浙教版七年级数学上期中阶段性测试卷
- 格式:doc
- 大小:176.00 KB
- 文档页数:4
浙教版七年级上学期数学期中考试试题(时间:100分钟 满分:120分) 一、选择题(共10题 每题3分 共30分)A .-2019B .2019C .20191-D .201912、一个点在数轴上从表示-3的点A 开始,先移动5个单位,再移动3个单位到达点B ,这时点B 到点A 的距离为( )A .2B .11C .2或11D .1或10 3、下列等式成立是( )A .xy -2xy =-xyB .-(-4)=-4C .121)2(=-÷ D .2x 2+3x 2=5x 4 4、如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .a –b >0B .a + b <0C .-a < bD .ab > 05、数学老师布置的动手的作业是在“百度”搜索有关“勾股定理”的内容,学生李晓回家后在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果约23500000个,这个数用科学记数法表示为( ) A .235×105B .23.5×106C .2.35×107D .0. 235×1086、 在四个实数0,5-,)53(--,|-3|中,最小的实数为( )A .0B .5-C .)53(-- D .|-3|7、如果3212---n m y x -3x 2+5是四次三项式,那么m +n 的值是( )A .4B .5C .6D .7 8、“a ,b 两数的平方差减去它们的差的平方”用代数式表示为( )A .a 2-b 2- (a -b )2B .(a -b )2- (a 2-b 2)C .b 2-a 2- (b -a )2D .(b -a )2- b 2- a 29、当x =4时,代数式a (x -3)2+b (x -3)+3的值为7,则(a +b -2)(2-a -b )的值为( )A. 2B. -2C. 4D. -4第4题图10、填在下面各正方形中的四个数之间都有相同的规律,根据此规律,则a+b+c+14的立方根是 ( )A .±4B .4C .-4D .±8二、填空题(共10题 每题3分 共30分)11、256的平方根是 ,近似数3.7万精确到 ,绝对值小于4.5的整数有 个, a -b 的相反数为 . 12、若多项式3mx- (m +2)x +4是关于x 的二次三项式,则m 的值为 .13、若非零实数a 、b 是互为相反数,c 、d 为倒数,3||=m ,则=+--ambb a cd 332 . 14、若单项式3x m -1y 3与单项式(n -2)x 2y 3的和为-x 2y 3,则n m 值为 . 15、如果数轴上到-3的距离等于5的点,所表示的数是 16、n 个同学碰在一起,大家互相握手问候,共握手_________次.17、现有四个有理数2,3,-6,-11,请用加减乘除四则运算,使其结果等于24.运算式可以是:(只写一个)18、定义新运算:对任意实数a 、b ,都有a △b =a -b 2,例如,3△4=3-42=-13,那么33)12(△△=_______.19、有一列单项式2617105265432a a a a a ,,,,--,…请观察它们的构成规律,根据你发现的规律写出第n 个单项式 ,它的系数为 ,次数为 .20、下面结论:(1)实数与数轴上的点是一一对应的;(2)无限小数都是无理数;(3)0是单项式;(4)a 与b 差的211倍所列代数式为211(a -b );(5)a a -的值为0;(6)若实数a +b <0,ab <0,则a 、b 异号且负数的绝对值大于正数的绝对值.其中正确的是 (填上正确的序号).三、解答题(共7题 共60分) 21、(12分)计算:(1)377327732112018⨯÷-⨯+-; (2) )413181(24)2(3+-⨯--(3)5x 2-3x -3(2x 2-x -3) (4) -32(9m 2-6mn )-2(-5n 2+4mn -3m 2) 22、(8分)(1)先化简,再求值:已知0)3(|2|2=++-y x ,求)3123(62622+--+-x y x y 的值; (2) 求式中x 的值:(x -2)3-125=0.23、(8分)如图,一个长方形运动场被分隔成A ,B ,A ,B ,C 共10个区,A 区是边长为a m 的正方形,C 区是边长为c m 的正方形.(1)列式表示一个B 区长方形场地的周长,并将式子化简. (2)列式表示整个长方形运动场的周长,并将式子化简. (3)如果a =40,c =10,求整个长方形运动场的面积.25、(6分)有这样一道题,先化简再求值2(3a 3b 3+2a 2b -b )-3(4a 3b 33-a 2b -b 2)+6(a 3b 3-2a 2b )-2b 2+5,其中a =2019,b =3.小亮做题时把a =2019错抄成a =-2019,但结果与正确答案相同,你知道这是怎么回事吗?26、(10分) 在一条南北方向的公路上,有一辆出租车停在A 地,乘车的第一位客人向南走4千米下车;该车继续向南行驶,又走了1千米后,上来第二位客人,第二位客人乘车向北走8千米下车,此时恰好有第三位客人上车,先向北走4千米,又调头向南走,结果下车时出租车恰好在第二位客人上车的地方.(1)如果以A 地为原点,向北方向为正方向,用1个单位表示1千米,在数轴上表示出第一位 客人和第二位客人上车和下车的位置; (2)第三位客人乘车走了多少千米?(3)规定出租车的收费标准是3千米内付8元,超过3千米的部分每千米加付1元(不足1千米按1千米算),那么该出租车司机在这三位客人中共收了多少钱?27、(10分)某位同学不小心把老师留的思考题弄丢了,他只记得式子是15-a 2+3b -21c ,不记得a ,b ,c 的值.于是打电话询问同学,同学告诉他a 的相反数是-5,(b -1)的绝对值是6,c 与b 的积是-70.求:(1)a ,b 的值;(2) 15-a 2+3b -21c 的值.参考答案一、选择题(共10小题 每题3分 共30分)11、±4 ,千位,9,b -a 12、m =2 13、-1或5 14、-8 15、-8或217、(-11+3)×(-6)÷2 18、-2 19、(-1)n +1121++n a n , n +120、(1),(3),(6)三、解答题(共7题 共60分) 21、(12分)计算:(1)377327732112018⨯÷-⨯+-; (2) )413181(24)2(3+-⨯--(3)5x 2-3x -3(2x 2-x -3) (4) -32(9m 2-6mn )-2(-5n 2+4mn -3m 2) 解(1)原式=-1+9-32=-24; (2)原式=-8-3+8-6=-9(3) 原式=5x 2-3x -6x 2+3x +9 =(5-6)x 2+(-3+3)x +9 =-x 2+9;(4) 原式=-6m 2+4mn +10n 2-8mn+6m 2 =(-6+6) m 2+ (4-8)mn +10n 2 =-4mn +10n 2. 22、(8分)(1)先化简,再求值:已知,0)3(|2|2=++-y x 求)3123(62622+--+-x y x y 的值; (2) 求式中x 的值:(x -2)3-125=0.解:(1)∵,0)3(|2|2=++-y x∴x -2=0,y +3=0, ∴x =2,y =-3,)3123(6)43(222+--+-x y x y =-6y -8x 2-6y +9x 2-2=(-8+9)x 2+(-6-6)y -2 =x 2-12y -2当x =2,y =-3时,x 2-12y -2=22-12×(-3)-2 =4+36-2=38; (2)∵(x -2)3-125=0, ∴(x -2)3=125, ∴x -2=5 ∴x =7.23、(8分)如图,一个长方形运动场被分隔成A ,B ,A ,B ,C 共10个区,A 区是边长为a m 的正方形,C 区是边长为c m 的正方形.(1)列式表示一个B 区长方形场地的周长,并将式子化简. (2)列式表示整个长方形运动场的周长,并将式子化简. (3)如果a =40,c =10,求整个长方形运动场的面积. 解:(1)2[(2a +2c )+2ca -]=4a +4c +a -c )=(5a +3c )(m). (2)2[(a +a+a+a +c +c )+(a +a -c )]=2(6a +c )=(12a+2c )(m). (3)当a =22,c =4时,长=4a +2c =96(m),宽=2a -c =40(m), 所以运动场的面积=96×40=3840(m 2).25、(6分)有这样一道题,先化简再求值2(3a 3b 3+2a 2b -b )-3(4a 3b 33-a 2b -b 2)+6(a 3b 3-2a 2b )-2b 2+5,其中a =2019,b =3.小亮做题时把a =2019错抄成a =-2019,但结果与正确答案相同,你知道这是怎么回事吗? 解:2(3a 3b 3+21a 2b -b )-3(4a 3b 332-a 2b -b 2)+6(a 3b 3-21a 2b )-2b 2+5=a 3b 3+a 2b -2b -12a 3b 3+2a 2b +3b 2+6a 3b 3-3a 2b -2b 2+5 =(6-12+6)a 3b 3+(1+2-3)a 2b +(3-2)b 2-2b +5 =b 2-2b +5因为化简后的整式不含a ,所以a 的取值不影响最后的结果.26、(10分) 在一条南北方向的公路上,有一辆出租车停在A 地,乘车的第一位客人向南走4千米第23题图下车;该车继续向南行驶,又走了1千米后,上来第二位客人,第二位客人乘车向北走8千米下车,此时恰好有第三位客人上车,先向北走4千米,又调头向南走,结果下车时出租车恰好在第二位客人上车的地方.(1)如果以A 地为原点,向北方向为正方向,用1个单位表示1千米,在数轴上表示出第一位 客人和第二位客人上车和下车的位置; (2)第三位客人乘车走了多少千米?(3)规定出租车的收费标准是3千米内付8元,超过3千米的部分每千米加付1元(不足1千米按1千米算),那么该出租车司机在这三位客人中共收了多少钱? 解:(1)如图所示,第一位客人在点B 处下车,第二位客人在点D 处上车,在点C 处下车; (2)4+[7- (-5)]=4+12=16千米;(3)第一位客人共走4千米,付8+1×(4-3)=8+1=9元, 第二位客人共走8千米,付8+1×(8-3)=8+5=13元, 第三位客人共走8千米,付8+1×(16-3)=8+13=21元, 9+13+21=43元,∴该出租车司机在这三位客人中共收了43元钱.27、(10分)某位同学不小心把老师留的思考题弄丢了,他只记得式子是15-a 2+3b -21c ,不记得a ,b ,c 的值.于是打电话询问同学,同学告诉他a 的相反数是-5,(b -1)的绝对值是6,c 与b 的积是-70.求:(1)a ,b 的值;(2) 15-a 2+3b -21c 的值. 27、解:(1)∵a 的相反数是-5,(b -1)的绝对值是6,∴a =5,b =7或-5.(2)∵a =5,b =7或-5,c 与b 的积是-70, ∴当b =7时,c =-10,当b =-5时,c =14. 当a =5,b =7,c =-10时, 15-a 2+3b -21c =15-52+3×7-21×(-10) =15-25+21+5=16; 当a =5,b =-5,c =14时, 15-a 2+3b -21c =15-52+3×(-5)-21×14. =15-25-15-7=-32.第26题图。
浙教版初中数学七年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.把有理数a代入|a+4|−10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=11,经过第2020次操作后得到的是( )A. −7B. −1C. 5D. 112.绝对值不小于2且不大于4的所有正整数的和为( )A. 3B. 5C. 7D. 93.如图,实数−3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是( )A. MB. NC. PD. Q4.下列计算中,错误的是( )A. (−1)2021×12022=−1B. 2÷3×12=3C. −5−(−6)×16=−4 D. −2+(−15)×(−5)2=−75.某种细菌的分裂速度非常快,1个细菌经过1分钟分裂为2个,再过1分钟又分别分裂为2个,即总共分裂为4个⋯⋯照这样的分裂速度,一个细菌分裂为满满一小瓶恰好需要1小时.同样的细菌,同样的分裂速度,同样的小瓶,如果开始时瓶内装有2个细菌,那么恰好分裂为满满一小瓶需要( )A. 15分钟B. 30分钟C. 45分钟D. 59分钟6.计算634+(−514)+(+1.2)+(−2.75)+1.8+(−634),所得结果是( )A. −3B. 3C. −5D. 57.实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是( )A. −2B. 0C. −2aD. 2b8. 若a <10−√13<b ,且a ,b 是两个连续的整数,则a +b 的值为( )A. 11B. 12C. 13D. 149. 下列各组数中,互为相反数的是( )A. −2与−12 B. √(−2)2与√−83.C. |−√2|与√2.D. √−83与−√83.10. 下列四个数轴上的点A 都表示数a ,其中,一定满足|a|>|−2|的是( )A. ①③B. ②③C. ①④D. ②④11. 马小虎在学习有理数的运算时,做了如下6道填空题:①(−5)+5=0;②−5−(−3)=−8;③(−3)×(−4)=12;④(−78)×(−87)=1;⑤(−12)÷(−23)=13.你认为他做对了( ) A. 5题 B. 4题 C. 3题 D. 2题12. 已知a 是√81的平方根,b =√16,c 是−8的立方根,则a +b −c 的值为( )A. 15B. 15或−3C. 9D. 9或3第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 若x 是有理数,则|x −2|+|x −4|+|x −6|+|x −8|+⋯+|x −2022|的最小值是__________.14. 观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是____.15. 如图是一个简单的数值计算程序,当输入的x 的值为5时,则输出的结果为_________.16. 如果一个数的立方根等于它的平方根,那么这个数为 .三、解答题(本大题共9小题,共72.0分。
浙教版七年级数学上册期中考试试卷一、选择题(每小题3分,共30分)1.1.若海平面以上若海平面以上1045米,记做米,记做+1045+1045米,则海平面以下155米,记做( ) A.A.﹣﹣1200米 B. B.﹣﹣155米 C.155米 D.1200米2.2.下列实数中最大的是(下列实数中最大的是( )A.B.C.D.3.3.据统计,龙之梦动物世界在据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次用科学记数法可将238000表示为(表示为( )A.238A.238××103B.23.8B.23.8××104C.2.38 C.2.38××105D.0.238D.0.238××106 4.4.如图所示,某工厂有三个住宅区,如图所示,某工厂有三个住宅区,如图所示,某工厂有三个住宅区,A A ,B ,C 各区分别住有职工30人,人,1515人,人,1010人,且这三点在一条大道上(且这三点在一条大道上(A A ,B ,C 三点在同一直线上),已知AB=300米,米,BC=600BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )A.A.点点AB. B.点点BC.AB 之间D.BC 之间5.5.下列各式中正确的是(下列各式中正确的是( )A.B. C.D.6.6.在数轴上,点在数轴上,点A ,B 在原点O 的两侧,分别表示数a a ,, 2 2,将点,将点A 向右平移1个单位长度,得到点C .若CO=BO CO=BO,则,则a 的值为( )A.-3B.-2C.-1D.1 7.7.下列说法错误的是下列说法错误的是下列说法错误的是( ( ) A.0的平方根是0 B.4的平方根是±的平方根是±2 2 C. C.﹣﹣16的平方根是±的平方根是±4 D.24 D.2是4的平方根 8.8.若若a 2=(-5)2 ,, b 3=(-5)3 ,, 则a+b 的值是( ) A.0或-10或10 B.0或-10 C.-10 D.09. 9.若若=2 , =3 ,则a+b 之值为何?( ) A.13 B.17 C.24 D.40 10.10.已知有理数已知有理数a ,b ,c ,d 在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度个单位长度..若3a 3a==4b 4b﹣﹣3,则c ﹣2d 为(为( )A.A.﹣﹣3B.B.﹣﹣4C.C.﹣﹣5D.D.﹣﹣6二、填空题(每小题3分,共30分)11.11.数轴上有两个实数数轴上有两个实数 , ,且 >0, <0, + <0,则四个数 , ,, 的大小关系为的大小关系为________________________(用“<”号连接).(用“<”号连接).(用“<”号连接).12.12.若若 与 互为相反数,则 的值为的值为________. ________.13.13.数轴上表示数轴上表示 的点到原点的距离是的点到原点的距离是________________________..14.14.若若a ,b 为实数,且为实数,且|a+1|+ |a+1|+=0 =0,则,则,则(ab)(ab)2019的值是的值是________ ________ .15.15.若若x+3x+3==5﹣y ,a ,b 互为倒数,则代数式 (x+y)+5ab (x+y)+5ab==________. 16.16.若某个正数的平方根是若某个正数的平方根是a ﹣3和a+5a+5,则这个正数是,则这个正数是,则这个正数是________________________.. 17.17.写出一个比写出一个比5大且比6小的无理数小的无理数________. ________.18. 的相反数的立方根是的相反数的立方根是________. ________.19.19.若若,化简结果是结果是________________________..20.20.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到可以得到________________________条折痕。
浙教版七年级数学上册期中检测试卷含答案一、单选题1.在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是()A.1或13 B.1 C.9 D.﹣2或102.(2014•衡阳)﹣2的倒数是()A. B.﹣ C.2 D.﹣23.4的平方根()A.2B.C.D.4.绝对值等于本身的数是( )A.正数B.负数C.正数或零D.零5.若a,b互为相反数,且都不为零,则的值为()A.0B.-1C.1D.-26.下列各式中,正确的是()A.=±2B.±C.D.7.大于-2.5小于1.5的整数有多少个()A.4个B.5个C.6个D.7个8.若x的相反数是-3,,则x+y的值为()A.-8B.2C.8或-2D.-8或29.计算的结果是()A.2B.-2C.8D.-810.计算的结果等于()A.B.C.D.0二、填空题11.广东省2016年GDP(国内生产总值)约为80800亿元,这个数据用科学记数法表示是__________________ 元.12.“我的连云港”是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1600000”用科学记数法表示为________.13.计算______ .14.的相反数是_____,1.5的倒数是_____.15.的倒数是___,的相反数是___,的绝对值是______.三、解答题16.把下列各数填入相应的大括号里:,-4,5.2,0,-(+5),,2013 ,-0.3整数集合:{… }正数集合:{…}正整数集合:{…}负分数集合:{…}17.(1)计算:;(2)化简:.18.19.计算:﹣12+×﹣(﹣4)÷|﹣|219.计算:。
浙教版上学期七年级第一学期数学期中考试试题 (有答案)(时间:100分钟 满分:120分)一、选择题(共10题 每题3分 共30分)1.364的平方根是( )A .4B .±4C .2D .±2 2.下列各式中正确的是( )A .33-=-B .)2(21b a --=b a 221-- C .(-0.125)2019×2018)81(=81-D .-1-1=0 3.如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数-2020将与圆周上的数字( )重合.A .0B .1C .2D .34.近似数5.28所表示的准确数x 的取值范围是 ( )A .5.285≤x <5.295B .5.27<x <5.28C .5.280<x <5.285D .5.275≤x <5.285 5.实数a 在数轴上大致位置如图, 则-a ,a ,a 2,a1的大小关系是( )A .-a >a 2>a >a 1 B. a 2 >-a >a >a 1 C. a 1>a 2>a >-a D. a >a 2>-a >a1 6.已知6+3的小数部分为a ,8-6的小数部分为b ,则a +b 的值( )A .1B .562-C .162-D .11 7.若a ,b 是整数,且ab =15,则a +b 的最大值与最小值的差是( )A .-16B .-32C .16D .328.如果四个不同的整数m ,n ,p ,q 满足(7-m )(7-n )(7-p )(7-q )=6,则m +n +p +q 等于( )A .18B .24C .27D .28第5题图第3题图9.下列各式:2331b a -,0,2yx +-,x1,π2xy -,ab ab a 22-中整式的个数是( )A .6个B .5个C .4个D .3个10.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ).A .4n +1B .3n +1C .3nD .2n +1二.填空题(共10题 每题3分 共30分) 11.所有非负实数的平方根的和为 .12.已知三角形的第一条边长为5a -3b ,第二条边比第一条边长3a -4b ,第三条边比第二条边短b ,则这个三角形的周长为 21a -18b ,当a =3,b =2时,该三角形的周长为 . 13.如果03)2(2=++-b a ,则a +b =_____________14.已知a -b =6,c -a =311-,则代数式9(c -b )2-3(c -b )-50的值为 . 15.用科学记数法表示5680000=____________16.已知a 2-ab =11,b 2-ab =8,则代数式3a 2-3b 2的值为 .17.设y =ax 5+bx 3+cx -1,其中a ,b ,c 为常数,已知x =-1时,y =2018,则当x =1时,y = . 18.对于有理数x ,则xx x 120192019--+-的值为 . 19.当5+3(ab -1)2取最小值时,a ,b 之间的关系是 ,最小值是 .当1-5(a +b )2取最大值时,a ,b 之间的关系是 ,最大值是 .20.为了求1+4+42+43+…+410的值,可令M =1+4+42+43+…+410,则4M =4+42+43+44+…+411,因此,4M -M =411-1,所以M =31411-,即1+4+42+43+…+410=31411-,仿照以上推理计算:1+7+72+73+…+72019的值是 .1+x +x 2+x 3+…+x 2019的值是 . 三、解答题(共7题 共60分)21.(6分)在数轴上表示下列各数-π,5.3-,0,-96.1,36432+--并把这些数按从小到大的 顺序进行排列.第1个图 第2个图 第3个图 第4个图…第10题图22.(12分)计算:(1)121)1(320192⨯--- (2)622)1(]2)32(3[65-÷--⨯-⨯-(3))23(2)54(52222n m mn mn nm --+- (4)2(x 2-2x )-3(2x -3x 2-2)-623.(8分)先化简再求值)](2[3)(22222y x xy y x ---++-,其中x =-2,y =3.24.(8分)先阅读理解,再解决问题: (1) 31=21=1; (2) 3321+=23=3; (3) 333321++=26=6; (4) 33334321+++=210=10;…根据上面计算的规律,解决问题:(1)333333654321+++++= = ; (2)求3333321n +⋅⋅⋅+++ (用含n 的式子表示) .25.(8分) 已知A ,B 在数轴上分别表示有理数a 、b .利用数形结合思想回答下列问题:(1)填写下表:(3)依据(2)的结论,并利用数轴解决下列两个问题:26.(8分)如图,是某住宅的平面结构图,图中标注有关尺寸(墙体厚度忽略不计,尺寸单位:米),房子的主人计划把卧室以外的地面都铺上瓷砖.题目的结果(用含a 、x 、y 的代数式表示). (1)请你帮他计算一下要铺瓷砖的面积是多少? (2)如果选用瓷砖的价格是m 元/平方米, 问他买瓷砖需用多少钱?27.(10分)问题探究:你能比较20192020和20202019的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n +1和(n +1)n 的大小(n 为正整数),我们从n =1,n =2,n =3…这些简单的情况入手,从中发现规律,经过归纳得出结论.(1)通过计算,比较下列各组数字大小①12______22 ②23______32 ③ 34________43④45______54 ⑤56______65 ⑥67_________76……(2)根据上面的归纳猜想得到的结论,试比较下列两个数的大小20192020______20202019(填“>”, “<”,“=”)(3)把第(1)题的结果经过归纳,你能得出什么结论?第26题图参考答案一、选择题(共10小题 每题3分 共30分)11、0 12、21a -18b ,27 13、-1 14、126 15、5.68×106 16、9 17、-202018、5,互为相反数,202011x x -- 三、解答题(共7题 共60分) 21.解:用数轴表示如图所示:把这些数按从小到大的顺序进行排列为:-π<-96.1<0<36432+--<5.3-. 22.解:(1)原式=-9+11=2;(2)原式=1)2949(65⨯-⨯-⨯- =)6(65-⨯-=5; (3)原式=n m mn mn n m 22224654+-+- =(-4+4)m 2n +(5-6)mn 2 =-mn 2(4)原式=2x 2-4x -6x +9x 2+6-6 =11x 2-10x .23.解:)](2[5)(22222y x xy y x ---++- =-2x 2-2y 2-10xy -5(x 2-y 2)=-2x 2-2y 2-10xy -5x 2+5y 2 =-7x 2+3y 2-10xy 当x =-2,y =3时, 原式=-7x 2+3y 2-10xy=-7×(-2)2+3×32-10×(-2)×3 =-28+27+60=59.24.根据上面计算的规律,解决问题:(1)333333654321+++++= 21 ; (2)求3333321n +⋅⋅⋅+++ (用含n 的式子表示) .第21题图根据以上的规律得: 1+2+3+…+n∴3333321n +⋅⋅⋅+++25.(8分)已知A ,B 在数轴上分别表示有理数a 、b .利用数形结合思想回答下列问题:(1)填写下表:(3)依据(2)的结论,并利用数轴解决下列两个问题:主卧、中间的公共部分、次卧的面积为: (1.6x +0.2x +1.5x )0.8y = 2.64xy ;阳台、次卧、中间的公共部分、卫生间的面积为: (1.75 x +0.2x +1.5x )y =3.45xy ;客厅的面积为:1.75x (3.2y -0.8y -y ) =2.45xy ; 餐厅、厨房的面积为:(3.6x -1.75x )1.2y =2.22xy .因此需要瓷砖的面积应该是2.64xy +3.45xy +2.45xy +2.22xy =10.76xy ; (2)∵瓷砖的价格是m 元/平方米, ∴买瓷砖至少需用10.76mxy 元. 27.(1)通过计算,比较下列各组数字大小①12______22 ②23______32 ③ 34________43④45______54 ⑤56______65 ⑥67_________76……第26题图(2)根据上面的归纳猜想得到的结论,试比较下列两个数的大小20192020______20202019(填“>”,“<”,“=”)(3)把第(1)题的结果经过归纳,你能得出什么结论?解:(1)通过计算,比较下列各组数字大小① 12<21② 23<32 ③ 34>43④ 45>54 ⑤ 56>65 ⑥ 67>76(2)根据上面的归纳猜想得到的结论:20192020>20202019.(3)n n+1>(n+1)n(n为大于2的整数).。
浙教版七年级(上)期中数学试卷一、选择题(每小题2分,共24分)1.(2分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨2.(2分)下列化简正确的是()A.8x﹣7y=xy B.a2b﹣2ab2=﹣ab2C.9a2b﹣4ba2=5a2b D.5m﹣4m=13.(2分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106 4.(2分)2x﹣(3x2+4x)的化简结果是()A.9x2B.24x4C.3x2+6x D.﹣3x2﹣2x 5.(2分)下列说法正确的是()A.√81的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应6.(2分)如图,组成正方形网格的小正方形边长为1,那么点A表示的数为()A.√10B.√11C.√12D.√137.(2分)有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)﹣3﹣2﹣0.50 2.5筐数1428则这20筐白菜的总重量为()A.710千克B.608千克C.615千克D.596千克8.(2分)如果代数式x ﹣2y ﹣2的值为﹣1,那么代数式6﹣2x +4y 的值为( ) A .0B .2C .﹣2D .49.(2分)由下表可得√7精确到百分位的近似数是( )2.62<7<2.722.6<√7<2.72.642<7<2.652 2.64<√7<2.65 2.6452<7<2.6462 2.645<√7<2.646…… …… A .2.64B .2.65C .2.7D .2.64610.(2分)按如图所示的运算程序,能使输出的结果为3的是( )A .x =1,y =2B .x =﹣2,y =﹣2C .x =3,y =1D .x =﹣1,y =﹣111.(2分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元12.(2分)一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102﹣12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是( ) A .15B .16C .17D .18二、填空题(每题4分,共24分) 13.(4分)比较大小: (1)2 |−52|; (2)﹣7 0;(3)−23 −34; (4)﹣|﹣2.7| ﹣223.14.(4分)和式23−112−113+4中第3个加数是 ,该和式的运算结果是 .15.(4分)把下列各数填入相应的横线上: ﹣2,2π,−35,0,﹣3.7,√16,0.35,√93整数: ; 正有理数: ; 无理数: ; 负分数: . 16.(4分)−3xy 37的系数是 ,次数是 ;4a 3﹣a 2b 2−43ab 是 次项式. 17.(4分)如图,数轴的单位长度为1,当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是 .18.(4分)如图是由从1开始的连续自然数组成,则第8行第8个数是 ,第n 行第一个数可表示为 .三、解答题(第19题12分,第20~23题各6分,第24~25题8分,共52分) 19.(12分)(1)﹣5﹣(﹣4)+7﹣8(2)312÷(﹣35)×15(3)﹣24−√36+6÷(−23)×√−83(4)(﹣5)×(﹣325)+(﹣7)×325−12×(﹣325)20.(6分)化简: (1)2x +1﹣7x ﹣2(2)3(x 2−12y 2)−12(4x 2﹣3y 2)21.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: 312,﹣2.5,|﹣2|,0,√−83,(﹣1)2.22.(6分)已知|a ﹣1|+(b +2)2=0,求多项式3ab ﹣15b 2+5a 2﹣6ba +15a 2﹣2b 2的值.23.(6分)一个正方体的体积是125cm 3,现将它锯成8块同样大小的正方体小木块. (1)求每个小正方体的棱长.(2)现有一张面积为36cm 2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.24.(8分)“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A 、B 两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A 家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B 家的规定如下表: 数量范围(千克)0~50 部分50以上~150部分 150以上~250部分 250以上 部分 价 格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发80千克太湖蟹,则他在A、B两家批发分别需要多少元?(2)如果他批发x千克太湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B两家批发所需的费用;(3)现在他要批发195千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.25.(8分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x的值.四、附加题(第26,27题各5分,共10分)26.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.27.如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.2019-2020学年浙江省宁波市海曙区七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共24分)1.(2分)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨【解答】解:“正”和“负”相对,如果+3吨表示运入仓库的大米吨数,即正数表示运入仓库,负数应表示运出仓库,故运出5吨大米表示为﹣5吨.故选:A.2.(2分)下列化简正确的是()A.8x﹣7y=xy B.a2b﹣2ab2=﹣ab2C.9a2b﹣4ba2=5a2b D.5m﹣4m=1【解答】解:A.8x与﹣7y不是同类项,所以不能合并,故本选项不合题意;B.a2b与2ab2不是同类项,所以不能合并,故本选项不合题意;C.9a2b﹣4ba2=5a2b,正确,故本选项符合题意;D.5m﹣4m=m,故本选项不合题意.故选:C.3.(2分)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106【解答】解:数字604800用科学记数法表示为6.048×105.故选:B.4.(2分)2x﹣(3x2+4x)的化简结果是()A.9x2B.24x4C.3x2+6x D.﹣3x2﹣2x【解答】解:原式=2x﹣3x2﹣4x=﹣3x2﹣2x,故选:D.5.(2分)下列说法正确的是()A.√81的平方根是3B.(﹣1)2010是最小的自然数C.两个无理数的和一定是无理数D.实数与数轴上的点一一对应【解答】解:A、√81=9,9的平方根为±3,不符合题意;B、(﹣1)2010=1,不是最小的自然数,不符合题意;C、两个无理数的和不一定是无理数,例如−√2+√2=0,不符合题意;D、实数与数轴上的点一一对应,符合题意,故选:D.6.(2分)如图,组成正方形网格的小正方形边长为1,那么点A表示的数为()A.√10B.√11C.√12D.√13【解答】解:由勾股定理得,点A表示的数=√32+12=√10,故选:A.7.(2分)有20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如表:与标准质量的差(单位:千克)﹣3﹣2﹣0.50 2.5筐数1428则这20筐白菜的总重量为()A.710千克B.608千克C.615千克D.596千克【解答】解:(﹣3)×1+(﹣2)×4+(﹣0.5)×2+2.5×8=(﹣3)+(﹣8)+(﹣1)+20=8 (千克),30×20+8=608(千克).答:这20筐白菜的总重量608千克,故选:B.8.(2分)如果代数式x﹣2y﹣2的值为﹣1,那么代数式6﹣2x+4y的值为()A.0B.2C.﹣2D.4【解答】解:当x﹣2y﹣2=﹣1时,6﹣2x+4y=2﹣2(x ﹣2y ﹣2) =2﹣2×(﹣1) =4 故选:D .9.(2分)由下表可得√7精确到百分位的近似数是( )2.62<7<2.722.6<√7<2.72.642<7<2.652 2.64<√7<2.65 2.6452<7<2.6462 2.645<√7<2.646…… …… A .2.64B .2.65C .2.7D .2.646【解答】解:∵2.645<√7<2.646,∴由下表可得√7精确到百分位的近似数是2.65. 故选:B .10.(2分)按如图所示的运算程序,能使输出的结果为3的是( )A .x =1,y =2B .x =﹣2,y =﹣2C .x =3,y =1D .x =﹣1,y =﹣1【解答】解:A 、把x =1,y =2代入得:1+4=5,不符合题意; B 、把x =﹣2,y =﹣2代入得:4+4=8,不符合题意; C 、把x =3,y =1代入得:9+2=11,不符合题意; D 、把x =﹣1,y =﹣1代入得:1+2=3,符合题意, 故选:D .11.(2分)张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a >b ).根据市场行情,他将这两种小商品都以a+b 2元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A .赚了(25a +25b )元B .亏了(20a +30b )元C .赚了(5a ﹣5b )元D .亏了(5a ﹣5b )元【解答】解:根据题意可知: 总进价为20a +30b ,总售价为a+b 2×(20+30)=25a +25b∴25a +25b ﹣(20a +30b )=5a ﹣5b , ∵a >b ,∴5a ﹣5b >0,那么售价>进价, ∴他赚了. 故选:C .12.(2分)一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”,比如99=102﹣12,故99是一个智慧数.在下列各数中,不属于“智慧数”的是( ) A .15B .16C .17D .18【解答】解:A 、15=42﹣12; B 、16=52﹣32; C 、15=92﹣82,;D 、18不能表示为两个非零自然数的平方差. 故选:D .二、填空题(每题4分,共24分) 13.(4分)比较大小: (1)2 < |−52|; (2)﹣7 < 0; (3)−23 > −34; (4)﹣|﹣2.7| < ﹣223.【解答】解:(1)2<|−52|; (2)﹣7<0; (3)−23>−34; (4)﹣|﹣2.7|<﹣223.故答案为:(1)<;(2)<;(3)>;(4)< 14.(4分)和式23−112−113+4中第3个加数是 −113,该和式的运算结果是116.【解答】解:和式23−112−113+4中第3个加数是−113,23−112−113+4=23−113−112+4 =−23−32+4 =−136+4 =116故答案为:−113,116.15.(4分)把下列各数填入相应的横线上: ﹣2,2π,−35,0,﹣3.7,√16,0.35,√93整数: ﹣2、0、√16 ;正有理数: 2π、√16、0.35、√93; 无理数: −35、﹣3.7 ; 负分数: −35、﹣3.7 .【解答】解:整数:﹣2、0、√16; 正有理数:2π、√16、0.35、√93; 无理数:2π、√93; 负分数:−35、﹣3.7;故答案为:﹣2、0、√16;2π、√16、0.35、√93;−35、﹣3.7;−35、﹣3.7 16.(4分)−3xy 37的系数是 −37 ,次数是 4 ;4a 3﹣a 2b 2−43ab 是 四 次项式. 【解答】解:−3xy 37的系数是−37,次数是4;4a 3﹣a 2b 2−43ab 是四次项式. 故答案为:−37,4,四.17.(4分)如图,数轴的单位长度为1,当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是 2或10 .【解答】解:设M 的坐标为x .当M 在A 的左侧时,﹣2﹣x =2(4﹣x ),解得x =10(舍去)当M 在AD 之间时,x +2=2(4﹣x ),解得x =2当M 在点D 右侧时,x +2=2(x ﹣4),解得x =10故①点M 在AD 之间时,点M 的数是2;②点M 在D 点右边时点M 表示数为10. 故答案为:2或1018.(4分)如图是由从1开始的连续自然数组成,则第8行第8个数是 57 ,第n 行第一个数可表示为 n 2﹣2n +2 .【解答】解:由题意得:每行数的个数为1,3,5,…的奇数列,最后一个数是该行数的平方,∴第7行的最后一个数是72,∴表中第8行的第一个数是72+1=50,∴8行第8个数是57;∵第n ﹣1行最后一个数为:(n ﹣1)2,∴第n 行第一个数可表示为:(n ﹣1)2+1=n 2﹣2n +2;故答案为:57;n 2﹣2n +2.三、解答题(第19题12分,第20~23题各6分,第24~25题8分,共52分)19.(12分)(1)﹣5﹣(﹣4)+7﹣8(2)312÷(﹣35)×15(3)﹣24−√36+6÷(−23)×√−83(4)(﹣5)×(﹣325)+(﹣7)×325−12×(﹣325) 【解答】解:(1)原式=﹣5+4+7﹣8=﹣2;(2)原式=−72×135×15=−150; (3)原式=﹣16﹣6×(−32)×(﹣2)=﹣16﹣6+18=﹣4;(4)原式=175×(5﹣7+12)=175×10=34.20.(6分)化简:(1)2x +1﹣7x ﹣2(2)3(x 2−12y 2)−12(4x 2﹣3y 2)【解答】解:(1)原式=﹣5x ﹣1;(2)原式=3x 2−32y 2﹣2x 2+32y 2=x 2.21.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: 312,﹣2.5,|﹣2|,0,√−83,(﹣1)2. 【解答】解:数轴如下:按从小到大的顺序用“<”连接起来:﹣2.5<√−83<0<(﹣1)2<|﹣2|<312. 22.(6分)已知|a ﹣1|+(b +2)2=0,求多项式3ab ﹣15b 2+5a 2﹣6ba +15a 2﹣2b 2的值.【解答】解:由题意得,a ﹣1=0,b +2=0,解得,a =1,b =﹣2,原式=(3﹣6)ab +(﹣15﹣2)b 2+(5+15)a 2=﹣3ab ﹣17b 2+20a 2当a =1,b =﹣2时,原式=﹣3×1×(﹣2)﹣17×(﹣2)2+20×12=﹣42.23.(6分)一个正方体的体积是125cm 3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm 2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.【解答】解:((1)√12583=52,所以立方体棱长为52cm ;(2)最多可放4个.设长方形宽为x ,可得:4x 2=36,x 2=9,∵x >0,∴x =3,12÷52=245, 横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.24.(8分)“湖田十月清霜堕,晚稻初香蟹如虎”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A 、B 两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A 家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克) 0~50部分50以上~150 部分 150以上~250 部分 250以上 部分 价 格(元) 零售价的95% 零售价的85% 零售价的75% 零售价的70%(1)如果他批发80千克太湖蟹,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克太湖蟹(150<x <200),请你分别用含字母x 的式子表示他在A 、B 两家批发所需的费用;(3)现在他要批发195千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【解答】解:(1)由题意,得:A :80×60×92%=4416元,B :50×60×95%+30×60×85%=4380元.(2)由题意,得A :60×90%x =54x ,B :50×60×95%+100×60×85%+(x ﹣150)×60×75%=45x +1200.(3)当x=195时,A:54×195=10530,B:45×195+1200=9975,∴10530>9975,∴B家优惠.25.(8分)在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC =1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x的值.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.四、附加题(第26,27题各5分,共10分)26.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.【解答】解:∵|x+y﹣3|=﹣2x﹣2y=﹣2(x+y)≥0,∴x+y≤0,﹣(x+y)+3=﹣2(x+y),x+y=﹣3,(x+y)3=(﹣3)3=﹣27.27.如图,它是由A、B、E、F四个正方形,C、D两个长方形拼成的大长方形,已知正方形F的边长为6,求拼成的大长方形周长.【解答】解:设A正方形边长为a,E正方形边长为x则正方形F的边长为a+x,大长方形长为2x+3a,宽为2x+a 则大长方形周长为8x+8a,因为a+x=6,所以8x+8a=8(a+x)=48.。
七年级数学上册期中考试卷(浙教版)限时:120分钟,满分:120分题号一二三总分得分一、单选题(本题有10小题,每小题3分,共30分)1.[2022·玉林]下列各数中,是无理数的是()A.2B.1.5C.0D.-1 2.[2022·荆门]如果|x|=2,那么x=()A.2B.-2C.2或-2D.2或-12 3.若将某大米每袋的标准质量定为20kg,实际质量与标准质量相比,超出部分记做正数,不足部分记做负数,则下面4袋大米中,实际质量最接近标准质量的是()4.[2022·长春]长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将1800000用科学记数法表示为() A.18×105B.1.8×106C.1.8×107D.0.18×107 5.[2023·义乌月考]用四舍五入法把0.2854精确到百分位,得到的近似数是()A.0.2B.0.28C.0.285D.0.29 6.[2023·宁波海曙区期中]下列运算正确的是()A.(-1)2024=-1B.-22=4C.16=±4D.3-27=-37.已知x-2的平方根是±2,2x+y+7的立方根是3,则x+y的值为() A.11B.12C.13D.14 8.[2023·金华婺城区期末]如图,在数轴上有间隔相等的四个点M,N,P,Q,它们表示的数分别为m ,n ,p ,q ,其中有两个数互为相反数,若m 的绝对值最大,则数轴的原点是()A .点NB .点PC .点P 或NP 的中点D .点P 或PQ 的中点9.已知a ,b 都是有理数,它们在数轴上的对应点的位置如图所示,下列结论不正确的是()A .|a +b |=|a |-|b |B .-b <a <-a <bC .a +b >0D .|-b |>|-a |10.对于任意两个实数a ,b ,定义两种新运算:a ⊕b (a ≥b ),(a <b ),a ⊗b =(a ≥b ),(a <b ),并且定义新运算的顺序仍然是先算括号内的,例如:(-2)⊕3=3,(-2)⊗3=-2,[(-2)⊕3]⊗2=2.那么(5⊕2)⊗327等于()A .2B .3C .5D .6二、填空题(本题有6小题,每小题4分,共24分)11.[2023·宁波月考]如果向东走5m 记做+5m ,那么向西走3m 记做________m .12.比较大小:7________2.5.(填“>”“<”或“=”)13.[2023·金华月考]在-2,3,4,-5这四个数中,任取两个数相乘,所得的乘积最小是________.14.[2023·杭州上城区月考]将一个体积为343cm 3的立方体木块锯成8个同样大小的小立方体木块,则每个小立方体木块的表面积为________cm 2.15.如图,在数轴上方作一个2×2的方格(每个方格的边长为1个单位长度),连结AB ,BC ,CD ,DA 得到一个正方形,点A 在数轴上,用圆规在点A 的左侧的数轴上取点E ,使AE =AB ,若点A 在原点的右侧且到原点的距离为1个单位长度,则点E 表示的数是________.16.有一个数值转换器,原理如图.当输入的x =16时,输出的y 等于________.三、解答题(本题有8小题,共66分)17.(6分)[2023·金华期中]有一组实数:①-|-3|,②π2,③0,④22,⑤-359,⑥117,⑦-16,⑧3.131331…(每相邻两个“1”之间的“3”的个数依次增加1).将它们分别填在相应的横线上.整数:________________________________________________________;负有理数:_____________________________________________________;无理数:_______________________________________________________.18.(8分)计算:(1)-12+5-(-18);(2)(-3)×56÷-14;(3)(-2)3+364-,(-3)2);(4)-14-24×-12+34-13.19.(6分)[2023·温州瑞安市期中]把下列实数表示在数轴(如图)上,并比较它们的大小(用“<”连接).-32,0,-,16),(-1)2.20.(6分)已知a,b互为倒数,c是最小的正整数,d是绝对值最小的数,|x+2|=0,求3ab-x2+2c+dx的值.21.(8分)[2023·绍兴新昌期末]有一种“24点”的扑克牌游戏的规则如下:任抽四张牌,用各张牌上的数(A表示1)和加、减、乘、除、乘方、开方运算列一个算式(可用括号,每个数只用1次),使得计算结果为24.现抽到的四张牌如图所示,按上述规则列式,如:-16=24.请你再列出符合要求的两个不同的算式.22.(10分)如果A=a-1a+3b为a+3b的算术平方根,B=-b+51-a2为1-a2的立方根,求A+B的平方根与立方根.23.(10分)某食品厂从生产的袋装食品中抽出样品20袋,若每袋的标准质量为450克,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克)-5-20136袋数14353(1)请将表格补充完整.(2)20袋食品中,最重的比最轻的重多少克?(3)求这20袋食品的总质量.24.(12分)[2023·温州永嘉期中]如图为白纸上的一条数轴,A,B是数轴上的两点,点A表示的数是-3,点B在点A的右侧,且到点A的距离是4.(1)点B表示的数是________.(2)C,D,M,N是数轴上不同于点A,B的四点,把白纸对折,使A,B两点重合,此时C,D两点也重合.①若点D在原点的右侧,到原点的距离为6,求点C表示的数;②若点M,N在原点的两侧,点M到点A的距离是100,对折后点M到点B,N的距离相等,求点N表示的数.。
七年级(上)期中阶段性测试班级姓名学号一、选择题1. 立方根等于它自己的实数是()( A )0, -1.( B )1, -1. (C )0,1 .( D )0,1,-1.2. 在-(-2 ), -2 ,(-2) 2 ,-2 2 这 4 个数中,属于负数的个数是()( A )1.( B )2.(C )3.(D )4.3. 一批部件的尺寸要求是30 00..0201 cm ,现测得 4 个部件的直径,此中合格的是()( A ) 30.03cm. ( B )30.01cm.( C ) 29.98cm.(D ) 29.96cm.4. 以下计算结果为正数的是()( A )(- 1)-(+3)+(+4) .(B )(- 1)÷(-1)×(-2) .32326( C )(-2) 3 ×(-3)2.(D )(-5)×(-4) 3 .85. 据中华人民共和国第五次人口普查,我国人口总数为1 295 330 000 人 . 这个数据用科学记数法可表示为(保存 3 个有效数字) ( )( A )1.29 ×10 9 . ( B ) 1.20 ×10 9 .( C ) 1.30 ×10 9 .( D ) 1.3109.6. 已知计算器的按键次序为2÷ (1ab/ c4—1ab / c3)=, 显示结果为()( A )24.( B ) -24. (C ) 14.( D ) -14.7. 有以下说法:①任何有理数都能够用分数表示;②实数与数轴上的点一一对应;③在 1和 3之间的无理数有且只有 2, 3, 5, 7这 4个;④是分数,它是有理数 .2此中正确的个数是 ( )(A ) 1. (B )2. (C )3.(D )4.8. 以下等式错误的选项是()(A )-16 =- 4 .(B ) 30.064 =— 0.4.25 5(C ) 16 的算术平方根是 4(D )(- 2 ) 2=2.9. 小勇在暑期参加了社会实践活动,他把攒得的 x 元钱存入银行 .已知一年的整存整取年利率为 1.98 %,利息税为20 %,则一年后,小勇实质能获得的本利和为()(A ) 1.98 % x 元 .(C )(80 %×1.98 %x+x )元 .10. 已知 数a,b,c 足 a+b+c=-2, 当x=-1( B )( 1.98 % +1 ) x 元.( D )( 20 %×1.98 % x+x )元 .53,多 式ax +bx +cx-1 的是( )(A )1.( B ) -1.(C )3. (D )-3.二、填空11. 假如“+200 元”表示收入 200 元,那么“-100 元”的意 是.c a 0 b 12. 数 a,b,c在数 上的 点的地点如 所示. 数 a,(第 12)b,c 的大小关系是(用“>”号 接).13. 用 算器 算4-( -3) 2 ×2 的按 序是.14. 写出一个你在平时生活中遇到的近似数:.15. 已知某数的一个平方根是3 , 个数是,它的另一个平方根是. 16. 写出“ 式 +多 式 = 式”的一个例子:.17. 去括号: -( -5x+1 ) =.18. 式 -1a 2b 的系数是,次数是.319. 仔 察以下 形 .当梯形的个数是n , 形的周 是.11212111111111 122 121 220. 察以下各式:31 =3,3 2=9,3 3 =27 ,3 4 =81,3 5 =243 , 36 =729 ⋯你能从中 底数 3 的 的个位数有什么 律 ?依据你 的 律回答:3 2004 的个位数字是.三、解答21. 画一条数 ,把 -1 1, 2 , 2 各数和它 的相反数在数 上表示出来,并比 它 的2大小,用“<”号 接.22. 算:(1)-1-1+ 1;(2)( -8)÷2 1 + 4×(-1 );2 3 4 4 9(3)1-(1-1-1)×(-12 );(4) -2 2÷11×(1-1)2. 23123323. 设 A=2x 3 +3x 2 -x, B=4x 3 +8x 2 -2x+6, 求当 x= 1时, A-1B 的值 . 2224.现代营养学者用“身体质量指数”来作为判断人的健康情况的指标.这个指数等于人的身体质量(千克)与身高(米)的平方的商 .一个健康的人的“身体质量指数”在 20 ~ 25 之间,“身体质量指数”低于 18 ,属于不健康的瘦;“身体质量指数”高于 30 ,属于不健康的胖 .(1 )设某人的身体质量为 m(千克),身高为 h (米),求他的“身体质量指数”;(2 )小陈的身高为 1.6 米,身体质量是 45 千克 ,小陈的身体健康情况怎样 ?说说你的见解 .参照答案期中阶段性测试1. D2. B3. B4. D5. C6. B7. B8. C9. C10.A11. 支出 100 元 12. b>a>c.13. 略14. 略15.3;- 316. 略17. 5x-118. -1, 319. 3n+220. 1 321. 图略 . -2〈-1 1〈 - 2 〈2〈11〈2 2222. (1) - 7(2) -4(3) 2(4) -2723. -x 2 -3, -131244m,24 .(1)h2(2)小陈的“身体健康指数”是17.6〈18,属于不健康的瘦,应增添营养,增强身体锻炼25. ( 1) 10 12(2 )10 n26. 40+4.9x; 6 x200 时够用49。
七年级第一学期期中考试数学试卷一、精心选一选,慧眼识金(每题3分,共30分)1、31-的相反数是( ) A .31B .31-C .3D .-32、9的算术平方根为( )A.9B.±9C.3D.±3 3、大于-2.5而小于π的整数共有( )A 、6个B 、5个C 、4个D 、3个 4、下列各组整式中,不是..同类项的是( ) A .7-与2.1 B .22ab b a 与 C .yx xy 52-与 D .22mn n m 与3 5、“神舟五号”载人飞船绕地球飞行了14圈,共飞行约590200km ,则这个飞行距离用科学记数法表示为( ) A 、59.02×104km;B 、 0.5902×106km C 、 5.902×104km D 、 5.902 ×105km 6、下列合并同类项正确的是( )A .5x -2x =3B .2a +3b =6abC .x 3+x 3=x6D .4ab -3ab =ab7、已知代数式9322+-x x 的值为7,则9232+-x x 的值为 ( ) A .27 B .29C.8 D . 10 8、某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元, 现在某人乘出租车行驶P 千米的路程(P >7)所需费用是( )A.5+1.5PB. 5+1.5C.5-1.5PD.5+1.5(P -7)9、用10米长的铝合金做成一个长方形的窗框(如图),设长方形窗框的横条长度为x 米,则长方形窗框的面积为( ) A.)10(x x -平方米 B.)310(x x -平方米C.)235(x x -平方米D.)2310(x x -平方米10、右图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是( )B.C.D.二、细心填一填,一锤定音(每题3分,共24分)11、若上升15米记作+15米,则-8米表示 . 12,9, 0.010010001…(两个”1”之间依次多一个”0”),227,13π,这六个数中,无理数共有 个.13、单项式―3223x y 的系数是___ ____,次数是____ __.14、多项式21213ab a b --次数最高的项是__________,它是_______次多项式. 15、根据下图所示程序计算函数值,若输入的x 的值为-52,则输出代数式的值为 .16、若()0212=-++b a ,则 = _____________.17、数轴上点A 表示的数是-1,以A 点为圆心,2个单位长度为半径的圆交数轴于B 、C 两点(点B 在点C 的左侧),那么B 、C 两点表示的数分别是___________.18.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算)111(1001+-∑=n n n =___________. 三.耐心解一解,马到成功(共46分)19、(本题6分)代数式4+5y ,7,m222211,3,a b x xy y x+--中, 属于整式的有: ; 属于单项式的有: ; 属于多项式的有: ;20、(本题12分)细心算一算(要有过程)(1))5()2()10(8---+-+ (2)-3.5÷87×43-(3)()632149572-⨯⎪⎭⎫⎝⎛+- (4)2014212(3)-+-⨯-21、(本题6分)化简求值:(1)x 2 −(−x 2+3xy )− 2(x 2−2xy ),其中x =−2,y =322、(本题6分)“囧”(jiong )是网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示右图中“囧”的面积; (2)当36x y ==,,时,求此时“囧”的面积.23、(本题8分)如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形。
最新浙教版七年级上期中考试数学试卷及答案最学资料:浙教版数学七年级数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1.2014的倒数是()。
A。
2014 B。
-2014 C。
±2014 D。
1/20142.在下面各数中无理数的个数有()。
322π,-3.14,0.xxxxxxxx01…,+1.99,-xxxxxxxxA。
5个 B。
4个 C。
3个 D。
2个3.下列各式①m ②x+2=7 ③2x+3y ④a>3 ⑤中,x整式的个数有()。
A。
1个 B。
2个 C。
3个 D。
4个4.下列运算中,正确的是()。
A。
-a^2b+2a^2b=a^2b B。
2a-a=2C。
3a^2+2a^2=5a^4 D。
2a+b=2ab5.把方程-0.3x+0.7/(x+2)-1=0化为整数,结果应为()。
A。
-2 B。
-20/37 C。
-2 D。
-20/376.下面是一个被墨水污染过的方程:2x-2=3x+2,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是()。
A。
1 B。
-1 C。
2 D。
27.如果A和B都是5次多项式,则下面说法正确的是()。
A。
A-B一定是多项式 B。
A-B是次数不低于5的整式C。
A+B一定是单项式 D。
A+B是次数不高于5的整式8.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m^3分裂后,其中有一个奇数是103,则m的值是()。
A。
9 B。
10 C。
11 D。
12二、填空题:(本大题共10小题,每题3分,共30分)9.江都地区实现地区生产总值639亿元,639亿用科学记数法表示应为(6.39×10^11)。
10.单项式-π/4a^3b的次数是(3)次。
11.若单项式2x^2ym与-xny^3是同类项,则m+n的值是(3)。
12.在数轴上,与表示-1的点相距6个单位长度的点所表示的数是(-7)。
七年级上期中数学试卷一.选择题(共10小题,3*10=30)1.某大米包装袋上标注着“净含量10kg±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是()A.100g B.150g C.300g D.400g2.﹣3的倒数是()A.3B.C.﹣D.﹣33.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对4.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.计算4+(﹣2)2×5=()A.﹣16B.16C.20D.246.如图,在数轴上表示实数的可能是()A.点P B.点Q C.点M D.点N7.有理数a,b,c在数轴上的对应点如图所示,下列各式不正确的是()A.a+c<b+c B.ac<bc C.ab>ac D.8.单项式2a3b的次数是()A.2B.3C.4D.59.如图的最小正方形的边长均为1,则阴影部分正方形的面积和边长分别是()A.5和B.8和C.10和D.2和10.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0B.1C.3D.5二.填空题(共8小题,3*8=24)11.﹣2和它的相反数之间的整数有个.12.一件童装每件的进价为a元(a>0),商家按进价的3倍定价销售了一段时间后,为了吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润用代数式表示应为元.13.已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是.14.的平方根是.15.209506精确到千位的近似值是.16.请写出一个比3大比4小的无理数:.17.如图,在数轴上点A表示的实数是.18.我们根据指数运算,得出了一种新的运算.下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子,①log232=5;②log416=4;③log 2=﹣1,其中正确的是(填式子序号)三.解答题(共7小题,66分)19.(6分)计算:(1)|﹣4|×7﹣(﹣8);(2)﹣14﹣2×.20.(9分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142﹣4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:(2)观察表格,你发现A与B有什么关系?解决问题:(3)请结合上述的有关信息,计算4×3.142﹣4×3.14×3.28+3.282.21.(12分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?22.(9分)已知2a﹣1的平方根是±3,的算术平方根是b,求a+b的平方根.23.(10分)某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,会员每月交会员费12元,租碟费每张0.4元.小彬经常来该店租碟,若小彬每月租碟数量为x张.(1)分别写出两种租碟方式下小彬应付的租碟金额;(2)若小彬在一月内租24张碟,试问选用哪种租碟方式合算?(3)小彬每月租碟多少张时选取哪种方式更合算?24.(10分)把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,3,5},…,我们称之为集合,其中的每一个数都叫做这个集合的元素,在某一集合中,有理数x是它的一个元素,如果6﹣x也是它的一个元素,那么我们把这样的集合又称为黄金集合.(1)判断{1,2}和{1,3,5}是不是黄金集合?请说明集合;(2)请你写出两个黄金集合(不能与上面出现过的集合重复).25.(10分)观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中有5个正方形,按照这种规律变化下去…(1)第3个图中有个正方形;(2)第4个图形比第3个图形多个正方形;(3)第n个图形比前一个图形多个正方形(用含有n的式子表示);(4)按照规律,是否存在某个图形,它比前一个图形增加2015个正方形?为什么?参考答案与试题解析1.解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g.故选:D.2.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.3.解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.4.解:∵2<<3,∴3<+1<4,故选:B.5.解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.6.解:∵<<,∴2<<3,点Q在这两个数之间,故选:B.7.解:根据数轴可以得到:a<b<0<c,∵a<b,c>0∴a+c<b+c,故选项A正确;ac>bc,故选项B正确;∵a<b<0<c,∴ab>0,ac<0,∴ab>ac,故选项C正确;∵a<b<0<c,∴a﹣b<0,∴>0,<0,∴>,故选项D错误.故选:D.8.解:该单项式的次数为:4故选:C.9.解:小正方形的面积为1×1=1,由阴影部分的面积为8,边长为2,故选:B.10.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.11.解:﹣2和它的相反数2之间的整数有﹣2,﹣1,0,1,2,故答案为:5.12.解:实际售价为:3a×0.6=1.8a,所以,每件童装所得的利润为:1.8a﹣a=0.8a.故答案为:0.8a.13.解:∵﹣1<b<0,∴﹣b>b,0<b2<1,∴a﹣b>a+b,a﹣b>a+b2;又∵0<a<1,∴0<a2<1,∴a﹣b>a2+b;综上,可得在代数式a﹣b,a+b,a+b2,a2+b中,对任意的a,b,对应的代数式的值最大的是a﹣b.故答案为:a﹣b.14.解:∵==5,∴的平方根是±.故答案为:±.15.解:209506≈2.10×105(精确到千位).故答案为2.10×105.16.解:比3大比4小的无理数很多如π.故答案为:π.17.解:如图,由勾股定理,得OB===,由圆的性质,得OA=OB=,∴点A表示的实数是﹣,故答案为:﹣.18.解:①因为25=32,所以log232=5正确;②因为42=16,所以log416=2,即log416=4错误.③因为2﹣1=,所以此选项正确;故答案是:①③.19.解:(1)|﹣4|×7﹣(﹣8)=4×7+8=28+8=36;(2)﹣14﹣2×=﹣1﹣2×9+(﹣3)÷(﹣)=﹣1﹣18+9=﹣10.20.解:(1)当x=3,y=2时,B=4x2﹣4xy+y2=4×32﹣4×3×2+22=16;当x=1,y=1时,B=4x2﹣4xy+y2=4×12﹣4×1×1+12=1;当x=5,y=3时,B=4x2﹣4xy+y2=4×52﹣4×5×3+32=49.故答案为16,1,49;(2)B=A2;(3)4×3.142﹣4×3.14×3.28+3.282=(2×3.14﹣3.28)2=9.21.解:(1)超产记为正、减产记为负,所以星期四生产自行车(200+13)辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409(辆),故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26(辆),故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675(元),故该厂工人这一周的工资总额是84675元.22.解:∵2a﹣1的平方根是±3,∴2a﹣1=9,∴a=5,∵的算术平方根是b,即16的算术平方根是b,∴b=4,∴±=±=±3.23.解:根据题意得:(1)零星租碟应付的租碟金额为x元;会员卡租碟应付的租碟金额为(12+0.4x)元;(2)当x=24时,则12+0.4x=21.6<24,则交会员费合算;(3)当x=12+0.4x时,则x=20.所以大于20张时,交会员费合算;等于20张时两种方式一样合算;小于20张时,零星租碟合算.24.解:(1){1,2}不是黄金集合;理由:因为6﹣1=5,而5不是集合{1,2}的元素;6﹣2=4,而4也不是集合{1,2}的元素,所以{1,2}不是黄金集合;{1,3,5}是黄金集合;理由:因为6﹣1=5,而5是集合1,3,5}的元素;6﹣3=3,而3也是集合{1,3,5}的元素;6﹣5=1,而1也是集合{1,3,5}的元素,所以{1,3,5}是黄金集合;(2)写出两个黄金集合如:{0,6}和{2,3,4}.25.解:(1)由图知:第3个图中有9+4+1=14个正方形,故答案为:14;(2)∵第1个图中有1个正方形;第2个图中共有5=2×2+1个正方形;第3个图中共有14=3×3+5个正方形;可以发现:第2个图形比第1个图形多:5﹣1=4=22个;第3个图形比第2个图形多:14﹣5=9=32个,∴第4个图形比第3个图形多42=16个.故答案为:16;(3)由(2)的规律可得:第n个图比前一个图形多n2个.故答案为:n2;(4)∵不能开平方,∴不存在某个图形,它比前一个图形增加2015个正方形.。
浙教版数学初一上学期期中自测试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题干:在下列数中,最小的质数是:A、18B、22C、23D、252、题干:如果a=5,那么算式a² - 4a + 4的值是多少?A、5B、9C、16D、253、已知一个长方形的长是12cm,宽是5cm,那么它的面积是:A、60cm²B、100cm²C、120cm²D、150cm²4、下列分数中,最简分数是:A、812B、1216C、59D、7105、已知一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A. 20厘米B. 24厘米C. 30厘米D. 40厘米6、一个数的3倍加上5等于24,这个数是多少?A. 3B. 4C. 5D. 67、已知一个长方形的长是8厘米,宽是5厘米,求这个长方形的面积。
A. 25平方厘米B. 40平方厘米C. 32平方厘米D. 60平方厘米8、一个等边三角形的边长是10厘米,求这个等边三角形的周长。
A. 15厘米B. 30厘米C. 25厘米D. 20厘米9、下列各数中,是负数的是:A、-3.5B、0.5C、-0.5D、5 10、一个长方形的长是12cm,宽是5cm,那么这个长方形的周长是:A、22cmB、24cmC、26cmD、28cm二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是12厘米,宽是5厘米,那么这个长方形的面积是________ 平方厘米。
2、若一个数的2倍加上3等于17,那么这个数是 ________ 。
3、一个长方形的长是10厘米,宽是长的一半,这个长方形的周长是 ______ 厘米。
4、在直角三角形ABC中,∠C是直角,AC=6厘米,BC=8厘米,根据勾股定理,斜边AB的长度是 ______ 厘米。
5、已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长是______cm。
浙教版七年级上期中考试数学试卷及答案一、选择题(每题2分,共20分)1、下列哪个选项是正确的?A. (x+y)^2=x^2+y^2B. (x+y)^2=x^2+2xy+y^2C. (x+y)^2=x^2-2xy+y^2D. (x+y)^2=x^2+y^2+2xy正确答案是:B. (x+y)^2=x^2+2xy+y^2。
2、如果a和b是互为相反数,那么a+b等于多少?A. 0B. 1C. -1D.无法确定正确答案是:A. 0。
3、下列哪个数不是有理数?A. 0.5B. -3C. π/2D. √9正确答案是:C. π/2。
4、一个正方形的面积是4平方厘米,那么它的周长是多少?A. 4厘米B. 6厘米C. 8厘米D. 10厘米正确答案是:C. 8厘米。
根据正方形面积公式,可得出边长为2厘米,因此周长为8厘米。
5、下列哪个函数在某个区间内单调递增?A. y=x^2B. y=3x+5C. y=|x|D. y=2/x正确答案是:C. y=|x|。
函数y=|x|在区间[0,+∞)内单调递增。
其他选项中,A是二次函数,在区间(-∞,0)内单调递减,在区间(0,+∞)内单调递增;B是一次函数,在R内单调递增;D是反比例函数,在区间(-∞,0)和(0,+∞)内都单调递减。
A.全等三角形的面积相等B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.底边相等的两个等腰三角形全等如果一个点到原点的距离为,那么这个点在()A.轴上B.轴负半轴上C.第三象限的角平分线上D.第四象限的角平分线上A.平方等于它本身的数只有0和1B.互为相反数的两个数之和为0C.除以一个数等于乘这个数的倒数D.任何有理数的偶次方都是正数如果一个数的平方等于它的倒数,那么这个数是_________.下列等式成立的是_________.(添>、<、=、≥、≤)在括号内填上适当的整式使等式成立_________.(1)计算:|-3|+|+5|-|-1|;(2)先化简再求值:当a=5时,求a+4+3a-4的值.(1)计算:3÷(-6);(2)计算:+;(3)计算:2(2a+b)-(3a-b);1已知有理数a、b在数轴上的对应点如图所示,用不等号填空:(1)a_________b;(2)-a_________-b;(3)|a|_________|b|;(4)a的相反数_________b的相反数;(5)-a的相反数_________-b 的相反数.【分析】根据轴对称图形的概念,进行选择即可.【分析】根据数轴上表示数的方法,可得答案.a−b=2,则9 - a + b = ______.下列加点字的注音完全正确的一项是()(2分)A.确凿(záo)倜傥(tǎng)蝉蜕(tuì)菜畦(qí)B.脑髓(suǐ)讪笑(shàn)哽咽(yè)嫉妒(jí)C.庇护(pì)猝然(cù)木讷(nè)笃信(dǔ)D.拮据(jū)褴褛(lǚ)栈桥(zhàn)阔绰(chuò)正确答案是:D.拮据(jū)褴褛(lǚ)栈桥(zhàn)阔绰(chuò)。
浙教版数学七年级上册期中测试考生须知:● 本试卷满分150分,考试时间120分钟。
● 必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
● 请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
● 保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 2019-的相反数是( ) A .2019B. 2019-C .20191D .20191-2. 苍南县高铁站改扩建工程属第四代高铁站房,比照地级市站建设规模,建筑面积扩建到约两万七千平方米,总投资约640000000元.其中数据640000000用科学记数法表示为( )A.71064⨯B.71046⨯.C.81046⨯.D.910640⨯.3. 下列四个数中,属于无理数的是( ) A.34-B.22)(-C.916 D.0.17177177714. 如果零上10℃记作+10℃,那么零下3℃可记为( ) A .-3℃ B .+3℃ C .±3℃D .31℃5. 一根1米长的彩带,第一次裁下51,第二次裁下51m ,则哪次用得多( )A .第一次B .第二次C .一多D .不能确定6. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若b+d =0,则下列结论正确的是( )(第6题图)A .b+c>0B.1>caC .ad>bcD .b a >7. 下列计算正确的是( ) A .066=--)(B .()422-=-C.632=-⨯)( D .2142=-÷-)(8. 下列说法正确的是()A.7的算术平方根是49B.平方根等于它本身的数是1和0C.有理数与无理数的乘积一定是无理数D.如ab>0,则点(a,b)在第一象限或第三象限9. 已知实数x,y满足0-y+x,则代数式()2012+43=x+的值为()yA.-1B.1C.2012D.-201810. 正方形ABCD在数轴上的位置如图所示,点A,B对应的数分别为-1和0,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C所对应的数为1;翻转2次后,点D所对应的数为2:翻转3次后,点A所对应的数为3:翻转4次后,点B所对应的数为4,…,则连续翻转2019次后,数轴上数2019所对应的点是()(第10题图)A.A B.B C.C D.D二.填空题:本大题有6个小题,每小题5分,共30分。
浙教版七年级上册数学期中测试卷(同学们,展现自己的时候到了,你要仔细思虑,沉稳答卷啊!祝你成功!)一、精心选一选(每题1、16 的平方根是(3)分,共30 分)A、4B、± 4C、2D、± 22、以下各式中正确的选项是()A、33B、1( 1)C、21D、223、在以下选项中,拥有相反意义的量是()A、收入 20 元与支出 30 元B、6 个老师和 7 个学生C、走了 100 米的跑了 100 米D、向东行 30 米和向北行 30 米4、近似数 -0.08010 的有效数字个数有()A、3 个B、4 个C、5 个D、6 个5、实数 a, b, c 在数轴上大概地点如图,b c则 aa的大小关系是()A、a<b<c B. a<c<b C. b<c<a D. 没法确立6、一只海豚从水面先潜入水下40 米,而后又上涨了23 米,此时海豚离水面()A、63 米B、17 米C、23 米D、40 米7、在计算器上按键16-7=显示的结果是()A、3B、-3C、-1D、18、以下说法错误的选项是()A、0 的绝对值是 0B、0 的相反数是 0C、0 的平方根是 0D、0 的倒数为09、以下各式:1 a2b2,1x 1,-25,1,x y,a22ab b2中单项52x2式的个数有()A、4 个B、3 个C、2 个D、1 个10、在以下各组单项式中,是同类项的是()A、b3与 a3 B. a2b 与-ba2 C.x2y 与 x2yz D. 2m2n与2mn2二、耐心填一填(每题 3 分,共 30 分)11、1213=_____________12、-2006 的倒数是 _______,1的立方根是________,-2的绝对值8是________13、绝对值等于 3 的数是 _______14、小于π的自然数有 ______个15、假如a b 1 0 ,则a+b=_____________16、已知代数式 a-2b 的值为 5,则 4b-2a 的值是 _____________17、假如2x a y 3与1x3y b是同类项,则a b=__________418、用科学记数法表示6850000=____________19、数 -3 2,18 , 6 ,364中最大的数____________20、一列,明“两个无理数的和还是无理数”是的:____________三、答一答21、把以下各数填在相的表示会合的大括号内( 4 分)-2 ,π, 1 , 3 ,22,-0.3,1.7,5 ,0,1.1010010001⋯⋯37整数{⋯⋯ }分数 {⋯⋯ }无理数 {⋯⋯ }22、在数上表示以下各数,π, 4 ,0,- 2.25 ,并把些数按从小到大的序行摆列。
2024-2025学年浙教版数学七年级上册期中过关测试(A )卷1.的绝对值是()A .B .C .D .2.下列实数中,无理数是()A .0B .3.14C .D .3.某体育中心体育场的观众席位数29800座,则29800用科学记数法表示为()A .B .C .D .4.下列语句中正确的()A .一定是负数B .符号不同的两个数是相反数C .数轴上的两个有理数,大的离原点远D .绝对值最小的整数是05.如图,数轴上点,表示的数为,,且,则下列结论不正确的是()A .B .C .D .6.数,0,,中最小的是()A .B .0C .D .7.有一个数值转换器,原理如图所示,当输入的的值为时,输出的的值是()A .B .C .D .8.若,,,,则()A .B .C .D .9.下列各组数中不相等是()A .和B .和C .和D .和10.计算机中常用的16进制是逢16进1的计算制,采用数字和字母共16个计数符号,这些符号与十进制的数对应关系如下表.16进123456789制10进制123456789101112131415例如,用十六进制表示:,则()A .156B .19C .D .11.一次身高测量,全班同学的平均身高是,如果老师把记作,那么记作_______.12.用四舍五入法把 1.5942精确到0.01的近似数是_________.13.若,则的值为_______.14.如果x 是9的平方根,y 是的立方根,则______.15.如图,正方形的面积为,顶点在数轴上表示的数为,若点在数轴上(点在点的左侧),且,则点所表示的数为______.16.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”,如图1,计算,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来(斜行的和均小于10),得2397.如图2,用“铺地锦”的方法表示两个两位数相乘,这两个两位数相乘的结果为_________.17.计算:(1);(2);(3);(4).18.在数轴上表示下列各数(无理数近似表示),并用“<”连接.,,,.19.求下列各式的值:(1)已知,互为相反数,,互为倒数,的绝对值为4,求的值.(2)已知,,,若,同号,,异号,求的值.20.出租车司机小飞某天上午营运全是在南北走向的某条大街上进行的,如果规定向南为正,向北为负,他这天上午的行程是(单位:千米):.(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?(2)若汽车耗油量为0.6升/千米,出车时,邮箱有油61升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天下午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由.21.岚山多岛海以其优类的海岸线,宽广的金沙滩吸引了众多游客慕名而来.如表是某社会实践小组统计的2023年8月1日~7日七天内每天旅游人数变化表(正号表示人数比前一天多,负号表示比前一天少)已知7月31日的游客人数为0.3万人,结合以上信息解决下列问题:日期1日2日3日4日5日6日7日人数变化单位:万人(1)8月4日的旅客人数为__________万人;(2)8月1日~7日中旅客人数最多的一天比最少的一天多多少人?(3)如果每万人带来的经济收入约为300万元,则8月1日~7日的旅游总收入约为多少万元?22.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似的圆形,苔藓的直径和其生长年限近似地满足如下的关系式:,其中d表示苔藓的直径,单位是厘米,t代表冰川消失的时间(单位:年)(1)计算冰川消失21年后苔藓的直径为多少厘米?(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?23.在一个轨道长为的轨道架上做钢球碰撞实验,如图所示,轨道架上放了三个大小、质量完全相同的钢球A,B,C,左右各有一个钢制挡板D和E,其中C到左挡板的距离为,B到右挡板的距离为,A,B两球相距.以轨道所在的直线画数轴,A球在原点,B球表示的数为30.(1)C球表示的数为,挡板E表示的数为;(2)碰撞实验中(钢球大小、相撞时间不计),钢球的运动都是匀速的,当一钢球以一速度撞向另一静止钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动,钢球撞到左右挡板则以相同的速度反向运动,现A球以每秒的速度向右匀速运动,①秒后B球第一次撞向右挡板E,秒后B球第二次撞向右挡板E;②当三个球运动的路程和为时,球正在运动(填“A”,“B”,“C”),此时,A球表示的数为,B球表示的数为,C球表示的数为.。
. . . . .a -1 0b 1AB第一学期质量检测试卷七年级数学温馨提醒:1、本卷满分100分,考试时间90分钟2、本卷共6页, 其中试题卷4页,答题卷2页。
共26小题。
一、选择题(每题3分,共30分)1、 下列四个数中,在-3到0之间的数是 ( )A 、-2B 、1C 、3D 、-42、武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800米,用科 学计数法表3、示这个数为 ( ) A 、1.68×104 B 、16.8×103 C 、0.168×104 D 、1.68×1034、下列各对数中,互为倒数的是 ( ) A 、-51 与0.2 B 、54 与 -54C 、23与32D 、211与24、下面的说法正确的是……………………………………………………………… ( ) A 、单项式b a 22π的次数是4次 B 、 多项式32++bc b a 的次数是2 C 、53ab 的系数是3 D 、41++xx 不是多项式 5、下列计算中正确 ( ) A 、2a -a =2 B 、2a +b =2ab C 、a 2b -2a 2b =-a 2b D 、3a 2+2a 2=5a 46、下列实数中,是无理数的是 ( ) A 、722B 、5C 、 (2)2 D 、0.10100100017、 如图数轴上的两点A 、B 表示的数分别为a 、b ,下列结论正确的有( )个①b -a >0 ②a -b >0 ③ab >0 ④a +b >0 ⑤a -b >0⑥b 2-a 2<0A 、3个B 、4个C 、5个D 、6个8、若a 2=(-5)2,b 3=(-5)3,则a +b 的值为 ( ) A 、0 B 、-10 C 、0或-10或10 D 、0或-109、按括号内的要求,用四舍五入法对1022.0099取近似值,其中错误的是( ) A 、1022.01(精确到0.01) B 、1.0×103(精确到百位) C 、 1020(精确到十位) D 、1022.010(精确到千分位)10、如果a 与b 互为相反数,x 与y 互为倒数,且有C 2=1,那么代数式b +a -2xy +c 的值为 ( )A 、3B 、-3C 、-1D 、-1或-3二、填空题(每题3分,共30分) 11、写出一个比-54小的整数是 12、的平方根是13、在数轴上,点A 表示的有理数是-2,点B 与点A 的距离为4个单位长度,且点B 在点A 的右边,则点表示的有理数是 14、绝对值大于 不大于6的整数有 个 15、如果一个正数的平方根是2a -1和-a +2,那么这个正数是 16、小方利用计算机设计了一个计算程序,输入和输出的数据如下表,那么当输入数据为8时,输出的数据17、若2x 2m +3与-3x n +5是同类项,则(2m -n )2=18、已知x 与y 的2倍的和是5,则代数式2x +4y +1的值是 19、若0<a <1,则-a 、a1、a 2按从小到大的顺序排列的是 20、如果x <-1,化简=-+x 1x三、简答题(共40分)21、计算题:(每题3分,共12分) (1)(-1)3-(32-43-61)×(-24) (2)-32×(-31)-24÷(-21)(3)-18÷(-3)2+5×(-21)3-(-15)÷5 (4)818)2(32⨯---16222、先化简,再求值(4分)(3x2-xy-2y2)-2(x2+xy-2y2) 其中x=2,y=3123、(6分)三张如图的卡片,用它们拼成两种周长不同的四边形(不重叠无缝隙)(1)(4分)画出示意图,并求出每种四边形的周长(2)(2分)计算两个四边形的周长差a b a b aa a b24、(6分)邮递员骑车从邮局出发,先向南骑行2千米到达A村,继续向南骑行3千米到达B 村,然后向北骑行9千米到达C村,最后回到邮局,(1)以邮局为原点,以向北方向为正方向,用1厘米表示1千米,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置(2)C村离A村有多远(3)邮递员一共骑行了多少千米?25、(6分)把一个长、宽、高分别为40cm,20cm,10cm的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的表面积是多少平方厘米?26、(6分)定义:a是不为1的有理数,我们把a-11称为a的差倒数,如2的差倒数是211-=-1,-2的差倒数是)2(11--=31,已知a1=-31(1) (1分) a2是a1的差倒数,则a2=(2)(1分)a3是a2的差倒数,则a3=(3)(1分)a4是a3的差倒数,则a4=(4)(3分)以此类推a2013 =七年级数学期中质量检测卷答案一、选择题二、填空题11、-1 12、 ±2 13、2 14、10 15、9 16、17817、 4 18、 11 19、 -a <a 2<a120、 -2x -1 三、简答题21、(1)-7 (2)35 (3)83(4)2222、化简得x 2-3xy +2y 2=92023、(1)两个四边形的周长为4a +2b 和4b +2a(2)两四边形的周长差为2a -2b 或2b -2a (答一个即可) 24、(1)数轴略:A 在-2,B 在-5,C 在4(2)6km (3)18km25、2400cm 226、(1)43(2) 4 (3)-31 (4)4。
七年级(上)期中阶段性测试
班级 姓名 学号
一、选择题
1. 立方根等于它本身的实数是( )
(A )0,-1. (B )1,-1. (C )0,1 . (D )0,1,-1.
2. 在-(-2),-2-,(-2)2,-22
这4个数中,属于负数的个数是( )
(A )1. (B )2. (C )3. (D )4.
3. 一批零件的尺寸要求是02.001.030+
-Φcm ,现测得4个零件的直径,其中合格的是( ) (A )30.03cm. (B )30.01cm.
(C )29.98cm. (D )29.96cm.
4. 下列计算结果为正数的是( )
(A )(-
31)-(+23)+(+34). (B )(-21)÷(-6
1)×(-2). (C )(-2)3×(-3)2. (D )(-85)×(-4)3 . 5. 据中华人民共和国第五次人口普查,我国人口总数为1 295 330 000人.这个数据用科学记数法可表示为(保留3个有效数字)( )
(A )1.29×109 . (B )1.20×109.
(C )1.30×109. (D )1.3⨯109.
6. 已知计算器的按键顺序为
,
显示结果为( )
(A )24. (C )14. (D )-14.
7. 有下列说法:
①任何有理数都可以用分数表示;
②实数与数轴上的点一一对应;
③在1和3之间的无理数有且只有2,3,5,7这4个;
④2
π是分数,它是有理数. 其中正确的个数是( )
(A )1. (B )2. (C )3. (D )4.
8. 下列等式错误的是( )
(A )-2516=-5
4. (B )3064.0-=—0.4. (C )16的算术平方根是4 (D )(-2)2 =2.
9. 小勇在暑假参加了社会实践活动,他把攒得的x 元钱存入银行.已知一年的整存整取年利率为1.98%,利息税为20%,则一年后,小勇实际能得到的本利和为( )
(A )1.98%x 元. (B )(1.98%+1)x 元.
(C )(80%×1.98%x+x )元. (D )(20%×1.98%x+x )元.
10. 已知实数a,b,c 满足a+b+c=-2,则当x=-1时,多项式ax 5+bx 3+cx-1的值
是( )
(A )1. (B )-1. (C )3. (D )-3.
二、填空题
11. 如果“+200元”表示收入200元,那么“-100元”的
实际意义是
. c a 0 b
12. 实数a,b,c 在数轴上的对应点的位置如图所示.实数
a, (第12题)
b,c 的大小关系是 (用“>”号连接).
13. 用计算器计算4-(-3)2×2的按键顺序是 .
14. 请写出一个你在日常生活中碰到的近似数: .
15. 已知某数的一个平方根是3,则这个数是 ,它的另一个平方根是 .
16. 请写出“单项式+多项式=单项式”的一个例子: .
17. 去括号:-(-5x+1)= .
18. 单项式- 3
1
a 2
b 的系数是 ,次数是 . 19. 仔细观察下列图形.当梯形的个数是n 时,图形的周长是 .
1 1
2 1 2 1
2 2 1 2 1 2
20. 观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…你能从中发现底数
为3的幂的个位数有什么规律吗?根据你发现的规律回答:3
2004的个位数字是 .
三、解答题
21. 画一条数轴,把-12
1,2,2各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.
22. 计算:
(1)-
21-31+41; (2)(-8)÷241+9
4×(-1);
(3)1-(
21-31-121)×(-12); (4)-22÷131×(1-31)2.
23. 设A=2x 3+3x 2-x, B=4x 3+8x 2-2x+6,求当x=21时,A-2
1B 的值.
24. 现代营养学者用“身体质量指数”来作为判断人的健康状况的指标.这个指数等于人的
身体质量(千克)与身高(米)的平方的商.一个健康的人的“身体质量指数”在20~25之间,“身体质量指数”低于18,属于不健康的瘦;“身体质量指数”高于30,属于不健康的胖.
(1) 设某人的身体质量为m (千克),身高为h (米),求他的“身体质量指数”;
(2) 小陈的身高为1.6米,身体质量是45千克,小陈的身体健康状况如何?谈谈你的
看法.
参考答案
期中阶段性测试
1. D
2. B
3. B
4. D
5. C
6. B
7. B
8. C
9. C 10 . A
11. 支出100元 12. b>a>c. 13. 略 14. 略 15.3;-3
16. 略 17. 5x -1 18. -π3
1,3 19. 3n+2 20. 1 21. 图略. -2〈-121〈-2〈2〈12
1〈2 22. (1) -127 (2) -4 (3) 2 (4) -427 23. -x 2-3, -4
13 24.(1)2,h
m (2)小陈的“身体健康指数”是17.6〈18,属于不健康的瘦,应增加营养,加强身体锻炼
25.(1) 1012(2)10n 26. 40+4.9x; 6≥x ≥
49200时够用。