【精品试卷】教科版高中物理必修二第二学期第一次质量检测复习专用试卷
- 格式:docx
- 大小:200.48 KB
- 文档页数:4
综合测评(A)(时间:90分钟满分:100分)一、选择题(本题共8个小题,每小题5分,共40分。
其中1~5小题只有一个正确选项,6~8小题有多个正确选项)1.做曲线运动的物体,在运动过程中一定会发生变化的物理量是()A.速率B.速度C.加速度D.合外力答案:B解析:匀速圆周运动的速度的大小是不变的,即速率是不变的,所以A选项错误;物体既然做曲线运动,那么它的速度方向肯定是不断变化的,所以速度一定在变化,所以B选项正确;平抛运动也是曲线运动,但是它所受的合力不变,加速度也不变,所以C、D选项错误。
2.如图所示,篮球从手中①位置投出后落到篮筐上方③位置,空中到达的最高点为②位置(空气阻力不能忽略),则()A.②位置篮球动能等于0B.①位置到③位置过程只有重力做功C.①位置到②位置的过程,篮球的动能全部转化为重力势能D.②位置到③位置过程,篮球动能的变化量等于合力做的功答案:D解析:②位置速度不为零,故A错;①→②→③过程重力和阻力做功,由W f+W G=ΔE k可知,选项D正确,B、C错误。
3.物体做平抛运动,设速度方向与水平方向的夹角为θ,则tan θ随时间t变化的图像是()答案:B解析:tan θ=v yv0=gv0t,故选B。
4.如图所示,小强同学正在荡秋千,关于绳上a点和b点的线速度和角速度,下列关系正确的是()A.v a=v bB.v a>v bC.ωa=ωbD.ωa<ωb答案:C解析:绳子绕O点转动,a、b两点角速度相等,ωa=ωb,D错,C对;因r a<r b,故v b>v a,A、B 错。
5.若一做圆周运动的人造地球卫星的轨道半径增大为原来的2倍,仍做匀速圆周运动,则下列说法正确的是()A.根据公式v=ωr,可知卫星运动的线速度增大到原来的2倍B.根据公式F=m v 2r ,可知卫星所需的向心力将减小到原来的12C.根据公式a n=ω2r,可知卫星的向心加速度将变为原来的2倍D.根据公式F=G m0mr2,可知地球提供的向心力将减小到原来的14答案:D解析:根据F=G m0mr2=ma n=m v2r可判断选项A、B、C错误,D正确。
教科版高中物理必修二复习试题及答案全套重点强化卷(一) 平抛运动规律的应用一、选择题1. (多选)如图1所示,在高空匀速飞行的轰炸机,每隔1 s投下一颗炸弹,若不计空气阻力,则()图1A.这些炸弹落地前排列在同一条竖直线上B.这些炸弹都落于地面上同一点C.这些炸弹落地时速度大小方向都相同D.相邻炸弹在空中距离保持不变【解析】这些炸弹是做平抛运动,速度的水平分量都一样,与飞机速度相同.相同时间内,水平方向上位移相同,所以这些炸弹排在同一条竖直线上.这些炸弹抛出时刻不同,落地时刻也不一样,不可能落于地面上的同一点.由于这些炸弹下落的高度相同,初速度也相同,这些炸弹落地时速度大小和方向都相同.两相邻炸弹在空中的距离为Δx=x1-x2=12g(t+1)2-12gt2=gt+12g.由此可知Δx随时间t增大而增大.【答案】AC2.一个物体以速度v0水平抛出,落地时速度的大小为2v0,不计空气的阻力,重力加速度为g,则物体在空中飞行的时间为()A.v0g B.2v0gC.3v 0gD.2v 0g【解析】 如图所示,gt 为物体落地时竖直方向的速度,由(2v 0)2=v 20+(gt )2得:t =3v 0g ,C 正确.【答案】 C3. (多选)某人在竖直墙壁上悬挂一镖靶,他站在离墙壁一定距离的某处,先后将两只飞镖A 、B 由同一位置水平掷出,两只飞镖插在靶上的状态如图2所示(侧视图),若不计空气阻力,下列说法正确的是( )图2A .B 镖的运动时间比A 镖的运动时间长 B .B 镖掷出时的初速度比A 镖掷出时的初速度大C .A 镖掷出时的初速度比B 镖掷出时的初速度大D .A 镖的质量一定比B 镖的质量小【解析】 飞镖A 、B 都做平抛运动,由h =12gt 2得t =2hg ,故B 镖运动时间比A 镖运动时间长,A 正确;由v 0=xt 知A 镖掷出时的初速度比B 镖掷出时的初速度大,B 错误,C 正确;无法比较A 、B 镖的质量大小,D 错误.【答案】 AC4.从O 点抛出A 、B 、C 三个物体,它们做平抛运动的轨迹分别如图3所示,则三个物体做平抛运动的初速度v A 、v B 、v C 的关系和三个物体在空中运动的时间t A 、t B 、t C 的关系分别是( )图3 A.v A>v B>v C,t A>t B>t CB.v A<v B<v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C【解析】三个物体抛出后均做平抛运动,竖直方向有h=12gt2,水平方向有x=v0t,由于h A>h B>h C,故t A>t B>t C,又因为x A<x B<x C,故v A<v B<v C,C正确.【答案】C5.如图4所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为s,不计空气阻力.若拦截成功,则v1、v2的关系应满足()图4A.v1=v2B.v1=Hs v2C.v1=Hs v2D.v1=sH v2【解析】设经t时间拦截成功,则平抛的炮弹下落h=12gt2,水平运动s=v1t;竖直上抛的炮弹上升H-h=v2t-12gt2,由以上各式得v1=s H v2,故D正确.【答案】D6.如图5所示,以9.8 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g取9.8 m/s2)()图5A.23s B.223sC. 3 s D.2 s【解析】把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向的速度v0,垂直地撞在斜面上时,既有水平方向分速度v0,又有竖直方向的分速度v y.物体速度的竖直分量确定后,即可求出物体飞行的时间.如图所示,把末速度分解成水平方向分速度v0和竖直方向的分速度v y,则有tan 30°=v0 v yv y=gt,解两式得t=v yg =3v0g= 3 s,故C 正确.【答案】C7.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图6所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的哪些(g 取10 m/s 2)( )图6A .1 m/sB .2 m/sC .3 m/sD .4 m/s【解析】 由h =12gt 2知,面片在空中的运动时间t =2hg =0.4 s ,而水平位移x =v 0t ,故面片的初速度v 0=xt ,将x 1=0.5 m ,x 2=1.5 m 代入得面片的最小初速度v 01=x 1t =1.25 m/s ,最大初速度v 02=x 2t =3.75 m/s ,即1.25 m/s ≤v 0≤3.75 m/s ,B 、C 选项正确.【答案】 BC8.(多选)从同一点沿水平方向抛出的A 、B 两个小球能落在同一个斜面上,运动轨迹如图7所示,不计空气阻力,则小球初速度v A 、v B 的关系和运动时间t A 、t B 的关系分别是( )图7A .v A >vB B .v A <v BC .t A >t BD .t A <t B【解析】 A 小球下落的高度小于B 小球下落的高度,所以根据h =12gt 2知t =2hg ,故t A <t B ,C 错误,D 正确;根据s =v t 知,B 的水平位移较小,时间较长,则水平初速度较小,故v A >v B ,A 正确,B 错误.【答案】AD9. (多选)如图8所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y 轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则()图8A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大【解析】x=v0t,y=12gt2,所以t=2y g,由y b=y c>y a,得t b=t c>t a,选项A 错,B 对;又根据v0=x g2y,因为y b>y a,x b<x a,y b=y c,x b>x c,故v a>v b,v b>v c,选项C错,D对.【答案】BD10.如图9所示,P是水平面上的圆弧凹槽,从高台边B点以某速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A点沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角,则()图9A.tan θ2tan θ1=2 B.tan θ1 tan θ2=2C.1tan θ1 tan θ2=2 D.tan θ1tan θ2=2【解析】 OA 方向即小球末速度垂线的方向,θ1是末速度与水平方向的夹角;BA 方向即小球合位移的方向,θ2是位移方向与竖直方向的夹角.由题意知:tan θ1=v y v 0=gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt由以上两式得:tan θ1 tan θ2=2.故B 项正确. 【答案】 B 二、计算题11.从离地高 80 m 处水平抛出一个物体,3 s 末物体的速度大小为 50 m/s ,g 取10 m/s 2.求:(1)物体抛出时的初速度大小; (2)物体在空中运动的时间; (3)物体落地时的水平位移.【解析】 (1)由平抛运动的规律知v =v 2x +v 2y3 s 末v =50 m/s ,v y =gt =30 m/s 解得v x =40 m/s ,即v 0=40 m/s. (2)物体在空中运动的时间t =2hg =2×8010 s =4 s.(3)物体落地时的水平位移x =v 0t =40×4 m =160 m. 【答案】 (1)40 m/s (2)4 s (3)160 m12.如图10所示,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0 s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80,g =10 m/s 2)求:图10(1)A点与O点的距离;(2)运动员离开O点时的速度大小.【解析】(1)设A点与O点的距离为L,运动员在竖直方向做自由落体运动,有L sin 37°=12gt2L=gt22sin 37°=75 m.(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即L cos 37°=v0t解得v0=L cos 37°t=20 m/s.【答案】(1)75 m(2)20 m/s重点强化卷(二) 圆周运动及综合应用一、选择题1.如图1所示为一种早期的自行车,这种带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了()图1A.提高速度B.提高稳定性C.骑行方便D.减小阻力【解析】 在骑车人脚蹬车轮转速一定的情况下,据公式v =ωr 知,轮子半径越大,车轮边缘的线速度越大,车行驶得也就越快,故A 选项正确.【答案】 A2.两个小球固定在一根长为L 的杆的两端,绕杆的O 点做圆周运动,如图2所示,当小球1的速度为v 1时,小球2的速度为v 2,则转轴O 到小球2的距离是( )图2A.L v 1v 1+v 2B.L v 2v 1+v 2 C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2【解析】 两小球角速度相等,即ω1=ω2.设两球到O 点的距离分别为r 1、r 2,即v 1r 1 =v 2r 2 ;又由于r 1+r 2=L ,所以r 2=L v 2v 1+v 2,故选B.【答案】 B3.汽车在转弯时容易打滑出事故,为了减少事故发生,除了控制车速外,一般会把弯道做成斜面.如图3所示,斜面的倾角为θ,汽车的转弯半径为r ,则汽车安全转弯速度大小为( )图3A.gr sin θB.gr cos θC.gr tan θD.gr cot θ【解析】 高速行驶的汽车转弯时所需的向心力由重力和路面的支持力的合力提供同,完全不依靠摩擦力,如图.根据牛顿第二定律得: mg tan θ=m v 2r 解得:v =gr tan θ 故选C. 【答案】 C4.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图4所示,经过最低点的速度为v ,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )图4A .μmgB .μm v 2R C .μm (g -v 2R )D .μm (g +v 2R )【解析】 小球在最低点时,轨道支持力和重力的合力提供向心力,根据牛顿第二定律得F N -mg =m v 2R ,物体受到的摩擦力为f =μF N =μm (g +v 2R ),选项D 正确.【答案】 D5. (多选)如图5所示,用细绳拴着质量为m 的小球,在竖直平面内做圆周运动,圆周半径为R ,则下列说法正确的是( )图5A.小球过最高点时,绳子张力可能为零B.小球过最高点时的最小速度为零C.小球刚好过最高点时的速度为gRD.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反【解析】绳子只能提供拉力作用,其方向不可能与重力相反,D错误;在最高点有mg+F T=m v2R,拉力F T可以等于零,此时速度最小为v min=gR,故B 错误,A、C正确.【答案】AC6.如图6所示,质量为m的小球固定在长为l的细轻杆的一端,绕轻杆的另一端O在竖直平面内做圆周运动.球转到最高点A时,线速度大小为gl 2,此时()图6A.杆受到12mg的拉力B.杆受到12mg的压力C.杆受到32mg的拉力D.杆受到32mg的压力【解析】以小球为研究对象,小球受重力和沿杆方向杆的弹力,设小球所受弹力方向竖直向下,则N+mg=m v2l ,将v=gl2代入上式得N=-12mg,即小球在A点受杆的弹力方向竖直向上,大小为12mg,由牛顿第三定律知杆受到12mg的压力.【答案】B7. “快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为α,如图7所示,不考虑空气阻力和绳的质量(选手可看为质点),下列说法正确的是()图7A.选手摆动到最低点时所受绳子的拉力等于mgB.选手摆动到最低点时所受绳子的拉力大于mgC.选手摆动到最低点时所受绳子的拉力大于选手对绳子的拉力D.选手摆动到最低点的运动过程为匀变速曲线运动【解析】由于选手摆动到最低点时,绳子拉力和选手自身重力的合力提供选手做圆周运动的向心力,有T-mg=F向,T=mg+F向>mg,B正确,A错误;选手摆到最低点时所受绳子的拉力和选手对绳子的拉力是作用力和反作用力的关系,根据牛顿第三定律,它们大小相等、方向相反且作用在同一条直线上,故C错误;选手摆到最低点的运动过程中,是变速圆周运动,合力是变力,故D 错误.【答案】B8.如图8所示,两个水平摩擦轮A和B传动时不打滑,半径R A=2R B,A 为主动轮.当A匀速转动时,在A轮边缘处放置的小木块恰能与A轮相对静止.若将小木块放在B 轮上,为让其与轮保持相对静止,则木块离B 轮转轴的最大距离为(已知同一物体在两轮上受到的最大静摩擦力相等)( )图8A.R B 4B.R B 2C .R BD .B 轮上无木块相对静止的位置【解析】 摩擦传动不打滑时,两轮边缘上线速度大小相等.根据题意有:R A ωA =R B ωB 所以ωB =R A R BωA 因为同一物体在两轮上受到的最大静摩擦力相等,设在B 轮上的转动半径最大为r ,则根据最大静摩擦力等于向心力有:mR A ω2A =mrω2B得:r =R A ω2A ⎝ ⎛⎭⎪⎫R A R B ωA 2=R 2B R A =R B 2. 【答案】 B9.如图9所示,滑块M 能在水平光滑杆上自由滑动,滑杆固定在转盘上,M 用绳跨过在圆心处的光滑滑轮与另一质量为m 的物体相连.当转盘以角速度ω转动时,M 离轴距离为r ,且恰能保持稳定转动.当转盘转速增到原来的2倍,调整r 使之达到新的稳定转动状态,则滑块M ( )图9A .所受向心力变为原来的4倍B .线速度变为原来的12C .转动半径r 变为原来的12D .角速度变为原来的12【解析】 转速增加,再次稳定时,M 做圆周运动的向心力仍由拉力提供,拉力仍然等于m 的重力,所以向心力不变,故A 错误;转速增到原来的2倍,则角速度变为原来的2倍,根据F =mrω2,向心力不变,则r 变为原来的14.根据v =rω,线速度变为原来的12,故B 正确,C 、D 错误.【答案】 B10.在较大的平直木板上相隔一定距离钉几个钉子,将三合板弯曲成拱桥形卡入钉子内形成拱形桥,三合板上表面事先铺上一层牛仔布以增加摩擦,这样玩具惯性车就可以在桥面上跑起来了.把这套系统放在电子秤上做实验,关于实验中电子秤的示数下列说法正确的是( )图10A .玩具车静止在拱桥顶端时的示数小一些B .玩具车运动通过拱桥顶端时的示数大一些C .玩具车运动通过拱桥顶端时处于超重状态D .玩具车运动通过拱桥顶端时速度越大(未离开拱桥),示数越小【解析】 根据mg -F N =m v 2R ,F N =mg -m v 2R ,可见玩具车通过拱桥顶端时失重,速度越大,电子秤的示数越小.选D.【答案】 D二、计算题11.在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?【解析】(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F m=0.6mg=m v2r,由速度v=30 m/s,得弯道半径r=150 m.(2)汽车过拱桥,看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有:mg-F N=m v2R,为了保证安全,车对路面间的弹力F N必须大于等于零,有mg≥m v2R,则R≥90 m.【答案】(1)150 m(2)90 m12.如图11所示,一光滑的半径为0.1 m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道对小球的压力恰好为零,g取10 m/s2,求:图11(1)小球在B点速度是多少?(2)小球落地点离轨道最低点A多远?(3)落地时小球速度为多少?【解析】(1)小球在B点时只受重力作用,竖直向下的重力提供小球做圆周运动的向心力,根据牛顿第二定律可得:mg=m v2Br代入数值解得:v B =gr =1 m/s.(2)小球离开B 点后,做平抛运动.根据平抛运动规律可得:2r =12gt 2s =v B t ,代入数值联立解得:s =0.2 m.(3)根据运动的合成与分解规律可知,小球落地时的速度为v =v 2B +(gt )2=5 m/s.【答案】 (1)1 m/s (2)0.2 m (3) 5 m/s重点强化卷(三) 万有引力定律的应用一、选择题1.两个密度均匀的球体相距r ,它们之间的万有引力为10-8N ,若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为( )A .10-8NB .0.25×10-8 NC .4×10-8ND .10-4N【解析】 原来的万有引力为:F =G Mm r 2后来变为:F ′=G 2M ·2m (2r )2=G Mm r 2 即:F ′=F =10-8N ,故选项A 正确.【答案】 A2.已知引力常量G =6.67×10-11N·m 2/kg 2,重力加速度g =9.8 m/s 2,地球半径R =6.4×106 m ,则可知地球质量的数量级是( )A .1018 kgB .1020 kgC .1022 kgD .1024 kg【解析】 根据mg =G Mm R 2得地球质量为M =gR 2G ≈6.0×1024 kg.故选项D 正确.【答案】 D3.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )A .已知它的质量是1.24 t ,若将它的质量增为2.84 t ,其同步轨道半径将变为原来的2倍B .它的运行速度大于7.9 km/sC .它可以绕过北京的正上方,所以我国能利用它进行电视转播D .它距地面的高度约为地球半径的5倍,故它的向心加速度约为其下方地面上物体的重力加速度的136【解析】 同步卫星的轨道半径是固定的,与质量大小无关,A 错误;7.9 km/s 是人造卫星的最小发射速度,同时也是卫星的最大环绕速度,卫星的轨道半径越大,其线速度越小.同步卫星距地面很高,故其运行速度小于7.9 km/s ,B 错误;同步卫星只能在赤道的正上方,C 错误;由G Mm r 2=ma n 可得,同步卫星的加速度a n =G M r 2=G M (6R )2=136G M R 2=136g ,故选项D 正确. 【答案】 D4.如图1所示,在同一轨道平面上的几个人造地球卫星A 、B 、C 绕地球做匀速圆周运动,某一时刻它们恰好在同一直线上,下列说法中正确的是( )图1A .根据v =gr 可知,运行速度满足v A >vB >v CB .运转角速度满足ωA >ωB >ωCC .向心加速度满足a A <a B <a CD .运动一周后,A 最先回到图示位置【解析】 由G Mm r 2=m v 2r 得,v =GMr ,r 大,则v 小,故v A <v B <v C ,A错误;由G Mm r 2=mω2r 得,ω=GMr 3,r 大,则ω小,故ωA <ωB <ωC ,B 错误;由G Mm r 2=ma 得,a =GM r 2,r 大,则a 小,故a A <a B <a C ,C 正确;由G Mm r 2=m 4π2T 2r 得,T =2πr 3GM ,r 大,则T 大,故T A >T B >T C ,因此运动一周后,C 最先回到图示位置,D 错误.【答案】 C5.(多选)据英国《卫报》网站2015年1月6日报道,在太阳系之外,科学家发现了一颗最适宜人类居住的类地行星,绕恒星橙矮星运行,命名为“开普勒438b”.假设该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍.则该行星与地球的( )A .轨道半径之比为3p 2qB .轨道半径之比为3p 2C .线速度之比为3q pD .线速度之比为1p【解析】 行星公转的向心力由万有引力提供,根据牛顿第二定律,有G Mm R 2=m 4π2T 2R ,解得:R =3GMT 24π2,该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍,故:R 橙R 太=3(M 橙M 太)(T 行T 地)2=3qp 2,故A 正确,B 错误;根据v =2πR T ,有:v 行v 地=R 行R 地·T 地T 行=3qp 2·1p =3q p ;故C 正确,D 错误.【答案】 AC6.银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 31GT 2C.4π2r 3GT 2 D.4π2r 2r 1GT 2【解析】 设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿定律得,对S 1有G m 1m 2r 2=m 1(2πT )2r 1,解之可得m 2=4π2r 2r 1GT 2,则D 正确,A 、B 、C 错误.【答案】 D7.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R 和r ,则( )A .甲、乙两颗卫星的加速度之比等于R ∶rB .甲、乙两颗卫星所受的向心力之比等于1∶1C .甲、乙两颗卫星的线速度之比等于1∶1D .甲、乙两颗卫星的周期之比等于R ∶r【解析】 由F =G Mm R 2和M =ρ43πR 3可得万有引力F =43G πRmρ,又由牛顿第二定律F =ma 可得,A 正确;卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B 错误;由F =43G πRmρ,F =m v 2R 可得,选项C 错误;由F =43G πRmρ,F =mR 4π2T 2可知,周期之比为1∶1,故D 错误.【答案】 A8.嫦娥三号探测器绕月球表面附近飞行时的速率大约为1.75 km/s(可近似当成匀速圆周运动),若已知地球质量约为月球质量的81倍 ,地球第一宇宙速度约为7.9 km/s ,则地球半径约为月球半径的多少倍( )A .3倍B .4倍C .5倍D .6倍【解析】 根据万有引力提供向心力知,当环绕天体在中心天体表面运动时,运行速度即为中心天体的第一宇宙速度,由G Mm R 2=m v 2R 解得:v =GMR ,故地球的半径与月球的半径之比为R 1R 2=M 1M 2·v 22v 21,约等于4,故B 正确,A 、C 、D 错误. 【答案】 B9.如图2所示,a 、b 、c 、d 是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上.某时刻b 卫星恰好处于c 卫星的正上方.下列说法中正确的是( )图2A .b 、d 存在相撞危险B .a 、c 的加速度大小相等,且大于b 的加速度C .b 、c 的角速度大小相等,且小于a 的角速度D .a 、c 的线速度大小相等,且小于d 的线速度【解析】 b 、d 在同一轨道,线速度大小相等,不可能相撞,A 错;由a 向=GM r 2知a 、c 的加速度大小相等且大于b 的加速度,B 对;由ω= GM r 3知,a 、c 的角速度大小相等,且大于b 的角速度,C 错;由v =GM r 知a 、c 的线速度大小相等,且大于d 的线速度,D 错.【答案】 B10.登上火星是人类的梦想.“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大【解析】 火星和地球都绕太阳做圆周运动,万有引力提供向心力,由GMmr 2=m 4π2T 2r =ma 知,因r 火>r 地,而r 3T 2=GM4π2,故T 火>T 地,选项A 错误;向心加速度a =GMr 2,则a 火<a 地,故选项B 正确;地球表面的重力加速度g 地=GM 地R 2地,火星表面的重力加速度g 火=GM 火R 2火,代入数据比较知g 火<g 地,故选项C 错误;地球和火星上的第一宇宙速度:v 地=GM 地R 地,v 火=GM 火R 火,v 地>v 火,故选项D 错误.【答案】 B 二、计算题11.经天文学家观察,太阳在绕着银河系中心(银心)的圆形轨道上运行,这个轨道半径约为3×104光年(约等于2.8×1020m),转动一周的周期约为2亿年(约等于6.3×1015s).太阳做圆周运动的向心力是来自位于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看做集中在银河系中心来处理问题.(G =6.67×10-11N·m 2/kg 2)用给出的数据来计算太阳轨道内侧这些星体的总质量.【解析】 假设太阳轨道内侧这些星体的总质量为M ,太阳的质量为m ,轨道半径为r ,周期为T ,太阳做圆周运动的向心力来自于这些星体的引力,则G Mm r 2=m 4π2T 2r故这些星体的总质量为M=4π2r3GT2=4×(3.14)2×(2.8×1020)36.67×10-11×(6.3×1015)2kg≈3.3×1041kg.【答案】 3.3×1041kg12.质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常量为G.图3(1)求两星球做圆周运动的周期.(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024 kg和7.35×1022kg.求T2与T1两者平方之比.(结果保留三位小数)【解析】(1)两星球围绕同一点O做匀速圆周运动,其角速度相同,周期也相同,其所需向心力由两者间的万有引力提供,设OB为r1,OA为r2,则对于星球B:G MmL2=M4π2T2r1对于星球A:G MmL2=m4π2T2r2其中r1+r2=L由以上三式可得T=2πL3G(M+m).(2)对于地月系统,若认为地球和月球都围绕中心连线某点O做匀速圆周运动,由(1)可知地球和月球的运行周期T 1=2πL 3G (M +m )若认为月球围绕地心做匀速圆周运动,由万有引力与天体运动的关系:G MmL 2=m 4π2T 22L解得T 2=4π2L 3GM则T 22T 21=M +m M =1.012. 【答案】 (1)2πL 3G (M +m )(2)1.012重点强化卷(四) 动能定理和机械能守恒定律一、选择题1.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大【解析】 不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等.故只有选项A 正确.【答案】 A2.(多选)质量为m 的物体,从静止开始以a =12g 的加速度竖直向下运动h 米,下列说法中正确的是( )A .物体的动能增加了12mgh B .物体的动能减少了12mghC.物体的势能减少了12mghD.物体的势能减少了mgh【解析】物体的合力为ma=12mg,向下运动h米时合力做功12mgh,根据动能定理可知物体的动能增加了12mgh,A对,B错;向下运动h米过程中重力做功mgh,物体的势能减少了mgh,D对.【答案】AD3.如图1所示,AB为14圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A从静止下滑时,恰好运动到C处停止,那么物体在AB段克服摩擦力做功为()图1A.12μmgR B.12mgRC.mgR D.(1-μ)mgR【解析】设物体在AB段克服摩擦力所做的功为W AB,物体从A到C的全过程,根据动能定理有mgR-W AB-μmgR=0,所以有W AB=mgR-μmgR=(1-μ)mgR.【答案】D4.如图2所示,木板长为l,木板的A端放一质量为m的小物体,物体与板间的动摩擦因数为μ.开始时木板水平,在绕O点缓慢转过一个小角度θ的过程中,若物体始终保持与板相对静止.对于这个过程中各力做功的情况,下列说法中正确的是()图2A.摩擦力对物体所做的功为mgl sin θ(1-cos θ)B.弹力对物体所做的功为mgl sin θcos θC.木板对物体所做的功为mgl sin θD.合力对物体所做的功为mgl cos θ【解析】重力是恒力,可直接用功的计算公式,则W G=-mgh;摩擦力虽是变力,但因摩擦力方向上物体没有发生位移,所以W f=0;因木块缓慢运动,所以合力F合=0,则W合=0;因支持力F N为变力,不能直接用公式求它做的功,由动能定理W合=ΔE k知,W G+W N=0,所以W N=-W G=mgh=mgl sin θ.【答案】C5. (多选)如图3所示,一个质量为m的物体以某一速度从A点冲上倾角为30°的光滑斜面,这个物体在斜面上上升的最大高度为h,则在此过程中()图3A.物体的重力势能增加了mghB.物体的机械能减少了mghC.物体的动能减少了mghD.物体的机械能不守恒【解析】物体在斜面上上升的最大高度为h,重力对物体做负功W=-mgh,物体的重力势能增加了mgh,故A正确;物体在上升过程中,只有重力做功,重力势能与动能之间相互转化,机械能守恒,故B、D均错误;由于物体所受的支持力不做功,只有重力做功,所以合力做功为-mgh,由动能定理可知,物体的动能减少了mgh,故C正确.。
新教材高中物理教科版必修第二册:单元素养评价(一)(时间:75分钟满分:100分)一、选择题:本题共10小题,共46分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,每小题4分;第8~10题有多项符合题目要求,每小题6分,全部选对的得6分,选对但不全的得3分,有选错的得0分.1.如图所示的陀螺,是汉族民间最早的娱乐工具,也是我们很多人小时候喜欢玩的玩具.从上往下看(俯视),若陀螺立在某一点逆时针匀速转动,此时滴一滴墨水到陀螺,则被甩出的墨水径迹可能如图( )2.2020年12月17日凌晨“嫦娥五号”返回器携带月球样品在内蒙古四子王旗着陆场顺利着陆,如图为“嫦娥五号”返回器在绕地球运行回收过程的一段时间内,沿曲线从M 点向N点飞行的过程中速度逐渐减小,在此过程中返回器所受合力方向可能是( )3.章老师利用无人机拍摄校运动会开幕式.一次拍摄中,t=0时,无人机由静止从地面开始起飞,在5 s内无人机的水平速度v x、竖直速度v y与时间t的关系图像分别如图1、2所示,下列说法中正确的是( )A.无人机在0~2 s内做曲线运动B.无人机在4 s末到达最大高度C.无人机在0~5 s内的位移为22 mD.无人机在4~5 s内处于失重状态4.如图所示,离水平地面高为h =0.8 m 处有甲、乙两个物体,甲以初速度v 0水平抛出,同时乙以初速度v 0沿倾角为37°的光滑斜面滑下,若甲、乙两物体同时到达地面,重力加速度大小为g =10 m /s 2,取sin 37°=0.6,则v 0的大小为( )A .4215 m /sB .3215m /sC .2 2 m /sD .4 m /s5.如图所示,从同一点O 先后水平抛出三个完全相同的小球,三个小球分别落在对面台阶上的A 、B 、C 三点,若不计空气阻力,则下列关于三个小球平抛的初速度v A 、v B 、v C 的大小及三个小球在空中的飞行时间t A 、t B 、t C 的关系正确的是( )A .v A >vB >vC B .v B >v C >v A C .t A >t B >t CD .t C >t B >t A6.A 、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体B 以v 1的速度向左匀速运动,如图所示,当绳被拉成与水平面夹角分别是α、β时.物体A 的运动速度v A 为(绳始终有拉力)( )A .v 1cos αcos βB .v 1cos βcos αC .v 1sin αsin β D .v 1sin βsin α7.有一条宽为50 m 的河,游泳爱好者小明想要游到对岸去,水流速度为2 m /s ,小明在静水中的速度为1 m /s ,以下结论正确的是( )A .小明可能到达正对岸B .小明的最短过河时间为50 sC .小明以最短路程过河所需时间为50 sD .小明要以最短路程过河,游姿方向需始终与对岸垂直8.在探究平抛运动的规律时,可以选用下列装置图,以下操作合理的是( )A.选用装置1,研究平抛物体的竖直分运动,应该用耳朵听A、B两球是否同时落地B.选用装置2,要获得稳定的细水柱显示平抛轨迹,竖直管上端A一定要高于水面C.选用装置3,要获得钢球的平抛运动轨迹,每次一定要从斜槽上同一位置由静止释放钢球D.除上述装置外,也能用数码照相机拍摄钢球做平抛运动时每秒15帧的录像获得平抛轨迹9.如图所示,三个质量相等的小球A、B、C从图示位置分别以相同的速度v0水平向左抛出,最终都能到达坐标原点O.不计空气阻力,x轴所在处为地面,则可判断A、B、C三个小球( )A.在空中运动过程中,时间之比为1∶2∶3B.在空中运动过程中,速度变化率之比为1∶2∶3C.初始时刻纵坐标之比为1∶4∶9D.到达O点时,速度方向与水平方向夹角的正切值之比为1∶4∶910.如图,某学校的排球场长为18 m,球网高度为2 m.一同学站在离网3 m线上(虚线所示)正对网竖直跳起,并在离地高2.5 m处将球向正前方水平击出.不计球飞行过程中受到的阻力,欲使球既不触网又不出界,则击球速度可能是( )A.10 m/sB.9 m/sC.16 m/sD.18 m/s二、非选择题:本题共5小题,共54分.11.(6分)如图所示,在竖直板上不同高度处固定两个完全相同的圆弧轨道,轨道的末端水平,在它们相同的位置上各安装一个电磁铁,两个电磁铁由同一个开关1控制,在上轨道末端O点同一高度处固定第三块电磁铁,并通过O点处的开关2控制.通电后,三块电磁铁分别吸住三个相同的小铁球A、B、C.断开开关1,A、B两个小铁球同时开始运动,当A 小球运动到斜槽末端O点处时,触动开关2,C小球开始做自由落体运动,同时A小球做平抛运动,B球进入一个光滑的水平轨道,三个小球恰好在P点相遇.(1)球A、B在P点相遇,说明平抛运动在水平方向是________运动;(2)球A、C在P点相遇,说明平抛运动在竖直方向是________运动;(3)忽略小球的大小,固定在竖直板上的方格纸为正方形小格,每小格的边长均为5 cm,则小球A做平抛运动的初速度大小为________ m/s,落到P点时的速度方向与水平方向夹角的正切值为________.(取重力加速度g=10 m/s2)12.(8分)2022年2月15日,北京冬奥会单板滑雪男子大跳台决赛中,中国选手苏翊鸣第二跳挑战内转1 800°,完美落地,锁定胜局并最终夺冠.运动员的重心运动过程简化后如图所示,若其滞空时间(即从A到C的时间)t=2.8 s,最高点B与着陆点C的高度差h BC =16.2 m,水平间距x BC=21.6 m,g=10 m/s2,空气阻力不计,求:(1)运动员过B点时的速度大小v B;(2)起跳点A与最高点B的距离L.13.(10分)物体A放在光滑水平桌面上,在多个恒力的作用下做匀速运动,其速度v0的方向与直线OO′成30°角.假设物体所受恒力的方向都与水平桌面平行,图中仅画出了与直线OO′垂直的恒力F1,其他力没有画出.已知v0=10 m/s,F1=5 N,物体A的质量m =2 kg,F1、v0、OO′在同一平面内,若某时刻撤掉F1,求:(1)物体A速度的最小值;(2)物体A速度达到最小值需要的时间.14.(12分)小船在100 m 宽的河中横渡,当小船船头正对河岸行驶渡河时,经过20秒时间,小船到达正对岸下游60 m 的位置.已知sin 37°=0.6,cos 37°=0.8,求:(1)河水流动的速度是多少? (2)小船在静水中的速度是多少?(3)要使小船到达正对岸,船头与上游河岸成多大角度?渡河时间是多少?15.(18分)一个质量m =70 kg 的滑雪者,从山坡上由静止匀加速滑下,山坡的倾角θ=30°,已知滑雪者从山坡滑下时受到的阻力为140 N ,滑行了4 s 后到达山坡下的平台,设滑雪者从山坡进入平台时速度不变,不计平台的阻力及空气阻力,g =10 m /s 2,求:(1)滑雪者进入平台时速度的大小;(2)滑雪者滑离平台即将着地时的瞬间,其速度方向与水平地面的夹角为37°,求滑雪者着地点到平台边缘的水平距离.(sin 37°=0.6,cos 37°=0.8)单元素养评价(一)1.解析:做曲线运动的物体,速度方向沿切线方向,所以当墨水被甩出后,从上往下看,运动径迹如选项C 所示,C 正确.答案:C 2.解析:“嫦娥五号”探月卫星从M 点运动到N 做曲线运动,合力应指向轨迹的凹侧;“嫦娥五号”探月卫星同时减速,所受合力的方向与速度方向的夹角要大于90°,A 正确.答案:A 3.解析:无人机初速度为零,水平方向和竖直方向都做匀加速运动,因此受恒力运动,0~2 s 内沿加速度方向做直线运动,A 错误;无人机在5 s 内一直向上运动,5 s 末到达最大高度,B 错误;水平位移为x =(3+5)×22 m =8 m ,竖直位移为y =(2+5)×42 m =14m ,合位移为s =x 2+y 2=16.1 m ,C 错误;无人机在4~5 s 内减速上升,加速度向下,处于失重状态,D 正确.答案:D4.解析:甲做平抛运动,有h =12gt 2,解得t =0.4 s ,对乙,根据牛顿第二定律得mg sinα=ma ,根据运动学规律得hsin α=v 0t +12at 2,联立解得v 0=3215m/s ,B 正确. 答案:B5.解析:三个小球做平抛运动,竖直方向做自由落体运动,则有h =12gt 2,解得t =2hg,由图可知h A >h B >h C ,故有t A >t B >t C ,C 正确,D 错误;三个小球水平方向做匀速直线运动,则有x =v 0t ,解得初速度大小为v 0=xt,由图可知x A <x B <x C ,又t A >t B >t C ,联立可得v A <v B <v C ,A 、B 错误.答案:C6.解析:将A 物体的速度沿着绳子方向与垂直绳子方向进行分解,则有沿着绳子方向的速度大小为v A cos α;将B 物体的速度沿着绳子方向与垂直绳子方向进行分解,则有沿着绳子方向的速度大小为v 1cos β.由于沿着绳子方向速度大小相等,故有v A cos α=v 1cosβ,所以物体A 的运动速度为v A =v 1cos βcos α,B 正确.答案:B7.解析:小明在静水中的速度v 1小于水流速度v 2,v 1和v 2的合速度方向不可能垂直于正对岸,所以小明不可能到达正对岸,故A 错误;当小明的游姿方向始终垂直于正对岸时过河时间最短,为t 1=dv 1=50 s ,B 正确;如图所示,当小明的游姿方向与合速度方向垂直时,其过河路程最短,根据速度的合成与分解可以得小明的合速度大小为v =v 22 -v 21 = 3m/s ,并且sin α=v 1v 2=12,以最短路程过河所需的时间为t 2=d v sin α=10033s ,C 、D 错误.答案:B8.解析:选用装置1研究平抛物体的竖直分运动,应该用耳朵听A 、B 两球是否同时落地,如果听到一声响,说明两个物体同时落地,两个物体的运动时间相同,竖直方向都是自由落体运动,A 正确;竖直管与大气相通,如果A 端在水面下,可以保证竖直管上端口处的压强为大气压强,因而另一弯管的上端口处压强与竖直管上端口处的压强有恒定的差值,保证弯管出水口处压强恒定,从而水流速度恒定;如果竖直管上端口在水面上,则水面上方为恒定大气压强,随水面下降,弯管上端口压强降低,出水速度减小;由此可知,要保证出水速度稳定,要使竖直管上端A 在水面以下,B 错误;选用装置3,要获得钢球的平抛运动轨迹,每次一定要从斜槽上同一位置由静止释放钢球,这样才能保证初速度相同,C 正确;用数码照相机拍摄时曝光时间是固定的,所以可以用来研究平抛运动,D 正确.答案:ACD9.解析:根据x =v 0t ,水平初速度相同,A 、B 、C 水平位移之比为1∶2∶3,所以它们在空中运动的时间之比为1∶2∶3,初始时刻纵坐标之比即该过程小球的下落高度之比,根据h =12gt 2,初始时刻纵坐标之比为1∶4∶9,故A 、C 正确;速度的变化率即为重力加速度,都相等,故B 错误;竖直方向速度之比为1∶2∶3,水平方向速度相等,而速度方向与水平方向夹角的正切值为v y v x,则其比值为1∶2∶3,故D 错误.答案:AC10.解析:设排球水平击出时高度为H ,球网高度为h ,若排球恰好过网,则有H -h =12gt 21, 解得t 1=2(H -h )g=2×(2.5-2)10s =1010 s ,则此时击球速度v 1=x 1t 1=31010m/s =310 m/s ,若排球恰好不出界,则有H =12gt 22 ,解得t 2=2H g=2×2.510s =22s ,则此时击球速度为v 2=x 2t 2=1222m/s =12 2 m/s ,则有击球速度在310 m/s<v <12 2 m/s 范围内,可使排球既不触网又不出界,所以击球速度可能是10 m/s 或16 m/s ,A 、C 正确,B 、D 错误. 答案:AC11.解析:(1)球A 、B 在P 点相遇,说明两球在水平方向的运动完全相同,说明平抛运动在水平方向上是匀速直线运动;(2)球A 、C 在P 点相遇,说明两球在竖直方向的运动完全相同,说明平抛运动在竖直方向上是自由落体运动;(3)根据h =12gt 2,球C 到P 的时间t =2hg=2×0.4510 s =0.3 s ,A 球平抛运动的初速度v 0=x t =0.500.3 m/s =53m/s ,到达P 点时的竖直分速度v y =gt =3 m/s ,因此落到P 点时的速度方向与水平方向夹角正切值tan θ=v y v 0=95. 答案:(1)匀速直线 (2)自由落体 (3)53 9512.解析:(1)根据题意可知,运动员从B 到C 做平抛运动,竖直方向上有h BC =12gt 22水平方向上有 x BC =v B t 2联立代入数据解得t 2=1.8 s ,v B =12 m/s.(2)根据题意可知,从A 到B 用时为 t 1=t -t 2=1 s起跳点A 与最高点B 的水平距离为 x AB =v B t 1=12 m 竖直距离为h AB =12gt 21 =5 m则起跳点A 与最高点B 的距离L =x 2AB +h 2AB =13 m.答案:(1)12 m/s (2)13 m13.解析:(1)由题意可知,撤掉F 1后,物体A 受到的合力与F 1等大反向,将初速度分解到OO ′与垂直于OO ′两个方向,当垂直于OO ′方向的分速度变为0时,物块A 的速度最小,即为v min =v 0cos 30°=10×32m/s =5 3 m/s 方向沿OO ′;(2)撤掉F 1后,物体A 的加速度大小为a =52m/s 2=2.5 m/s 2由垂直于OO ′方向可知t =v 0sin 30°a =52.5s =2 s.答案:(1)5 3 m/s ,方向沿OO ′ (2)2 s14.解析:(1)小船船头正对河岸行驶渡河时水速为v 1=xt=3 m/s.(2)小船在静水中的速度是v 2=dt=5 m/s.(3)设静水速度的方向偏向上游与河岸成θ,根据平行四边形定则有v =v 22 -v 21 =52-32=4 m/s根据几何关系,则有v 2cos θ=v 1,cos θ=35解得θ=53° 渡河时间是t =dv=25 s. 答案:(1)3 m/s (2)5 m/s (3)53° 25 s 15.解析:(1)滑下山坡时,由牛顿第二定律得 mg sin 30°-f =ma , 滑雪者匀加速运动,速度 v =at 1代入数据得 v =12 m/s.(2)滑雪者离开平台后做平抛运动,设落地时竖直方向的速度为v y ,竖直方向 v y =gt 2 水平方向 x =vt 2由几何知识得v y=tan 37°v代入数据得x=10.8 m.答案:(1)12 m/s (2)10.8 m。
[教科版]高中物理必修二(全册)配套练习题汇总(共37套100页)一、选择题1.一物体由静止开始下落一小段时间后, 突然受一恒定水平风力的影响, 但着地前一小段时间风突然停止, 则其运动轨迹的情况可能是图中的()解析: 选C.风力停止之前, 物体的速度方向斜向下, 风力停止后, 物体还有重力作用, 重力方向竖直向下, 力的方向指向轨迹凹侧, 故选C.2.某一物体受到几个共点力的作用而处于平衡状态, 当撤去某个恒力F1时, 物体可能做()A.匀加速直线运动B.匀减速直线运动C.匀变速曲线运动D.变加速曲线运动解析: 选ABC.由于撤去恒力F1后物体受的合力爲恒力, 故一定是匀变速运动, 但初速度的方向不知, 所以轨迹可能是直线也可能是曲线, 可能是匀加速直线运动, 可能是匀减速直线运动也可能是匀变速曲线运动.故A、B、C都是有可能的.3.质点做曲线运动从A到B速率逐渐增加, 如图所示, 有四位同学用示意图表示A到B的轨迹及速度方向和加速度的方向, 其中正确的是()解析: 选D.由牛顿第二定律可知, 加速度a与合外力的方向相同, 指向曲线的凹侧, 另外速度v的方向沿曲线的切线方向, 故B、C项错误.由于质点从A到B速率逐渐增加, 则加速度与速度的夹角应小于90°, 综上可知, 只有D项正确.4.如图所示, 一物体在O点以初速度v开始做曲线运动, 已知物体只受到沿x轴方向的恒力作用, 则物体速度大小变化是()A .先减小后增大B .先增大后减小C .不断增大D .不断减小解析: 选A .开始时物体所受合力方向与速度方向的夹角大于90°, 物体速度减小, 经过一段时间后, 物体的速度方向与其合力方向的夹角小于90°, 物体又做加速运动, 故A 项正确.5.下列说法正确的是( )A .物体在恒力作用下不可能做曲线运动B .物体在变力作用下有可能做曲线运动C .物体做曲线运动, 沿垂直速度方向的合力一定不爲零D .沿垂直速度方向的合力爲零时, 物体一定做直线运动解析: 选BCD .物体是否做曲线运动, 取决于物体所受合外力方向与物体运动方向是否共线, 只要两者不共线, 无论物体所受合外力是恒力还是变力, 物体都做曲线运动, 故A 错误, B 正确.由垂直速度方向的力改变速度的方向, 沿速度方向的力改变速度的大小知, C 、D 正确.6.质量爲m 的物体, 在F 1、F 2、F 3三个共点力的作用下做匀速直线运动, 保持F 1、F 2不变, 仅将F 3的方向改变90°(大小不变)后, 物体可能做( )A .加速度大小爲F 3m的匀变速直线运动 B .加速度大小爲2F 3m的匀变速直线运动 C .加速度大小爲2F 3m的匀变速曲线运动 D .匀速直线运动解析: 选BC .物体在F 1、F 2、F 3三个共点力作用下做匀速直线运动, 必有F 3与F 1、F 2的合力等大反向, 当F 3大小不变, 方向改变90°时, F 1、F 2的合力大小仍爲F 3, 方向与改变方向后的F 3夹角爲90°, 故F 合=2F 3, 加速度a =F 合m =2F 3m, 但因不知原速度方向与F 合的方向间的关系, 故有B 、C 两种可能.7.如图所示, 火车在水平轨道上以大小爲v 的速度向西做匀速直线运动, 车上有人相对车厢以大小爲u 的速度向东水平抛出一小球, 已知v >u , 站在地面上的人看到小球的运动轨迹应是(图中箭头表示列车运动的方向)( )解析: 选D.小球抛出后相对于地面有水平向西的速度, 由于抛出后小球合力向下, 故抛出后小球仍向前运动, 同时向下落, 运动轨迹爲曲线, 选项D正确.8.翻滚过山车是大型游乐园里的一种比较刺激的娱乐项目.如图所示, 翻滚过山车(可看成质点)从高处冲下, 过M点时速度方向如图所示, 在圆形轨道内经过A、B、C三点.下列说法中正确的是()A.过A点时的速度方向沿AB方向B.过B点时的速度方向沿水平方向C.过A、C两点时的速度方向相同D.圆形轨道上与M点速度方向相同的点在AB段上解析: 选B.翻滚过山车经过A、B、C三点的速度方向如图所示, 由图判断B正确, A、C错误.用直尺和三角板作M点速度方向的平行线且与圆相切于N点, 则过山车过N点时速度方向与M点相同, D错误.9.一质点在xOy平面内运动的轨迹如图所示, 下面判断正确的是()A.若x方向始终匀速, 则y方向先加速后减速B.若x方向始终匀速, 则y方向先减速后加速C.若y方向始终匀速, 则x方向先减速后加速D.若y方向始终匀速, 则x方向先加速后减速解析: 选BD.曲线运动合外力的方向一定指向轨迹的凹侧, 若x方向始终匀速, 由轨迹的弯曲方向可判定, 在y方向上, 质点受到的力先沿y轴负方向, 后沿y轴正方向, 故质点在y方向先减速后加速, 故B正确.同理可判定D也正确.☆10.如图所示爲质点做匀变速曲线运动轨迹的示意图, 且质点运动到D点时速度方向与加速度方向恰好互相垂直, 则质点从A点运动到E点的过程中, 下列说法中正确的是()A.质点经过C点的速率比D点的大B.质点经过A点时的加速度方向与速度方向的夹角小于90°C.质点经过D点时的加速度比B点的大D.质点从B到E的过程中加速度方向与速度方向的夹角先增大后减小解析: 选A.质点做匀变速曲线运动, 所以合外力不变, 则加速度不变; 在D点, 加速度应指向轨迹的凹侧且与速度方向垂直, 则在C点加速度的方向与速度方向成钝角, 故质点由C到D速度在变小, 即v C>v D, 选项A正确.二、非选择题11.汽车以恒定的速率绕圆形广场一周用2 min的时间, 汽车每行驶半周, 速度的方向将改变多少度? 汽车每行驶10 s, 速度的方向将改变多少度?解析: 汽车运动的方向时刻改变, 汽车每绕圆形广场一周所用时间爲2 min, 即爲120 s, 则每秒汽车转过的角度爲3°.又因爲物体做曲线运动的速度方向就是物体运动轨迹上该点的切线方向, 所以汽车每运行半周, 速度的方向改变Δθ=60×3°=180°.故汽车每行驶10 s速度方向改变Δθ′=10×3°=30°.答案: 180°30°12.如图所示, 爲一空间探测器的示意图, P1、P2、P3、P4是四个喷气发动机, P1、P3的连线与空间一固定坐标系的x轴平行, P2、P4的连线与y轴平行, 每台发动机开动时, 都能向探测器提供推力, 但不会使探测器转动.开始时, 探测器以恒定的速率v0向x轴正方向平移.(1)单独分别开动P 1、P 2、P 3、P 4, 探测器将分别做什么运动?(2)单独开动P 2和P 4, 探测器的运动有什么不同.解析: (1)单独开动P 1时, 力沿-x 方向, 故探测器做匀减速直线运动; 单独开动P 3时, 探测器做匀加速直线运动; 单独开动P 2或P 4时, 探测器做匀变速曲线运动.(2)单独开动P 2时, 探测器在坐标系第Ⅰ象限内做曲线运动, 轨迹向上弯曲; 单独开动P 4, 探测器在坐标系第Ⅳ象限内做曲线运动, 运动轨迹向下弯曲.答案: 见解析1.关于曲线运动, 下列说法正确的是( )A .曲线运动不一定是变速运动B .曲线运动可以是匀速率运动C .做曲线运动的物体没有加速度D .做曲线运动的物体加速度一定不变解析: 选B .曲线运动的速度方向时刻在变, 故曲线运动一定是变速运动, 选项A 错误; 当合力方向始终与速度方向垂直时, 物体速度大小不变, 选项B 正确; 物体做曲线运动时一定受力的作用, 所以做曲线运动的物体一定有加速度, 选项C 错误; 当物体受到的合力变化时, 加速度也变化, 选项D 错误.2.关于力和运动的关系, 以下说法中正确的是( )A .物体受到外力作用, 其运动状态一定改变B .物体受到不变的合外力的作用, 其加速度一定不变C .物体做曲线运动, 说明其受到的合外力爲变力D .物体所受合力方向与运动方向相反, 该物体一定做直线运动解析: 选BD .物体受到外力作用, 若外力的合力爲零, 其运动状态也不会发生改变, 故A 错误; 不变的合外力将使物体产生恒定的加速度, 故B 正确; 物体所受的外力不论是恒力还是变力, 只要外力与速度不在一条直线上, 物体一定做曲线运动, 故C 错误; 若物体所受合力方向与运动方向相反, 即合外力方向与速度方向在同一条直线上, 那么该物体一定做直线运动, 选项D 正确.3.一个物体在相互垂直的恒力F 1和F 2作用下, 由静止开始运动, 经过一段时间后, 突然撤去F 2, 则物体的运动情况是( )A .物体做匀变速曲线运动B .物体做变加速曲线运动C .物体做匀速直线运动D .物体沿F 1的方向做匀加速直线运动解析: 选A .物体在相互垂直的恒力F 1和F 2的作用下, 由静止开始做匀加速直线运动, 其速度方向与F 合的方向一致, 经过一段时间后, 撤去F 2, F 1与v 不在同一直线上, 故物体必做曲线运动; 由于F 1恒定, 由a =F 1m知, a 也恒定, 故应爲匀变速曲线运动, 选项A 正确. 4.如图所示爲一质点在恒力F 作用下在xOy 平面上从O 点运动到B 点的轨迹, 且在A 点时的速度v A 与x 轴平行, 则恒力F 的方向可能是( )A.沿+x方向B.沿-x方向C.沿+y方向D.沿-y方向解析: 选D.根据做曲线运动的物体所受合外力指向曲线内侧的特点, 质点在O点受力方向可能沿+x方向或-y方向, 而在A点速度方向沿+x可以推知恒力方向不能沿+x方向, 但可以沿-y方向, 所以D项正确.5.若已知物体运动的初速度v0的方向及它受到的恒定的合外力F的方向, 下图表示物体运动的轨迹, 正确的是()解析: 选B.当物体所受合外力的方向与速度方向不在一条直线上时, 物体做曲线运动, 所以选项C错误; 在物体做曲线运动时, 运动的轨迹始终处在合外力方向与速度方向的夹角之中, 并且合外力F的方向指向轨迹的凹侧, 据此可知, 选项B正确, A、D错误.一、选择题1.一个质点同时参与互成一定角度(不在同一直线)的匀速直线运动和匀变速直线运动, 该质点的运动特征是()A .速度不变B .运动中的加速度不变C .轨迹是直线D .轨迹是曲线解析: 选BD .合运动的加速度等于两个分运动的加速度矢量和, 即合运动的加速度是恒定加速度a , 而合运动的加速度与合运动的速度不在同一条直线上, 故合运动一定是曲线运动.所以B 、D 正确.2.雨滴由静止开始下落, 遇到水平吹来的风, 下述说法正确的是( )A .风速越大, 雨滴下落时间越长B .风速越大, 雨滴着地时速度越大C .雨滴下落时间与风速无关D .雨滴着地速度与风速无关解析: 选BC .雨滴竖直向下的下落运动和在风力作用下的水平运动是雨滴同时参与的两个分运动, 雨滴下落的时间由竖直分运动决定, 两分运动彼此独立, 互不影响, 雨滴下落的时间与风速无关, 选项A 错误, 选项C 正确; 雨滴着地时的速度与竖直分速度和水平风速有关, 风速越大, 雨滴着地时的速度越大, 选项B 正确, 选项D 错误.3.如图所示, 一玻璃筒中注满清水, 水中放一软木做成的小圆柱体R (圆柱体的直径略小于玻璃管的直径, 轻重大小适宜, 使它在水中能匀速上浮).将玻璃管的开口端用胶塞塞紧(图甲).现将玻璃管倒置(图乙), 在软木塞上升的同时, 将玻璃管水平向右加速移动, 观察软木塞的运动, 将会看到它斜向右上方运动, 经过一段时间, 玻璃管移至图丙中右图所示位置, 软木塞恰好运动到玻璃管的顶端, 在图丁四个图中, 能正确反映软木塞运动轨迹的是( )解析: 选C .圆柱体参与了竖直方向的匀速直线运动和水平向右的初速度爲零的匀加速直线运动, 所以其合初速度的方向竖直向上, 合加速度的方向水平向右, 物体运动的轨迹(直线还是曲线)由物体的速度和加速度的方向关系决定, 由于合初速度的方向与合加速度的方向不在同一条直线上, 圆柱体一定做曲线运动, 所以A 错; 圆柱体在竖直方向的速度不变, 而水平方向的速度逐渐增大, 所以合速度的方向与水平方向的夹角逐渐减小, 做曲线运动的物体的轨迹的切线方向即爲速度的方向, 所以B 、D 错, C 对.4.欲划船渡过一宽100 m 的河, 船相对静水速度v 1=5 m/s, 水流速度v 2=3 m/s, 则( )A .过河最短时间爲20 sB .过河最短时间爲25 sC .过河位移最短所用的时间是25 sD .过河位移最短所用的时间是20 s解析: 选AC .当船头指向垂直河岸航行时, 过河用时最短, 最短时间t 1=d v 1=1005s =20s, A 对, B 错.当船驶向上游与河岸成θ角, 合速度与岸垂直时, 且v 1cos θ=v 2时, 过河位移最短, 此时cos θ=v 2v 1=35, 过河时间t 2=d v 1sin θ=1005×45s =25 s, 故C 对, D 错. 5.某人横渡一河岸, 船划行速度和水流速度一定, 此人过河最短时间爲T 1; 若此船用最短的位移过河, 则所需时间爲T 2, 若船速大于水速, 则船速与水速之比爲( )A .T 2T 22-T 21B .T 2T 1C .T 1T 21-T 22D .T 1T 2 解析: 选A .设船在静水中速度爲v 1, 水流速度爲v 2, 河宽爲d , 则过河最短时间T 1=d v 1; 过河位移最短时, 所用时间T 2=d v 21-v 22, 联立以上两式得v 1v 2=T 2T 22-T 21. 6.如图所示, 水平面上的小车向左运动, 系在车后缘的轻绳绕过定滑轮, 拉着质量爲m 的物体上升.若小车以v 1的速度做匀速直线运动, 当车后的轻绳与水平方向的夹角爲θ时, 物体的速度爲v 2, 轻绳对物体的拉力爲T , 则下列关系式正确的是( )A .v 2=v 1B .v 2=v 1cos θC .T =mgD .T >mg 解析:选D.轻绳的速度大小与物体m的速度v2相等, 小车沿水平面向左匀速运动的速度爲v1, 因此, 小车的合速度爲v1, 小车沿轻绳方向的速度是小车的分速度, 根据平行四边形定则将速度v1分解, 如图所示, v2=v1cos θ, 选项A、B均错; v1不变, 在小车向左运动的过程中, 角θ减小, cos θ增大, 因此物体上升的速度v2不断增大, 物体加速上升, 根据牛顿第二定律可知T-mg=ma>0, 则T>mg, 选项C错误, 选项D正确.7.匀速上升的载人气球中, 有人水平向右抛出一物体, 取竖直向上爲y轴正方向, 水平向右爲x轴正方向, 取抛出点爲坐标原点, 则地面上的人看到的物体的运动轨迹是图中的()解析: 选B.抛出的物体由于惯性仍具有向上的初速度, 而竖直方向上的分运动是竖直上抛运动, 水平方向上的分运动是匀速直线运动.所以B正确.8.如图所示, 甲、乙两同学从河中O点出发, 分别沿直线游到A点和B点后, 立即沿原路线返回到O点, OA、OB分别与水流方向平行和垂直, 且OA=OB.若水流速度不变, 两人在静水中游速相等, 则他们所用时间t甲、t乙的大小关系爲()A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定解析: 选C .设水流的速度爲v 水, 两人在静水中的速度爲v 人, 从题意可知v 人>v 水, 设OA =OB =L , 对甲同学t 甲=L v 人+v 水+Lv 人-v 水=2v 人L v 2人-v 2水, 对乙同学来说, 要想垂直到达B 点,其速度方向要指向上游, 并且来回时间相等, 即t 乙= 2Lv 2人-v 2水, 则t 甲t 乙=v 人v 2人-v 2水, 即t 甲>t 乙, C 正确.☆9.小河宽爲d , 河水中各点的水流速度与各点到较近河岸边的距离成正比, v 水=kx , k =4v 0d, x 是各点到近岸的距离, 小船船头垂直河岸渡河, 小船划水速度爲v 0, 则下列说法中正确的是( )A .小船渡河时的轨迹爲直线B .小船渡河时的轨迹爲曲线C .小船到达距河对岸d4处, 船的渡河速度爲2v 0D .小船到达距河对岸3d4处, 船的渡河速度爲10v 0解析: 选BC .由题意可知, 小船在垂直于河岸方向上做匀速直线运动; 由于水的速度与水到岸边的距离有关, 所以小船在沿河方向做变速运动, 所以小船的轨迹爲曲线, B 正确, A错误.小船到达距河对岸d4处时, 小船沿河岸方向的速度爲v 0, 其合速度爲2v 0, 所以C 正确.小船到达距河对岸3d 4处时, 小船到另一河岸的距离爲 d4, 所以其合速度爲2v 0, D 错误.二、非选择题10. 2014年3月9日全国山地自行车冠军赛首站结束, 刘馨阳、任成远分获男、女越野赛冠军.若某一路段车手正在骑自行车以4 m/s 的速度向正东方向行驶, 天气预报报告当时是正北风, 风速也是4 m/s, 则车手感觉的风速多大? 方向如何?解析:以人爲参考系, 气流水平方向上有向西的4 m/s的速度, 向南有4 m/s的速度, 所以合速度爲4 2 m/s, 方向爲西南方向, 如图所示.由图可知骑车的人感觉到风速方向爲东北方向的东北风.答案: 4 2 m/s东北风11. 如图所示, A物块以速度v沿竖直杆匀速下滑, 由细绳通过定滑轮拉动物体B在水平方向上运动.当细绳与水平面夹角爲θ时, 求物体B运动的速度大小.解析:本题爲绳子末端速度分解问题.物块A 沿杆向下运动, 产生使绳子伸长和使绳子绕定滑轮转动两个效果.因此绳子端点(即物块A )的速度可以分解爲沿绳子方向和垂直于绳子方向的两个分速度, 如图所示, 其中物体B 的速度大小等于沿绳子方向的分速度, 则有sin θ=v Bv , 因此v B =v sin θ.答案: v sin θ☆12.一物体在光滑水平面上运动, 它在x 方向和y 方向上的两个分运动的速度—时间图像如图所示.(1)判断物体的运动性质; (2)计算物体的初速度大小;(3)计算物体在前3 s 内和前6 s 内的位移大小.解析: (1)由图像可知, 物体沿x 方向的分运动爲匀速直线运动, 沿y 方向的分运动爲匀变速直线运动, 故合运动爲匀变速曲线运动.(2)物体的初速度爲v 0= v 2x 0+v 2y 0=302+(-40)2m/s =50 m/s. (3)在前3 s 内x 方向: x =v x t =30×3 m =90 my 方向: y =-12×40×3 m =-60 m合位移大小爲s =x 2+y 2=902+(-60)2 m =3013 m 前6 s 内x 方向: x ′=v x t ′=30×6 m =180 m. y 方向: y ′=0合位移: s ′=x ′2+y ′2=180 m. 答案: (1)匀变速曲线运动 (2)50 m/s (3)3013 m 180 m1.关于运动的合成与分解, 以下说法中正确的是( ) A .由两个分运动求合运动, 合运动是唯一确定的B .由合运动分解爲两个分运动, 可以有不同的分解方法C .只有物体做曲线运动时, 才能将這个运动分解爲两个分运动D .任何形式的运动, 都可以用几个分运动代替 解析: 选ABD .从运动合成或分解的法则——平行四边形定则出发思考, 明确运动分解的意义、方法, 可做出正确的判断, 答案爲A 、B 、D .2.如图所示, 跳伞员在降落伞打开一段时间以后, 在空中做匀速运动.若跳伞员在无风时竖直匀速下落, 着地速度大小是4.0 m/s.当有正东方向吹来的风, 风速大小是3.0 m/s 时,则跳伞员着地时的速度()A.大小爲5.0 m/s, 方向偏西B.大小爲5.0 m/s, 方向偏东C.大小爲7.0 m/s, 方向偏西D.大小爲7.0 m/s, 方向偏东解析:选A.跳伞员竖直方向的匀速直线运动和水平方向上与风同速的匀速直线运动是他的两个分运动, 如图所示,由平行四边形定则及几何知识得, v合= 4.02+3.02m/s=5.0 m/s, 方向偏西.选项A正确, 其他选项均错.3.一物体运动规律是x=3t2 m, y=4t2 m, 则下列说法中正确的是()A.物体在x轴和y轴方向上都是初速度爲零的匀加速直线运动B.物体的合运动是初速度爲零、加速度爲5 m/s2的匀加速直线运动C.物体的合运动是初速度爲零、加速度爲10 m/s2的匀加速直线运动D.物体的合运动是加速度爲5 m/s2的曲线运动解析: 选AC.根据匀加速直线运动的位移公式s=v0t+12at2可知, 物体在x轴和y轴方向上都是初速度爲零的匀加速直线运动, 选项A正确; 物体在x、y方向上的加速度分别爲a x=6 m/s2, a y=8 m/s2, 根据平行四边形定则知, 物体的合加速度爲a=a2x+a2y=10 m/s2, v0=0, 选项B、D错误, 选项C正确.4.某电视台群众娱乐节目中有一个环节是让群众演员站在一个旋转较快的大平台的边缘上, 向平台圆心处的球筐内投篮球.如果群众演员相对平台静止, 则下面各俯视图中哪幅图中的篮球可能被投入球筐(图中箭头指向表示投篮方向, 群众演员沿切线方向与转盘同速, 且v=ωR)()解析: 选B.篮球被投出时由于惯性具有同圆盘边缘线速度等大的切向速度v1=ωR, 要投入平台中心处的篮筐, 篮球的合速度应该沿半径方向水平向左, 根据平行四边形定则可知, 选项B正确, 其他选项所标注的篮球投出方向都不能使篮球的合速度沿半径方向指向圆心.5.小船在200 m宽的河中横渡, 水流速度爲2 m/s, 船在静水中的航速是4 m/s, 求:(1)当小船的船头始终正对对岸时, 它将在何时、何处到达对岸?(2)要使小船到达正对岸, 应如何行驶? 历时多长?解析: 小船参与了两个运动: 随水漂流和船在静水中的运动.因爲分运动之间是互不干扰的, 具有等时的性质, 故(1)小船渡河时间等于垂直于河岸的分运动时间t=t1=dv船=2004s=50 s沿河流方向的位移x水=v水t=2×50 m=100 m 即在正对岸下游100 m处靠岸.(2)要小船垂直过河, 即合速度应垂直于河岸, 如图所示,则cos θ=v 水v 船=24=12所以θ=60°, 即航向与岸上游成60°角渡河时间t =d v 合=d v 船sin θ=2004sin 60° s =1003s ≈57.7 s.答案: (1)50 s 后在正对岸下游100 m 处靠岸 (2)航向与岸上游成60°角 57.7 s一、选择题1.物体做平抛运动时, 它的速度方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是图中的( )解析: 选B .平抛运动的合速度v 与两个分速度v 0、v y 的关系如图所示.则tan α=v y v 0=gv 0·t , 故正切tan α与时间t 成正比, B 正确.2.在地面上方某一高处, 以初速度v 0水平抛出一石子, 当它的速度由水平方向变化到与水平方向成θ角时, 石子的水平位移的大小是(不计空气阻力)( )A .v 20sin θgB .v 20cos θgC .v 20tan θgD .v 20cot θg解析: 选C .经时间t 后竖直方向的速度爲v y =gt , 由三角函数关系可得: tan θ=gtv 0, 水平位移的大小x =v 0t =v 20tan θg, 选项C 正确.3.在运动的合成和分解的实验中, 蜡块在长1 m 的竖直放置的玻璃管中在竖直方向做匀速直线运动.现在某同学拿着玻璃管在水平方向上做初速度爲零的匀加速直线运动(忽略蜡块与玻璃管之间的摩擦), 并每隔1 s 画出蜡块运动所到达的位置, 运动轨迹如图所示, 若在轨迹上C 点(a , b )作该曲线的切线(图中虚线)交y 轴于A 点, 则A 的坐标爲( )A .(0,0.5b )B .(0,0.6b )C .(0,0.5a )D .(0, a )解析: 选A .作出图示, 设v 与x 轴的夹角爲θ, 有tan θ=v yv x, 根据平抛运动的规律有在水平方向: x =v x t /2,在竖直方向: y =v y t , 综合各式得tan θ=y /(2x ).在直角三角形ABC 中, BC =x tan θ=y /2=0.5b , 故A 点的坐标应爲(0,0.5b ). 4.某人向放在水平地面的正前方小桶中水平抛球, 结果球划着一条弧线飞到小桶的右侧(如图所示).不计空气阻力, 爲了能把小球抛进小桶中, 则下次再水平抛球时, 他可能作出的调整爲( )A .减小初速度, 抛出点高度不变B .增大初速度, 抛出点高度不变C .初速度大小不变, 降低抛出点高度D .初速度大小不变, 提高抛出点高度解析: 选AC .设小球被抛出时的高度爲h , 则h =12gt 2, 小球从抛出到落地的水平位移x=v 0t , 两式联立得x =v 02hg, 根据题意, 再次抛小球时, 要使小球运动的水平位移x 减小,可以采用减小初速度v 0或降低抛出点高度h 的方法, 故A 、C 正确.5.在一次飞越黄河的表演中, 汽车在空中飞经最高点后在对岸着地, 已知汽车从最高点至着地点经历的时间约爲1 s, 忽略空气阻力, 则最高点与着地点的高度差约爲( )A .8.0 mB .5.0 mC .3.2 mD .1.0 m解析: 选B .汽车从最高点开始做平抛运动, 竖直方向y =12gt 2=12×10×12m =5.0 m, 即最高点与着地点的高度差约爲5.0 m, B 正确.6.如图所示, 一物体自倾角爲θ的固定斜面顶端沿水平方向抛出后落在斜面上, 物体与斜面接触时速度与水平方向的夹角φ满足( )A .tan φ=sin θB .tan φ=cos θC .tan φ=tan θD .tan φ=2tan θ解析: 选D .竖直方向的分速度与水平方向的分速度之比爲: tan φ=gtv 0, 竖直方向的位移与水平方向的位移之比爲: tan θ=12gt 2v 0t =gt2v 0, 故有tan φ=2tan θ.7.如图所示, 以9.8 m/s 的水平初速度v 0抛出的物体, 飞行一段时间后, 垂直地撞在倾角θ爲30°的斜面上, 可知物体完成這段飞行的时间是( )A .33s B .233sC . 3 sD .2 s解析: 选C .物体撞击到斜面上时速度可按如图所示分解, 由物体与斜面撞击时速度的方向, 建立起平抛运动的物体竖直分速度v y 与已知的水平速度v 0之间的关系, 求出v y , 再由自由落体速度与时间的关系求出物体的飞行时间.由图可知: tan θ=v 0v y , 即tan 30°=9.8gt, 可以求得t = 3 s.8.如图, x 轴在水平地面内, y 轴沿竖直方向.图中画出了从y 轴上沿x 轴正向抛出的三个小球a 、b 和c 的运动轨迹, 其中b 和c 是从同一点抛出的.不计空气阻力, 则( )A .a 的飞行时间比b 的长B .b 和c 的飞行时间相同C .a 的水平速度比b 的小D .b 的初速度比c 的大解析: 选BD .由平抛运动知识, 飞行时间t =2hg, 由高度决定, b 、c 飞行时间相同, a 最短, A 错, B 对.结合x =v 0t =v 02hg, h 相同, x 正比于v 0, D 正确.对a , h 最小, x 最大, 故v 0最大, C 错误.☆9.如图所示, 两个倾角分别爲30°、45°光滑斜面放在同一水平面上, 两斜面间距大于小球直径, 斜面高度相等.有三个完全相同的小球a 、b 、c , 开始均静止于同一高度处, 其中。
最新高中物理必修二单元测试题全套带答案详解(教科版)第一章抛体运动单元质量评估(90分钟 100分)[来源:学*科*网Z*X*X*K][来源:学§科§网]一、选择题(本大题共10小题,每小题4分,共40分。
每小题至少一个答案正确)1.某人游长江,他以一定的速度面部始终垂直河岸向对岸游去。
江中各处水流速度相等,他游过的路程,过河所用的时间与水速的关系是()A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关2.在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力,下列描述下落速度的水平分量大小vx 、竖直分量大小vy与时间t的图像,可能正确的是()3.滑雪运动员以20 m/s的速度从一平台水平飞出,落地点与飞出点的高度差为3.2 m。
不计空气阻力,g取10 m/s2。
运动员飞过的水平距离为s,所用时间为t,则下列结果正确的是()A.s=16 m,t=0.50 s B.s=16 m,t=0.80 sC.s=20 m,t=0.50 s D.s=20 m,t=0.80 s4.做曲线运动的物体,一定变化的物理量是()A.速率B.速度C.加速度D.合外力5.如图所示,沿y方向的一个分运动的初速度v1是沿x方向的另一个分运动的初速度v2的2倍,而沿y方向的分加速度a1是沿x方向的分加速度a2的一半。
对于这两个分运动的合运动,下列说法中正确的是()A.一定是曲线运动B.一定是直线运动C.可能是曲线运动,也可能是直线运动D.无法判定6.如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度va 和vb沿水平方向抛出,经过时间ta和tb后落到与两抛出点水平距离相等的P点。
若不计空气阻力,下列关系式正确的是()A.ta >tb,va<vbB.ta>tb,va>vbC.ta <tb,va<vbD.ta<tb,va>vb7.如图所示,斜面上有a、b、c、d四个点,且ab=bc=cd。
推荐下载高中物理学习材料(灿若寒星**整理制作)高一(下)物理检测题命题人:王树斌姓名: 分数:一、选择题(每题5分,共50分) 1、关于曲线运动的下列说法中错误..的是:( ) A .作曲线运动的物体,速度方向时刻改变,一定是变速运动B .作曲线运动的物体,所受的合外力方向与速度的方向不在同一直线上,必有加速度C .物体不受力或受到的合外力为零时,可能作曲线运动D .作曲线运动的物体不可能处于平衡状态 2、关于功率的以下说法中正确的是:( )A .根据P=W/t 可知,机械做功越多,其功率越大B .根据P=Fv 可知,汽车的牵引力一定与速率成反比C .由P=W/t 可知,只要知道t s 内机械所做的功,就可求得这段时间内任一时刻的功率D .由P=F ·v 可知,当发动机功率一定时,交通工具的牵引力与运动速率成反比 3、下列各实例中,属于机械能守恒的是:( ) ① 做自由落体运动的小球② 跳伞员带着张开的降落伞匀速下降 ③ 小球沿光滑圆弧槽滑下④用不计质量的细棒一端拴一小球另一端固定,使小球绕固定点在竖直平面内作匀速圆周运动 A .①② B.①③ C.②③ D.③④4、跳远时,跳到沙坑里比跳到普通地面上安全,这是因为:( ) A.人跳在沙坑里的动量比跳在地面上小 B.人跳在沙坑里的动量变化比跳在地面上小 C.人跳在沙坑里受到的冲量比跳在地面上小 D.人跳在沙坑里受到的冲力比跳在地面上小5.汽车由静止开始运动,若要使汽车在开始运动的一小段时间内保持匀加速直线运动,则 ( )A .不断增大牵引力功率B .不断减小牵引力功率C .保持牵引力功率不变D .不能判断牵引力功率如何变化6.如右图所示,质量为m 的物体,受水平力F 的作用,在粗糙的水平面上运动,下列说法中不正确...的是 ( ) A .如果物体做加速直线运动,F 一定对物体做正功 B .如果物体做减速直线运动,F 一定对物体做负功 C .如果物体做匀减速直线运动,F 也可能对物体做正功 D .如果物体做匀速直线运动,F 一定对物体做正功7.如图所示,一个质量为m 的物体从高为h 的曲面上一点A 处,由静止开始下滑,滑到水平面上B 点处停止.若再用平行于接触面的力将该物体从B 处拉回到原出发点A 处,则需要对物体做功的最小值为 ( )A .mghB .2mghC .1.5mghD .3mgh8.地球半径为R ,地面重力加速度为g ,地球自转周期为T ,地球同步卫星离地高度为h .则地球同步卫星的线速度大小为 ( )推荐下载A .)(h R gR +/2B .g h R )(+C .2π(R +h )/TD .32/π2T g R9.质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的是 ( )A .物体的动能增加了54mgh B .物体的机械能减少了54mghC .物体克服阻力所做的功为51mgh D .物体的重力势能减少了mgh10.水平抛出在空中飞行的物体,不考虑空气阻力,则 ( )A .在相等的时间间隔内动量的变化相同B .在任何时间内,动量变化的方向都是竖直方向C .在任何对间内,动量对时间的变化率恒定D .在刚抛出物体的瞬间,动量对时间的变化率为零 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每题4分,共20分)11.一颗人造地球卫星在离地面高度等于地球半径的圆形轨道上运行,其运行速度是地球第一宇宙速度的倍.12.质量为10kg 的物体,以10m/s 的初速度沿粗糙水平面滑行,物体跟水平面间的动摩擦因数μ=0.2,则此物体在第4s 末的动量大小为_____,第10s 末的动量大小____ 。
高中物理学习材料桑水制作江苏省黄桥中学高一物理第二次质量检测2011-3-10一、单项选择题,每小题只有一个选项......符合题意。
1.下列关于匀速圆周运动的说法中,正确的是A.是线速度不变的运动 B.是角速度不变的运动C.是加速度不变的运动 D.是位移不变的运动2.如图所示的皮带传动装置中,轮A和B同轴,A、B、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A:a B:a C等于A.4:2:1 B。
2:1:2C.1:2:4 D。
4:1:43.如图所示,汽车以受到v通过一弧形的拱桥顶端时,关于汽车受力的说法中正确的是A.汽车的向心力就是它所受的重力v B.汽车的向心力是它所受的重力与支持力的合力,方向指向圆心C.汽车受重力、支持力、牵引力、摩擦力和向心力的作用D.以上说法均不正确4.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶的速度为v,则下列说法中正确的是①当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力②当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力③当火车速度大于v时,轮缘挤压外轨④当火车速度小于v 时,轮缘挤压外轨A .①③B .①④C .②③D .②④5.人造卫星在轨道上绕地球做圆周运动,它所受的向心力F 跟轨道半径r 的关系是A .由公式r mv F 2=可知F 和r 成反比B .由公式F=mr ω2可知F 和r 成正比C .由公式F=m ωv 可知F 和r 无关D .由公式2rGMm F =可知F 和r 2成反比 6.汽车沿水平圆跑道行驶,跑道半径为R ,地面对汽车的最大静摩擦力是车重的1n,那么车速不应大于A .g nRB .gRC .g nR ⎛⎝ ⎫⎭⎪12D .gR n ⎛⎝ ⎫⎭⎪127. 若已知某行星绕太阳公转的半径为r ,公转周期为T ,万有引力常量为G ,则由此可求出 A.某行星的质量 B.太阳的质量 C.某行星的密度D.太阳的密度8.质量为m 的小球,用长为l 的线悬挂在O 点,在O 点正下方2l处有一光滑的钉子O ′,把小球拉到与O ′在同一水平面的位置,摆线被钉子拦住,如图所示.将小球从静止释放.当球第一次通过最低点P 时, A.小球速率突然减小 B.小球受到的向心力突然减小 C.小球的向心加速度突然增加 D.摆线上的张力突然增加9.由于某种原因,人造地球卫星的轨道半径减小了,那么卫星的 A.速率变大,周期变小 B.速率变小,周期变大 C.速率变大,周期变大D.速率变小,周期变小10.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运用周期127分钟.若还知道引力常量和月球平均半径,仅利用以上条件不能求出的是 A.月球表面的重力加速度 B.月球对卫星的吸引力 C.卫星绕月球运行的速度D.卫星绕月运行的加速度二、多项选择题11.人造地球卫星在进入轨道做匀速圆周运动时,卫星A .处于完全失重状态,所受重力为零B .处于完全失重状态,但仍受重力作用C .所受的重力是维持它跟随卫星一起做匀速圆周运动所需的向心力D .处于平衡状态,即所受合外力为零12.2008年9月25日至28日我国成功实施了“神舟”七号载入航天飞行并实现了航天员首次出舱。
1.曲线运动课时过关·能力提升一、基础巩固1.物体做曲线运动,下列说法正确的是( )A.速度大小一定改变B.加速度大小一定改变C.速度方向一定改变,但速度大小不一定变化,选项A错误,选项C正确;曲线运动的加速度可能恒定不变,即大小、方向均不变,也可能是变化的,即加速度的大小、方向都有可能变化,选项B、D错误.2.一质点做曲线运动,质点在某一位置,它的速度方向、加速度方向以及所受的合外力的方向的关系是( )A.速度、加速度、合外力的方向有可能都相同B.加速度与合外力的方向一定相同C.加速度方向与速度方向一定相同,也可能不同,物体的加速度与合外力的方向一定相同,故B正确.由物体做曲线运动的条件可知,物体所受合外力的方向与速度的方向不在同一直线上,可知速度方向与合外力的方向一定不同,故A、C、D错误.3.(多选)关于曲线运动,下列说法正确的是( )A.曲线运动是一种变速运动B.做曲线运动的物体所受的合外力一定不为零C.做曲线运动的物体所受的合外力一定是变化的D.曲线运动不可能是一种匀变速运动,曲线运动是变速运动,合外力一定不为零,但大小、方向是否变化并不是曲线运动的决定因素.当做曲线运动的物体所受合力不变时,做匀变速曲线运动;当所受合力变化时,做非匀变速曲线运动,所以选项A、B正确,选项C、D错误.4.物体(用字母O表示)的初速度v0与所受合外力F的方向如图所示.物体的运动轨迹用虚线表示,则所画物体的运动轨迹可能正确的是( )共线时,物体做直线运动;当物体所受合外力的方向与速度的方向不在同一条直线上时,物体做曲线运动,运动的轨迹应该在v0与F所夹的范围内(曲线在v0与F所夹的较小角度内),且运动轨迹的初始点的切线方向为初速度v0的方向.5.如图所示,一位跳水队员在空中完成动作时头部的运动轨迹.最后运动员以速度v沿竖直方向入水.则在轨迹的a、b、c、d四个位置中,头部的速度沿竖直方向的是( )A.a位置B.b位置C.c位置,轨迹是曲线,任一点的切线方向为速度方向,由题图可知c点的速度方向竖直向下,故C正确.6.一辆汽车在水平公路上转弯,沿曲线由P向Q行驶,速度逐渐增加.下列各图分别画出了汽车转弯时所受合力F的方向,其中可能的情形是( ),做曲线运动,汽车所受合力F的方向应指向运动轨迹内侧;速度逐渐增大,即合力与速度夹角小于90°,故B正确.二、能力提升1.小球在水平桌面上做匀速直线运动,当它受到如图所示方向的力F的作用时,小球可能的运动方向是( )A.OaB.ObC.Oc,不可能做直线运动,所以选项;力的方向应指向曲线的内侧,故选项A、B错误,选项D正确.2.如图所示,一物体在O点以初速度v开始运动,已知物体只受到水平向右的恒力F的作用,则物体运动情况是( )A.做直线运动,速率不断增大B.做直线运动,速率不断减小C.做曲线运动,速率先增大后减小,速率先减小后增大F 的方向与速度v 的方向不在同一直线上,物体必定做曲线运动.开始时合力方向与速度方向的夹角大于90°,物体的速度减小,经过一段时间后,物体的速度方向又与合力方向夹角小于90°,速度增大,故选项D 正确.3.(多选)质量为m 的物体,在F 1、F 2、F 3三个共点力的作用下做匀速直线运动,保持F 1、F 2不变,仅将F 3的方向改变90°(大小不变)后,物体可能做( )A.加速度大小为F 3m 的匀变速直线运动B.加速度大小为2F 3m 的匀变速直线运动C.加速度大小为2F 3m 的匀变速曲线运动D.匀速直线运动F 1、F 2、F 3三个共点力作用下做匀速直线运动,则三力平衡,必有F 3与F 1、F 2的合力等大反向.当F 3大小不变,方向改变90°时,F 1、F 2的合力大小仍为F 3,方向与改变方向后的F 3夹角为90°,故F a ,故力F 合与初速度方合=2F 3,加速度为=2F 3m ,但因不知原速度方向向可能共线,也可能不共线,故物体有可能做匀变速直线运动,也有可能做匀变速曲线运动,选项.4.如图所示,光滑平面上一运动质点以速度v 通过原点O ,v 与x 轴正方向成α角,与此同时对质点加上沿x 轴正方向的恒力F x 和沿y 轴正方向的恒力F y ,则( )A.因为有F x ,质点一定做曲线运动B.如果F y >F x ,质点向y 轴一侧做曲线运动C.质点一定做直线运动D.如果F x >F y tanα,质点向x 轴一侧做曲线运动F x 与F y 的合力F 与v 共线时,质点做直线运动,所以选项A 错误;当F x 与F y 的合力F 与v 不共线时,质点做曲线运动,所以选项C 错误;如果F y >F x ,因α大小未知,质点向x 轴、y 轴一侧做曲线运动或直线运动都有可能,故选项B 错误;当F x,F 合指向v 与x 之间,因此>F y tanα时选项D 正确.5.如图所示,一小球在光滑的水平面上以速度v 0向右运动,运动中要穿过一段有水平向北的风的风带ab ,经过风带时风会给小球一个向北的水平恒力,其余区域无风,则小球过风带及过后的轨迹正确的是( ),合力指向轨迹的内侧,离开风带后,小球做匀速直线运动,B 选项正确.6.(多选)在光滑的水平面上有一质量为2 kg 的物体,在几个共点力的作用下做匀速直线运动.现突然将与速度反方向的2 N 的力水平旋转90°,则关于物体运动情况的叙述正确的是( )A.物体做速度大小不变的曲线运动B.物体做加速度为2 m/s 2的匀变速曲线运动C.物体做速度越来越大的曲线运动,其速度越来越大,当将与速度反方向的2 N 的力水平旋转90°后,其受力如图所示,其中F 1是物体受到的除了F 2以外的力的合力,F 是F 1、F 2的合力,根据题意,可知F 1=F 2=2 N,所以F=N,且大小、方向都不变,是恒力,那么物体的加速度为a m/s 22 2 =F m =222 m/s 2.又因为F 与v 的夹角θ<90°,所以物体做速度越来越大、加速度恒m/s 2的匀= 2 为 2 变速曲线运动,故选项B 、C 正确.7.一空间探测器的示意图如图所示,P 1、P 2、P 3、P 4是四个喷气发动机,P 1、P 3的连线与空间一固定坐标系的x 轴平行,P 2、P 4的连线与空间一固定坐标系的y 轴平行.每台发动机开动时,都能向探测器提供恒定推力,但不会使探测器转动.开始时,探测器以恒定速度v 0沿+x 方向做直线运动.(1)单独分别开动P 1、P 2、P 3、P 4,探测器将分别做什么运动? (2)同时开动P 2和P 3,探测器将做什么运动?(3)若四个发动机能产生相同大小的推力,同时开动时探测器将做什么运动?加速直线运动;单独开动P3时,力沿+x方向,探测器沿+x方向做匀加速直线运动;单独开动P2或P4时,力沿+y方向或-y方向,探测器做匀变速曲线运动.(2)若同时开动P2和P3,探测器受到沿+y方向和+x方向的力的作用,一边加速一边向+y方向偏转,做匀变速曲线运动.(3)若同时开动四个发动机,探测器所受合外力为零,将仍沿+x方向以速度v0做匀速直线运动.。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题第2章匀速圆周运动章末检测试卷(第二章)(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分.1~8题为单项选择题,9~12题为多项选择题.全部选对的得4分,选对但不全的得2分,错选和不选的得0分)1.如图1所示,甲、乙两车在水平地面上匀速过圆弧形弯道(从1位置至2位置),已知两车速率相等,下列说法正确的是( )图1A.甲乙两车过弯道的时间可能相同B.甲乙两车角速度可能相同C.甲乙两车向心加速度大小可能相同D.甲乙两车向心力大小可能相同答案 D2.如图2所示为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑行,则她( )图2A.所受的合力为零,做匀速运动B.所受的合力恒定,做匀加速运动C .所受的合力恒定,做变加速运动D .所受的合力变化,做变加速运动 答案 D解析 运动员做匀速圆周运动,由于合力时刻指向圆心,其方向变化,所以是变加速运动,D 正确.【考点】对匀速圆周运动的理解 【题点】对匀速圆周运动的理解3.如图3所示,质量为m 的物块从半径为R 的半球形碗边向碗底滑动,滑到最低点时的速度为v ,若物块滑到最低点时受到的摩擦力是f ,则物块与碗的动摩擦因数为( )图3A.f mgB.f mg +mv 2RC.f mg -mv 2RD.f m v 2R答案 B解析 物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,根据牛顿第二定律得N -mg =m v 2R,又f =μN ,联立解得μ=f mg +mv 2R,选项B 正确.4.质量为m 的飞机以恒定速率v 在空中水平盘旋,如图4所示,其做匀速圆周运动的半径为R ,重力加速度为g ,则此时空气对飞机的作用力大小为( )图4A .m v 2RB .mgC .m g 2+v 4R2D .mg 2-v 2R4答案 C解析 飞机在空中水平盘旋时在水平面内做匀速圆周运动,受到重力和空气的作用力两个力的作用,其合力提供向心力F =m v 2R .飞机受力情况如图所示,根据勾股定理得:F ′=(mg )2+F 2=mg2+v 4R2.5.如图5所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置(两轮不打滑),两轮半径r A =2r B ,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止,若将小木块放在B 轮上,欲使木块相对B 轮能静止,则木块距B 轮转轴的最大距离为( )图5A.r B 4B.r B3 C.r B2 D .r B答案 C解析 当主动轮匀速转动时,A 、B 两轮边缘上的线速度大小相等,由ω=v R 得ωA ωB =vr A v r B=r B r A =12.因A 、B 材料相同,故木块与A 、B 间的动摩擦因数相同,由于小木块恰能在A 边缘上相对静止,则由静摩擦力提供的向心力达到最大值f m ,得f m =m ωA 2r A ①设木块放在B 轮上恰能相对静止时距B 轮转轴的最大距离为r ,则向心力由最大静摩擦力提供,故f m =m ωB 2r ②由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2,C 正确.【考点】水平面内的匀速圆周运动分析 【题点】水平面内的匀速圆周运动分析6.如图6所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为( )图6A .4mgB .2mgC .3mg D.3mg 答案 D解析 当小球到达最高点的速率为v 时,有mg =m v 2r.当小球到达最高点的速率为2v 时,应有F +mg =m(2v )2r=4mg ,所以F =3mg ,此时两段线对球的作用力如图所示,解得T =3mg ,选项D 正确,A 、B 、C 错误.7.如图7所示,水平圆盘可绕过圆心的竖直轴转动,两个小物体M 和m 之间连一根跨过位于圆心的光滑小孔的细线,M 与盘间的最大静摩擦力为f m ,物体M 随圆盘一起以角速度ω匀速转动,下述的ω取值范围已保证物体M 相对圆盘无滑动,则下列说法正确的是( )图7A .无论ω取何值,M 所受静摩擦力都指向圆心B .ω取不同值时,M 所受静摩擦力有可能指向圆心,也有可能背向圆心C .ω取值越大,细线拉力越小D .ω取值越大,细线拉力越大 答案 B解析 M 在竖直方向上受到重力和支持力,二力平衡,在水平方向受到绳子的拉力,也可能受到静摩擦力.设M 所受静摩擦力方向指向圆心,根据牛顿第二定律得:T +f =M ω2r .又T=mg,则得:f=Mω2r-mg.若Mω2r>mg,f>0,静摩擦力方向指向圆心;若Mω2r<mg,f<0,静摩擦力方向背向圆心,故A错误,B正确;对于m,根据平衡条件得:T=mg,说明细线的拉力保持不变,故C、D错误.8.如图8所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图上未画出,细线长度不变),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是( )图8A.Q受到桌面的静摩擦力变大B.Q受到桌面的支持力变大C.小球P运动的角速度变小D.小球P运动的周期变大答案 A解析金属块Q保持在桌面上静止,对金属块和小球研究,竖直方向上没有加速度,根据平衡条件得知,Q受到桌面的支持力等于两个物体的总重力,保持不变,故B错误.设细线与竖直方向的夹角为θ,细线的拉力大小为T,细线的长度为L.P球做匀速圆周运动时,由重力和细线的拉力的合力提供向心力,如图,则有T=mgcos θ,mg tan θ=mω2L sin θ,得角速度ω=gL cos θ,周期T=2πω=2πL cos θg,现使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cos θ减小,则得到细线拉力T增大,角速度增大,周期T减小.对Q,由平衡条件知,f=T sin θ=mg tan θ,知Q受到桌面的静摩擦力变大,故A正确,C、D错误.9.m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮,如图9所示,已知皮带轮半径为r ,传送带与皮带轮间不会打滑,当m 可被水平抛出时( )图9A .皮带的最小速度为grB .皮带的最小速度为g rC .A 轮每秒的转数最少是12πg r D .A 轮每秒的转数最少是12πgr答案 AC解析 物体恰好被水平抛出时,在皮带轮最高点满足mg =mv 2r,即速度最小为gr ,选项A 正确;又因为v =2πrn ,可得n =12πgr,选项C 正确. 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题10.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图10所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h ,下列说法中正确的是( )图10A .h 越高,摩托车对侧壁的压力将越大B .h 越高,摩托车做圆周运动的线速度将越大C .h 越高,摩托车做圆周运动的周期将越大D .h 越高,摩托车做圆周运动的向心力将越大 答案 BC解析 摩托车受力分析如图所示.由于N =mgcos θ所以摩托车受到侧壁的支持力与高度无关,保持不变,摩托车对侧壁的压力也不变,A 错误;由F =mg tan θ=m v 2r =m ω2r =m 4π2T2r 知h 变化时,向心力F 不变,但高度升高,r 变大,所以线速度变大,角速度变小,周期变大,选项B 、C 正确,D 错误. 【考点】圆锥摆类模型【题点】类圆锥摆的动力学问题分析11.如图11所示,叠放在水平转台上的物体A 、B 及物体C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r .设最大静摩擦力等于滑动摩擦力,重力加速度为g ,下列说法正确的是( )图11A .B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3m ω2r C .转台的角速度一定满足ω≤μgrD .转台的角速度一定满足ω≤2μg3r答案 BD解析 B 对A 的静摩擦力提供向心力,有f =3m ω2r ,A 错,B 对;C 刚好发生滑动时,μmg=m ω12·1.5r ,ω1=2μg 3r,A 刚好发生滑动时,3μmg =3m ω22r ,ω2=μgr,A 、B 一起刚好发生滑动时,5μmg =5m ω32r ,ω3=μgr,故转台的角速度一定满足ω≤2μg3r,C 错,D 对.12.如图12甲所示,一长为R 的轻绳,一端系在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是( )图12A .利用该装置可以得出重力加速度,且g =R aB .绳长不变,用质量较大的球做实验,得到的图线斜率更大C .绳长不变,用质量较小的球做实验,得到的图线斜率更大D .绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变 答案 CD解析 小球在最高点,根据牛顿第二定律得mg +F =m v 2R ,解得v 2=FR m+gR ,由题图乙知,纵轴截距a =gR ,解得重力加速度g =aR,故A 错误.由v 2=FR m +gR 知,图线的斜率k =R m,绳长不变,用质量较大的球做实验,得到的图线的斜率更小,故B 错误.用质量较小的球做实验,得到的图线斜率更大,故C 正确.由v 2=FR m+gR 知,纵轴载距为gR ,绳长不变,则图线与纵轴交点坐标不变,故D 正确. 二、实验题(本题共2小题,共12分)13.(6分)航天器绕地球做匀速圆周运动时处于完全失重状态,物体对支持面几乎没有压力,所以在这种环境中已经无法用天平称量物体的质量.假设某同学在这种环境中设计了如图13所示的装置(图中O 为光滑小孔)来间接测量物体的质量:给待测物体一个初速度,使它在水平桌面上做匀速圆周运动.设航天器中具有基本测量工具.图13(1)实验时需要测量的物理量是__________________. (2)待测物体质量的表达式为m =________________.答案 (1)弹簧测力计示数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析 需测量物体做圆周运动的周期T 、圆周运动的半径R 以及弹簧测力计的示数F ,则有F =m 4π2T 2R ,所以待测物体质量的表达式为m =FT 24π2R.【考点】对向心力的理解 【题点】向心力实验探究14.(6分)如图14所示是探究向心力的大小F 与质量m 、角速度ω和半径r 之间的关系的实验装置图,转动手柄1,可使变速轮塔2和3以及长槽4和短槽5随之匀速转动.皮带分别套在轮塔2和3上的不同圆盘上,可使两个槽内的小球A 、B 分别以不同的角速度做匀速圆周运动.小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂6的杠杆作用使弹簧测力筒7下降,从而露出标尺8,标尺8露出的红白相间的等分格显示出两个球所受向心力的比值.那么:图14(1)现将两小球分别放在两边的槽内,为了探究小球受到的向心力大小和角速度的关系,下列说法中正确的是________.A .在小球运动半径相等的情况下,用质量相同的小球做实验B .在小球运动半径相等的情况下,用质量不同的小球做实验C .在小球运动半径不等的情况下,用质量不同的小球做实验D .在小球运动半径不等的情况下,用质量相同的小球做实验(2)在该实验中应用了________________(选填“理想实验法”“控制变量法”或“等效替代法”)来探究向心力的大小与质量m 、角速度ω和半径r 之间的关系.(3)当用两个质量相等的小球做实验,且左边的小球的轨道半径为右边小球轨道半径的2倍时,转动时发现右边标尺上露出的红白相间的等分格数为左边的2倍,那么,左边轮塔与右边轮塔之间的角速度之比为______. 答案 (1)A (2)控制变量法 (3)1∶2解析 (1)根据F =mr ω2知,要研究小球受到的向心力大小与角速度的关系,需控制小球的质量和小球运动的半径不变,故A 正确,B 、C 、D 错误. (2)由前面分析可知该实验采用的是控制变量法. (3)由F =mr ω2得 ω左ω右=F 左F 右·r 右r 左=12. 三、计算题(本题共4小题,共40分)15.(8分)如图15所示是马戏团中上演飞车节目,在竖直平面内有半径为R 的圆轨道.表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量为m ,人以v 1=2gR 的速度过轨道最高点B ,并以v 2=3v 1的速度过最低点A .求在A 、B 两点摩托车对轨道的压力大小相差多少?图15答案 6mg解析 在B 点,F B +mg =m v 12R ,解得F B =mg ,根据牛顿第三定律,摩托车对轨道的压力大小F B ′=F B =mg 在A 点,F A -mg =m v 22R解得F A =7mg ,根据牛顿第三定律,摩托车对轨道的压力大小F A ′=F A =7mg 所以在A 、B 两点车对轨道的压力大小相差F A ′-F B ′=6mg . 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题16.(10分)如图16所示,小球在外力作用下,由静止开始从A 点出发做匀加速直线运动,到B 点时撤去外力.然后,小球冲上竖直平面内半径为R 的光滑半圆轨道BC ,恰能维持在圆环上做圆周运动通过最高点C ,到达最高点C 后水平抛出,最后落回到原来的出发点A 处.试求:图16(1)小球运动到C 点时的速度大小;(2)A 、B 之间的距离.答案 (1)gR (2)2R解析 (1)小球恰能通过最高点C ,说明此时半圆环对球无作用力,设此时小球的速度为v ,则mg =m v 2R所以v =gR(2)小球离开C 点后做平抛运动,设从C 点落到A 点用时t ,则2R =12gt 2 又因A 、B 之间的距离s =vt所以s =gR ·4Rg =2R .【考点】竖直面内的圆周运动分析【题点】竖直面内的“绳”模型17.(10分)如图17所示,AB 为竖直转轴,细绳AC 和BC 的结点C 系一质量为m 的小球,两绳能承受的最大拉力均为2mg ,当AC 和BC 均拉直时,∠ABC =90°,∠ACB =53°,ABC 能绕竖直轴AB 匀速转动,因而小球在水平面内做匀速圆周运动.(sin 53°=0.8,cos 53°=0.6,g =9.8 m/s 2)图17(1)当小球的线速度增大时,AC 和BC (l BC =1 m)哪条绳先断?(2)一条绳被拉断后小球的速率继续增加,整个运动状态会发生什么变化?答案 (1)BC 绳先断 (2)见解析解析 (1)当小球线速度增大到BC 被拉直时,AC 绳拉力T AC =mg sin 53°=1.25mg .当小球线速度再增大时,T AC 不变,BC 绳拉力随小球线速度增大而增大,由F =T AC cos 53°+T BC =m v 2R ,可得当v = 2.75gl BC ≈5.19 m/s 时,T BC =2mg ,BC 绳先断.(2)当BC 绳断后,AC 绳与竖直方向夹角α增大.当T AC =2mg 时,根据T AC =mgcos α,可知α=60°,此时AC 绳也断.18.(12分)如图18所示是离心试验器的原理图,可以用离心实验来研究“过荷”对人体的影响,测试人的抗荷能力.离心试验器转动时,被测试者做匀速圆周运动.现已知OA =L , AB =d ,当离心器转动时,AB 与水平杆OA 成150°角,人可视为质点,求此时:图18(1)被测试者对座位的压力为重力的多少倍;(2)试验器转动的角速度是多少.答案 (1)2倍 (2)23g2L +3d 解析 (1)被测试者做匀速圆周运动的向心力由重力G 和座位对他的支持力N 的合力提供,受力分析如图所示,可得N =mgsin 30°=2mg ,再根据牛顿第三定律得被测试者对座位的压力为重力的2倍.(2)沿水平方向由牛顿第二定律得N cos 30°=m ω2r被测试者做圆周运动的半径r =L +d cos 30°由以上两式得试验器转动的角速度ω=23g 2L+3d【考点】圆锥摆类模型【题点】圆锥摆的动力学问题分析。
高中同步测试卷(一)第一单元平抛运动(时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题5分,共35分.在每小题给出的四个选项中,只有一个选项正确.)1.物体做平抛运动,速度v、加速度a、水平位移x、竖直位移y,这些物理量随时间t的变化情况是()A.v与t成正比B.a随t逐渐增大C.比值yx与t成正比D.比值yx与t2成正比2.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则()A.垒球落地时瞬时速度的大小仅由初速度决定B.垒球落地时瞬时速度的方向仅由击球点离地面的高度决定C.垒球在空中运动的水平位移仅由初速度决定D.垒球在空中运动的时间仅由击球点离地面的高度决定3.如图所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平对准它,就在子弹出枪口时,松鼠开始运动,下列各种运动方式中,松鼠能逃脱被击中厄运的是(设树枝足够高,不计空气阻力)()A.自由落下B.竖直上跳C.迎着枪口,沿AB方向水平跳离树枝D.背着枪口,沿AC方向水平跳离树枝4.雅安大地震,牵动了全国人民的心.一架装载救灾物资的直升飞机,以10 m/s的速度水平飞行,在距地面180 m的高度处,欲将救灾物资准确投放至地面目标,若不计空气阻力,g取10 m/s2,则()A.物资投出后经过6 s到达地面目标B.物资投出后经过18 s到达地面目标C.应在距地面目标水平距离90 m处投出物资D.应在距地面目标水平距离180 m处投出物资5.在同一点O抛出的三个物体做平抛运动的轨迹如图所示,则三个物体做平抛运动的初速度v A、v B、v C的关系和三个物体做平抛运动的时间t A、t B、t C的关系分别是()A.v A>v B>v C,t A>t B>t CB.v A=v B=v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C6.如图所示,相对的两个斜面,倾角分别为37°和53°,在顶点,两个小球A、B以同样大小的初速度分别向左、右水平抛出,小球都落在斜面上,若不计空气阻力,则A、B两个小球运动时间之比为()A.1∶1 B.4∶3C.16∶9 D.9∶167.如图所示,从倾角为θ的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜面上,当抛出的速度为v1时,小球到达斜面时速度方向与斜面的夹角为α1;当抛出速度为v2时,小球到达斜面时速度方向与斜面的夹角为α2,则()A.当v1>v2时,α1>α2B.当v1>v2时,α1<α2C.无论v1、v2关系如何,均有α1=α2D.α1、α2的关系与斜面倾角θ有关二、多项选择题(本题共5小题,每小题5分,共25分.在每小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有错选的得0分.)8.有一物体在离水平地面高h处以初速度v0水平抛出,落地时速度为v,竖直分速度为v y,水平射程为l,不计空气阻力,则物体在空中飞行的时间为()A.lv0 B.h2gC.v2-v20g D.2hv y9.以初速度v0水平抛出一物体,当它的竖直分位移与水平分位移相等时() A.竖直分速度等于水平速度B.瞬时速度等于5v0C.运动的时间为2v0g D.位移大小是22v20g10.甲、乙、丙三个小球分别位于如图所示的竖直平面内,甲乙在同一条竖直线上,甲丙在同一条水平线上,水平面上的P点在丙的正下方,在同一时刻甲乙丙开始运动,甲以水平速度v0做平抛运动,乙以水平速度v0沿光滑水平面向右做匀速直线运动,丙做自由落体运动,则()A.若甲乙丙三球同时相遇,一定发生在P点B .若只有甲丙两球在水平面上相遇,此时乙球一定在P 点C .若只有甲乙两球在水平面上相遇,此时丙球还没落地D .无论初速度v 0大小如何,甲乙丙三球一定会同时在P 点相遇11. 平抛运动可以分解为水平和竖直方向的两个直线运动,在同一坐标系中作出这两个分运动的v -t 图线,如图所示.若平抛运动的时间大于2t 1,下列说法中正确的是( )A .图线2表示竖直分运动的v -t 图线B .t 1时刻的速度方向与初速度方向夹角为30°C .t 1时间内的位移方向与初速度方向夹角的正切值为12D .2t 1时间内的位移方向与初速度方向夹角为60°12. 如图所示,A 、B 两个质点以相同的水平速度v 抛出,A 在竖直平面内运动,落地点在P 1;B 在光滑的斜面上运动,落地点在P 2,不计空气阻力,则下列说法中正确的是( )A .A 、B 的运动时间相同 B .B 运动的时间长C .A 、B 沿x 轴方向的位移相同D .B 沿x 轴方向的位移大三、实验题(本题共1小题,共10分.按题目要求作答.)13.某同学根据平抛运动原理设计粗测玩具手枪弹丸的发射速度v 0的实验方案,实验示意图如图所示,已知没有计时仪器.(1)用玩具手枪发射弹丸时应注意______________________;(2)用一张印有小方格的纸记录手枪弹丸的轨迹,小方格的边长L =2.5 cm.若弹丸在平抛运动途中的几个位置如图中的a、b、c、d所示,则其平抛的初速度v0=________m/s.(取g=10 m/s2,结果保留两位有效数字)四、计算题(本题共3小题,共30分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)14. (8分)如图所示,一质点做平抛运动先后经过A、B两点,到达A点时速度方向与水平方向的夹角为30°,到达B点时速度方向与水平方向的夹角为60°.(1)求质点在A、B位置的竖直分速度大小之比;(2)设质点的位移l AB与水平方向的夹角为θ,求tan θ的值.15. (10分)如图所示,水平屋顶高H=5 m,墙高h=3.2 m,墙到房子的距离L=3 m,墙外马路宽D=10 m,小球从屋顶水平飞出落在墙外的马路上,求小球离开屋顶时的速度v应该满足什么条件?(g=10 m/s2)16.(12分)跳台滑雪是一种极为壮观的运动,它是在依山势建造的跳台上进行的运动.运动员穿着专用滑雪板,不带雪杖在助滑路上获得较大速度后从跳台水平飞出,在空中飞行一段距离后着陆.如图所示,设某运动员从倾角为θ=37°的坡顶A点以速度v0=20 m/s沿水平方向飞出,到山坡上的B点着陆,山坡可以看成一个斜面.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)运动员在空中飞行的时间t;(2)AB间的距离s.参考答案与解析1.导学号17750001]【解析】选C.设初速度为v0,则v=v20+(gt)2,a=g,yx=12gt2v0t=g2v0t,只有选项C正确.2.导学号17750002]【解析】选D.球击出后做平抛运动,落地速度大小由初速度和高度共同决定,A错误;落地速度方向是由水平方向和竖直方向速度共同决定,B错误;垒球的水平位移x=v0t=v02yg,由初速度和高度决定,C错误;垒球在空中的运动时间由高度决定,D正确.3.导学号17750003]【解析】选B.子弹在竖直方向上是自由落体运动,若松鼠做自由落体运动,那么松鼠和子弹在竖直方向上的运动是一样的,它们始终在一个高度上,所以松鼠一定会被击中,A错误;竖直上跳时,在竖直方向上和子弹的运动过程不一样,能逃过厄运,B正确. 迎着枪口,沿AB方向水平跳离树枝和背着枪口,沿AC方向水平跳离树枝这两种运动在竖直方向上也是自由落体运动,松鼠同样会被击中,都不能逃脱厄运,故C、D错误;故选B.4.导学号17750004]【解析】选A.物资投出后做平抛运动,其落地所用时间由高度决定,t=2hg=6 s,A项正确,B项错误;抛出后至落地的水平位移为x=v t=60 m,C、D项错误.5.导学号17750005]【解析】选C.三个物体都做平抛运动,取一个相同的高度,此时物体下降的时间相同,水平位移大的物体的初速度较大,如图所示,由图可知:v A <v B <v C .由h =12gt 2可知,物体下降的高度决定物体运动的时间,t A >t B >t C ,所以C 正确.6.导学号17750006] 【解析】选D.结合平抛运动知识,A 球满足tan 37°=12gt 21v 0t 1,B 球满足tan 53°=12gt 220t 2,那么t 1∶t 2=tan 37°∶tan 53°=9∶16.7.导学号17750007] 【解析】选C.物体从斜面某点水平抛出后落到斜面上,物体的位移与水平方向的夹角等于斜面倾角θ,即tan θ=y x =12gt 2v 0t =gt2v 0,物体落到斜面上时速度方向与水平方向的夹角的正切值tan φ=v y v x =gtv 0,故可得tan φ=2tan θ,只要小球落到斜面上,位移方向与水平方向夹角就总是θ,则小球的速度方向与水平方向的夹角也总是φ,故速度方向与斜面的夹角就总是相等,与v 1、v 2的关系无关,C 选项正确.8.导学号17750008] 【解析】选ACD.由l =v 0t 得物体在空中飞行的时间为lv 0,故A 正确;由h =12gt 2得t =2h g ,故B 错误;由v y =v 2-v 20以及v y =gt 得t =v 2-v 20g,故C 正确;由于竖直方向为匀变速直线运动,故h =v y 2t ,所以t =2hv y,D 正确.9.导学号17750009] 【解析】选BCD.由题意得v 0t =12gt 2,则t =2v 0g ,所以v y =gt =g ·2v 0g =2v 0.则v =v 20+v 2y =5v 0,通过的位移l =2x =2v 0t =22v 20g.10.导学号17750010] 【解析】选AB.甲做平抛运动,在水平方向上做匀速直线运动,所以在未落地前任何时刻,甲乙两球都在一竖直线上,最后在地面上相遇,可能在P 点前,也可能在P 点后;甲在竖直方向上做自由落体运动,所以在未落地前的任何时刻,两球在同一水平线上,两球相遇点可能在空中,可能在P 点.所以,若三球同时相遇,则一定在P 点,故A 正确,D 错误.若甲丙两球在水平面相遇,由于甲乙两球始终在同一竖直线上,所以乙球一定在P 点,故B 正确.若甲乙两球在水平面上相遇,由于甲丙两球始终在同一水平线上,所以丙球一定落地,故C 错误.故选AB.11.导学号17750011] 【解析】选AC.平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动,A 对;t 1时刻水平分速度v 0和竖直分速度v y 相等,此时速度方向与初速度方向间夹角的正切值为tan θ=v yv 0=1,θ=45°,故B 错;此时,位移方向与初速度方向间夹角的正切值为tan α=y x =v y 2t 1v 0t 1=12,C 对;同理可知2t 1时间内位移方向与初速度方向夹角的正切值为tanα′=12g (2t 1)2v 0·2t 1=1,α′=45°,D 错.答案为A 、C.12.导学号17750012] 【解析】选BD.A 质点做平抛运动,由平抛运动规律知,x 1=v t 1,h =12gt 21,而B 质点在斜面上做类平抛运动,其运动可分解为沿x 轴方向的匀速直线运动和沿斜面向下的匀加速直线运动,设斜面与水平面的夹角为θ,h sin θ=12g sin θt 22,x 2=v t 2,t 1<t 2,x 1<x 2,所以B 、D 正确.13.导学号17750013] 【解析】(1)为保证弹丸做平抛运动,用玩具手枪发射弹丸时应使子弹水平飞出;(2)子弹水平分运动是匀速运动,由图知a 、b 、c 、d 间水平距离相等,则相邻两点间的时间间隔相等,设为T ,竖直分运动是自由落体运动,满足Δy =gT 2,得L =gT 2,2L =v 0T ,所以v 0=2LT =2Lg =1.0 m/s.【答案】(1)使子弹水平飞出 (2)1.014.导学号17750014] 【解析】(1)设质点平抛的初速度为v 0,在A 、B 点的竖直分速度分别为v Ay 、v By ,则v Ay =v 0tan 30°,v By =v 0tan 60°,解得v Ay v By =13.(4分) (2)设从A 到B 的时间为t ,竖直位移和水平位移分别为y 、x ,则 tan θ=yx ,x =v 0t ,y =v Ay +v By 2t ,联立解得tan θ=233.(4分) 【答案】见解析 15.导学号17750015]【解析】小球速度很小,则不能越过墙;小球速度很大,则飞到马路外面.两临界状态就是刚好越过墙和落在马路右侧边缘.设小球刚好越过墙如图中Ⅰ所示,此时小球的水平初速度为v 1,则H -h =12gt 21,t 1=2(H -h )g(3分) 由L =v 1t 1得v 1=5 m/s.(1分)设小球越过墙刚好落在马路的右边缘如图中Ⅱ所示,此时小球的水平速度为v 2,则 H =12gt 22,t 2=2Hg(3分) 由L +D =v 2t 2得v 2=13 m/s.(1分)所以小球离开屋顶时的速度满足5 m/s ≤v ≤13 m/s 时,小球落在墙外的马路上.(2分) 【答案】5 m/s ≤v ≤13 m/s16.导学号17750016] 【解析】(1)运动员由A 到B 做平抛运动 水平方向的位移为x =v 0t ①(1分) 竖直方向的位移为y =12gt 2②(1分)tan 37°=yx③(2分)由①②③解得:t=2v0tan 37°g=3 s.(2分)(2)由题意可知sin 37°=ys④(2分)联立②④得s=g2sin 37°t2(2分)将t=3 s代入上式得s=75 m.(2分) 【答案】(1)3 s(2)75 m高中同步测试卷(二)第二单元 圆周运动 (时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题5分,共35分.在每小题给出的四个选项中,只有一个选项正确.)1.下列关于离心现象的说法正确的是( ) A .当物体所受离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的运动C .做匀速圆周运动的物体,当它所受的一切力都消失时,它将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做曲线运动 2.一走时准确的时钟(设它们的指针连续均匀转动)( ) A .时针的周期是1 h ,分针的周期是60 s B .分针的角速度是秒针的12倍C .如果分针的长度是时针的1.5倍,则分针端点的向心加速度是时针端点的1.5倍D .如果分针的长度是时针的1.5倍,则分针端点的线速度是时针端点的18倍3.两个小球固定在一根长为1 m 的杆的两端,杆绕O 点逆时针旋转,如图所示,当小球A 的速度为3 m/s 时,小球B 的速度为12 m/s.则小球B 到转轴O 的距离是 ( )A .0.2 mB .0.3 mC .0.6 mD .0.8 m4.物体m 用细绳通过光滑的水平板上的小孔与装有细沙的漏斗M 相连,并且正在做匀速圆周运动,如图所示,如果缓慢减小M 的质量,则物体的轨道半径r 、角速度ω变化情况是( )A .r 不变,ω变小B .r 增大,ω减小C .r 减小,ω增大D .r 减小,ω不变5.质量为m 的飞机,以速度v 在水平面内做半径为R 的匀速圆周运动,空气对飞机的升力大小等于( )A .m g 2+⎝⎛⎭⎫v2R 2B .m v 2RC .m⎝⎛⎭⎫v 2R 2-g 2 D .mg6.火车在转弯行驶时,需要靠铁轨的支持力提供向心力.下列关于火车转弯的说法中正确的是( )A .在转弯处使外轨略高于内轨B .在转弯处使内轨略高于外轨C .在转弯处使内轨、外轨在同一水平高度D .在转弯处火车受到的支持力竖直向上7. 为了测定子弹的飞行速度,在一根水平放置的轴杆上固定两个薄圆盘A 、B ,A 、B 平行相距 2 m ,轴杆的转速为 3 600 r/min ,子弹穿过两盘留下两弹孔a 、b ,测得两弹孔半径的夹角是30°,如图所示,则该子弹的速度可能是( )A .360 m/sB .720 m/sC .1 440 m/sD .108 m/s二、多项选择题(本题共5小题,每小题5分,共25分.在每小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有错选的得0分.)8.做匀速圆周运动的物体,运动半径增大为原来的2倍,则( ) A .如果线速度大小不变,角速度变为原来的2倍 B .如果角速度不变,周期变为原来的2倍C .如果周期不变,向心加速度大小变为原来的2倍D .如果角速度不变,线速度大小变为原来的2倍 9.下列关于向心加速度的说法错误的是( ) A .向心加速度越大,物体速率变化越快 B .向心加速度越大,物体转动得越快C .物体做匀速圆周运动时的加速度方向始终指向圆心D .在匀速圆周运动中,向心加速度是恒定的10. 如图所示,皮带传动装置中,右边两轮连在一起共轴转动,图中三轮半径分别为:r 1=3r ,r 2=2r ,r 3=4r ;A 、B 、C 三点为三个轮边缘上的点,皮带不打滑.A 、B 、C 三点的线速度分别为v 1、v 2、v 3,角速度分别为ω1、ω2、ω3,向心加速度分别为a 1、a 2、a 3,则下列比例关系正确的是( )A.a 1a 2=32B.ω1ω2=23C.v 2v 3=21D.a 2a 3=1211. 如图所示,两根长度不同的细线分别系有一个小球,细线的上端都系于O 点.设法让两个小球在同一水平面上做匀速圆周运动.已知细线长度之比为L 1∶L 2=3∶1,L 1跟竖直方向成60°角.下列说法中正确的有( )A.两小球做匀速圆周运动的周期必然相等B.两小球的质量m1∶m2=3∶1C.L2跟竖直方向成30°角D.L2跟竖直方向成45°角12.如图甲所示,龙卷风是在极不稳定天气下由空气强烈对流运动而产生的一种伴随着高速旋转的漏斗状云柱的强风涡旋,其中心附近风速可达100 m/s~200 m/s,最大300 m/s,其中心的气压可以比周围气压低百分之十,一般可低至400 hPa,最低可达200 hPa.假设在龙卷风旋转的过程中,有A、B两个质量相同的物体随龙卷风一起旋转,将龙卷风模拟成如图乙所示,假设两物体做匀速圆周运动,下列说法正确的是()A.A的线速度必定大于B的线速度B.A的角速度必定大于B的角速度C.A的向心加速度必定大于B的向心加速度D.A的周期必定大于B的周期三、计算题(本题共4小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.) 13.(8分)汽车行驶在半径为50 m的圆形水平跑道上,速度为10 m/s.已知汽车的质量为1 000 kg,汽车与地面的最大静摩擦力为车重的0.8倍.问:(g=10 m/s2)(1)角速度是多少?(2)其向心力是多大?(3)要使汽车不打滑,则其速度最大不能超过多少?14.(10分) 如图所示,杆长为L,杆的一端固定一质量为m的小球,杆的质量忽略不计,整个系统绕杆的另一端O在竖直平面内做圆周运动,求:(1)小球在最高点A时速度v A为多大时,才能使杆对小球的作用力为零?(2)如m=0.5 kg,L=0.5 m,v A=0.4 m/s,g=10 m/s2,则在最高点A时,杆对小球的作用力是多大?是推力还是拉力?15.(10分)如图所示,一光滑的半径为R的半圆形轨道固定在水平面上,一个质量为m的小球以某一速度冲上轨道,然后小球从轨道口B处飞出,最后落在水平面上,已知小球落地点C距B处的距离为3R.求小球对轨道口B处的压力为多大?16.(12分)如图所示,OP=PQ=R,两个小球质量都是m,a、b为水平轻绳.两小球正随水平圆盘以角速度ω匀速同步转动.小球和圆盘间的摩擦力可以不计.求:(1)绳b对小球Q的拉力大小;(2)绳a对小球P的拉力大小.参考答案与解析1.导学号17750017]【解析】选C.做匀速圆周运动的物体的向心力是效果力.产生离心现象的原因是F合<mrω2,或是F合=0(F突然消失),故A项错误;当F=0时,根据牛顿第一定律,物体从这时起沿切线做匀速直线运动,故C项正确,B、D项错误.2.导学号17750018]【解析】选D.时针的周期是12 h,分针的周期是1 h,秒针的周期为1 60h,所以角速度之比为112∶1∶60,故A、B错误;由v=rω可得,分针和时针端点线速度之比为:12×1.5∶1×1=18∶1.故选D.3.导学号17750019]【解析】选D.设小球A、B做圆周运动的半径分别为r1、r2,则v1∶v2=ωr1∶ωr2=r1∶r2=1∶4,又因r1+r2=1 m,所以小球B到转轴O的距离r2=0.8 m,D正确.4.导学号17750020]【解析】选B.细绳拉力提供物体m做圆周运动需要的向心力,当缓慢减小M时,对m的拉力减小,拉力不足以提供向心力,物体m做离心运动,运动半径r增大,由牛顿第二定律得Mg=T=mω2r,因为细绳拉力T减小,半径r增大,因此ω减小,选项B正确.5.导学号17750021] 【解析】选A.首先对飞机在水平面内的受力情况进行分析,其受力情况如图所示,飞机受到重力mg 、空气对飞机的支持力为F ,两力的合力为F 向,方向水平指向圆心.由题意可知,重力mg 与F 向垂直,故F =(mg )2+F 2向,又F 向=m v 2R,代入上式,得F =mg 2+⎝⎛⎭⎫v2R 2,故正确选项为A.6.导学号17750022] 【解析】选A.火车在转弯行驶时,支持力和重力的合力提供向心力,由于支持力与两个铁轨所在的平面垂直,故在转弯处使外轨略高于内轨,支持力并不是竖直向上的;故选A.7.导学号17750023] 【解析】选C.子弹从A 盘到B 盘,盘转动的角度θ=2πn +π6(n =0,1,2,…).盘转动的角速度ω=2πT =2πf =2πn =2π×3 60060rad/s =120π rad/s.子弹在A 、B 间运动的时间等于圆盘转动的时间,即2v =θω,所以v =2ωθ=2×120π2πn +π6,v =1 44012n +1(n =0,1,2,…). n =0时,v =1 440 m/s ; n =1时,v =110.77 m/s ; n =2时,v =57.6 m/s ; ……8.导学号17750024] 【解析】选CD.如果线速度大小不变,运动半径增大为原来的2倍,根据v =ωr 可判,角速度应变为原来的12,故A 错误; 根据T =2π可判如果角速度不变,周期不变,故B 错误;如果周期不变,运动半径增大为原来的2倍,根据a =4π2T 2r 可判向心加速度变为原来的2倍,故C 正确;如果角速度大小不变,运动半径增大为原来的2倍,根据v =ωr 可判,线速度应变为原来的2倍,故D 正确;故选CD.9.导学号17750025] 【解析】选ABD.向心加速度描述的是圆周运动速度方向的变化快慢,而非速度大小的变化快慢,A 、B 错误;匀速圆周运动的加速度即向心加速度,方向指向圆心,C 正确;在匀速圆周运动中,向心加速度大小不变,方向时刻改变,D 错误.10.导学号17750026] 【解析】选BD.因v 1=v 2,由a =v 2R 得a 1a 2=23,A 错;ω1ω2=23,B 对,v 2v 3=2ωr 4ωr =12,C 错;a 2a 3=2ω2r 4ω2r =12,D 对.11.导学号17750027] 【解析】选AC.小球所受合力的大小为mg tan θ,根据mg tan θ=mω2L sin θ,得ω=gL cos θ,两小球在同一水平面内做匀速圆周运动,则两小球的L cos θ相等,即L 1cos 60°=L 2cos θ,解得θ=30°,且角速度相等,由T =2πω知周期相等,A 、C 正确,D 错误;由mg tan θ=mω2L sin θ知,小球做匀速圆周运动与质量无关,无法求出两小球的质量比,B 错误.12.导学号17750028] 【解析】选AC.A 、B 两物体的运动可看做是同轴转动,根据v =ωr 可知,A 的线速度必定大于B 的线速度,选项A 正确;A 的角速度等于B 的角速度,选项B 错误;根据a =ω2r 可知,A 的向心加速度必定大于B 的向心加速度,选项C 正确;A 的周期等于B 的周期,选项D 错误.13.导学号17750029] 【解析】(1)由v =rω可得,角速度为 ω=v r =1050 rad/s =0.2 rad/s.(2分)(2)向心力的大小为:F 向=m v 2r =1 000×10050N =2 000 N .(2分)(3)汽车作圆周运动的向心力由车与地面的之间静摩擦力提供.随车速的增加,需要的向心力增大,静摩擦力随着一直增大到最大值为止.由牛顿第二定律得:f m =0.8mg =m v 2r(2分)汽车过弯道的允许的最大速度为:v =0.8gr =0.8×10×50 m/s =20 m/s.(2分) 【答案】(1)0.2 rad/s (2)2 000 N (3)20 m/s14.导学号17750030] 【解析】(1)若杆和小球之间相互作用力为零,那么小球做圆周运动的向心力由重力mg 提供,则有mg =m v 2AL解得:v A =Lg .(4分)(2)杆长L =0.5 m 时,临界速度 v 临=Lg =0.5×10 m/s =2.2 m/s(2分) v A =0.4 m/s<v 临,杆对小球有推力F A . 则有mg -F A =m v 2AL解得:F A =mg -m v 2AL=⎝⎛⎭⎫0.5×10-0.5×0.420.5N =4.84 N .(4分) 【答案】(1)Lg (2)4.84 N 推力15.导学号17750031] 【解析】设小球经过B 点时速度为v 0,则 小球平抛的水平位移为:x =(3R )2-(2R )2=5R (2分) v 0=x t=5R 4R g=5gR 2(2分)对小球过B 点时由牛顿第二定律得: F +mg =m v 20R,(2分)F=14mg (2分)由牛顿第三定律F′=F=14mg.(2分)【答案】14mg16.导学号17750032]【解析】(1)对球Q,受力如图甲所示,其做圆周运动的半径为2R,根据牛顿第二定律有F b=mω2·2R=2mω2R.(4分)(2)对球P,受力如图乙所示,其做圆周运动的半径为R,根据牛顿第二定律有F a-F b′=mω2R(3分)F b=F b′(1分)解得F a=F b′+mω2R=3mω2R.(4分)【答案】(1)2mω2R(2)3mω2R高中同步测试卷(三)第三单元 行星运动和万有引力定律 (时间:90分钟,满分:100分)一、单项选择题(本题共7小题,每小题5分,共35分.在每小题给出的四个选项中,只有一个选项正确.)1.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( ) A .由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B .由于地球对苹果有引力,而苹果对地球没有引力造成的C .苹果与地球间的相互作用力是等大的,但由于地球质量极大,不可能产生明显加速度D .以上说法都不对2.如图所示,两个半径为r 1=0.40 m ,r 2=0.60 m 且质量分布均匀的实心球质量分别为m 1=4.0 kg 、m 2=1.0 kg ,两球间距离r 0=2.0 m ,则两球间的引力的大小为(G =6.67×10-11N ·m 2/kg 2)( )A .6.67×10-11NB .大于6.67×10-11NC .小于6.67×10-11ND .不能确定3.设想把质量为m 的物体(可视为质点)放到地球的中心,地球质量为M 、半径为R .则物体与地球间的万有引力是( )A .零B .无穷大C .GMm /R 2D .无法确定4.据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6.4倍,一个在地球表面重量为600 N 的人在这个行星表面的重量将变为960 N .由此可推知,该行星的半径与地球半径之比约为( )A .0.5B .2C .3.2D .45.假设宇宙中有一颗未命名的星体,其质量为地球的6.4倍,一个在地球表面重力为50 N 的物体,经测定在该未知星体表面的重力为80 N ,则未知星体与地球的半径之比为( )A .0.5B .2C .3.2D .46.假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-dRB .1+dRC.⎝⎛⎭⎫R -d R 2D.⎝⎛⎭⎫R R -d 27.英国《新科学家(New Scientist)》杂志评选出了世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中.若某黑洞的半径R 约45 km ,质量M 和半径R 的关系满足MR=c22G(其中c为光速,G为引力常量),则该黑洞表面重力加速度的数量级为() A.108 m/s2B.1010 m/s2C.1012 m/s2D.1014 m/s2二、多项选择题(本题共5小题,每小题5分,共25分.在每小题给出的四个选项中,有多个选项正确,全部选对的得5分,选对但不全的得3分,有错选的得0分.)8.理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用.下面对于开普勒第三定律的公式a3T2=k的说法错误的是()A.公式只适用于轨道是椭圆的运动B.式中的k值,对于所有行星(或卫星)都相等C.式中的k值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离9.关于物理学家所做出的贡献,下列说法中错误的是()A.总结出行星运动三条定律的科学家是牛顿B.总结出万有引力定律的物理学家是伽俐略C.提出日心说的物理学家是第谷D.第一次精确测量出万有引力常量的物理学家是卡文迪许10.下面说法中正确的是()A.F=G m1m2r2公式中,G为引力常量,它是由实验测得的,而不是人为规定的B.F=G m1m2r2公式中,当r趋近于零时,万有引力趋近于无穷大C.F=G m1m2r2公式中,m1与m2受到的引力总是大小相等的,而与m1、m2是否相等无关D.F=G m1m2r2公式中,m1与m2受到的引力总是大小相等、方向相反的,是一对平衡力11.地球绕太阳的运行轨道是椭圆,因而地球与太阳之间的距离随季节变化.冬至这天地球离太阳最近,夏至最远.下列关于地球在这两天绕太阳公转速度大小的说法中,错误的是() A.地球公转速度是不变的B.冬至这天地球公转速度大C.夏至这天地球公转速度大D.无法确定12.宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上,用R表示地球的半径,g0表示地球表面处的重力加速度,g′表示宇宙飞船所在处的重力加速度,N表示人对台秤的压力,下列说法中正确的是()A.g′=0 B.g′=R2 r2g0C.N=0 D.N=m R2 r2g0三、计算题(本题共4小题,共40分.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)。
最新教科版高中物理必修二单元测试题全套附答案章末检测试卷(第一章)(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题5分,共50分.1~6题为单项选择题,7~10题为多项选择题.全部选对的得5分,选对但不全的得3分,错选和不选的得0分)1.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是()图1A.物体做速度逐渐增大的曲线运动B.物体运动的加速度先减小后增大C.物体运动的初速度大小是50 m/sD.物体运动的初速度大小是10 m/s答案 C解析由题图知,x方向的初速度沿x轴正方向,y方向的初速度沿y轴负方向,则合运动的初速度方向不在y轴方向上;x轴方向的分运动是匀速直线运动,加速度为零,y轴方向的分运动是匀变速直线运动,加速度沿y轴方向,所以合运动的加速度沿y轴方向,与合初速度方向不在同一直线上,因此物体做曲线运动.根据速度的合成可知,物体的速度先减小后增大,故A错误;物体运动的加速度等于y 方向的加速度,保持不变,故B错误;根据题图可知物体的初速度大小为:v0=v x02+v y02=302+402 m/s=50 m/s,故C正确,D错误.【考点】运动的合成和分解【题点】速度的合成和分解2.人站在平台上平抛一小球,球离手的速度为v1,落地时速度为v2,不计空气阻力,下图中能表示出速度矢量的演变过程的是()答案 C3.某地发生地震,一架装载救灾物资的直升飞机以10 m/s的速度水平飞行,在距地面180 m的高度处,欲将救灾物资准确投放至地面目标,若不计空气阻力,g取10 m/s2,则()A.物资投出后经过6 s到达地面目标B.物资投出后经过180 s到达地面目标C.应在距地面目标水平距离600 m处投出物资D.应在距地面目标水平距离180 m处投出物资答案 A解析物资投出后做平抛运动,其落地所用时间由高度决定,t=2hg=6 s,A项正确,B项错误;投出后至落地的水平位移为x=v t=60 m,C、D项错误.4.距地面高5 m的水平直轨道上A、B两点相距2 m,在B点用细线悬挂一小球,离地高度为h,如图2.小车始终以4 m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10 m/s2.可求得h等于()图2A.1.25 m B.2.25 m C.3.75 m D.4.75 m答案 A解析由题意可知,从A处落下的小球落到地面的时间等于小车从A到B的时间与在B点悬挂的小球落地的时间之和,即2Hg=dv+2hg,代入数据解得h=1.25 m,故选项A正确.5.如图3所示,在水平面上有P、Q两点,A、B两点分别在P、Q两点的正上方,距离地面的高度分别为h1和h2.某时刻在A点以速度v1水平抛出一小球a,经时间t后又在B点以速度v2水平抛出另一小球b,结果两球同时落在P、Q连线上的O点,则有(空气阻力不计)()图3A .PO ∶OQ =v 1h 1∶v 2h 2B .PO ∶OQ =v 1h 12∶v 2h 22C .PO ∶OQ =v 1h 1∶v 2h 2D .PO ∶OQ =v 12h 1∶v 22h 2 答案 C解析 设a 球落地的时间为t 1,b 球落地的时间为t 2,有PO =v 1t 1=v 12h 1g,OQ =v 2t 2=v 22h 2gPO ∶OQ =v 1h 1∶v 2h 2,故C 正确.6.如图4所示,离地面高h 处有甲、乙两个小球,甲以初速度v 0水平射出,同时乙以大小相等的初速度v 0沿倾角为45°的光滑固定斜面下滑,若甲、乙同时到达地面,则v 0的大小是(空气阻力不计)( )图4A.gh 2 B.gh C.2gh 2D .2gh 答案 A解析 甲做平抛运动,在竖直方向有h =12gt 2,得运动时间t =2h g .乙沿斜面下滑,位移x =hsin 45°=2h ,加速度a =g sin 45°=22g ,则有x =v 0t ′+12at ′2,且甲、乙同时到达地面,则t ′=2hg,联立解得v 0=gh2,故A 项正确. 7.西班牙某小镇举行了西红柿狂欢节,其间若一名儿童站在自家的平房顶上,向距离他L 处的对面的竖直高墙上投掷西红柿,第一次水平抛出的速度是v 0,第二次水平抛出的速度是2v 0,则比较前后两次被抛出的西红柿在碰到墙时,有(不计空气阻力)( ) A .运动时间之比是2∶1 B .下落的高度之比是2∶1 C .下落的高度之比是4∶1 D .运动的加速度之比是1∶1 答案 ACD解析 由平抛运动的规律得t 1∶t 2=L v 0∶L 2v 0=2∶1,故选项A 正确.h 1∶h 2=(12gt 12)∶(12gt 22)=4∶1,选项B错误,C正确.由平抛运动的性质知,选项D正确.【考点】平抛运动规律的应用【题点】平抛运动规律的应用8.如图5所示,蹲在树枝上的一只松鼠看到一个猎人正在用枪水平瞄准它,就在子弹出枪口时,开始逃跑,松鼠可能的逃跑方式有下列四种.在这四种逃跑方式中,松鼠不能逃脱厄运而被击中的是(设树枝足够高,忽略空气阻力)()图5A.自由下落B.竖直上跳C.迎着枪口,沿AB方向水平跳离树枝D.背着枪口,沿AC方向水平跳离树枝答案ACD解析射出的子弹做平抛运动,根据平抛运动的特点,竖直方向做自由落体运动,所以无论松鼠以自由落下,迎着枪口沿AB方向水平跳离树枝,还是背着枪口沿AC方向水平跳离树枝,竖直方向的运动情况都与子弹相同,一定被击中,所以不能逃脱厄运而被击中的是A、C、D.9.如图6所示,轻质不可伸长的细绳,绕过光滑定滑轮C,与质量为m的物体A连接,A放在倾角为θ的光滑固定斜面上,绳的另一端和套在固定竖直杆上的物体B连接.现B、C间细绳恰沿水平方向,从当前位置开始,B在外力作用下以速度v0匀速下滑.设绳子的张力为T,在此后的运动过程中,下列说法正确的是()图6A.物体A做加速运动B.物体A做匀速运动C.T可能小于mg sin θD.T一定大于mg sin θ答案AD解析由题意可知,将B的实际运动分解成两个分运动,如图所示,根据平行四边形定则,可知v B sin α=v绳;因B以速度v0匀速下滑,又α增大,所以v绳增大,则物体A做加速运动,根据受力分析,结合牛顿第二定律,则有T>mg sin θ,故A、D正确.10.如图7,一小球从某固定位置以一定初速度水平抛出,已知当抛出速度为v 0时,小球落到一倾角为θ=60°的斜面上,且球发生的位移最小,不计空气阻力.则( )图7A .小球从抛出到落到斜面的时间为3v 03gB .小球从抛出到落到斜面的时间为23v 03gC .小球的抛出点到斜面的距离为4v 023gD .小球的抛出点到斜面的距离为2v 023g答案 BC解析 球平抛的位移最小,则抛出点和落点的连线与斜面垂直,分解位移,如图所示:设平抛时间为t ,结合几何关系知,tan θ=x y ,x =v 0t ,y =12gt 2,解得:t =23v 03g ,故选项A 错误,B 正确;由s =xsin θ=v 0t sin θ=4v 023g,选项C 正确,D 错误.二、填空题(本题共2小题,共10分)11.(4分)某研究性学习小组进行如下实验:如图8所示,在一端封闭的光滑细玻璃管中注满清水,水中放一个红蜡做成的小圆柱体R .将玻璃管的开口端用胶塞塞紧后竖直倒置且与y 轴重合,在R 从坐标原点以速度v 0=3 cm/s 匀速上浮的同时,玻璃管沿x 轴正方向做初速度为零的匀加速直线运动.同学们测出某时刻R 的坐标为(4,6),此时R 的速度大小为________cm/s.R 在上升过程中运动轨迹的示意图是图9中的________.(R 视为质点)图8图9答案 5 丁解析 小圆柱体R 有水平方向的加速度,所受合外力指向曲线的内侧,所以其运动轨迹应如丁图所示.因为竖直方向匀速,由y =6 cm =v 0t 知t =2 s ,水平方向x =v x 2·t =4 cm ,所以v x =4 cm/s ,因此此时R 的速度大小v =v x 2+v 02=5 cm/s.12.(6分)未来在一个未知星球上用如图10甲所示装置研究平抛运动的规律.悬点O 正下方P 点处有水平放置的炽热电热丝,当悬线摆至电热丝处时能轻易被烧断,小球由于惯性向前飞出做平抛运动.现对小球采用频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了小球在做平抛运动过程中的多张照片,经合成后,照片如图乙所示.a 、b 、c 、d 为连续四次拍下的小球位置,已知照相机连续拍照的时间间隔是0.10 s ,照片大小如图中坐标所示,又知该照片的长度与实际背景屏的长度之比为1∶4,则:图10(1)由以上信息,可知a 点________(选填“是”或“不是”)小球的抛出点. (2)由以上及图信息,可以推算出该星球表面的重力加速度为________m/s 2. (3)由以上及图信息可以算出小球平抛的初速度是________m/s. (4)由以上及图信息可以算出小球在b 点时的速度是________m/s. 答案 (1)是 (2)8 (3)0.8 (4)425解析 (1)由初速度为零的匀加速直线运动经过相同的时间内通过位移之比为1∶3∶5可知,a 点是抛出点.(2)由ab 、bc 、cd 水平距离相同可知,a 到b 、b 到c 运动时间相同,设为T ,在竖直方向有Δh =gT 2,T=0.10 s ,可求出g =8 m/s 2.(3)由两位置间的时间间隔为0.10 s ,水平距离为8 cm ,x =v x t ,得水平速度为0.8 m/s.(4)b 点竖直分速度为ac 间的竖直平均速度,根据速度的合成求b 点的合速度,v yb =4×4×1×10-22×0.10m/s=0.8 m/s ,所以v b =v x 2+v yb 2=425m/s. 三、计算题(本题共4小题,共40分)13.(8分)某河宽为200 m ,河水的流速与离河岸距离的变化关系如图11所示,船在静水中的航行速度恒为4 m/s ,则小船渡河的最短时间是多少?在此过程中,小船在河水中航行的最大速度是多少?速度方向与河岸夹角是多少?图11答案 50 s 5 m/s 53°解析 设水流速度为v 1,小船在静水中的速度为v 2,河宽为d . 当船头垂直河岸渡河时,时间最短:t =dv 2,代入数据可得t =50 s.小船驶至距河岸50 m 时水流速度最大,此时船的实际速度也最大,则v 1m =3 m/s , v m =v 1m 2+v 22=32+42 m /s =5 m/s ; 设此时该速度方向与河岸的夹角为θ, 则tan θ=v 2v 1m =43,所以θ=53°.14.(10分)有A 、B 、C 、三个小球,A 球距地面较高,B 球次之,C 球最低,A 、C 两球在同一竖直线上,相距10 m ,如图12所示.三球同时开始运动,A 球竖直下抛,B 球平抛,C 球竖直上抛,且三球的初速度大小相等,5 s 后三球在D 点相遇,不考虑空气阻力.则图12(1)三球的初速度大小是多少?(2)开始运动时,B 球离C 球的水平距离和竖直距离各是多少? 答案 (1)1 m/s (2)5 m 5 m解析 由题中条件可知,A 球、C 球做匀变速直线运动,B 球做平抛运动,相遇时三球在空中运动的时间相等,取竖直向下为正方向.(1)对A 球有h AD =v 0t +12gt 2,对C 球有h CD =-v 0t +12gt 2又h AD -h CD =10 m ,即2v 0t =10 m ,解得v 0=102×5m/s =1 m/s. (2)B 球与C 球的水平距离为s BC =v 0t =1×5 m =5 mB 球与C 球的竖直距离为h BC =h BD -h CD =12gt 2-(-v 0t +12gt 2)=v 0t =1×5 m =5 m.15.(10分)如图13所示,在水平地面上固定一倾角θ=37°、表面光滑的斜面体,物体A 以v 1=6 m/s 的初速度沿斜面上滑,同时在物体A 的正上方,有一物体B 以某一初速度水平抛出.当A 上滑到最高点速度为0时恰好被物体B 击中.A 、B 均可看成质点(不计空气阻力,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求:图13(1)物体A 上滑到最高点所用的时间t ; (2)物体B 抛出时的初速度v 2的大小; (3)物体A 、B 间初始位置的高度差h . 答案 (1)1 s (2)2.4 m/s (3)6.8 m解析 (1)物体A 上滑过程中,由牛顿第二定律得 mg sin θ=ma 代入数据得a =6 m/s 2设物体A 滑到最高点所用时间为t ,由运动学公式知0=v 1-at 解得t =1 s(2)物体B 平抛的水平位移x =12v 1t cos 37°=2.4 m物体B 平抛的初速度v 2=xt =2.4 m/s(3)物体A 、B 间初始位置的高度差 h =12v 1t sin 37°+12gt 2=6.8 m. 【考点】平抛运动中的两物体相遇问题【题点】平抛运动和竖直(或水平)运动的相遇问题16.(12分)如图14所示,有一固定在水平桌面上的轨道ABC ,AB 段粗糙,与水平面间的夹角为θ=37°,BC 段光滑,C 点紧贴桌子边缘,桌高h =0.8 m .一小物块放在A 处(可视为质点),小物块与AB 间的动摩擦因数为μ=0.25.现在给小物块一个沿斜面向下的初速度v A =1 m/s ,小物块经过B 处前后瞬间的速率不变,小物块最后落在与C 点水平距离x =1.2 m 的D 处.(不计空气阻力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:图14(1)小物块在AB 段向下运动时的加速度大小a ; (2)小物块到达B 处时的速度大小v B ; (3)AB 的长L .答案 (1)4 m/s 2 (2)3 m/s (3)1 m解析 (1)小物块从A 到B 过程中,由牛顿第二定律得 mg sin θ-μmg cos θ=ma解得a =4 m/s 2.(2)小物块从B 向右匀速运动,自C 点水平抛出,由平抛运动规律得h =12gt 2,x =v B t解得v B =3 m/s(3)小物块从A 到B ,由运动学公式得 v B 2-v A 2=2aL 解得L =1 m章末检测试卷(第二章)(时间:90分钟 满分:100分)一、选择题(本题共12小题,每小题4分,共48分.1~8题为单项选择题,9~12题为多项选择题.全部选对的得4分,选对但不全的得2分,错选和不选的得0分)1.如图1所示,甲、乙两车在水平地面上匀速过圆弧形弯道(从1位置至2位置),已知两车速率相等,下列说法正确的是( )图1A .甲乙两车过弯道的时间可能相同B .甲乙两车角速度可能相同C .甲乙两车向心加速度大小可能相同D .甲乙两车向心力大小可能相同 答案 D2.如图2所示为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑行,则她( )图2A .所受的合力为零,做匀速运动B .所受的合力恒定,做匀加速运动C .所受的合力恒定,做变加速运动D .所受的合力变化,做变加速运动 答案 D解析 运动员做匀速圆周运动,由于合力时刻指向圆心,其方向变化,所以是变加速运动,D 正确. 【考点】对匀速圆周运动的理解 【题点】对匀速圆周运动的理解3.如图3所示,质量为m 的物块从半径为R 的半球形碗边向碗底滑动,滑到最低点时的速度为v ,若物块滑到最低点时受到的摩擦力是f ,则物块与碗的动摩擦因数为( )图3A.f mgB.fmg +mv 2RC.f mg -mv 2RD.f m v 2R答案 B解析 物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,根据牛顿第二定律得N -mg =m v 2R ,又f =μN ,联立解得μ=fmg +mv 2R,选项B 正确.4.质量为m 的飞机以恒定速率v 在空中水平盘旋,如图4所示,其做匀速圆周运动的半径为R ,重力加速度为g ,则此时空气对飞机的作用力大小为( )图4A .m v 2RB .mgC .m g 2+v 4R2D .mg 2-v 2R4答案 C解析 飞机在空中水平盘旋时在水平面内做匀速圆周运动,受到重力和空气的作用力两个力的作用,其合力提供向心力F =m v 2R .飞机受力情况如图所示,根据勾股定理得:F ′=(mg )2+F 2=mg 2+v 4R2.5.如图5所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置(两轮不打滑),两轮半径r A =2r B ,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止,若将小木块放在B 轮上,欲使木块相对B 轮能静止,则木块距B 轮转轴的最大距离为( )图5A.r B 4B.r B 3C.r B 2 D .r B答案 C解析 当主动轮匀速转动时,A 、B 两轮边缘上的线速度大小相等,由ω=v R 得ωA ωB =vr A v r B =r B r A =12.因A 、B材料相同,故木块与A 、B 间的动摩擦因数相同,由于小木块恰能在A 边缘上相对静止,则由静摩擦力提供的向心力达到最大值f m ,得f m =mωA 2r A ①设木块放在B 轮上恰能相对静止时距B 轮转轴的最大距离为r ,则向心力由最大静摩擦力提供,故f m =mωB 2r ②由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2,C 正确.【考点】水平面内的匀速圆周运动分析 【题点】水平面内的匀速圆周运动分析6.如图6所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L .今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为( )图6A .4mgB .2mgC .3mg D.3mg 答案 D解析 当小球到达最高点的速率为v 时,有mg =m v 2r .当小球到达最高点的速率为2v 时,应有F +mg=m (2v )2r =4mg ,所以F =3mg ,此时两段线对球的作用力如图所示,解得T =3mg ,选项D 正确,A 、B 、C 错误.7.如图7所示,水平圆盘可绕过圆心的竖直轴转动,两个小物体M 和m 之间连一根跨过位于圆心的光滑小孔的细线,M 与盘间的最大静摩擦力为f m ,物体M 随圆盘一起以角速度ω匀速转动,下述的ω取值范围已保证物体M 相对圆盘无滑动,则下列说法正确的是()图7A.无论ω取何值,M所受静摩擦力都指向圆心B.ω取不同值时,M所受静摩擦力有可能指向圆心,也有可能背向圆心C.ω取值越大,细线拉力越小D.ω取值越大,细线拉力越大答案 B解析M在竖直方向上受到重力和支持力,二力平衡,在水平方向受到绳子的拉力,也可能受到静摩擦力.设M所受静摩擦力方向指向圆心,根据牛顿第二定律得:T+f=Mω2r.又T=mg,则得:f=Mω2r -mg.若Mω2r>mg,f>0,静摩擦力方向指向圆心;若Mω2r<mg,f<0,静摩擦力方向背向圆心,故A错误,B正确;对于m,根据平衡条件得:T=mg,说明细线的拉力保持不变,故C、D错误.8.如图8所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球改到一个更高一些的水平面上做匀速圆周运动(图上未画出,细线长度不变),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是()图8A.Q受到桌面的静摩擦力变大B.Q受到桌面的支持力变大C.小球P运动的角速度变小D.小球P运动的周期变大答案 A解析金属块Q保持在桌面上静止,对金属块和小球研究,竖直方向上没有加速度,根据平衡条件得知,Q受到桌面的支持力等于两个物体的总重力,保持不变,故B错误.设细线与竖直方向的夹角为θ,细线的拉力大小为T,细线的长度为L.P球做匀速圆周运动时,由重力和细线的拉力的合力提供向心力,如图,则有T =mgcos θ,mg tan θ=mω2L sin θ,得角速度ω=gL cos θ,周期T =2πω=2πL cos θg,现使小球改到一个更高一些的水平面上做匀速圆周运动时,θ增大,cos θ减小,则得到细线拉力T 增大,角速度增大,周期T 减小.对Q ,由平衡条件知,f =T sin θ=mg tan θ,知Q 受到桌面的静摩擦力变大,故A 正确,C 、D 错误.9.m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮,如图9所示,已知皮带轮半径为r ,传送带与皮带轮间不会打滑,当m 可被水平抛出时( )图9A .皮带的最小速度为grB .皮带的最小速度为g r C .A 轮每秒的转数最少是12πg rD .A 轮每秒的转数最少是12πgr 答案 AC解析 物体恰好被水平抛出时,在皮带轮最高点满足mg =m v 2r ,即速度最小为gr ,选项A 正确;又因为v =2πrn ,可得n =12πgr,选项C 正确. 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题10.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图10所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h ,下列说法中正确的是( )图10A .h 越高,摩托车对侧壁的压力将越大B .h 越高,摩托车做圆周运动的线速度将越大C .h 越高,摩托车做圆周运动的周期将越大D .h 越高,摩托车做圆周运动的向心力将越大 答案 BC解析 摩托车受力分析如图所示.由于N =mgcos θ所以摩托车受到侧壁的支持力与高度无关,保持不变,摩托车对侧壁的压力也不变,A 错误;由F =mg tan θ=m v 2r =mω2r =m 4π2T 2r 知h 变化时,向心力F 不变,但高度升高,r 变大,所以线速度变大,角速度变小,周期变大,选项B 、C 正确,D 错误. 【考点】圆锥摆类模型【题点】类圆锥摆的动力学问题分析11.如图11所示,叠放在水平转台上的物体A 、B 及物体C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r .设最大静摩擦力等于滑动摩擦力,重力加速度为g ,下列说法正确的是( )图11A .B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2rC .转台的角速度一定满足ω≤μgrD .转台的角速度一定满足ω≤2μg 3r答案 BD解析 B 对A 的静摩擦力提供向心力,有f =3mω2r ,A 错,B 对;C 刚好发生滑动时,μmg =mω12·1.5r ,ω1=2μg3r,A 刚好发生滑动时,3μmg =3mω22r ,ω2=μg r,A 、B 一起刚好发生滑动时,5μmg =5mω32r ,ω3=μgr,故转台的角速度一定满足ω≤2μg3r,C 错,D 对. 12.如图12甲所示,一长为R 的轻绳,一端系在过O 点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O 点在竖直面内转动,小球通过最高点时,绳对小球的拉力F 与其速度平方v 2的关系如图乙所示,图线与纵轴的交点坐标为a ,下列判断正确的是( )图12A .利用该装置可以得出重力加速度,且g =R aB .绳长不变,用质量较大的球做实验,得到的图线斜率更大C .绳长不变,用质量较小的球做实验,得到的图线斜率更大D .绳长不变,用质量较小的球做实验,图线与纵轴的交点坐标不变 答案 CD解析 小球在最高点,根据牛顿第二定律得mg +F =m v 2R ,解得v 2=FRm +gR ,由题图乙知,纵轴截距a=gR ,解得重力加速度g =a R ,故A 错误.由v 2=FR m +gR 知,图线的斜率k =Rm ,绳长不变,用质量较大的球做实验,得到的图线的斜率更小,故B 错误.用质量较小的球做实验,得到的图线斜率更大,故C 正确.由v 2=FRm +gR 知,纵轴载距为gR ,绳长不变,则图线与纵轴交点坐标不变,故D 正确.二、实验题(本题共2小题,共12分)13.(6分)航天器绕地球做匀速圆周运动时处于完全失重状态,物体对支持面几乎没有压力,所以在这种环境中已经无法用天平称量物体的质量.假设某同学在这种环境中设计了如图13所示的装置(图中O 为光滑小孔)来间接测量物体的质量:给待测物体一个初速度,使它在水平桌面上做匀速圆周运动.设航天器中具有基本测量工具.图13(1)实验时需要测量的物理量是__________________. (2)待测物体质量的表达式为m =________________.答案 (1)弹簧测力计示数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析 需测量物体做圆周运动的周期T 、圆周运动的半径R 以及弹簧测力计的示数F ,则有F =m 4π2T 2R ,所以待测物体质量的表达式为m =FT 24π2R .【考点】对向心力的理解 【题点】向心力实验探究14.(6分)如图14所示是探究向心力的大小F 与质量m 、角速度ω和半径r 之间的关系的实验装置图,转动手柄1,可使变速轮塔2和3以及长槽4和短槽5随之匀速转动.皮带分别套在轮塔2和3上的不同圆盘上,可使两个槽内的小球A 、B 分别以不同的角速度做匀速圆周运动.小球做圆周运动的向心力由横臂6的挡板对小球的压力提供,球对挡板的反作用力,通过横臂6的杠杆作用使弹簧测力筒7下降,从而露出标尺8,标尺8露出的红白相间的等分格显示出两个球所受向心力的比值.那么:图14(1)现将两小球分别放在两边的槽内,为了探究小球受到的向心力大小和角速度的关系,下列说法中正确的是________.A .在小球运动半径相等的情况下,用质量相同的小球做实验B .在小球运动半径相等的情况下,用质量不同的小球做实验C .在小球运动半径不等的情况下,用质量不同的小球做实验D .在小球运动半径不等的情况下,用质量相同的小球做实验(2)在该实验中应用了________________(选填“理想实验法”“控制变量法”或“等效替代法”)来探究向心力的大小与质量m 、角速度ω和半径r 之间的关系.(3)当用两个质量相等的小球做实验,且左边的小球的轨道半径为右边小球轨道半径的2倍时,转动时发现右边标尺上露出的红白相间的等分格数为左边的2倍,那么,左边轮塔与右边轮塔之间的角速度之比为______.答案 (1)A (2)控制变量法 (3)1∶2解析 (1)根据F =mrω2知,要研究小球受到的向心力大小与角速度的关系,需控制小球的质量和小球运动的半径不变,故A 正确,B 、C 、D 错误. (2)由前面分析可知该实验采用的是控制变量法. (3)由F =mrω2得 ω左ω右=F 左F 右·r 右r 左=12. 三、计算题(本题共4小题,共40分)15.(8分)如图15所示是马戏团中上演飞车节目,在竖直平面内有半径为R 的圆轨道.表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量为m ,人以v 1=2gR 的速度过轨道最高点B ,并以v 2=3v 1的速度过最低点A .求在A 、B 两点摩托车对轨道的压力大小相差多少?图15答案 6mg解析 在B 点,F B +mg =m v 12R ,解得F B =mg ,根据牛顿第三定律,摩托车对轨道的压力大小F B ′=F B =mg在A 点,F A -mg =m v 22R解得F A =7mg ,根据牛顿第三定律,摩托车对轨道的压力大小F A ′=F A =7mg 所以在A 、B 两点车对轨道的压力大小相差F A ′-F B ′=6mg . 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题16.(10分)如图16所示,小球在外力作用下,由静止开始从A 点出发做匀加速直线运动,到B 点时撤去外力.然后,小球冲上竖直平面内半径为R 的光滑半圆轨道BC ,恰能维持在圆环上做圆周运动通过最高点C ,到达最高点C 后水平抛出,最后落回到原来的出发点A 处.试求:。
高一物理第二学期第一次质量检测测试卷及答案一、选择题1.如所示为物体做平抛运动的x-y图像,此曲线上任一点P(x,y)的速度方向的反向延长线交于x轴上的A点,则A点的横坐标为A.0.6x B.0.5x C.0.3x D.无法确定2.质量为2kg的质点在x-y平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图所示,下列说法正确的是()A.质点的初速度为3 m/sB.2s末质点速度大小为6 m/sC.质点做曲线运动的加速度为3m/s2D.质点所受的合外力为3 N3.如图所示,一长为2L的木板倾斜放置,倾角为45º。
一弹性小球自与木板上端等高的某处静止释放,小球落到木板上反弹时,速度大小不变且沿水平方向。
若小球一次碰撞后恰好落到木板底端,则小球释放点距木板上端的水平距离为A.12l B.13l C.14l D.15l4.如图所示,P是水平地面上的一点,A、B、C、D在同一条竖直线上,且AB=BC=CD.从A、B、C三点分别水平抛出一个物体,这三个物体都落在水平地面上的P点.则三个物体抛出时的速度大小之比为v A∶v B∶v C为()A.2:3:6B.1:2:3C.1∶2∶3D.1∶1∶15.如图所示一架飞机水平地匀速飞行,飞机上每隔1s释放一个铁球,先后共释放4个,若不计空气阻力,则落地前四个铁球彼此在空中的排列情况是( )A.B.C.D.6.如图所示,A、B为半径相同的两个半圆环,以大小相同、方向相反的速度运动,A环向右,B环向左,则从两半圆环开始相交到最后分离的过程中,两环交点P的速度方向和大小变化为( )A.先向上再向下,先变大再变小B.先向上再向下,先变小再变大C.先向下再向上,先变大再变小D.先向下再向上,先变小再变大7.小船在静水中速度为0.5m/s,水的流速为0.3m/s,河宽为120m,下列说法正确的是()A.当小船垂直河岸划动时,路程最短B.小船过河的最短时间为400sC.当小船与河岸上游成37角划动时,路程最短,此时过河时间为300sD.当小船垂直河岸划动时,时间最短,此时靠岸点距出发点的水平距离为72m8.如图所示,从倾角为θ的足够长的斜面顶端A点,先后将相同的小球以大小不同的水平速度v1和v2向右抛出,落在斜面上。
高中物理学习资料金戈铁骑整理制作北京市旭日区2013-2014 学年度高一年级第二学期期末一致考试物理试卷(考试时间90 分钟满分 100 分)一、此题共 l3 小题,每题 3 分,共 39 分 .在每题给出的四个选项中,只有一个选项是......切合要求的。
1.以下说法正确的选项是()A. 牛顿最早提出了日心说B. 托勒密发现了海王星和冥王星C. 开普勒发现了万有引力定律D. 卡文迪许第一次测出了万有引力常量2.改变物体的质量和速度,能够改变物体的动能。
在以下状况中,使一个物体的动能变成本来 2 倍的是()A. 质量不变,速度增大到本来的 2 倍B. 质量不变,速度增大到本来的 4 倍C. 速度不变,质量增大到本来的 2 倍D. 速度不变,质量增大到本来的 2 倍3.以下说法错误的是()..A平抛运动的加快度大小不变,方向时辰与速度方向垂直B平抛运动的加快度大小不变,方向也不变C平抛运动的轨迹是抛物线的一部分D平抛运动是一种变速运动4.以下说法正确的选项是()A.温度低的物体内能必定小B.布朗运动是液体分子无规则的热运动D.物体从外界汲取热量其内能也不必定增添5.我们学过的物理量中,有的对应的是一个过程,比方:均匀速度、行程等,我们称之为过程量;有的对应的是一个状态,比方:刹时速度、动能等,我们称之为状态量。
以下物理量中属于状态量的是()A .功:学|科 B.重力势能C.均匀功率 D .位移6.小明同学的腕表运行正常,他经过丈量获取了分针和秒针针尖到转轴的距离之比是10: 11 。
以下说法中正确的选项是()A .分针和秒针针尖的角速度之比是60: 1B .分针和秒针针尖的角速度之比是10: 11C.分针和秒针针尖的线速度之比是1: 66D .分针和秒针针尖的线速度之比是66: 17一个人站在露台上,以相同的速率分别把三个球竖直向下、竖直向上、水平抛出。
不计空气阻力。
则()A .平抛球在空中运动时间最长C.三球落地时,上抛球速度最小源:学|B.上抛球在空中运动时间最长D.三球落地时,下抛球速度最小8如下图,用长短不一样、资料相同的相同粗细的绳索,各拴着一个质量相同的小球,在圆滑水平面上做匀速圆周运动。
高中物理学习材料蓬溪县高中一年级第二学期第一次质量检测物理试题审题人:陈应双(总分100分,考试时间90分钟)第Ⅰ卷选择题(40分)一、选择题(以下试题有的不止一个符合题意,全选正确得4分,不选或有错得0分,选对不全的得2分,满分共40分)1.下列说法正确的是( B )A. 做曲线运动的物体,速度方向时刻变化,故曲线运动不可能是匀变速运动B. 做平抛运动的物体,经过相同时间,速度的增量相同C. 匀速圆周运动是周期、转速、频率、角速度都不变的运动,故匀速圆周运动是匀变速运动D 做匀速圆周运动的物体所受的合力是恒力2. 如图所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置。
P是轮盘的一个齿,Q是飞轮上的一个齿。
下列说法中正确的是( C )A.P、Q两点角速度大小相等B.P、Q两点向心加速度大小相等C.P点向心加速度小于Q点向心加速度D.P点向心加速度大于Q点向心加速度3.下列关于离心现象的说法正确的是:( C )A、当物体所受的离心力大于向心力时产生离心现象;B、做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做背离圆心的圆周运动;C、做匀速圆周运动的物体,当它所受的一切力都突然消失时它将沿切线做直线运动;D、做匀速圆周运动的物体,当它所受的一切力都突然消失时它将做曲线运动。
4.火车在转弯行驶时,需要靠铁轨的支持力提供向心力。
下列关于火车转弯的说法中正确的是:( A )A、在转弯处使外轨略高于内轨B、在转弯处使内轨略高于外轨C、在转弯处使内、外轨在同一水平高度D、在转弯处火车受到的支持力竖直向上5.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小。
如图所示,A,B,C,D分别画出了汽车转弯时所受的合力F的四种方向,正确的是( C )6 .如图所示,圆弧轨道AB在竖直平面内,在B点,轨道的切线是水平的,一小球由圆弧轨道上的某点从静止开始下滑,不计任何阻力。
设小球刚到达B点时的加速度为a1,刚滑过B点时的加速度为a2,则( D )A.a1、a2大小一定相等,方向可能相同B.a1、a2大小一定相等,方向可能相反C.a1、a2大小可能不等,方向一定相同D.a 1、a2大小可能不等,方向一定相反7如图所示,一物体自倾角为θ的固定斜面顶端水平抛出落在斜面上,物体与斜面接触时速度与水平方向的夹角φ满足( D )A.tanφ=sinθB.tanφ=cosθC.tanφ=tanθD.tanφ=2tanθ8.如图所示,用长为L的细绳拴着质量为m的小球在竖直平面内做完整的圆周运动,则下列说法中正确的是( AD )A.小球运动到最高点时所受的向心力不一定等于重力B.小球在最高点时绳子的拉力不可能为零C.小球运动到最高点的速率一定大于gLD.小球经过最低点时绳子的拉力一定大于小球重力9.如图所示,两个小球用长度不等的细线悬挂在天花板上的同一点,并在同一水平面内做匀速圆周运动,则下列说法正确的是( AB )A、两球运动的转速一定相同B、两球运动的频率一定相等C、两球运动的线速度大小一定相等D、两球运动的向心加速度大小一定相等10.一个质量为2kg的物体,在5个共点力作用下处于匀速直线运动状态.现同时撤去大小分别为15N和10N的两个力,其余的力保持不变,关于此后该物体运动的说法中正确的是( B )A.可能做匀减速直线运动,加速度大小是2m/s2B.可能做匀加速直线运动,加速度大小是5m/s2C.可能做匀变速曲线运动,加速度大小可能是15m/s2D.一定做匀变速直线运动,加速度大小可能是5m/s2第Ⅱ卷非选择题(60分)二、实验题(按要求填空,每空4分,共16分)11.实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O为坐标原点,测量它们的水平坐标x 和竖直坐标y ,图中y -x 2图象能说明平抛小球运动轨迹为抛物线的是 C 12.如图所示为一小球做平抛运动的闪光照相照片的一部分,图中背景方格的边长均为 1.25cm ,如果取g =10m/s 2,那么:(1)照相机的闪光频率是 20 Hz ;(2)小球运动的初速度大小是 0.75 m/s ;(3)小球运动至C 点的竖直速度分量是 1.25 m/s .三、计算题(要求写出必要的文字和依据,只有结果没有过程得0分, 13题9分、14题10分、15题12分、16题13分,共44分)13.(9分) 一只船在静水中的速度为4m/s ,它要以最短时间渡过一条40 m 宽、水流速度为3 m/s 的河.求:(1)船过河的时间;(2)船过河的位移(1)船过河的时间t =d /v .......(2分) 解得t =10s...........(1分)(2)船过河的合速度v =2212+v v ........(2分)船过河的位移s =vt 解得s =50m........................(2分)设船过河的位移与河岸的夹角为θ,则tan θ=12v v =4/3 解得θ=53°.........(2分) 故船过河的位移为50m ,位移与河岸的夹角为53°.14.(10分)如图所示,长为R 的轻质杆(质量不计),一端系一质量为m 的小球(球大小不计),绕杆的另一端O 在竖直平面内做圆周运动,若小球在最低点时,杆对球的拉力大小为1.5mg ,求:(1)小球通过最低点时的线速度大小?(2)小球以多大的线速度运动,通过最高处时杆对球不施力?(1)小球在最低点,由牛顿第二定律得:F -mg =21m Rv ........(3分) 又有F =1.5mg ........(1分) 解得12gR =v ......(1分)(2)小球通过最高处由重力提供向心力,由牛顿第二定律得:mg =22m Rv .......(4分) 解得2gR =v .........(1分) 15.(12分)如图所示,在距地面高为H =45m 处,有一小球A 以初速度v 0=10 m/s 水平抛出,与此同时,在A 的正下方有一物块B 以初速度v 同方向滑出,B 停止运动时恰好被A 击中,A 、B均可看做质点,空气阻力不计,重力加速度g 取10 m/s 2,求:(1)A 球从抛出到击中B 所需的时间(2)B 与地面的动摩擦因数μ(1)根据H =12gt 2 .................(3分)得t =3 s.................(1分) (2)由x =v 0t .................(2分)得x =30 m .............(1分)对于B 球,根据牛顿第二定律μmg =ma ................. (2分) 由x =1/2at 2.................(2分)解得:μ=2/3 ................. (1分)16.(13分)如图所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台的转轴与过陶罐球心O 的对称轴OO '重合,转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO '之间的夹角θ为60°。
高中物理学习材料
(精心收集**整理制作)
蓬溪县高中一年级第二学期第一次质量检测
物理试题
审题人:陈应双
(总分100分,考试时间90分钟)
第Ⅰ卷选择题(40分)
一、选择题(以下试题有的不止一个符合题意,全选正确得4分,不选或有错得0分,选对不全的得2分,满分共40分)
1.下列说法正确的是(B )
A. 做曲线运动的物体,速度方向时刻变化,故曲线运动不可能是匀变速运动
B. 做平抛运动的物体,经过相同时间,速度的增量相同
C. 匀速圆周运动是周期、转速、频率、角速度都不变的运动,故匀速圆周运动是匀变速运动
D 做匀速圆周运动的物体所受的合力是恒力
2. 如图所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置。
P是轮盘的一个齿,Q是飞轮上的一个齿。
下列说法中正确的是(C)
A.P、Q两点角速度大小相等
B.P、Q两点向心加速度大小相等
C.P点向心加速度小于Q点向心加速度
D.P点向心加速度大于Q点向心加速度
3.下列关于离心现象的说法正确的是:( C )
A、当物体所受的离心力大于向心力时产生离心现象;
B、做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做背离圆心的圆周运动;
C、做匀速圆周运动的物体,当它所受的一切力都突然消失时它将沿切线做直线运动;
D、做匀速圆周运动的物体,当它所受的一切力都突然消失时它将做曲线运动。
4.火车在转弯行驶时,需要靠铁轨的支持力提供向心力。
下列关于火车转弯的说法中正确的是:( A )
A、在转弯处使外轨略高于内轨
B、在转弯处使内轨略高于外轨
C、在转弯处使内、外轨在同一水平高度
D、在转弯处火车受到的支持力竖直向上
5.一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小。
如图所示,A,B,C,D分别画出了汽车转弯时所受的合力F的四种方向,正确的是( C )
6 .如图所示,圆弧轨道AB在竖直平面内,在B点,轨道的切线是水平的,一小球由圆弧轨道上的某点从静止开始下滑,不计任何阻力。
设小球刚到达B点时的加速
度为a1,刚滑过B点时的加速度为a2,则( D )
A.a1、a2大小一定相等,方向可能相同
B.a1、a2大小一定相等,方向可能相反
C.a1、a2大小可能不等,方向一定相同
D.a1、a2大小可能不等,方向一定相反
7如图所示,一物体自倾角为θ的固定斜面顶端水平抛出落
在斜面上,物体与斜面接触时速度与水平方向的夹角φ满
足( D )
A.tanφ=sinθB.tanφ=cosθ
C.tanφ=tanθD.tanφ=2tanθ
8.如图所示,用长为L的细绳拴着质量为m的小球在竖直平面内做完整的圆周运动,则下列说法中正确的是(AD)
A.小球运动到最高点时所受的向心力不一定等于重力
B.小球在最高点时绳子的拉力不可能为零
C.小球运动到最高点的速率一定大于gL
D.小球经过最低点时绳子的拉力一定大于小球重力
9.如图所示,两个小球用长度不等的细线悬挂在天花板上的同一点,并在同一水平面
内做匀速圆周运动,则下列说法正确的是( AB )
A、两球运动的转速一定相同
B、两球运动的频率一定相等
C、两球运动的线速度大小一定相等
D、两球运动的向心加速度大小一定相等
10.一个质量为2kg的物体,在5个共点力作用下处于匀速直线运动状态.现同时撤去大小分别为15N和10N的两个力,其余的力保持不变,关于此后该物体运动的说法中正确的是( B )
A.可能做匀减速直线运动,加速度大小是2m/s2
B.可能做匀加速直线运动,加速度大小是5m/s2
C.可能做匀变速曲线运动,加速度大小可能是15m/s2
D.一定做匀变速直线运动,加速度大小可能是5m/s2
第Ⅱ卷非选择题(60分)
二、实验题(按要求填空,每空4分,共16分)
11.实验得到平抛小球的运动轨迹,在轨迹上取一些点,以平抛起点O 为坐标原点,测量它们的水平坐标x 和竖直坐标y ,图中y -x 2图象能说明平抛小球运动轨迹为抛物线的是 C
12.如图所示为一小球做平抛运动的闪光照相照片的一部
分,图中背景方格的边长均为1.25cm ,如果取g =10m/s 2,那么:
(1)照相机的闪光频率是 20 Hz ;
(2)小球运动的初速度大小是 0.75 m/s ;
(3)小球运动至C 点的竖直速度分量是 1.25 m/s .
三、计算题(要求写出必要的文字和依据,只有结果没有过程
得0分,
13题9分、14题10分、15题12分、16题13分,共44分) 13.(9分) 一只船在静水中的速度为4m/s ,它要以最短时间渡过一条40 m 宽、水流速度为3 m/s 的河.求:
(1)船过河的时间;
(2)船过河的位移
(1)船过河的时间t =d /v .......(2分) 解得t =10s...........(1分)
(2)船过河的合速度v =2212+v v ........(2分)
船过河的位移s =v t 解得s =50m........................(2分)
设船过河的位移与河岸的夹角为θ,则
tan θ=12
v v =4/3 解得θ=53°.........(2分) 故船过河的位移为50m ,位移与河岸的夹角为53°.
14.(10分)如图所示,长为R 的轻质杆(质量不计),一端系一质量为m 的小球(球大小不计),绕杆的另一端O 在竖直平面内做圆周运动,若小球在最低点时,杆对球的拉力大小为1.5mg ,求:
(1)小球通过最低点时的线速度大小?
(2)小球以多大的线速度运动,通过最高处时杆对球不施力?
(1)小球在最低点,由牛顿第二定律得:F -mg =21m R
v ........(3分) 又有F =1.5mg ........(1分) 解得12
gR =v ......(1分) (2)小球通过最高处由重力提供向心力,由牛顿第二定律得:
mg =22m R v .......(4分) 解得2gR =v .........(1分)
15.(12分)如图所示,在距地面高为H =45m 处,有一小球A 以初速度v 0=10 m/s 水平抛出,与此同时,在A 的正下方有一物块B 以初速度v 同方向滑出,B 停止运动时恰好被A 击中,A 、B 均可看做质点,空气阻力不计,重力加速度g 取10 m/s 2,求:
(1)A 球从抛出到击中B 所需的时间
(2)B 与地面的动摩擦因数μ
(1)根据H =12
g t 2 .................(3分)得t =3 s.................(1分) (2)由x =v 0t .................(2分)得x =30 m ............. (1分)
对于B 球,根据牛顿第二定律
μmg =ma ................. (2分) 由x =1/2at 2.................(2分)
解得:μ=2/3 ................. (1分)
16.(13分)如图所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台的转轴与过陶罐球心O 的对称轴OO '重合,转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO '之间的夹角θ为60°。
已知重力
加速度大小为g ,小物块与陶罐之间的最大静摩擦力大小为34
f F m
g =,求: (1)若小物块受到的摩擦力恰好为零,求此时的角速度0ω;
(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的取值范围。
(1)当摩擦力为零,支持力和重力的合力提供向心力,如图甲所示,有:
20t a n s i n m g m R θθω=.................(3分) 解得:02g R
ω= .................(1分) (2)当ω>ω0时,重力和支持力的合力小于所需向心力,摩擦力方向沿罐壁切线向下,当角速度最大时,摩擦力向下达到最大值,设此最大角速度为1ω,如图乙所示,有:
2
100060sin 60cos 30cos ωmR F F f N =+ .................(2分)
0030sin 60sin N f F F mg =+ .................(1分)
解得R g 31=ω...........(1分) 当ω<ω0时,重力和支持力的合力大于所需向心力,摩擦力方向沿罐壁切线向上,当角速度最小时,摩擦力向上达到最大值,设此最小角速度为ω2,如图丙所示,有:
22
cos30cos60sin60N f F F mR ω︒-︒=︒ .................(2分) sin 30sin 60N f mg F F =︒+︒ .................(1分)
解得 2g R ω= .................(1分) 综述,陶罐旋转的角速度范围为3g g R R
ω≤≤.................(1分)
ω=ω0 ω>ω0 ω<ω0
图甲 图乙 图丙。