > 2}{x\x>5} D . {x\2< x < 5^x > 5}15. 函数/(x) = 2-,A 1的值域是16. 若指数函数y = (a + \)x 在(—oo, + 00)上是减函数,那么(A 、 0 < a < IB 、 -l<a <0C 、D 、 a <-11&函数/(x) = 2V , g(x) = x + 2,便.f(x) = g(x)成立的x 的值的集合() A 、是0 B 、有且只有一个元索C 、有两个元素D 、有无数个元素19.下列关系式中正确的是( )9 ( 1 \3 ( 1 \3 ( \ \3 A.-<2_L5 < 丄 B.- < - 3 \2 J(2 丿 \ 2> (1 < 1 \3 (1、 1 r 1 \i c. 2-1-5 < 1 —< A D.2 15 < - < 1 (2丿a二,填空题1. 两数y=pa"—1的定义域是( — 8, 0],则实数a 的取值范围为 _________2. 函数 f (x )=(*)_l, xe [ — 1, 2]的值域为 _______ ・3. 函数/(兀)=G 沏+1(。
2.1.2 指数函数及其性质知识清单1.指数函数的概念一般地,______________________叫做指数函数,其中x 是自变量,函数的定义域是____.2.指数函数y =a x (a >0,且a ≠1)的图象和性质a >1 0<a<1图象定义域 R 值域 (0,+∞)性 质 过定点过点______,即x =____时,y =____函数值 的变化 当x >0时,______; 当x <0时,________ 当x >0时,________; 当x <0时,________单调性是R 上的________是R 上的________基础练习一、填空题1.下列以x 为自变量的函数中,是指数函数的是______.(填序号)①y =(-4)x ;②y =πx ;③y =-4x ;④y =a x +2(a >0且a ≠1). 2.函数f (x )=(a 2-3a +3)a x 是指数函数,则a 的值为________. 3.函数y =a |x |(a >1)的图象是________.(填序号)4.已知f (x )为R 上的奇函数,当x <0时,f (x )=3x,那么f (2)=________.5.如图是指数函数 ①y =a x ; ②y =b x ; ③y =c x ;④y =d x 的图象,则a 、b 、c 、d 与1的大小关系是________.6.函数y =(12)x -2的图象必过第________象限.7.函数f (x )=a x 的图象经过点(2,4),则f (-3)的值为____.8.若函数y =a x -(b -1)(a >0,a ≠1)的图象不经过第二象限,则a ,b 需满足的条件为________.9.函数y =8-23-x (x ≥0)的值域是________. 二、解答题10.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7; (2)1314⎛⎫⎪⎝⎭和2314⎛⎫⎪⎝⎭; (3)2-1.5和30.2.11.2000年10月18日,美国某城市的日报以醒目标题刊登了一条消息:“市政委员会今天宣布:本市垃圾的体积达到50 000 m 3”,副标题是:“垃圾的体积每三年增加一倍”.如果把3年作为垃圾体积加倍的周期,请你完成下面关于垃圾的体积V (m 3)与垃圾体积的加倍的周期.(1) (2)根据报纸所述的信息,你估计3年前垃圾的体积是多少? (3)如果n =-2,这时的n ,V 表示什么信息?(4)写出n 与V 的函数关系式,并画出函数图象(横轴取n 轴). (5)曲线可能与横轴相交吗?为什么?12.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊕2x 的图象是________.(填序号)13.定义在区间(0,+∞)上的函数f (x )满足对任意的实数x ,y 都有f (x y )=yf (x ). (1)求f (1)的值;(2)若f (12)>0,解不等式f (ax )>0.(其中字母a 为常数).能力提升一、填空题1.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则P 、Q 的关系为________. 2.函数y =16-4x 的值域是________.3.函数y =a 在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是________.4.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则下列命题正确的是________.(填序号)①f (x )与g (x )均为偶函数;②f (x )为偶函数,g (x )为奇函数; ③f (x )与g (x )均为奇函数;④f (x )为奇函数,g (x )为偶函数.5.函数y =f (x )的图象与函数g (x )=e x +2的图象关于原点对称,则f (x )的解析式为________. 6.已知a =1335-⎛⎫ ⎪⎝⎭,b =1235-⎛⎫⎪⎝⎭,c =1243-⎛⎫ ⎪⎝⎭,则a ,b ,c 三个数的大小关系是________.7.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.9.函数y =2212x x-+⎛⎫ ⎪⎝⎭的单调递增区间是________.二、解答题10.(1)设f (x )=2u ,u =g (x ),g (x )是R 上的单调增函数,试判断f (x )的单调性; (2)求函数y =2212x x --的单调区间.11.函数f (x )=4x -2x +1+3的定义域为[-12,12].(1)设t =2x ,求t 的取值范围; (2)求函数f (x )的值域.12.函数y =2x -x 2的图象大致是________.(填序号)13.已知函数f (x )=2x-12x +1.(1)求f [f (0)+4]的值;(2)求证:f (x )在R 上是增函数;(3)解不等式:0<f (x -2)<1517.知识清单1.函数y =a x (a >0,且a ≠1) R 2.(0,1) 0 1 y >1 0<y <1 0<y <1 y >1 增函数 减函数 基础练习 1.②解析 ①中-4<0,不满足指数函数底数的要求,③中因有负号,也不是指数函数,④中的函数可化为y =a 2·a x ,a x 的系数不是1,故也不是指数函数. 2.2解析 由题意得⎩⎪⎨⎪⎧a 2-3a +3=1,a >0且a ≠1,解得a =2. 3.②解析 该函数是偶函数.可先画出x ≥0时,y =a x 的图象,然后沿y 轴翻折过去,便得到x <0时的函数图象.4.-19解析 当x >0时,-x <0,∴f (-x )=3-x ,即-f (x )=(13)x ,∴f (x )=-(13)x .因此有f (2)=-(13)2=-19.5.b <a <1<d <c解析 作直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系. 6.二、三、四解析 函数y =(12)x 的图象上所有的点向下平移2个单位,就得到函数y =(12)x -2的图象,所以观察y =(12)x -2的图象可知.7.18解析 由题意a 2=4,∴a =2.f (-3)=2-3=18.8.a >1,b ≥2解析 函数y =a x -(b -1)的图象可以看作由函数y =a x 的图象沿y 轴平移|b -1|个单位得到.若0<a <1,不管y =a x 的图象沿y 轴怎样平移,得到的图象始终经过第二象限;当a >1时,由于y =a x 的图象必过定点(0,1),当y =a x 的图象沿y 轴向下平移1个单位后,得到的图象不经过第二象限.由b -1≥1,得b ≥2.因此,a ,b 必满足条件a >1,b ≥2. 9.[0,8)解析 y =8-23-x =8-23·2-x =8-8·(12)x=8[1-(12)x ].∵x ≥0,∴0<(12)x ≤1,∴-1≤-(12)x <0,从而有0≤1-(12)x <1,因此0≤y <8.10.解 (1)考察函数y =0.2x . 因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数.又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.(2)考察函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数.又因为13<23,所以1314⎛⎫ ⎪⎝⎭>2314⎛⎫ ⎪⎝⎭1.(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,所以2-1.5<30.2.11.解 (1)由于垃圾的体积每3年增加1倍,24年后即8个周期后,该市垃圾的体积是50 000×28=12 800 000(m 3).(2)根据报纸所述的信息,估计3年前垃圾的体积是50 000×2-1=25 000(m 3).(3)如果n =-2,这时的n 表示6年前,V 表示6年前垃圾的体积. (4)n 与V 的函数关系式是V =50 000×2n ,图象如图所示.(5)因为对任意的整数n,2n >0,所以V =50 000×2n >0,因此曲线不可能与横轴相交. 12.①解析 由题意f (x )=1⊕2x=⎩⎪⎨⎪⎧1, x ≥0;2x , x <0.13.解 (1)令x =1,y =2,可知f (1)=2f (1),故f (1)=0.(2)设0<x 1<x 2,∴存在s ,t 使得x 1=(12)s ,x 2=(12)t ,且s >t ,又f (12)>0,∴f (x 1)-f (x 2)=f [(12)s ]-f [(12)t ]=sf (12)-tf (12)=(s -t )f (12)>0,∴f (x 1)>f (x 2).故f (x )在(0,+∞)上是减函数. 又∵f (ax )>0,x >0,f (1)=0, ∴0<ax <1,当a =0时,x ∈∅,当a >0时,0<x <1a ,当a <0时,1a<x <0,不合题意.故x ∈∅.综上:a ≤0时,x ∈∅;a >0时,不等式解集为{x |0<x <1a}.能力提升 1.Q P解析 因为P ={y |y ≥0},Q ={y |y >0},所以Q P . 2.[0,4)解析 ∵4x >0,∴0≤16-4x <16, ∴16-4x ∈[0,4). 3.3解析 函数y =a x 在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3. 4.②解析 f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ).5.f (x )=-e -x -2解析 ∵y =f (x )的图象与g (x )=e x +2的图象关于原点对称,∴f (x )=-g (-x )=-(e -x +2)=-e -x -2. 6.c <a <b解析 ∵y =(35)x 是减函数,-13>-12,∴b >a >1.又0<c <1,∴c <a <b . 7.19解析 假设第一天荷叶覆盖水面面积为1,则荷叶覆盖水面面积y 与生长时间的函数关系为y =2x -1,当x =20时,长满水面,所以生长19天时,荷叶布满水面一半. 8.(-∞,-1)解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12,(12)x >32,得x ∈∅;当x =0时,f (0)=0<-12不成立;当x <0时,由2x -1<-12,2x <2-1,得x <-1.综上可知x ∈(-∞,-1). 9.[1,+∞)解析 利用复合函数同增异减的判断方法去判断.令u =-x 2+2x ,则y =(12)u 在u ∈R 上为减函数,问题转化为求u =-x 2+2x 的单调递减区间,即为x ∈[1,+∞).10.解 (1)设x 1<x 2,则g (x 1)<g (x 2).又由y =2u 的增减性得()12g x<()22g x ,即f (x 1)<f (x 2), 所以f (x )为R 上的增函数.(2)令u =x 2-2x -1=(x -1)2-2, 则u 在区间[1,+∞)上为增函数.根据(1)可知y =2212x x --在[1,+∞)上为增函数. 同理可得函数y 在(-∞,1]上为单调减函数.即函数y 的增区间为[1,+∞),减区间为(-∞,1].11.解 (1)∵t =2x 在x ∈[-12,12]上单调递增,∴t ∈[22,2].(2)函数可化为:f (x )=g (t )=t 2-2t +3,g (t )在[22,1]上递减,在[1,2]上递增,比较得g (22)<g (2). ∴f (x )min =g (1)=2, f (x )max =g (2)=5-2 2.∴函数的值域为[2,5-22]. 12.①解析 当x →-∞时,2x →0,所以y =2x -x 2→-∞, 所以排除③、④.当x =3时,y =-1,所以排除②.13.(1)解 ∵f (0)=20-120+1=0,∴f [f (0)+4]=f (0+4)=f (4)=24-124+1=1517.(2)证明 设x 1,x 2∈R 且x 1<x 2, 则22x>12x>0,22x-12x>0,∴f (x 2)-f (x 1)=212121212121x x x x ---++ =()()()21212222121x x x x -++>0,即f (x 1)<f (x 2),所以f (x )在R 上是增函数.(3)解 由0<f (x -2)<1517得f (0)<f (x -2)<f (4),又f (x )在R 上是增函数,∴0<x -2<4,即2<x <6,所以不等式的解集是{x |2<x <6}.。
指数函数题型学霸总结四(含答案)阳光老师:祝你学业有成一、选择题(本大题共12小题,共60.0分)1.函数是指数函数,则有A. 或B.C. D. ,且【答案】C【解析】【分析】本题主要考查的是指数函数的概念,直接结合指数函数底数大于0且不等于1,前面系数为1,求解即可.【解答】解:由指数函数的概念,得,解得或当时,底数是1,不符合题意,舍去;当时,符合题意.故选C.2.若函数是指数函数,则a的取值范围是A. B. ,且C. D.【答案】B【解析】【试题解析】【分析】本题主要考查指数函数的定义,属于基础题.利用指数函数的定义中对底数的要求,列出不等式组,求解即得.【解答】解:因为函数是指数函数,得:,化简得故选B.3.有下列函数:;;;其中指数函数的个数是A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查指数函数的表达式和定义,属于基础题.根据指数函数的定义和表达式的要求即可得解.【解答】解:形如,且的函数称为指数函数,只有是指数函数.故选B.4.已知函数,若,则A. B. 0 C. D.【答案】C【解析】【试题解析】【分析】本题主要考查函数值的计算,属于基础题.发现是解题的关键.【解答】解:因为,所以,又,那么.故选C.5.下列各函数中是指数函数的是A. B. C. D.【答案】D【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易.根据指数函数的概念即可判断结果.【解答】解:根据指数函数的定义,且,可知只有D项正确,故选D.6.若函数在R上单调递减,则实数a的取值范围是A. B. C. D.【答案】C【解析】【分析】本题主要考查指数函数的单调性,属于基础题.根据指数函数的单调性,可知,解得实数a的取值范围.【解答】解:函数,在R上单调递减,则,解得,实数a的取值范围是.故选C.7.已知常数,函数经过点、,若,则a的值为A. 2B. 4C. 6D. 8【答案】B【解析】【分析】本题主要考察指数与指数幂的运算,考查运算求解能力,属于基础题.将p,q直接带入,计算即可求解得到答案.【解答】解:因为,,,,即,所以,所以,又因为,所以,又因为,所以,故选B.8.已知函数则A. 2B.C. 0D.【答案】B【解析】【分析】本题考查了函数定义域与值域、分段函数的相关知识,试题难度容易【解答】解:,.9.如图所示,面积为8的平行四边形OABC的对角线AC与BO交于点E,且若指数函数且的图象经过点E,B,则a等于A. B. C. 2 D. 3【答案】A【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度一般【解答】解:设点,则由已知可得点,,.因为点E,B在指数函数的图象上,所以所以,所以舍去或.10.下列图象中,可能是二次函数及指数函数的图象的是A. B.C. D.【答案】A【解析】【试题解析】【分析】本题主要考查指数函数的图象及性质、二次函数的图象及性质,属于基础题.指数函数在R上单调递减,则,可得,二次函数的图象与x轴的交点为、,结合选项即可判断.【解答】解:由指数函数的图象可知,指数函数在R上单调递减,则,,二次函数的图象与x轴的交点为、,只有选项A符合题意.故选A.11.函数与的图象关于A. 原点对称B. x轴对称C. y轴对称D. 直线对称【答案】C【解析】【分析】本题考查了函数的周期性和对称性、函数图象的变换平移、对称、伸缩、翻折变换的相关知识,试题难度较易【解答】解:设点为函数的图象上任意一点,则点为的图象上的点.因为点与点关于y轴对称,所以函数与的图象关于y轴对称,故选C.12.已知定义在R上的函数满足,且当时,,则A. 0B.C. 18D.【答案】C【解析】【分析】本题考查函数的周期性,涉及指数的运算,属于基础题.由题意可得函数为周期为2的周期函数,可得,代值计算可得.【解答】解:定义在R上的函数满足,函数为周期为2的周期函数,又当时,,,故选:C.二、填空题(本大题共14小题,共70.0分)13.指数函数的值域是__________.【答案】【解析】【分析】本题考查求函数值域的方法,考查指数函数的性质,解题的关键是将复杂函数化为基本函数,属于基础题.根据题意可知,函数,若令,于是可得y 转化为关于t的二次函数,根据指数函数的性质可知,结合二次函数的单调性还可得到在上函数单调递增,于是不难得到,对该不等式式求解,即可得到原函数的值域.【解答】解:令,则,因为该二次函数在上递增,所以,即原函数的值域为.故答案为.14.若函数且在区间上的最大值与最小值之和为3,则实数a的值为________.【答案】2【解析】【分析】本题考查指数函数的性质,属基础题,难度不大.讨论底数a的大小,利用指数函数的单调性求解即可.【解答】解:当时,函数在区间上单调递增,的最大值为a,最小值为,,解得,当时,函数在区间上单调递减,的最大值为,最小值为a,,解得舍,综上所述:.故答案为2.15.函数的定义域为________.【答案】【解析】【分析】本题考查了函数定义域与值域、指数方程与指数不等式的相关知识,试题难度容易【解答】解:依题意得,,得,得,得.则函数的定义域为.故答案为.16.已知函数且在区间上的函数值恒小于2,则a的取值范围是________.【答案】【解析】【分析】本题考查指数函数的性质,属于基础题.分类讨论,由指数函数的单调性得最值,求a的取值范围.【解答】解:当时,函数且在区间上单调递增,最大值为,由题意,所以,当时,函数且在区间上单调递减,最大值为,由题意,所以,则a的取值范围是故答案为17.若指数函数的图象经过点,则,.【答案】;【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度较易【解答】解:设且.因为的图象经过点,代入得,解得或舍去,所以,所以.18.若指数函数的图象经过点,则.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:设且,由于其图象经过点,所以,解得或舍去,因此,故.19.已知,若,求的值.【答案】解:,若,则.所以.【解析】本题考查了指数与指数幂的运算的相关知识,试题难度一般20.已知函数是指数函数,且,则__________.【答案】 5x【解析】【分析】本题主要考查指数函数,由得,,解得即可.【解答】解:设x,且.由,得,,x.故答案为.21.若函数且的图象过点,则________.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:由于函数图象过点,则,解得,故.22.已知直线与函数,,,的图象依次相交于点A,B,C,D,则这四点按从上到下的顺序排列是________.【答案】C,D,B,A【解析】【分析】本题考查指数函数的图象和性质,根据底数对指数函数图象的影响,在同一坐标系中画出题中四个函数的图象,即得到四个点的顺序.【解答】解:根据在第一象限内,底数越大指数函数的图象越靠近y轴,在同一坐标系中画出函数,,,的图象如下图:由图象得:这四个点从上到下的排列次序是:C,D,B,A.23.已知函数与的图象关于y轴对称,则.【答案】【解析】【分析】本题考查指数函数,涉及图象的对称变换和指数幂的运算,属于基础题.利用图象关于y轴对称的函数的解析式的关系将x换成,求得的解析式,然后代入运算化简即得.【解答】解:函数与的图象关于y轴对称,,.故答案为.24.以下是三个变量,,随变量x变化的函数值表:x1234567824816326412825614916253649640123其中关于x呈指数函数变化的函数是________.【答案】【解析】【分析】本题考查对数函数、指数函数与幂函数的增长差异.解题时要认真审题,注意指数函数的性质的合理运用.观察题中表格,可以看出,三个变量、、都是越来越大,但是增长速度不同,其中变量的增长速度最快,画出它们的图象图略,可知变量呈指数函数变化.【解答】解:观察题中表格,可知,三个变量,,都是越来越大,但是增长速度不同,增长速度最快,画出它们的图象,可知呈指数函数变化.25.函数是指数函数,则_______【答案】【解析】【分析】本题考查指数函数的定义,比较容易根据指数函数的定义,先确定a的值,再求.【解答】解:函数是指数函数,则,解得.所以,.所以,.故答案为.26.给定下列函数:;;,且;;;;;其中是指数函数的有________填序号【答案】解:指数函数为,很显然为二次函数,为指数函数,底数不一定大于0,故不是指数函数,底数小于0,不是指数函数,是指数函数,不是指数函数,是指数型函数,不是指数函数,不是指数函数,故答案为【解析】此题考查指数函数的定义,属于基础题.根据指数函数的定义进行求解即可.三、解答题(本大题共4小题,共48.0分)27.已知指数函数满足,定义域为R的函数是奇函数.确定和的解析式;判断函数的单调性,并用定义证明;若对于任意,都有成立,求a的取值范围.【答案】解:设且,,,,,是定义域为R的奇函数,,即,解得.经检验,当时,为奇函数,是定义在R上的减函数,证明如下:任取,,,则.,,又,,,,是定义在R上的减函数;,且为奇函数,,所以,因为,所以成立,设,,由对勾函数的单调性可知,函数在单调递增,在上单调递减,所以当时,有最大值为,所以.【解析】本题考查了函数的奇偶性和单调性,本题难度适中,属于较难题.利用指数函数过定点和函数为奇函数,得到关于参数的方程,解方程得到本题结论;利用函数单调性的定义加以证明,得到本题结论;利用函数的奇偶性和单调性,将原不等式转化为相应自变量的比较,利用对勾函数的单调性得到本题结论.28.某镇现在人均一年占有粮食,如果该镇人口平均每年增长,粮食总产量平均每年增长,那么x年后若人均一年占有y kg粮食,求y关于x的函数解析式.【答案】解:设该镇现在人口数量为M,则该镇现在一年的粮食总产量为360M kg.1年后,该镇粮食总产量为,人口数量为,则人均一年占有粮食为,2年后,人均一年占有粮食为,,x年后,人均一年占有粮食为,即所求函数解析式为【解析】本题考查了函数模型的应用的相关知识,试题难度较易29.用描点法在同一平面直角坐标系中画出与的图象.在的条件下,分别计算并比较与,与,与的值,从中你得到什么结论?【答案】解:作,的图象如下,,,;,;,;故;即与的图象关于y轴对称.【解析】本题主要考查了指数函数的图象及其性质,属于较易题.结合指数函数的图象,利用描点法作,的图象.可求得;;;从而可判断.30.已知不相等的两个实数a,b满足,判断实数a,b的大小关系.【答案】解:画出,的图像如图所示:,当a,b同为负时,,当a,b同为正时,,当a,b不同号时,不存在,综上所述,答案:当或.【解析】本题主要考查了指数函数的图像与性质,属于较易题画出图像,由图像可得结果.。
高一数学指数运算及指数函数试题一.选择题1.若xlog 23=1,则3x+9x的值为(B)A.3B.6C.2D.解:由题意x=,所以3x==2,所以9x=4,所以3x+9x=6故选B2.若非零实数a、b、c满足,则的值等于(B)A.1B.2C.3D.4解答:解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(log m5+log m2)=2lgm•log m10=2.故选B.3.已知,则a等于()A.B.C. 2 D. 4解:因为所以解得a=4故选D4.若a>1,b>1,p=,则a p等于()A.1B.b C.l og b a D.a log b a解:由对数的换底公式可以得出p==log a(log b a),因此,a p等于log b a.故选C.5.已知lg2=a,10b=3,则log125可表示为(C)A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.若lgx﹣lgy=2a,则=(C)A.3a B.C.a D.解:∵lgx﹣lgy=2a,∴lg﹣lg=lg﹣lg=(lg﹣lg)=lg=(lgx﹣lgy)=•2a=a;故答案为C.7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b= A.﹣2 B.﹣1 C.0D.2解:f(x)+f(﹣x)=ln(x+)+ln(﹣x+=0∵f(a)+f(b﹣2)=0∴a+(b﹣2)=0∴a+b=2故选D.8.=()A.1B.C.﹣2 D.解:原式=+2×lg2+lg5=+lg2+lg5=+1=,故选B.9.设,则=()A.1B.2C.3D.4解:∵,∴==()+()+()==3故选C10.,则实数a的取值区间应为(C)A.(1,2)B.(2,3)C.(3,4)D.(4,5)解:=log34+log37=log328∵3=log327<log328<log381=4∴实数a的取值区间应为(3,4)故选C.11.若lgx﹣lgy=a,则=(A)A.3a B.C.a D.解:=3(lgx﹣lg2)﹣3(lgy﹣lg2)=3(lgx﹣lgy)=3a故选A.12.设,则()A.0<P<1 B.1<P<2 C.2<P<3 D.3<P<4 解:=log112+log113+log114+log115=log11(2×3×4×5)=log11120.∴log1111=1<log11120<log11121=2.故选B.13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,则abc的值等于(A)A.1B.2C.3D.4解:∵a,b,c均为正数,且都不等于1,实数x,y,z满足,∴设a x=b y=c z=k(k>0),则x=log a k,y=log b k,z=log c k,∴=log k a+log k b+log k c=log k abc=0,∴abc=1.故选A.14.化简a2•••的结果是(C)A.a B.C.a2D.a3解:∵a2•••=a2•••==a2,故选C15.若x,y∈R,且2x=18y=6xy,则x+y为()A.0B.1C.1或2 D.0或2解:因为2x=18y=6xy,(1)当x=y=0时,等式成立,则x+y=0;(2)当x、y≠0时,由2x=18y=6xy得,xlg2=ylg18=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg18=xylg6,得x=lg18/lg6,则x+y=lg18/lg6+lg2/lg6=(lg18+lg2)/lg6=lg36/lg6=2lg6/lg6=2.综上所述,x+y=0,或x+y=2.故选D.16.若32x+9=10•3x,那么x2+1的值为(D)A.1B.2C.5D.1或5解:令3x=t,(t>0),原方程转化为:t2﹣10t+9=0,所以t=1或t=9,即3x=1或3x=9所以x=0或x=2,所以x2+1=1或5故选Dx x2A.﹣2<a<2 B.C.D.解;令t=2x,则t>0若二次函数f(t)=t2﹣at+a2﹣3在(0,+∞)上有2个不同的零点,即0=t2﹣at+a2﹣3在(0,+∞)上有2个不同的根∴解可得,即故选D18.若关于x的方程=3﹣2a有解,则a的范围是(A)A.≤a<B.a≥C.<a<D.a>解:∵1﹣≤1,函数y=2x在R上是增函数,∴0<≤21=2,故0<3﹣2a≤2,解得≤a<,故选A.二.填空题19.,则m=10.解:由已知,a=log2m,b=log5m.∴+=log m2+log m5=log m10=1∴m=10故答案为:10.20.已知x+y=12,xy=9,且x<y,则=.解:由题设0<x<y∵xy=9,∴∴x+y﹣2==12﹣6=6x+y+2==12+6=18∴=,=∴=故答案为:21.化简:=(或或).解:====.故答案为:(或或).22.=1.解:===1.故答案为:1.23.函数在区间[﹣1,2]上的值域是[,8].解:令g(x)=x2﹣2x=(x﹣1)2﹣1,对称轴为x=1,∴g(x)在[﹣1,1]上单调减,在[1,8]上单调递增,又f(x)=2g(x)为符合函数,∴f(x)=2g(x)在[﹣1,1]上单调减,在[1,,2]上单调递增,∴f(x)min=f(1)==;又f(﹣1)==23=8,f(2)==1,∴数在区间[﹣1,2]上的值域是[,8].故答案为:[,8].24.函数的值域为(0,8].解:令t=x2+2|x|﹣3==结合二次函数的性质可得,t≥﹣3∴,且y>0故答案为:(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..解:可以看做是由y=和t=﹣2x2﹣8x+1,两个函数符合而成,第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=﹣2x2﹣8x+1,在[1,3]上的值域就可以,t∈[﹣9,9]此时y∈[3﹣9,39]函数的递增区间是(﹣∞,﹣2],故答案为:[3﹣9,39];(﹣2,+∞)三.解答题26.计算:(1);(2).解:(1)==(2)===2+2﹣lg3+lg2+lg3﹣lg2+2=627.(1)若,求的值;(2)化简(a>0,b>0).解:(1)∵,∴x+x﹣1=9﹣2=7,x2+x﹣2=49﹣2=47,∴==3×6=18,∴==.(2)∵a >0,b >0,∴====.28.已知函数f (x )=4x ﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.解:(1)当f (x )=11,即4x ﹣2x+1+3=11时,(2x )2﹣2•2x ﹣8=0 ∴(2x ﹣4)(2x +2)=0 ∵2x >02x +2>2,∴2x ﹣4=0,2x =4,故x=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) (2)f (x )=(2x )2﹣2•2x +3 (﹣2≤x ≤1) 令∴f (x )=(2x ﹣1)2+2当2x =1,即x=0时,函数的最小值f min (x )=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)当2x =2,即x=1时,函数的最大值f max (x )=3﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。
新课程必修第一册《指数函数与对数函数》基础测试题及答案解析时间:120分钟 满分:150分一、选择题(本大题共8小题,每小题5分,共40分) 1.若a<12,则化简42a -12的结果是( )A .2a -1B .-2a -1C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( )A .[0,53) B .[0,53] C .[1,53)D .[1,53]3.若a>1,则函数y =a x与y =(1-a)x 2的图象可能是下列四个选项中的( )4.函数f(x)=ln(x +1)-2x的零点所在的大致区间是( )A .(1,2)B .(0,1)C .(2,e)D .(3,4)5.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( )A .增函数且f(x)>0B .增函数且f(x)<0C .减函数且f(x)>0D .减函数且f(x)<06.已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x>02x, x≤0,则f(f(19))等于( )A .4B .14C .-4D .-147.函数f(x)=4x+12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称8.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67二、多项选择题(本大题共4小题,每小题5分,共20分) 9.下列函数中,是奇函数且存在零点的是( )A .y =x 3+x B .y =log 2x C .y =2x 2-3D .y =x |x |10.下列说法正确的是( ) A .函数()1f x x=在定义域上是减函数 B .函数()22xf x x =-有且只有两个零点 C .函数2xy =的最小值是1D .在同一坐标系中函数2xy =与2xy -=的图象关于y 轴对称11.若函数1xy a b =+-(0a >,且1a ≠)的图像经过第一、三、四象限,则下列选项中正确的有( ) A .1a >B .01a <<C .0b >D .0b <12.定义运算a ⊕b =⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,设函数f (x )=1⊕2-x,则下列命题正确的有( )A .f (x )的值域为[1,+∞)B .f (x )的值域为(0,1]C .不等式f (x +1)<f (2x )成立的范围是(-∞,0)D .不等式f (x +1)<f (2x )成立的范围是(0,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13. 函数()()2lg lg x f x x =-的零点为________. 14.函数f(x)=ax -1+3的图象一定过定点P ,则P 点的坐标是________.15.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.16.若函数f (x )=log a x (a >0,且a ≠1)在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a +m =______. 三、解答题(本大题共6小题,共70分) 17.(10分)(1)计算:(-3)0-120+(-2)-2-1416-;(2) 设log a 2=m ,log a 3=n ,求a 2m +n的值;18.(12分)(1) log 49-log 212+5lg210-.(2)12lg 25lg 2lg ++()1lg 0.01+-; 19.(12分)设函数f(x)=2x+a 2x -1(a 为实数).(1)当a =0时,若函数y =g(x)为奇函数,且在x>0时g(x)=f(x),求函数y =g(x)的解析式;(2)当a<0时,求关于x 的方程f(x)=0在实数集R 上的解. 20.(12分)已知函数f (x )=log ax +1x -1(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.21.(12分)已知-3≤12log x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.22.(12分) 已知函数2328()log 1mx x nf x x ++=+. (Ⅰ)若4,4m n ==,求函数()f x 的定义域和值域;(Ⅱ)若函数()f x 的定义域为R ,值域为[0,2],求实数,m n 的值.答案及解析:一、单选题1.C [∵a <12,∴2a -1<0.于是,原式=41-2a2=1-2a .]2.C [由函数的解析式得:⎩⎪⎨⎪⎧lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵a >1,∴y =a x在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.] 4.A f(1)=ln2-2=ln 2e 2<ln1=0,f(2)=ln3-1=ln 3e>ln1=0,所以函数f(x)=ln(x +1)-2x的零点所在的大致区间是(1,2).5.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]6.B [根据分段函数可得f (19)=log 319=-2,则f (f (19))=f (-2)=2-2=14.]7.D 易知f(x)的定义域为R ,关于原点对称.∵f(-x)=4-x+12-x =1+4x2x =f(x),∴f(x)是偶函数,其图象关于y 轴对称.8.D [A 选项中由于y =log 0.4x 在(0,+∞)单调递减, 所以log 0.44>log 0.46;B 选项中函数y =1.01x在R 上是增函数, 所以1.013.4<1.013.5;C 选项中由于函数y =x 0.3在(0,+∞)上单调递增, 所以3.50.3>3.40.3;D 选项中log 76<1,log 67>1,故D 正确.] 二、多选题9.解析:选AD A 中,y =x 3+x 为奇函数,且存在零点x =0,与题意相符;B 中,y =log 2x 为非奇非偶函数,与题意不符;C 中,y =2x 2-3为偶函数,与题意不符;D 中,y =x |x |是奇函数,且存在零点x =0,与题意相符. 10.解析:对于A ,()1f x x=在定义域上不具有单调性,故命题错误; 对于B ,函数()22xf x x =-有三个零点,一个负值,两个正值,故命题错误;对于C ,∵|x |≥0,∴2|x |≥20=1,∴函数y =2|x |的最小值是1,故命题正确;对于D ,在同一坐标系中,函数y =2x 与y =2﹣x 的图象关于y 轴对称,命题正确.故选CD 11.解析:因为函数1xy a b =+- (0a >,且1a ≠)的图像经过第 一、三、四象限,所以其大致图像如图所示:由图像可知函数为增函数,所以1a >.当0x =时,110y b b =+-=<,故选AD.12.解析:选AC 由函数f (x )=1⊕2-x,有f (x )=⎩⎪⎨⎪⎧1,1≥2-x,2-x ,1<2-x,即f (x )=⎩⎪⎨⎪⎧2-x,x <0,1,x ≥0,作出函数f (x )的图象,如图所示,根据函数图象得f (x )的值域为[1,+∞),故A 正确,B 错误;若不等式f (x +1)<f (2x )成立,由函数图象知,当2x <x +1<0即x <-1时成立,当⎩⎪⎨⎪⎧2x <0,x +1≥0即-1≤x <0时也成立.所以不等式f (x +1)<f (2x )成立时,x <0.故C 正确,D 错误.故选A 、C. 三、填空题13. 解析:由题知:()2lg lg 0x x -=,得(l g 1g )l 0x x -=,∴lg 0x =或lg 1x =,∴1x =或10x =.故答案为:1x =或10x = 14.(1,4)解析 由于函数y =a x恒过(0,1),而y =ax -1+3的图象可看作由y =a x的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4). 15.(1,2)解析 当x ∈[2,+∞)时,y >1>0,所以a >1,所以函数y =log a x 在区间[2,+∞)上是增函数,最小值为log a 2,所以log a 2>1=log a a ,所以1<a <2.16.解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f (4)=log a 4=2⇒a =2,所以m =log 212=-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a +m =2-1=1;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12=log a 12=2⇒a =22,所以m =log 224=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意. 答案:1 17.解 (1)原式=1-0+1-22-()1442-=1+14-2-1=1+14-12=34.(2) ∵log a 2=m ,log a 3=n , ∴a m =2,a n=3. ∴a 2m +n=a 2m ·a n =(a m )2·a n =22·3=12.18.解 (1) 原式=log 23-(log 23+log 24)+2lg 510=log 23-log 23-2+25=-85.(2) ()11222lg 252100.1-⎡⎤⨯⨯⨯⎢⎥⎣⎦()172227lg 521010lg 102⎛⎫=⨯⨯⨯==⎪⎝⎭;19.解 (1)当a =0时,f (x )=2x-1, 由已知g (-x )=-g (x ),则当x <0时,g (x )=-g (-x )=-f (-x )=-(2-x-1) =-(12)x+1,由于g (x )为奇函数,故知x =0时,g (x )=0, ∴g (x )=⎩⎪⎨⎪⎧2x-1, x ≥0-12x+1, x <0.(2)f (x )=0,即2x+a2x -1=0,整理,得:(2x )2-2x+a =0, 所以2x=1±1-4a 2,又a <0,所以1-4a >1,所以2x=1+1-4a2, 从而x =log 21+1-4a2.20.解 (1)要使此函数有意义,则有⎩⎪⎨⎪⎧x +1>0x -1>0或⎩⎪⎨⎪⎧x +1<0x -1<0,解得x >1或x <-1,此函数的定义域为 (-∞,-1)∪(1,+∞),关于原点对称. (2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log ax +1x -1=-f (x ). ∴f (x )为奇函数.f (x )=log a x +1x -1=log a (1+2x -1),函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减. 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减; 当0<a <1时,f (x )=log ax +1x -1在(-∞,-1),(1,+∞)上递增. 21.解 ∵f (x )=log 2x2·log 2x4=(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2=(log 2x -32)2-14,∵-3≤12log x ≤-32.∴32≤log 2x ≤3. ∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2.22.(1)解 (Ⅰ)若4,4m n ==,则232484()log 1x x f x x ++=+,由2248401x x x ++>+,得到2210x x ++>,得到1x ≠-,故定义域为{}1x x ≠-.令224841x x t x ++=+,则2(4)840t x x t --+-= 当4t =时,0x =符合.当4t ≠时,上述方程要有解,则2644(4)0,t t ⎧∆=--≥⎨≠⎩,得到04t ≤<或48t <≤,又1x ≠-,所以0t ≠,所以08t <≤,则值域为3(,log 8]-∞.(Ⅱ)由于函数()f x 的定义域为R ,则22801mx x nx ++>+恒成立,则06440m mn >⎧⎨-<⎩,即016m mn >⎧⎨>⎩,令2281mx x nt x ++=+,由于()f x 的值域为[0,2],则[1,9]t ∈,而 2()80t m x x t n --+-=,则由644()()0,t m t n ∆=---≥解得[1,9]t ∈ ,故1t =和9t =是方程644()()0t m t n ---=即2()160t m n t mn -++-=的两个根,则10169m n mn +=⎧⎨-=⎩,得到55m n =⎧⎨=⎩,符合题意.所以5,5m n ==.。
指数问题测试题及答案一、选择题1. 下列哪个表达式表示2的3次方?A. 2^3B. 2×3C. 3^2D. 2+3答案:A2. 计算2的5次方的结果是多少?A. 32B. 25C. 16D. 10答案:A3. 如果3的x次方等于27,那么x的值是多少?A. 3B. 4C. 6D. 9答案:A二、填空题4. 指数法则中,任何数的0次方等于______。
答案:15. 如果a^m = a^n,那么m等于______。
答案:n6. 指数运算中,底数相同,指数相加的法则是a^(m+n) = ______。
答案:a^m × a^n三、简答题7. 解释什么是指数函数,并给出一个例子。
答案:指数函数是一种数学函数,其中一个变量的幂等于另一个变量。
例如,y = 2^x,这是一个指数函数,其中2是底数,x是指数。
8. 描述如何计算5的4次方,并给出结果。
答案:5的4次方是将5自身乘以4次,即5 × 5 × 5 × 5 = 625。
四、计算题9. 计算下列表达式的值:(a) 4^3(b) (2^2)^3答案:(a) 4^3 = 4 × 4 × 4 = 64(b) (2^2)^3 = 4^3 = 4 × 4 × 4 = 6410. 如果8^x = 2^12,求x的值。
答案:由于8 = 2^3,我们可以将8^x写成(2^3)^x = 2^(3x)。
因此,2^(3x) = 2^12,所以3x = 12,解得x = 4。
五、证明题11. 证明对于任何正数a和b,a^b × b^a总是大于或等于a^a × b^b。
答案:由于a和b都是正数,我们可以应用AM-GM不等式(算术平均值-几何平均值不等式),即对于任意的正数x和y,有(x + y)/2 ≥ √(xy)。
将x设为a^b,y设为b^a,我们得到:(a^b + b^a)/2 ≥ √(a^b × b^a)两边同时平方,得到:(a^b + b^a)^2/4 ≥ a^b × b^a展开左边,得到:a^(2b) + 2a^b × b^a + b^(2a) ≥ 4a^b × b^a简化得到:a^(2b) - 2a^b × b^a+ b^(2a) ≥ 0这可以重写为:(a^b - b^a)^2 ≥ 0由于平方总是非负的,所以上述不等式成立。
指数函数习题新泰一中闫辉一、选择题1.以下函数中指数函数的个数是( ).①②③④A.0 个B.1 个C.2 个D.3 个2.假设,,那么函数的图象必然在〔〕A.第一、二、三象限 B .第一、三、四象限C.第二、三、四象限D.第一、二、四象限3.,当其值域为时,的取值范围是〔〕A. B .C.D.4.假设,,以下不等式成立的是〔〕A. B . C . D .5.且,,那么是〔〕A.奇函数 B .偶函数C.非奇非偶函数 D .奇偶性与有关6.函数〔〕的图象是〔〕7.函数与的图象大体是().8.当时,函数与的图象只可能是〔〕9.在以以下图象中,二次函数与指数函数的图象只可能是〔〕10.计算机本钱不断降低 , 假设每隔 3 年计算机价格降低 , 现在价格为 8100 元的计算机 , 那么 9 年后的价格为 ( ).A.2400 元 B.900 元C.300 元D.3600 元二、填空题1.比较大小:〔1〕;〔2〕______ 1 ;〔3〕______2.假设,那么的取值范围为 _________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________.6.的定义域为, 那么的定义域为 __________.7.当时,, 那么的取值范围是 __________. 8.时,的图象过定点 ________ .9.假设, 那么函数的图象必然不在第 _____象限 .10.函数的图象过点, 又其反函数的图象过点 (2,0),那么函数的剖析式为 ____________.11.函数的最小值为 ____________.12.函数的单调递加区间是 ____________.13.关于的方程有两个实数解 , 那么实数的取值范围是 _________.14.假设函数〔且〕在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列以下各数:,,,,,,,2.设有两个函数与,要使〔 1〕;〔 2〕,求、的取值范围.3., 试比较的大小.4.假设函数是奇函数,求的值.5.,求函数的值域.6.解方程:〔1〕;〔2〕.7.函数〔且〕〔1〕求的最小值;〔2〕假设,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的本钱共下降了19%,假设每年下降的百分率相等,求每年下降的百分率10.某工厂今年 1 月、 2 月、 3 月生产某产品分别为 1 万件、 1.2 件、 1.3 万件,为了估测今后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以采纳二次函数或函数〔其中、、为常数〕,四月份该产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好?请说明原由.11.设,求出的值.12.解方程.参照答案:一、1.B 2.A 3.D4.B5.A 6.B 7.D8.A 9.A 10.A二、 1.〔 1〕〔2〕〔3〕2.3.4.〔0,1〕5.6.7 .8.恒过点〔 1,3〕 9 .四 10 .11.12.13.14.或三、 1.解:除以外,将其余的数分为三类:〔1〕负数:〔2〕小于 1 的正数:,,〔3〕大于 1 的正数:,,在〔 2〕中,;在〔 3〕中,;综上可知说明:对几个数比较大小的详尽方法是:〔1〕与 0 比,与 1 比,将所有数分成三类:,,,〔2〕在各样中两两比2.解:〔 1〕要使由条件是,解之得〔2〕要使,必定分两种情况:当时,只要,解之得;当时,只要,解之得或说明:假设是与比较大小,平时要分和两种情况考虑.3.4.解:为奇函数,,即,那么,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:〔 1〕两边同除可得,令,有,解之得或,即或,于是或〔2〕原方程化为,即,由求根公式可获取,故7.解:〔 1〕,当即时,有最小值为〔2〕,解得当时,;当时,.8.当时,>,当时,>.9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为 10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令,那么原方程化为解得或,即或〔舍去〕,习题二1.求不等式 a2 x 7a4x1( a 0 ,且 a1) 中 x 的取值范围.x2.. 指数函数y b的图象以以下图,求二次函数 y ax2bx 的极点的横坐标的取值范围.ay1o x3. 函数f ( x)a x〔a0 ,且 a 1〕关于任意的实数x ,y都有〔〕A. f (xy) f ( x) f ( y)B. f (xy ) f ( x) f ( y)C. f ( x y) f (x) f ( y)D. f (x y) f (x) f ( y)4. 假设(1)x(1) x,那么 x 满足〔〕23A. x 0B. x0 C. x≤ 0D. x ≥ 0 5. (1) (a a 1) 23,求 a3 a 3;(2) a2 x 2 1,求 a3x aa x a 3xx;(3) x31 a ,求 a22ax 3x 6的值.6.函数 f (x) a x〔a0 ,a1〕在2,2 上函数值总小于 2,求实数 a 的取值范围.7 函数 f ( x)a x a x〔 a0, a1〕,且 f (1)3,那么 f(0) f (1) f (2)的值是.8. 假设关于x的方程22x2x ga a10 有实根,试求 a 的取值范围.9.当 a0 且 a 1 时,函数 f ( x)a x2 3 必过定点.10.设 y1a3x1, y2a2x其中 a0 ,且 a 1 .确定x为何值时,有:〔1〕 y1y2;〔2〕 y1y2.11 当a0时,函数 y ax b 和 y b ax的图象是〔〕y y11x xO OABy y11O xOxCD12.函数 y f x的图象与 y2x的图象关于 x 轴对称,那么f x 的表达式为.13.假设函数 Fx12gf x x0是偶函数,且f x 不恒等于 0,那么f x 为〔〕2x1A.奇函数B.偶函数C.可能是奇函数,也可能是偶函数D.非奇非偶函数14. 函数 f x 2x1,g x 1 x2,构造函数 F x 定义以下:当 f x ≥ g x 时, F x f x ;当f xg x 时, F xg x ,那么 F x 〔〕A.有最大值 1,无最小值 B.有最小值 0,无最大值C.有最小值 1,无最大值D.无最小值,也无最大值15. 当 x 0 时,函数 f xa 2x1,那么实数 a 的取值范围是1 的值总大于 .16. 函数f x 满足对任意实数x 1x 2 有 f x 1f x 2 且 f x 1 x 2f x 1 gf x 2 假设写出一个满足这些条件的函数那么这个函数可以写为.习题三一、选择题〔每题4 分,共计 40 分〕1.以下各式中成立的一项为哪一项〔〕A . ( n) 713n 7 m 7 B .3933 C .4 x 3 y 3( x y) 4 D .12( 3)4 33m211 11 52.化简 (a 3 b 2 )( 3a 2 b 3) (1a 6b 6 ) 的结果3A . 9aB .aC . 6aD . 9a 2 3.设指数函数f ( x) a x ( a 0, a1) ,那么以低等式中不正确 的是...A . f ( x +y )= f(x ) · f ( y )B . f 〔 xy 〕 f ( x)f ( y)C . f ( nx)[ f ( x)] n (nQ )D . [ f (xy)] n[ f ( x)] n ·[f ( y)] n5)01 4.函数 y(x( x 2)2〔〕〔〕( n N )〔〕A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}5.假设指数函数ya x 在 [ -1,1] 上的最大值与最小值的差是 1,那么底数 a 等于〔〕A .5 1 B .5 1 C .5 1 D .1522226.方程 a |x| x 2 (0a 1) 的解的个数为〔〕A. 0 个个C. 2个D. 0个或 1个7.函数 f (x) 2|x|的值域是〔〕A . (0,1]B . (0,1)C . (0, )D . R2 x1, x 08.函数 f (x)1,满足 f ( x)1的 x 的取值范围〔〕x 2 , x 0A . ( 1,1)B . ( 1, )C . { x | x 0或 x 2}D. { x | x 1或 x1}9. f (x)e x e x〔〕,那么以下正确的选项是2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数 D.偶函数,在 R 上为减函数10.函数 y( 1) x 2 x 2得单调递加区间是〔 〕2C .[ 1,2]D . [ 1,1]A .( , 1]B .[2,)22二、填空题〔每题 4 分,共计 28 分〕11. a2 ,b 2 ,那么实数 a 、b 的大小关系为 .12:不用计算器计算272 100.12927233 037=___________.481x 2813.不等式3 2 x 的解集是 __________________________ .314. n2, 1,0,1,2,3 ,假设 ( 1)n( 1)n,那么 n ___________ .251 x 2ax2 x a 215.不等式1恒成立,那么 a 的取值范围是.2216.定义运算:aa (a b)2 x的值域为 _________________b(a,那么函数 f x 2xb b)17. 以以下图的是某池塘中的浮萍延长的面积( m 2 ) 与时间 t ( 月 ) 的关系 : y a t , 有以下表达 :① 这个指数函数的底数是 2;y/m 2 ② 第 5 个月时 , 浮萍的面积就会高出30m 2 ;8③ 浮萍从 4m 2 延长到 12m 2需要经过1.5 个月;④ 浮萍每个月增加的面积都相等;⑤ 假设浮萍延长到2m 2、 3m 2 、 6m 24所经过的时间分别为 t 1 、 t 2 、 t 3 ,那么t 1t 2t 3 .21其中正确的选项是.0 1 2 3t/ 月三、解答题:〔 10+10+12=32 分〕18. aa 17 ,求以下各式的值:3 31122〔 1〕a1 a1 ; 〔 2〕 a 2a 2 ; 〔 3〕 a 2 a 2 ( a 1) .a2a 219. 函数y a 2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.20. 〔 1〕 f ( x)2m 是奇函数,求常数 m 的值;3x1〔 2〕画出函数 y | 3x 1 | 的图象,并利用图象答复:k 为何值时,方程 | 3x 1| k 无解?有一解?有两解?参照答案一、选择题〔 4*10=40 分〕题号 1 2 3 4 5 6 7 8 9 10答案BADDCCADAC二、填空题〔 4*7=28 分〕11. a b ;; 13. { x | x 4或 x2} ; 14.-1或 215.(-2, 2); 16.(0,1]17.①②⑤三、解答题:〔 10+10+12=32 分〕111118.解 : 〔1〕原式 (a2)3(a 2 )3( a2a 2 )(a a 11)a a18 。
指数函数习题及答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】指数函数习题一、选择题1.定义运算ab=,则函数f(x)=12x的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( ) A.(-1,+∞)B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若AB,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞)B.[,1)∪(1,4]C.[,1)∪(1,2]D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由ab=得f(x)=12x=答案:A2.解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增. 若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x ). 若x <0,则3x <2x <1,∴f (3x )>f (2x ). ∴f (3x )≥f (2x ). 答案:A3.解析:由于函数y =|2x -1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4.解析:由题意得:A =(1,2),a x -2x >1且a >2,由AB 知a x -2x >1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5.解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数, 注意a 8-6>(3-a )×7-3,所以,解得2<a <3. 答案:C6.解析:f (x )<x 2-a x <x 2-<a x ,考查函数y =a x 与y =x 2-的图象, 当a >1时,必有a -1≥,即1<a ≤2, 当0<a <1时,必有a ≥,即≤a <1, 综上,≤a <1或1<a ≤2. 答案:C7.解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =,得a =.当0<a <1时,y =a x 在[1,2]上单调递减,故a -a 2=,得a =.故a =或. 答案:或8.解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9.解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110.解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1.∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +)2+,∴当-4≤x ≤1时,t max =,此时x =-,t min =0,此时x =-4或x =1. ∴0≤t ≤.∴0≤≤.∴函数y =2341()2x x --+[,1].由t =-x 2-3x +4=-(x +)2+(-4≤x ≤1)可知,当-4≤x ≤-时,t 是增函数, 当-≤x ≤1时,t 是减函数. 根据复合函数的单调性知:y =1()2[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11.解:令a x =t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,],故当t =,即x =-1时, y max =(+1)2-2=14. ∴a =或-(舍去). 综上可得a =3或.12.解:法一:(1)由已知得3a +2=183a =2a =log 32. (2)此时g (x )=λ·2x -4x , 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x ,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x =ln2[-2·(2x )2+λ·2x ]≤0成立. 设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.。
指数函数练习题一、选择题1. 下列函数中,哪一个函数是指数函数?A. y = 2xB. y = x^2C. y = 3^xD. y = log2xA. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若指数函数f(x) = 2^x的图象向右平移1个单位,得到新函数g(x),则g(x)的表达式为?A. g(x) = 2^(x+1)B. g(x) = 2^(x1)C. g(x) = 2^x + 1D. g(x) = 2^x 1二、填空题1. 指数函数的一般形式为______,其中底数a满足______。
2. 若f(x) = 3^x,则f(0) =______,f(1) =______。
3. 已知指数函数f(x) = a^x(a > 0且a ≠ 1)的图象过点(2,9),则a =______。
三、解答题1. 判断下列函数是否为指数函数,并说明理由:(1)y = 5^(2x)(2)y = (1/2)^x(3)y = 4^x + 12. 已知指数函数f(x) = 2^x,求f(x)在x = 1处的切线方程。
3. 讨论指数函数f(x) = a^x(a > 0且a ≠ 1)的单调性,并说明理由。
4. 已知指数函数f(x) = 3^x,求证:对于任意实数x1、x2(x1 < x2),都有f(x1) < f(x2)。
5. 设指数函数f(x) = a^x(a > 0且a ≠ 1),若f(1) = 3,f(2) = 9,求f(x)的表达式。
四、综合题1. 已知指数函数f(x) = 2^x和g(x) = 4^x,求证:f(x)和g(x)的图象关于y轴对称。
2. 设指数函数f(x) = a^x(a > 0且a ≠ 1),若f(x)的图象经过点(1, 2),求f(x)在x = 0处的切线方程。
3. 已知指数函数f(x) = 2^x,求证:对于任意实数x,都有f(x) > 0。
指数函数、对数函数基础练习题一、选择题1、设5.1348.029.0121,8,4-⎪⎭⎫⎝⎛===y y y ,则 ( )DA. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2、如果lgx =lga +3lgb -5lgc ,那么( )CA .x =a +3b -cB .cabx 53=C .53cab x = D .x =a +b 3-c 33、设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则( )CA .M ∪N=RB .M=NC .M ⊇ND .M ⊆N4、下列函数图象正确的是( )BA B C D 5、下列关系式中,成立的是 ( )AA .10log 514log 3103>⎪⎭⎫⎝⎛>B . 4log 5110log 3031>⎪⎭⎫⎝⎛>C . 03135110log 4log ⎪⎭⎫⎝⎛>>D .0331514log 10log ⎪⎭⎫⎝⎛>>6、函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( )DA (]a ,0B ()+∞,0C (]1,0D [)+∞,1 二、填空题7、函数)2(log 221x y -=的定义域是 ,值域是 .(][)2,112 --, [)+∞,0;8、若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x的图象有两个公共点,则a 的取值范围是 .210<<a 9、函数),且10(≠>=a a a y x在[]21,上的最大值比最小值大2a,则a 的值是__ 2321或10、函数 在区间 上的最大值比最小值大2,则实数 =___.或 ;11、设函数)1(log 2-=x y ,若[]2,1∈y ,则∈x []3,5 12、已知||lg )(x x f =,设)2(),3(f b f a =-=,则a 与b 的大小关系是 a b >三、解答题13、比较下列比较下列各组数中两个值的大小:(1)6log 7,7log 6; (2)3log π,2log 0.8; (3)0.91.1, 1.1log 0.9,0.7log 0.8; (4)5log 3,6log 3,7log 3. 解:(1)∵66log 7log 61>=, 77log 6log 71<=,∴6log 7>7log 6; (2)∵33log log 10π>=, 22log 0.8log 10<=,∴3log π>2log 0.8. (3)∵.91.11.11>=,1.1 1.1log 0.9log 10<=,0.70.70.70log 1log 0.8log 0.71=<<=,∴0.91.1>0.7log 0.8> 1.1log 0.9.(4)∵3330log 5log 6log 7<<<, ∴5log 3>6log 3>7log 3.14、设x ,y ,z ∈R +,且3x =4y =6z . 求证:yx z 2111=-; 证明:设3x=4y=6z=t . ∵x >0,y >0,z >0,∴t >1,lg t >0,6lg lg ,4lg lg ,3lg lg log 3tz t y t t x ==== ∴yttttxz21lg 24lg lg 2lg lg 3lg lg 6lg 11===-=-.15、若8log 3p =,3log 5q =,求lg 5.解:∵8log 3p =, ∴)5lg 1(32lg 33lg 33log 2-==⇒=p p p , 又∵ q ==3lg 5lg 5log 3,∴ )5lg 1(33lg 5lg -==pq q , ∴ pq pq 35lg )31(=+ ∴ pqpq3135lg +=.16、设a>0,xx e a a e x f +=)(是R 上的偶函数. (1) 求a 的值;(2) 证明:)(x f 在()+∞,0上是增函数.(1)解 依题意,对一切R x ∈有)()(x f x f -=,即.x x x x ae aee a a e +=+1所以011=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-x x e e a a 对一切R x ∈成立,由此得到01=-a a , 即,12=a ,又因为a>0,所以a=1(2)证明 设,021x x <<()()()()212112212121211111121x x x x x x x x x x x x x x e e e e e e e e e e e x f x f +++--=⎪⎭⎫ ⎝⎛--=-+-=- 由0,0.,1221>->x x x x 得0,11221>->+x x x x e e e()()().,0)(,021上是增函数在即+∞<-∴x f x f x f17、已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=. (1)求函数f (x )的定义域;(2)求函数f (x )的值域. 解:(1)函数的定义域为(1,p ).(2)当p >3时,f (x )的值域为(-∞,2log 2(p +1)-2);当1<p ≤3时,f (x )的值域为(-∞,1+log2(p +1)).18、求函数y =log 22x ·log 24x(x ∈[1,8])的最大值和最小值. 【解】 令t =log 2x ,x ∈[1,8],则0≤log 2x ≤log 28即t ∈[0,3]∴y =(log 2x -1)(log 2x -2)=(t -1)(t -2)=t 2-3t +2=(t -23)2-41t ∈[0,3]∴当t =23,即log 2x =23,x =223=22时,y 有最小值=-41.当t =0或t =3,即log 2x =0或log 2x =3,也即x =1或x =8时,y 有最大值=2.教。
指数与指数函数练习题(1)1. 化简的结果是()A.−2B.−2C.−2D.−22. 下列各函数中,值域为(0, +∞)的是()A.y=2−x2 B.y=√1−2x C.y=x2+x+1 D.y=31x+13. 函数y=1sin x−x的一段大致图象是()A. B.C. D.4. 函数f(x)=(12)x的值域是()A.(0, +∞)B.(−∞, +∞)C.(0, 1)D.(1, +∞)5. 若函数f(x)=a|2x−4|(a>0, a≠1),满足f(1)=19,则f(x)的单调递减区间是()A.(−∞, 2] B.[2, +∞) C.[−2, +∞) D.(−∞, −2]6. 如图是二次函数f(x)=x 2−bx +a 的部分图象,则函数g(x)=ln x +f′(x)的零点所在的区间是( )A.(14,12) B.(1, 2)C.(12,1)D.(2, 3)7. 奇函数f(x)在(−∞, 0)上单调递减,且f(2)=0,则不等式f(x)>0的解集是( ) A.(−∞, −2)∪(0, 2) B.(−∞, 0)∪(2, +∞) C.(−2, 0)∪(0, 2)D.(−2, 0)∪(2, +∞)8. 若2x =7,2y =6,则4x−y 等于( )A. B. C. D.9. 已知a >0,则2√a⋅√a 23=( )A.a 65B.a 56C.a −56D.a 5310. 下列运算结果中,一定正确的是( ) A.a 3⋅a 4=a 7 B.(−a 2)3=a 6C.√a 88=aD.√(−π)55=−π11. 若函数(a >0,且a ≠1)是指数函数,则下列说法正确的是( )A.a =8B.f(0)=−3C.D.a =4E.f(2)=1612. 若a =log 20.5,b =20.5,c =0.52,则a ,b ,c 三个数的大小关系是( )A.a <b <cB.b <c <aC.a <c <bD.c <a <b13. 若函数f(x)=(a −1)x 是指数函数,则实数a 的取值范围是________.14. 函数f(x)=a x +3的图象一定过定点P ,则P 点的坐标是________.15. =________;=________.16. 函数y =−a x−2+1(a >0且a ≠1)的图象必经过点________;17. 已知函数f(x)=a⋅2x −12x +1的图象经过点(1,13).(1)求a 的值;(2)求函数f(x)的定义域和值域.18. 求值:(1);(2)已知2a =5b =m ,且,求实数m 的值.19. (1)计算:0.064−13−(−57)0+[(−2)3]−43+16−0.75; 19.(2)化简:•(a 23−1−12−12⋅b13√a⋅b 5620. 请根据给出的函数图象指出函数的极值点和最大(小)值点.21. 已知(a>0,且a≠1).(1)讨论函数f(x)和g(x)的单调性.(2)如果f(x)<g(x),那么x的取值范围是多少?22. 已知函数y=a()|x|+b的图象过原点,且无限接近直线y=2但又不与该直线相交.(1)求该函数的解析式,并画出图象;(2)判断该函数的奇偶性和单调性.参考答案与试题解析 指数与指数函数练习题(1)一、 选择题 (本题共计 9 小题 ,每题 5 分 ,共计45分 ) 1.【答案】 B【考点】有理数指数幂的运算性质及化简求值 【解析】 此题暂无解析 【解答】 此题暂无解答 2.【答案】 A【考点】指数函数的定义、解析式、定义域和值域 【解析】 此题暂无解析 【解答】 解:对于A ,y =2−x 2=(√22)x的值域为(0, +∞);对于B ,因为1−2x ≥0, 所以2x ≤1,x ≤0,y =√1−2x 的定义域是(−∞,0], 所以0<2x ≤1, 所以0≤1−2x <1,所以y =√1−2x 的值域是[0,1).对于C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞); 对于D , 因为1x+1∈(−∞,0)∪(0,+∞),所以y =31x+1 的值域是(0,1)∪(1,+∞). 故选A . 3.【答案】 A【考点】函数的图象与图象的变换 【解析】根据函数的奇偶性和特殊值即可判断. 【解答】f(−x)=−1sin x−x=−f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=−1π<0,4.【答案】A【考点】指数函数的定义、解析式、定义域和值域【解析】根据指数函数的图象与性质,即可得出f(x)的值域是什么.【解答】解:∵函数f(x)=(12)x是指数函数,定义域是R,∴f(x)的值域是(0, +∞).故选:A.5.【答案】B【考点】指数函数的单调性与特殊点【解析】由f(1)=19,解出a,求出g(x)=|2x−4|的单调增区间,利用复合函数的单调性,求出f(x)的单调递减区间.【解答】由f(1)=19,得a2=19,于是a=13,因此f(x)=(13)|2x−4|.因为g(x)=|2x−4|在[2, +∞)上单调递增,所以f(x)的单调递减区间是[2, +∞).故选:B.6.【答案】C【考点】二次函数的性质函数零点的判定定理【解析】由二次函数图象的对称轴确定b的范围,据g(x)的表达式计算g(12)和g(1)的值的符号,从而确定零点所在的区间.【解答】解:∵f(x)=x2−bx+a,结合函数的图象可知,二次函数的对称轴,12<x =b2<1 ∴ 1<b <2∴ f ’(x)=2x −b∴ g(x)=ln x +f′(x)=ln x +2x −b 在(0, +∞)上单调递增且连续 ∵ g(12)=ln 12+1−b <0, g(1)=ln 1+2−b =2−b >0,∴ 函数g(x)=ln x +f′(x)的零点所在的区间是(12,1).故选C . 7.【答案】 A【考点】其他不等式的解法 函数单调性的性质【解析】根据奇函数的性质求出f(−2)=0,由条件画出函数图象示意图,结合图象即可求出不等式的解集. 【解答】解:∵ f(x)为奇函数,且f(2)=0,在(−∞, 0)是减函数, ∴ f(−2)=−f(2)=0,f(x)在(0, +∞)内是减函数, ∴ 在(−∞,0)上,f(x)>0的解为(−∞,2), 在(0,+∞)上,f(x)>0的解为(0,2).∴ 不等式f(x)>0的解集为(−∞, −2)∪(0, 2). 故选A . 8. 【答案】 D【考点】有理数指数幂的运算性质及化简求值 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 B【考点】有理数指数幂的运算性质及化简求值 【解析】利用有理数指数幂的运算性质求解. 【解答】2√a⋅√a23=a 2a 12⋅a 23=a 2a 76=a 56,二、 多选题 (本题共计 3 小题 ,每题 5 分 ,共计15分 ) 10.【答案】 A,D【考点】有理数指数幂的运算性质及化简求值 【解析】根据有理数指数幂的运算法则计算. 【解答】A 选项a 3⋅a 4=a 3+4=a 7,正确;B 选项(−a 2)3=−a 6,错误;C 选项当a ≥0时,√a 88=a ,当a <0时,√a 88=−a ,错误; D 选项√(−π)55=−π,正确. 11.【答案】 A,C【考点】指数函数的定义、解析式、定义域和值域 【解析】 此题暂无解析 【解答】 此题暂无解答 12.【答案】a =log 20.5<0,b =20.5>1,0<c =0.52<1,则a <c <b ,则选:C 【考点】指数函数的图象与性质 【解析】根据对数函数以及指数函数的性质求出a ,b ,c 的大小即可. 【解答】a =log 20.5<0,b =20.5>1,0<c =0.52<1, 则a <c <b , 则选:C .三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 ) 13.【答案】(1, 2)∪(2, +∞) 【考点】指数函数的定义、解析式、定义域和值域 【解析】根据指数函数的定义,底数大于0且不等于1,求出实数a 的取值范围. 【解答】解:∵ 函数f(x)=(a −1)x 是指数函数, ∴ {a −1>0a −1≠1,解得a>1且a≠2;∴实数a的取值范围是(1, 2)∪(2, +∞).故答案为:(1, 2)∪(2, +∞).14.【答案】(0, 4)【考点】指数函数的单调性与特殊点【解析】此题暂无解析【解答】解:f(x)=a x+3的图象可以看作把f(x)=a x的图象向上平移3个单位而得到,且f(x)=a x一定过点(0, 1),则f(x)=a x+3应过点(0, 4).故答案为:(0, 4).15.【答案】6,【考点】有理数指数幂的运算性质及化简求值【解析】此题暂无解析【解答】此题暂无解答16.【答案】(2, 0)【考点】指数函数的图象与性质【解析】结合指数函数过(0,1)点,结合题目条件,即可得出答案.【解答】令x−2=0,解得x=2当x=2时,y=−a2−2+1=0∴函数y=−a x−2+1(a>0且a≠1)图象过的定点为(2,0)答案:(20)四、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】【考点】函数的定义域及其求法函数的值域及其求法【解析】此题暂无解析【解答】 此题暂无解答 18. 【答案】原式===99;因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以,所以.【考点】有理数指数幂的运算性质及化简求值 【解析】(1)直接利用有理数指数幂及根式的运算性质求解即可;(2)先利用指数式和对数式的互化,表示出a ,b 的值,然后利用对数的运算性质求解即可. 【解答】原式===99;因为2a =5b =m ,所以a =log 2m ,b =log 5m ,所以,所以.19. 【答案】原式=0.4−1−1+2−4+2−3=52−1+116+18=2716. 原式=a−13b 12⋅a −12⋅b 13a 16⋅b 56=a−13−12−16⋅b12+13−56=a −1=1a .【考点】有理数指数幂的运算性质及化简求值【解析】(1)利用指数幂的运算性质即可得出.(2)利用指数幂的运算性质即可得出.【解答】原式=0.4−1−1+2−4+2−3=52−1+116+18=2716.原式=a −13b 12⋅a −12⋅b 13a 16⋅b 56=a −13−12−16⋅b 12+13−56=a −1=1a . 20.【答案】A .函数的极大值点为x 2,极小值点为x 1,x 3,最大值点为a ,x 2,最小值点为x 3,B .函数的极大值点为x 1,x 3极小值点为x 2,最大值点为x 1,最小值点为b ,C .函数的极大值点为x 1,极小值点为x 2,最大值点为b ,最小值点为a【考点】函数的图象与图象的变换【解析】根据函数极值,最值与图象的关系进行判断即可.【解答】A .函数的极大值点为x 2,极小值点为x 1,x 3,最大值点为a ,x 2,最小值点为x 3,B .函数的极大值点为x 1,x 3极小值点为x 2,最大值点为x 1,最小值点为b ,C .函数的极大值点为x 1,极小值点为x 2,最大值点为b ,最小值点为a 21.【答案】 当0<a <1时,>1,则f(x)=a x 在R 上单调递减,g(x)=.当a >2时,0<,则f(x)=a x 在R 上单调递增,g(x)=.因为f(x)<g(x),即a x <,即a x <a −x ,当0<a <7时,不等式即为x >−x ;当a >1时,不等式即为x <−x ,综上,当0<a <3时,+∞),当a >1时,不等式的解集为(−∞.【考点】函数单调性的性质与判断利用导数研究函数的单调性【解析】此题暂无解析【解答】此题暂无解答22.【答案】根据题意,函数y=a()|x|+b的图象过原点,则有7=a+b,则a=−b,又由f(x)的图象无限接近直线y=−2但又不与该直线相交,则b=2,又由a+b=6,则a=−2,则f(x)=−2×()|x|+2,其图象如图:根据题意,f(x)=−7×()|x|+3,其定义域为R,有f(−x)=−2×()|x|+2=f(x),则f(x)是偶函数,又由f(x)=,f(x)在(0, +∞)上为增函数,0)上为减函数.【考点】函数的图象与图象的变换函数奇偶性的性质与判断分段函数的应用【解析】此题暂无解析【解答】此题暂无解答。
A 基础练习2.1.2指数函数(1时) 1.下列函数是指数函数的是( ) A .y =-2xB .y =2x +1 C .y =2-x D .y =1x【解析】 y =2-x=⎝⎛⎭⎫12x,符合指数函数的定义,故选C.【答案】 C 2.函数y =(a -2)x 在R 上为增函数,则a 的取值范围是( )A .a>0且a ≠1B .a>3C .a<3D .2<a<3【解析】 由指数函数单调性知,底数大于1时为增函数,∴a -2>1,∴a>3,故选B. 【答案】 B 3.已知a =5-12,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的大小关系为________.【解析】 ∵a =5-12∈(0,1), 故a m >a n ⇒m<n. 【答案】 m<n4.已知指数函数f(x)的图象过点(2,4),求f(-3)的值.【解析】 设指数函数f(x)=a x (a>0且a ≠1),由题意得a 2=4,∴a =2,∴f(x)=2x , ∴f(-3)=2-3=18.B 综合应用一、选择题(每小题5分,共20分) 1.函数y =a x -2+1(a>0,a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,0)D .(2,2)【解析】 由于函数y =a x 经过定点(0,1),所以函数y =a x-2经过定点(2,1),于是函数y =a x -2+1经过定点(2,2).【答案】 D2.f(x)=⎝⎛⎭⎫12|x|,x ∈R ,那么f(x)是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数 【解析】因为函数f(x)= |x|= 图象如右图. 由图象可知答案显然是D. 【答案】 D3.下列四个函数中,值域为(0,+∞)的函数是( )A .y =21x B .y =2x -1C .y =2x +1D .y =⎝⎛⎭⎫122-x【解析】 在A 中,∵1x ≠0,∴21x≠1,即y =21x的值域为(0,1)∪(1,+∞).在B 中,2x -1≥0,∴y =2x -1的值域为[0,+∞). 在C中,∵2x >0,∴2x +1>1.∴y =2x +1的值域为(1,+∞). 在D 中,∵2-x ∈R ,∴y =⎝⎛⎭⎫122-x>0. ∴y =⎝⎛⎭⎫122-x 的值域为(0,+∞).故选D.【答案】 D 4.方程4x -1=116的解为( ) A .2 B .-2 C .-1 D .1 【解析】 ∵4x -1=116=4-2,∴x -1=-2,∴x =-1.故选C. 【答案】 C二、填空题(每小题5分,共10分) 5.函数y =a x -1的定义域是(-∞,0],则实数a 的取值范围为________.【解析】 由a x -1≥0,得a x ≥1=a 0,因为x ∈(-∞,0],由指数函数的性质知0<a<1.【答案】 (0,1)6.函数f(x)=⎝⎛⎭⎫13x-1,x ∈[-1,2]的值域为________.【解析】 函数y =⎝⎛⎭⎫13x 在区间[-1,2]上是减函数,所以⎝⎛⎭⎫132≤⎝⎛⎭⎫13x ≤⎝⎛⎭⎫13-1,即19≤⎝⎛⎭⎫13x ≤3, 于是19-1≤f(x)≤3-1,即-89≤f(x)≤2.【答案】 [-89,2]三、解答题(每小题10分,共20分) 7.已知函数f(x)=a x -2(x ≥0)的图象经过点⎝⎛⎭⎫4,19,其中a>0且a ≠1. (1)求a 的值;(2)求函数y =f(x)(x ≥0)的值域. 【解析】 (1)函数图象过点⎝⎛⎭⎫4,19, 所以a 4-2=19=⎝⎛⎭⎫132,∴a =13,(2)f(x)=⎝⎛⎭⎫13x -2(x ≥0), 由x ≥0,得x -2≥-2, ∴0<⎝⎛⎭⎫13x -2≤⎝⎛⎭⎫13-2=9,∴函数y =f(x)(x ≥0)的值域为(0,9]. 8.画出下列函数的图象,并说明它们是由函数f(x)=2x 的图象经过怎样的变换得到的.(1)y =2x -1;(2)y =2x +1;(3)y =2|x|; (4)y =-2x .【解析】 如图所示.y=2x-1的图象是由y=2x 的图象向右平移1个单位得到;y=2x+1的图象是由y=2x 的图象向上平移1个单位得到;y=2|x|的图象是由y=2x 的y 轴右边的图象和其关于y 轴对称的图象组成的;y=-2x 的图象与y=2x 的图象关于x 轴对称.9.(10分)函数f(x)=a x (a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a的值.【解析】 (1)若a>1,则f(x)在[1,2]上递增,∴a 2-a =a 2,即a =32或a =0(舍去).(2)若0<a<1,则f(x)在[1,2]上递减, ∴a -a 2=a 2,即a =12或a =0(舍去),综上所述,所求a 的值为12或32.2.1.2指数函数(2时) A 基础练习1.已知集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x +1<4,x ∈Z ,则M ∩N 等于( ) A .{-1,1} B .{-1} C .{0} D .{-1,0} 【解析】 因为N ={x|2-1<2x +1<22,x ∈Z },又函数y =2x 在R 上为增函数, ∴N ={x|-1<x +1<2,x ∈Z } ={x|-2<x<1,x ∈Z }={-1,0}. ∴M ∩N ={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<⎝⎛⎭⎫14b <⎝⎛⎭⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a【解析】 由已知及函数y =⎝⎛⎭⎫14x是R 上的减函数, 得0<a<b<1.由y =a x (0<a<1)的单调性及a<b ,得a b <a a .由0<a<b<1知0<a b <1.∵⎝⎛⎭⎫a b a <⎝⎛⎭⎫a b 0=1.∴a a <b a.故选C. 也可采用特殊值法,如取a =13,b =12.【答案】 C3.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =________.【解析】 解法1:∵f(x)的定义域为R ,又∵f(x)为奇函数,∴f(0)=0,即a -120+1=0.∴a =12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a -12-x +1=12x +1-a ,解得a =12.【答案】 124.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.【解析】 对u =-x 2+ax -1=-⎝⎛⎭⎫x -a 22+a 24-1,增区间为⎝⎛⎦⎤-∞,a 2,∴y 的增区间为⎝⎛⎦⎤-∞,a2,由题意知3≤a2,∴a ≥6. ∴a 的取值范围是a ≥6. B 综合应用一、选择题(每小题5分,共20分) 1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2 【解析】 y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5,∵y =2x 在定义域内为增函数, 且1.8>1.5>1.44, ∴y 1>y 3>y 2. 【答案】 D2.若⎝⎛⎭⎫142a +1<⎝⎛⎭⎫143-2a,则实数a 的取值范围是( )A.⎝⎛⎭⎫12,+∞B.()1,+∞ C .(-∞,1) D.⎝⎛⎭⎫-∞,12 【解析】 函数y =⎝⎛⎭⎫14x在R 上为减函数,∴2a +1>3-2a ,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)【解析】 因为f(x)的图象关于直线x =1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x -1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)【解析】 根据指数函数的概念及性质求解.由已知得,实数a 应满足⎩⎪⎨⎪⎧1-2a>01-2a<1,解得⎩⎪⎨⎪⎧a<12a>0,即a ∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分) 5.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.【解析】 依题意,对一切x ∈R ,都有f(x)=f(-x),∴e x a +a e x =1ae x +ae x , ∴(a -1a )(e x -1e x )=0.∴a -1a =0,即a 2=1.又a>0,∴a =1. 【答案】 16.下列空格中填“>、<或=”. (1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】 (1)考察指数函数y =1.5x . 因为1.5>1,所以y =1.5x 在R 上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2. (2)考察指数函数y =0.5x .因为0<0.5<1,所以y =0.5x 在R 上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】 <,<三、解答题(每小题10分,共20分) 7.根据下列条件确定实数x 的取值范围:a<⎝⎛⎭⎫1a 1-2x(a>0且a ≠1).【解析】 原不等式可以化为a 2x -1>a 12,因为函数y =a x (a>0且a ≠1)当底数a 大于1时在R 上是增函数;当底数a 大于0小于1时在R 上是减函数,所以当a>1时,由2x -1>12,解得x>34;当0<a<1时,由2x -1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a ≠1,讨论f(x)=a -x 2+3x +2的单调性.【解析】 设u =-x 2+3x +2=-⎝⎛⎭⎫x -322+174, 则当x ≥32时,u 是减函数,当x ≤32时,u 是增函数.又当a>1时,y =a u 是增函数,当0<a<1时,y =a u 是减函数,所以当a>1时,原函数f(x)=a -x 2+3x +2在⎣⎡⎭⎫32,+∞上是减函数,在⎝⎛⎦⎤-∞,32上是增函数.当0<a<1时,原函数f(x)=a -x 2+3x +2在⎣⎡⎭⎫32,+∞上是增函数,在⎝⎛⎦⎤-∞,32上是减函数.9.(10分)已知函数f(x)=3x +3-x . (1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】 (1)f(-x)=3-x +3-(-x)=3-x+3x =f(x)且x ∈R ,∴函数f(x)=3x +3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x 1<x 2,则f(x 1)-f(x 2)=3x 1+3-x 1-3x 2-2-x 2=3x 1-3x 2+13x 1-13x 2=3x 1-3x 2+3x 2-3x 13x 13x 2=(3x 2-3x 1)·1-3x 1+x 23x 1+x 2.∵0≤x 1<x 2,∴3x 2>3x 1,3x 1+x 2>1, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴函数在[0,+∞)上单调递增, 即函数的单调增区间为[0,+∞).。
指数函数基础练习题一、选择题1. 若 f(x) = 2^x,则 f(3) 的值为:A. 2B. 4C. 8D. 162. 若 g(x) = 5^x,则 g(0) 的值为:A. 0B. 1C. 5D. 103. 若 h(x) = (1/3)^x,则 h(2) 的值为:A. 1/9B. 1/6C. 1/3D. 9/14. 若 k(x) = 10^x,则 k(-1) 的值为:A. 0.1B. 1C. 10D. 1005. 若 p(x) = e^x,则 p(1) 的值为:A. 1B. eC. e^2D. e^-1二、填空题1. 若 f(x) = 2^x,解方程 f(x) = 64,x 的值为 _______。
2. 若 g(x) = 5^x,解不等式 g(x) < 1,x 的取值范围为 _______。
3. 若 h(x) = (1/4)^x,解不等式 h(x) > 16,x 的取值范围为 _______。
4. 若 k(x) = 10^x,解方程 k(x) = 1000,x 的值为 _______。
5. 若 p(x) = e^x,解方程 p(x) = 5,x 的值约为 _______(保留两位小数)。
三、计算题1. 计算 f(2) + f(0) + f(-1) 的值。
2. 计算 g(3) - g(2) 的值。
3. 计算 h(1/2) + h(1/3) 的值。
4. 计算 k(-2) - k(0) 的值。
5. 若指数函数 f(x) = a * b^x,已知 f(0) = 3,f(2) = 27,求 a 和 b 的值。
四、解答题1. 将函数 f(x) = 4 * 2^x 的图像完整地画在坐标系中,并标出至少三个点的坐标。
2. 设函数 f(x) = 3 * 5^x,求函数 f(x) 的反函数,并说明反函数的定义域和值域。
3. 证明:指数函数 f(x) = b^x (其中 b > 0 且b ≠ 1)的图像经过点(0, 1)。
第讲指数函数时间:年月日刘老师学生签名:一、兴趣导入二、学前测试1.在区间上为增函数的是( B )A . B. C. D.2.函数是单调函数时,的取值范围( A )A. B . C . D.3.如果偶函数在具有最大值,那么该函数在有( A )A.最大值 B .最小值 C .没有最大值 D.没有最小值4.函数,是( B )A.偶函数 B .奇函数 C.不具有奇偶函数 D .与有关5.函数在和都是增函数,若,且那么( D )A. B. C. D .无法确定6.函数在区间是增函数,则的递增区间是( B )A. B. C. D.12三、方法培养☆专题1:指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R 。
例1指出下列函数那些是指数函数:(1)4x y =(2)x y 4=(3)4xy -= (4))4(-=xy (5)π=y x(6)x y 24=(7)xxy =(8))1,21(()12≠>=-a a y a x解析:利用指数函数的定义解决这类问题。
解:(1),(5),(8)为指数函数变式练习11函数2(33)x y a a a =-+⋅是指数函数,则有()A.a=1或a=2 B.a=1 C.a=2 D.a>0且1≠a 答案:C 2. 计算:105432)(0625.0833416--+++π; 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0。
062 5)41+1-21=(25)2×21+(23)313⨯+(0。
5)414⨯+21=25+23+0。
5+21 =5;☆专题2:指数函数的图像与性质一般地,指数函数y=a x在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >1 0<a <1 图象3性质 ①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R 上是增函数,当x <0时,0<y <1;当x >0时,y >1 ④在R 上是减函数,当x <0时,y>1;当x >0时,0<y <1在同一坐标系中作出y=2x和y=(21)x 两个函数的图象,如图2—1-2-3。
课时提升作业十六指数函数的图象及性质一、选择题(每小题5分,共25分)1.下列各函数中,是指数函数的是( )A.y=(-3)xB.y=-3xC.y=3x-1D.y=【解析】选D.由指数函数的定义知选项A中底数-3<0,不符合要求;选项B中系数为-1,不符合要求;选项C中,指数位置为x-1,不符合要求;只有选项D符合要求.【补偿训练】下列函数中指数函数的个数为( )①y=;②y=;③y=2x+3;④y=a x(a>0且a≠1,x≥0);⑤y=1x;⑥y=-1;⑦y=.A.1B.2C.4D.5【解析】选A.利用指数函数的定义可判断只有y=是指数函数.2.(2016·菏泽高一检测)若函数y=a x-(b+1)(a>0,a≠1)的图象在第一、三、四象限,则有( )A.a>1且b<0B.a>1且b>0C.0<a<1且b>0D.0<a<1且b<0【解析】选 B.由函数的图象在第一、三、四象限可知,此函数应为递增的,故a>1,又过定点(0,-b),此点应在y轴的负半轴上,则-b<0,即b>0.【补偿训练】指数函数y=a x与y=b x的图象如图所示,则( )A.a<0,b<0B.a<0,b>0C.0<a<1,b>1D.0<a<1,0<b<1 【解析】选C.指数函数在底数大于1时单调递增,底数大于0小于1时单调递减,因而选C.3.(2016·大庆高一检测)函数y=2+a x-2(a>0且a≠1)的图象恒过定点,它的坐标为( )A.(2,2)B.(2,3)C.(-2,2)D.(3,2)【解析】选B.令x=2,得y=2+a0=3,所以函数y=2+a x-2的图象恒过定点(2,3).【补偿训练】已知对不同的a值,函数f(x)=2+a x-1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是( )A.(0,3)B.(0,2)C.(1,3)D.(1,2)【解析】选C.令x-1=0,得x=1,此时f(x)=2+1=3,所以图象恒过定点(1,3).4.指数函数y=f(x)的图象过点(1,3),则f(f(1))= ( )A.3B. 9C. 27D.【解析】选C.设f(x)=a x(a>0,a≠1),则a1=3,即a=3,所以f(x)=3x.所以f(1)=3,f(f(1))=f(3)=27.【延伸探究】若本题条件改为“指数函数y=f(x)的图象过点(-1,3)”,则f(f(1))的值又如何求解?【解析】设f(x)=a x(a>0,a≠1),则a-1=3,所以a=,所以f(x)=,则f(1)=,则f=,故f(f(1))=f=.5.(2016·广州高一检测)下列函数中,值域为(0,+∞)的是( )A. y=B.y=C.y=D.y=【解析】选B.易知C值域为[0,+≦),A值域为{y|y>0且y≠1},D值域为[0,1).二、填空题(每小题5分,共15分)6.(2016·大连高一检测)指数函数y=(2-a)x在定义域内是减函数,则a的取值范围是________.【解析】由题意可知,0<2-a<1,即1<a<2.答案:1<a<27.当x>0时,函数y=(a-8)x的值域恒大于1,则实数a的取值范围是________.【解析】当0<a-8<1即8<a<9时,函数y=(a-8)x在(0,+≦)上单调递减,则当x>0时,(a-8)x<(a-8)0=1不符合题意,当a-8>1即a>9时,函数y=(a-8)x在(0,+≦)上单调递增,则当x>0时,(a-8)x>(a-8)0=1符合题意,所以实数a的取值范围是a>9.答案:a>98.(2016·天津高一检测)函数y=a x在[0,1]上的最大值和最小值的和为3,则a的值等于.【解题指南】对a分类讨论,分为a>1和0<a<1两种情况分别表述出最大值和最小值计算.【解析】当a>1时,y min=a0=1;y max=a1=a,由1+a=3,所以a=2.当0<a<1时,y max=a0=1,y min=a1=a.由1+a=3,所以a=2矛盾,综上所述,有a=2.答案:2三、解答题(每小题10分,共20分)9.求下列函数的定义域和值域:(1)y=.(2)y=5-x-1.【解析】(1)要使函数y=有意义,只需1-x≥0,即x≤1,所以函数的定义域为{x|x≤1}.设y=3u,u=,则u≥0,由函数y=3u在[0,+≦)上是增函数,得y≥30=1,所以函数的值域为{y|y≥1}.(2)函数y=5-x-1对任意的x∈R都成立,所以函数的定义域为R.因为5-x>0,所以5-x-1>-1,所以函数的值域为(-1,+≦).10.已知函数f(x)=a x-1(x≥0)的图象经过点,其中a>0且a≠1.(1)求a的值.(2)求函数y=f(x)+1(x≥0)的值域.【解析】(1)因为函数f(x)=a x-1(x≥0)的图象经过点,所以a2-1=a=.(2)由(1)得f(x)=(x≥0),函数为减函数,当x=0时,函数取最大值2,故f(x)∈(0,2],所以函数y=f(x)+1=+1(x≥0)∈(1,3],故函数y=f(x)+1(x≥0)的值域为(1,3].一、选择题(每小题5分,共10分)1.已知函数f=2x+a的图象不过第二象限,那么常数a的取值范围是( )A.(-1,+∞)B.(-∞,-1]C.[-1,+∞)D.(-∞,1)【解析】选B.函数y=2x图象向下平移1个单位后图象过原点(0,0),不过第二象限.再向下平移,仍然不过第二象限,即把y=2x图象向下至少平移1个单位,所得函数y=2x+a图象就满足条件,由向下平移图象的变换法则,知a≤-1.2.(2016·福州高一检测)设函数f(x)=若f(x)是奇函数,则g(2)的值是( )A.-B.-4C.D.4【解析】选A.设x>0,则-x<0,由于f(x)是奇函数,则f(x)=-f(-x)=-2-x=-.故g(x)=-,则g(2)=-=-.【延伸探究】把本题中的条件“若f(x)是奇函数”改为“若f(x)是偶函数”,其他条件不变,试求g(2)的值.【解析】设x>0,则-x<0,由于f(x)是偶函数,则f(x)=f(-x)=2-x=.故g(x)=,则g(2)==.二、填空题(每小题5分,共10分)3.(2015·山东高考)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=________ .【解析】当a>1时,函数f(x)单调递增,则无解;当0<a<1时,函数f(x)单调递减,则解得故a+b=-.答案:-4.已知函数f(x)=ab x+c(b>0,b≠1),x∈[0,+∞),若其值域为[-2,3),则该函数的一个解析式可以为f(x)=________.【解析】因为f(x)=ab x+c(b>0,b≠1),x∈[0,+≦),其值域为[-2,3), 所以当x=0时,f(0)=a+c=-2,当x→+≦时,b x→0,f(x)→c=3,解得a=-5,c=3,0<b<1,所以f(x)=-5+3(满足0<b<1的b均可).答案:-5+3(满足0<b<1的b均可)三、解答题(每小题10分,共20分)5.(2016·济南高一检测)设f(x)=3x,g(x)=.(1)在同一平面直角坐标系中作出f(x),g(x)的图象.(2)计算f(1)与g(-1),f(π)与g(-π),f(m)与g(-m)的值,从中你能得到什么结论?【解析】(1)函数f(x),g(x)的图象如图所示:(2)f(1)=31=3,g(-1)==3;f(π)=3π,g(-π)==3π;f(m)=3m,g(-m)==3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y轴对称. 【拓展延伸】指数函数图象的记忆口诀多个图形像束花,(0,1)这点把它扎.撇增捺减无例外,底互倒时y轴夹.x=1为判底线,交点纵标看小大.重视数形结合法,横轴上面图象察.6.已知函数f(x)=a x+b的图象过点(1,3)和(0,2).(1)试确定函数f(x)的解析式.(2)若关于x的方程|f(x)-2|=m有两个不同解,求实数m的取值范围. 【解题指南】(1)把点的坐标代入函数解析式,列出方程组求出a,b 的值即可.(2)根据题意,方程有两个不同的解,即h(x)=|f(x)-2|与g(x)=m的图象有两个交点,求出m的取值范围即可.【解析】(1)因为函数f(x)=a x+b的图象过点(1,3)和(0,2),所以解得a=2,b=1,所以f(x)=2x+1.(2)因为关于x的方程|f(x)-2|=m有两个不同的解,即|2x-1|=m有两个不同解,设h(x)=|2x-1|,g(x)=m,画出图象如图所示,由图象知,当0<m<1时,h(x)与g(x)的图象有两个交点, 所以对应方程有两个不同的解,所以所求实数m的取值范围是{m|0<m<1}.。
指数函数一、选择题(共29题,题分合计145分)1.指数函数y =f (x )的反函数的图象过点(2,-1),则此指数函数为A.xy )21(= B.x y 2= C.x y 3= D.xy 10=2.下列f (x )=(1+a x )2xa-⋅是A.奇函数B.偶函数C.非奇非偶函数D.既奇且偶函数3.函数y =2xxee --的反函数是A.奇函数且在(0,+∞)上是减函数B.偶函数且在(0,+∞)上是减函数C.奇函数且在(0,+∞)上是增函数D.偶函数且在(0,+∞)上是增函数4.若函数y =3+2x -1的反函数的图像经过P 点,则P 点坐标是A.(2,5)B.(1,3)C.(5,2)D.(3,1)5.已知0<a <1,b <-1,则函数y=a x+b 的图像必定不经过A.第一象限B.第二象限C.第三象限D.第四象限6.如图,当a ≠0时,函数y ax b =+和y b ax=的图象只可能是7.图中的曲线是指数函数的图象,已知a 的值分别取2,34,103,51,则相应于曲线C 1,C 2,C 3,C 4的a 依次为103,51,2,34.A 51,103,34,2.B34,2,51,103.C2,34,103,51.D8.已知函数xa y )1(22-=是定义域上的减函数,则字母a 的取值范围是A.0<a <1B.21<<a C.-1<a <1 D.-1<a <09.已知三个数M =0.32-0.32,P =0.32-3.2,Q =3.2-0.32,则它们的大小顺序是A.M <P <QB.Q <M <PC.P <Q <MD.P <M <Q10.如果a ,b ,c 都是小于1的正数,且x ∈(-∞,0),a x <b x <c x,则A.a <b <cB.c <a <bC.b <c <aD.c <b <a11.已知f (x )是偶函数,且x >0时,xx f 10)(=时,则x <0时,f (x )等于 A.10x B.10-x C.-10x D.-10-x12.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 A.251+B.251+- C. 251±D.215±13.下列函数中,值域是(0,+∞)的是A.y =132+-x x B.y =2x +3 x ∈(0,+∞)C.y =x 2+x +1D.y =x3114.当x ∈[0,+∞]时,下列函数中不是增函数的是A.y =x +a 2x -3B.y =2xC.y =2x 2+x +1D.y =|3- x |15.已知p>q >1,0<a <1,则下列各式中正确的是A.a 0>a qB.p a >q aC.a -p <a -qD.p -a >q -a16.若-1<x <0,那么下列各不等式成立的是A.2-x <2x <0.2xB.2x <0.2x <2-xC.0.2x <2-x <2xD.2x <2-x <0.2x17.函数y=(a 2-1)-x与它的反函数在(0,+∞)上都是增函数,则a 的取值范围是A.1<|a |<2B. |a |<2且|a |≠1C.|a |>2D. |a |>118.函数f (x )=(a 2-1)x在R 上是减函数,则a 的取值范围是A.1>a B.2<a C.a<2 D.1<2<a19.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为A.na(1-b%)B.a(1-nb%)C.a [(1-(b%))]nD.a(1-b%)n20.如果01<<a 且x x 121>>,则下列不等式中正确的是A.x x aa12< B.a a x x 12< C.a a x x12> D.ax x a12>21.下列四个命题中,真命题的是A.y =2x +1和22κ=y 都是指数函数 B.指数函数y =a x的最小值是0C.对任意的R ∈x ,都有3x >2xD.函数y =a x 与xa y )1(=的图象关于y 轴对称 22.要得到函数xy 212-=的图象,只需将指数函数xy ⎪⎭⎫ ⎝⎛=41的图象 A.向左平行移动1个单位 B.向右平行移动1个单位C.向左平行移动21个单位 D.向右平行移动21个单位23.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个),经过3个小时,这种细菌由1个可繁殖成A.511个B.512个C.1023个D.1024个24.函数y =2x与y =x 2的图象的交点个数是A.0个B.1个C.2个D.3个25.设指数函数f (x ) = a x(a >0,a ≠1),则下列等式中不正确的是A. f (x +y )=f (x )·f (y))()(.B y f x f y x f =-)()()]([)(.C Q ∈=n x f nx f n)()]([·)]([)(.D *N ∈=n y f x f xy f nn n26.若函数xa y )1(2-=在),(+∞-∞上为减函数,则a 满足A.1<a B.21<<aC.21<<aD.21<<a27.已知镭经过100年剩留原头质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x , y 之间的函数关系是A.1009576.0x y = B.xy 1009576.0= C.xy )1009576.0(= D.1000424.01x y -=28.四个函数221221xy y y x y x x==⎪⎭⎫ ⎝⎛==,,,A.定义域都是RB.图象都不在x 轴下方C.在(0,+∞)上都是增函数D.图象都过点(0,1)29.函数f(x )的图像与函数g (x )=(21)x的图像关于直线y =x 对称,则f (2x -x 2)的单调减区间为A.(0,1)B.[1,+∞)C.(-∞,1]D.[1,2)二、填空题(共18题,题分合计71分)1.函数y =3232x-的单调递减区间是 .2.将三个数317.02.032,3.1,5.1⎪⎭⎫ ⎝⎛-按从小到大的顺序排列_________________________.3.当a >0且a ≠1时,函数f (x )=ax -2-3必过定点 .4.函数y =3x-21的定义域是 ,值域是 .5.函数y =axx 22-(0<a <1)的定义域是 ,单调递增区间是 .6.若a 23<a2,则a 的取值范围是 .7.函数y =(31)1822+--x x(-31≤≤x )的值域是 _____ .8.直线x=a (a >0)与函数y =(31)x ,y =(21)x ,y =2x ,y =10x的图像依次交于A 、B 、C 、D 四点,则这四点从上到下的排列次序是 .9.若f (52x -1)=x -2,则f (125)= .10.已知f (x )=2x ,g (x )是一次函数,记F (x )=f [g (x )],并且点(2,41)既在函数F (x )的图像上,又在F -1(x )的图像上,则F (x )的解析式为 .11.函数2131xy -⎪⎭⎫ ⎝⎛=的定义域是 , 值域是 .12.若函数m y x +=+15的图象不经过第二象限,则m 的取值范围是_________.13.已知-1<a <0,则三个数331,,3a a a由小到大的顺序是_______________.14.已知函数f (x )的定义域是(1,2),则函数f (2x)的定义域是 .15.若点⎪⎭⎫ ⎝⎛41,2既在函数bax y +=2的图象上, 又在它的反函数的图象上,则a =b = .16.已知函数f (x )的图象关于y 轴对称,函数g (x )的图象关于原点对称,且f (x )+ g (x )=10x则f (x )= g(x )= ______ .17.函数y =m 2x+2m x-1(m >0且m ≠1),在区间[-1,1]上的最大值是14,则m 的值是 . 18.满足()22xxxx>的正数x 的取值范围是 .三、解答题(共40题,题分合计440分)1.求函数y x =-311的定义域及值域.2.求函数y x x =≠-3212()的反函数.3.0<a <1,解关于x 的不等式a1322+-x x >a522-+x x .4.若函数y =4x-3·2x+3的值域为[1,7],试确定x 的取值范围.5.讨论函数y x x =⎛⎝ ⎫⎭⎪-+12223的增减性.6.解方程:(1)4225.04=-+x x(2)273.291=---xx(3)24322+-=x x7.说明指数函数xy 3=的图象经过怎样的变换,可以得到函数2311+⎪⎭⎫ ⎝⎛=+x y 的图象,并画出它们的图象.8.(1)判断函数2)(xxaa x f -+=和2)(xx aa x g --=(其中1,0≠>a a )的奇偶性;(2)证明指数函数x a y =可以表示为一个偶函数与一个奇函数的和.9.一种产品的成本原来是1万元,近几年来,由于大搞技术创新,降低了能耗,使得该产品的成本每年平均比上一年降低11%,试画出成本随时间变化的函数图象,并从图上求出多少年后,该产品成本降为原来的一半以下.10.设函数|2|2--=x y(1)画出函数的图象;(2)根据图象指出函数的单调区间.11.已知n ∈N *,f (n )= n ·0.9 n,比较f (n )与f (n +1)的大小,并求f (n )的最大值.12.已知气压与高度的指数函数成比例,越往高处气压越低,以至接近于0。
3.1指数函数基础填空题一.填空题(共30小题)1.(2016•静安区二模)方程:4x﹣6•2x﹣16=0的解为.2.(2016•上海一模)方程4x=2x+1﹣1的解是.3.(2016•长宁区一模)方程9x+3x﹣2=0的解是.4.(2016•佛山模拟)设函数f(x)=,若f(x0)>1,则x0的取值范围是.5.(2016春•南通校级月考)若a2x=﹣1,则等于.6.(2015•聊城校级模拟)函数y=2x在[0,1]上的最大值与最小值之和为.7.(2015•浙江模拟)已知a,b∈R,若4a=23﹣2b,则a+b=.8.(2015•张家港市校级模拟)0.04﹣(﹣0.3)0+16=.9.(2015•信阳模拟)函数的定义域是.10.(2015•余姚市三模)若指数函数f(x)的图象过点(﹣2,4),则f(3)=;不等式f(x)+f(﹣x)<的解集为.11.(2015春•富阳市校级期末)=.12.(2015秋•益阳期末)已知2x+2﹣x=3,则4x+4﹣x=.13.(2015秋•松江区期末)方程42x﹣1=64的解为x=.14.(2015秋•硚口区期末)化简=.15.(2015秋•哈尔滨校级期末)若f(x)=(a2﹣3a+3)a x是指数函数则a=.16.(2015春•扬中市校级期末)函数f(x)=21﹣|x|的值域为.17.(2015秋•大庆校级期末)函数y=2+a x﹣2(a>0且a≠1)的图象恒过定点,它的坐标为.18.(2015秋•衡阳校级期末)函数y=2x﹣4+3恒过定点.19.(2015秋•菏泽期末)指数函数y=()x的图象如图所示,则二次函数y=ax2+bx的顶点的横坐标的取值范围是.20.(2015秋•亭湖区校级期末)已知函数f(x)=a x(a>0,a≠1),当m>n时,f(m)<f (n),则实数a的取值范围是.21.(2015秋•长春校级期末)函数在区间[﹣2,1]上的值域为.22.(2015春•淮安校级期末)函数y=a x﹣2+1(a>0,a≠1)不论a为何值时,其图象恒过的顶点为.23.(2015秋•松江区期末)若函数y=3x+a的图象经过第一、二、三象限,则a的取值范围是.24.(2015春•南安市校级期末)函数y=a x+1(a>0且a≠1)的图象必经过点(填点的坐标)25.(2015春•淮安校级期末)设,,,则a、b、c的大小关系是.26.(2015春•龙岩期末)函数f(x)=a x﹣2﹣3(a>0,a≠1)的图象恒过定点.27.(2015秋•临海市校级期中)﹣+的值为.28.(2015秋•舟山校级期中)27+16﹣()﹣2﹣()=.29.(2015秋•南昌校级期中)函数的单调递增区间是.30.(2015秋•广州校级期中)把0.80.7、0.80.9、1.20.8这三个数从小到大排列起来.3.1指数函数基础填空题参考答案与试题解析一.填空题(共30小题)1.(2016•静安区二模)方程:4x﹣6•2x﹣16=0的解为3.【分析】由4x﹣6•2x﹣16=(2x)2﹣6•2x﹣16=0,解得2x=﹣2(舍)或2x=8,从而得到x=3.【解答】解:∵4x﹣6•2x﹣16=(2x)2﹣6•2x﹣16=0,∴2x=﹣2(舍)或2x=8,解得x=3.故答案为:3.【点评】本题考查指数方程的求解,解题时要认真审题,注意有理数指数幂运算性质的合理运用.2.(2016•上海一模)方程4x=2x+1﹣1的解是x=0.【分析】由已知得(2x)2﹣2×2x+1=0,由此能求出原方程的解.【解答】解:∵4x=2x+1﹣1,∴(2x)2﹣2×2x+1=0,解得2x=1,∴x=0.故答案为:x=0.【点评】本题考查方程的解的求法,是基础题,解题时要认真审题,注意有理数指数幂的性质的合理运用.3.(2016•长宁区一模)方程9x+3x﹣2=0的解是0.【分析】将原方程中的9x看成是3x的平方,对方程进行因式分解,求出x,化简成同底的指数方程,利用函数的单调性解指数方程即可.【解答】解:∵9x+3x﹣2=0即(3x)2+3x﹣2=0∴(3x+2)(3x﹣1)=0⇒3x=﹣2(舍),3x=1.解得x=0故答案为0【点评】本题考查了指数函数的定义、解析式、定义域和值域、一元二次不等式与一元二次方程求解,属于基础题.4.(2016•佛山模拟)设函数f(x)=,若f(x0)>1,则x0的取值范围是(﹣∞,﹣1)∪(1,+∞).【分析】将变量x0按分段函数的范围分成两种情形,在此条件下分别进行求解,最后将满足的条件进行合并.【解答】解:当x0≤0时,,则x0<﹣1,当x0>0时,则x0>1,故x0的取值范围是(﹣∞,﹣1)∪(1,+∞),故答案为:(﹣∞,﹣1)∪(1,+∞).【点评】本题考查了分段函数已知函数值求自变量的范围问题,以及指数不等式与对数不等式的解法,属于常规题.5.(2016春•南通校级月考)若a2x=﹣1,则等于2﹣1.【分析】先化简,然后代入a2x=﹣1,即可求出结果.【解答】解:=因为a2x=﹣1,所以故答案为:【点评】本题考查有理数指数幂的运算性质,立方和公式,是基础题.6.(2015•聊城校级模拟)函数y=2x在[0,1]上的最大值与最小值之和为3.【分析】根据指数函数的单调性,可得函数y=2x在[0,1]上是增函数,进而可得其最大最小值,相加可得答案.【解答】解:函数y=2x在[0,1]上是增函数,所以最大值为2,最小值为1,它们之和为3,故答案为3.【点评】本题考查指数函数的单调性的应用,难度不大,但应牢记函数单调性等基本的性质.7.(2015•浙江模拟)已知a,b∈R,若4a=23﹣2b,则a+b=.【分析】利用指数的运算法则和性质即可得出.【解答】解:∵4a=23﹣2b,∴22a=23﹣2b,∴2a=3﹣2b,解得a+b=.故答案为:.【点评】本题考查了指数的运算法则和性质,属于基础题.8.(2015•张家港市校级模拟)0.04﹣(﹣0.3)0+16=12.【分析】直接利用有理指数幂的运算法则求解即可.【解答】解:0.04﹣(﹣0.3)0+16==﹣1+8=12.故答案为:12.【点评】本题考查有理指数幂的运算,基本知识的考查.9.(2015•信阳模拟)函数的定义域是[0,+∞).【分析】由题意可得1﹣≥0,即≤,由此解得x的范围,即得函数的定义域.【解答】解:由函数可得,1﹣≥0,即≤,解得x≥0,故函数的定义域是[0,+∞),故答案为[0,+∞).【点评】本题主要考查指数函数的单调性和特殊点,求函数的定义域,属于基础题.10.(2015•余姚市三模)若指数函数f(x)的图象过点(﹣2,4),则f(3)=;不等式f(x)+f(﹣x)<的解集为(﹣1,1).【分析】设出指数函数解析式,将点的坐标代入,求参数a,然后将不等式具体化,换元得到一元二次不等式解之,然后还原求解集.【解答】解:设指数函数解析式为y=a x,因为指数函数f(x)的图象过点(﹣2,4),所以4=a﹣2,解得a=,所以指数函数解析式为y=,所以f(3)=;不等式f(x)+f(﹣x)<为,设2x=t,不等式化为,所以2t2﹣5t+2<0解得<t<2,即<2x<2,所以﹣1<x<1,所以不等式的解集为(﹣1,1).故答案为:;(﹣1,1).【点评】本题考查了待定系数法求指数函数解析式以及解指数不等式;采用了换元的方法.11.(2015春•富阳市校级期末)=.【分析】根据指数幂的运算性质化简计算即可.【解答】解:=﹣1﹣+100=﹣1﹣+100=+100=.故答案为:.【点评】本题考查了函数的饿指数幂的运算性质,属于基础题.12.(2015秋•益阳期末)已知2x+2﹣x=3,则4x+4﹣x=7.【分析】直接把要求解的式子配方后代入已知条件得答案.【解答】解:∵2x+2﹣x=3,∴4x+4﹣x=(2x+2﹣x)2﹣2=32﹣2=7.故答案为:7.【点评】本题考查了有理指数幂的化简求值,关键是完全平方式的应用,是基础题.13.(2015秋•松江区期末)方程42x﹣1=64的解为x=2.【分析】由指数函数的性质得42x﹣1=43,由此能求出x.【解答】解:∵42x﹣1=64,∴42x﹣1=43,∴2x﹣1=3,解得x=2.故答案为:2.【点评】本题考查指数方程的求法,是基础题,解题时要认真审题,注意指数函数的性质、运算法则的合理运用.14.(2015秋•硚口区期末)化简=4a.【分析】化简=2×6÷3××.【解答】解:=2×6÷3××=4a,故答案为:4a.【点评】本题考查了有理指数幂的化简与运算.15.(2015秋•哈尔滨校级期末)若f(x)=(a2﹣3a+3)a x是指数函数则a=2.【分析】根据指数函数的定义可得求解即可【解答】解:根据指数函数的定义可得∴a=2故答案为:2【点评】本题主要考查了指数函数的定义:形如y=a x(a>0,a≠1)的函数叫指数函数,属于考查基本概念.16.(2015春•扬中市校级期末)函数f(x)=21﹣|x|的值域为(0,2].【分析】本题是一个指数型函数求值域,先判断出指数的取值范围,再由指数函数的单调性求出值域.【解答】解:∵1﹣|x|≤1,f(x)=2x是一个增函数故0<f(x)≤2故答案为:(0,2].【点评】本题考查指数函数的定义域、值域、解析式,解题的关键是熟练掌握函数的单调性,及函数的指数的范围的求法,利用单调性求值域是函数单调性的重要运用.17.(2015秋•大庆校级期末)函数y=2+a x﹣2(a>0且a≠1)的图象恒过定点,它的坐标为(2,3).【分析】令x﹣2=0,则x=2,即为定点横坐标,代入函数式可得定点纵坐标.【解答】解:令x=2,得y=a0+2=3,所以函数y=2+a x﹣2的图象恒过定点坐标是(2,3).故答案为:(2,3)【点评】本题考查指数函数的图象过定点问题,属基础题,本题也可利用指数函数的图象变换求出.18.(2015秋•衡阳校级期末)函数y=2x﹣4+3恒过定点(4,4).【分析】由函数y=a x恒过(0,1)点,令函数y=2x﹣4+3指数为0,可得定点坐标.【解答】解:由函数y=2x恒过(0,1)点,可得当x﹣4=0,即x=4时,y=4恒成立,故函数恒过(4,4)点,故答案为:(4,4).【点评】本题考查的知识点是对数函数的特殊点,其中熟练掌握对数函数的图象和性质是解答的关键.19.(2015秋•菏泽期末)指数函数y=()x的图象如图所示,则二次函数y=ax2+bx的顶点的横坐标的取值范围是(﹣,0).【分析】根据指数函数的图象求出的取值范围,利用二次函数的性质进行求解即可.【解答】解:由图象知函数为减函数,则0<<1,二次函数y=ax2+bx的顶点的横坐标为x=﹣,∵0<<1,∴0<<,﹣<﹣<0,即横坐标的取值范围是(﹣,0),故答案为:(﹣,0).【点评】本题主要考查指数函数和二次函数的性质,根据条件求出的取值范围是解决本题的关键.20.(2015秋•亭湖区校级期末)已知函数f(x)=a x(a>0,a≠1),当m>n时,f(m)<f (n),则实数a的取值范围是(0,1).【分析】先利用函数单调性的定义和已知条件判断此指数函数的单调性,再由指数函数的图象性质列不等式即可解得a的取值范围.【解答】解:∵当m>n时,f(m)<f(n),∴函数f(x)为定义域上的减函数,∴0<a<1,故答案为:(0,1).【点评】本题考查了函数单调性定义及其抽象表达,指数函数的图象和性质,熟记指数函数的单调性是解决本题的关键.21.(2015秋•长春校级期末)函数在区间[﹣2,1]上的值域为[﹣,3].【分析】根据指数函数的单调性,求出该函数在区间[﹣2,1]上的最值即可.【解答】解:函数在定义域R上是单调减函数,且在区间[﹣2,1]上的最大值为﹣1=3,最小值是﹣1=﹣;所以该函数在区间[﹣2,1]上的值域为[﹣,3].故答案为:[﹣,3].【点评】本题考查了根据函数的单调性求指数函数在闭区间上最值和值域的应用问题,是基础题目.22.(2015春•淮安校级期末)函数y=a x﹣2+1(a>0,a≠1)不论a为何值时,其图象恒过的顶点为(2,2).【分析】令x﹣2=0,则x=2,即为定点横坐标,代入函数式可得定点纵坐标.【解答】解:令x=2,得y=a0+1=2,所以函数y=1+a x﹣2的图象恒过定点坐标是(2,2).故答案为:(2,2).【点评】本题考查指数函数的图象过定点问题,属基础题,本题也可利用指数函数的图象变换求出.23.(2015秋•松江区期末)若函数y=3x+a的图象经过第一、二、三象限,则a的取值范围是﹣1<a<0.【分析】由指数函数y=3x的图象过点(0,1),且在第一第二象限,可得把函数y=3x的图象向下平移,但平移单位小于1时,能使函数y=3x+a的图象经过第一、二、三象限,由此求得a的范围.【解答】解:如图,函数y=3x+a的图象是把函数函数y=3x的图象向上(a>0)或向下(a<0)平移|a|个单位得到的,若函数y=3x+a的图象经过第一、二、三象限,则需把函数y=3x的图象向下平移,但平移单位小于1,∴﹣1<a<0.故答案为:﹣1<a<0.【点评】本题考查指数函数的图象变换,考查了函数图象的平移,是基础题.24.(2015春•南安市校级期末)函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)(填点的坐标)【分析】由指数年函数的性质知,可令指数为0,求得函数图象经过的定点的坐标【解答】解:令x=0,得y=a0+1=2∴函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)故答案为:(0,2).【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点25.(2015春•淮安校级期末)设,,,则a、b、c的大小关系是a>c>b.【分析】先比较b和c,可考查函数y=的单调性进行判定,然后判定a和c,可考查函数y=在(0,+∞)上的单调性进行判定,从而得到结论.【解答】解:,,考察函数y=,该函数在R上单调递减,∴b<c,,考察函数y=,该函数在(0,+∞)上单调递增,∴a>c∴a>c>b故答案为:a>c>b【点评】本题主要考查了利用指数函数与幂函数的单调性比较大小,属于基础题.26.(2015春•龙岩期末)函数f(x)=a x﹣2﹣3(a>0,a≠1)的图象恒过定点(2,﹣2).【分析】由函数y=a x的图象恒过定点(0,1),可得f(x)=a x﹣2﹣3 的图象恒过定点(2,﹣2),从而得到答案.【解答】解:由于函数y=a x的图象恒过定点(0,1),故函数f(x)=a x﹣2﹣3(a>0,a≠1)的图象恒过定点(2,﹣2),故答案为(2,﹣2).【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.27.(2015秋•临海市校级期中)﹣+的值为.【分析】化带分数为假分数,然后利用有理指数幂的化简运算求值.【解答】解:﹣+==﹣+=.故答案为.【点评】本题考查了根式与分数指数幂的化简与运算,是基础的运算题.28.(2015秋•舟山校级期中)27+16﹣()﹣2﹣()=.【分析】直接利用指数的运算法则求解即可.【解答】解:27+16﹣()﹣2﹣()=32+4﹣4﹣=9﹣=故答案为:.【点评】本题考查指数的运算法则的应用,基础知识的考查.29.(2015秋•南昌校级期中)函数的单调递增区间是(﹣∞,1).【分析】根据复合函数单调性的判断规则,要求原函数的单调增区间,只需求指数部分的单调减区间.【解答】解:设u(x)=x2﹣2x+6=(x﹣1)2+5,对称轴为x=1,则u(x)在(﹣∞,1)单调递减,在(1,+∞)单调递增,而f(x)=,底∈(0,1),所以,u(x)的单调性与f(x)的单调性相反,即f(x)在(﹣∞,1)单调递增,在(1,+∞)单调递减,故填:(﹣∞,1)(区间右端点可闭).【点评】本题主要考查了复合函数单调性,涉及二次函数和指数函数的单调性,属于基础题.30.(2015秋•广州校级期中)把0.80.7、0.80.9、1.20.8这三个数从小到大排列起来0.80.9<0.80.7<1.20.8.【分析】结合指数函数的单调性,可判断三个指数式的大小,进而得到答案.【解答】解:∵函数y=0.8x为减函数,∴1=0.80>0.80.7>0.80.9、∵函数y=1.2x为增函数,∴1.20.8>1.20=1,故0.80.9<0.80.7<1.20.8,故答案为:0.80.9<0.80.7<1.20.8【点评】本题考查的知识点是指数函数的图象和性质,数的大小比较,难度不大,属于基础题.第11页(共11页)。