线段上的动点问题 期末复习强化练习
- 格式:doc
- 大小:135.00 KB
- 文档页数:5
七年级—线段的动点问题(含答案)一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发秒钟时,点D 到点M,点N的距离相等(直接写出答案).2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B 之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.7.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.8.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=cm.②求线段CD的长度.(2)①点B沿点A→D运动时,AB=cm;②点B沿点D→A运动时,AB=cm.(用含t的代数式表示AB的长)(3)在运动过程中,若AB中点为E,则EC的长是否变化,若不变,求出EC的长;若发生变化,请说明理由.9.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.10.已知线段AB=a,MN=b(a,b为常数,且a>2b),线段MN在直线AB上运动(点B、M在点A的右侧.点N在点M的右侧).点P是线段AB的中点,点Q是线段MN的中点.(1)如图1,当点N与点B重合时,求线段PQ的长度(用含a,b的代数式表示);(2)如图2,当线段MN运动到点B、M重合时,求线段AN、PQ之间的数量关系式;(3)当线段MN运动至点Q在点B的右侧时,请你画图探究线段AN、BM、PQ三者之间的数量关系式.11.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M 是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.12.已知点C在线段AB上,且AC=6,BC=4,M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)如果AC=a,BC=b,其他条件不变,你能猜出MN的长度吗?(3)如果我们这样叙述它:“已知点C与线段AB在同一直线上,线段AC=6,BC=4,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.13.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.14.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由;16.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.17.如图,点B、C是线段AD上的两点,点M和点N分别在线段AB和线段CD上.(1)当AD=8,MN=6,AM=BM,CN=DN时,BC=;(2)若AD=a,MN=b①当AM=2BM,DN=2CN时,求BC的长度(用含a和b的代数式表示)②当AM=nBM,DN=nCN(n是正整数)时,直接写出BC=.(用含a、b、n的代数式表示)18.如图所示.(1)若线段AB=4cm,点C在线段AB上(如图①),点M、N分别是线段AC、BC的中点,求线段MN长.(2)若线段AB=acm,点C在线段AB的延长线上(如图②),点M、N分别是线段AC、BC的中点,你能猜想出MN的长度吗?请写出你的结论,并说明理由.19.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照如图回答下列问题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度到达点B,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度到达点B,那么终点B表示的数是;A、B两点间的距离为.(3)一般地,如果A点表示的数为a,将A点向右移动x个单位长度,再向左移动y个单位长度到达点B,请你求出终点B表示什么数?A、B两点间的距离为多少?20.已知多项式﹣2x2y﹣a+3xy2﹣4y+5次数是4,项数是b,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=,b=,并在数轴上标出A、B两点的位置.(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由.(3)点D以每秒2个单位的速度从A点出发向左运动,同时点E以3个单位每秒的速度从B点出发向右运动,点F以每秒4个单位的速度从O点出发向左运动.若P为DE的中点,DE=16,求PF的长.21.如图,M是定长线段AB上一个定点,点C在线段AM上,点D在线段BM上.点C、点D分别从点M、点B出发,分别以1cm/s、2cm/s的速度沿直线BA左运动,运动方向如箭头所示.(1)若AB=20cm,当点C、D运动了2s时,求AC+MD的长度;(2)若点C、D运动时,总有MD=2AC,若AM=ncm,求AB的长;(3)在(2)的条件下,N是直线AB上一点,且MN+BN=AN,求的值.22.如图,C是线段AB上一点,AB=16cm,BC=6cm.(1)AC=cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?23.如图,数轴上A,B两点对应的有理数分别为﹣10和20,点P从点O出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q同时从点A出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)分别求当t=2及t=12时,对应的线段PQ的长度;(2)当PQ=5时,求所有符合条件的t的值,并求出此时点Q所对应的数;(3)若点P一直沿数轴的正方向运动,点Q运动到点B时,立即改变运动方向,沿数轴的负方向运动,到达点A时,随即停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=8?若存在,求出所有符合条件的t值,若不存在,请说明理由.24.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,8,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:P A=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由25.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为(2)如果点A表示数﹣4,将A点向右移动68个单位长度,再向左移动156个单位长度,那么终点B 表示的数是,A,B两点间的距离是.(3)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.27.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..28.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为,当t=2秒时,AC的长为.(2)用含有t的代数式表示AC的长为.(3)当t=秒时AC﹣BD=5,当t=秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.29.如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,若OP中点为Q,则QB的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t的代数式QB的长度.30.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.31.在射线OM上有三点A,B,C,满足OA=15cm,AB=30cm,BC=10cm,点P从点O出发,沿OM 方向以1cm/s的速度匀速运动;点Q从点C出发,沿线段CO匀速向点O运动(点Q运动到点O时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P和点Q重合时P A=AB,求OP的长度;(2)在(1)题的条件下,求点Q的运动速度.32.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一点,且M为P A的中点,N为PB的中点.请你画出图形,观察MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.33.如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是,点P对应的数是(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.34.如图,射线OM上有三点A、B、C,满足OA=20 cm,AB=60 cm,BC=10 cm,点P从点O出发,沿OM方向以1 cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O 时停止运动),两点同时出发.(1)当点P运动到线段AB上时,分别取OP和AB的中点E、F,=.(2)若点Q运动速度为3 cm/秒,经过秒P、Q两点相距70 cm.35.如图,先在数轴上画出表示点A的相反数的点B,再把点A向右移动10个单位,得到点C.(1)点B表示的数为;点C表示的数为;B、C两点之间的距离为个单位长度;(2)动点P从点B出发,以2个单位/秒的速度向右运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点P、Q相遇在点D,求点D对应的数.(3)动点P从点B出发,以2个单位/秒的速度向左运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点Q在点E处追上点P,则求点E对应的数.36.阅读下列材料:点A、点B在数轴上分别表示两个有理数,A、B两点之间的距离表示为AB.(1)当点A在原点时,若点B表示的数为5时,则AB=|5﹣0|=5;若点B表示的数为﹣5时,则AB =|﹣5﹣0|=|﹣5|=5;若点B表示的数为a时,则AB=|a﹣0|=|a|,当a>0,AB=a,当a=0,AB=0,当a<0,AB=﹣a(2)当A、B都不在原点时,A表示的数为a,B表示的数为b,则AB=|a﹣b|,当a﹣b>0时,AB=|a ﹣b|=a﹣b;当a﹣b=0时,AB=|a﹣b|=0;当a﹣b<0时,AB=|a﹣b|=﹣(a﹣b).根据上述材料,回答下列问题:有理数a、b、c在数轴上的位置如图所示:(1)化简|a|=|c|=|a+b|=|a﹣b|=(2)若点C表示的数为x,当|x+1|+|x﹣2|取得的值最小时,x的取值范围?37.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是;数轴上表示﹣3和15的两点之间的距离是;(2)点A、B在数轴上分别表示数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x值.38.如图,有两段线段AB=2(单位长度),CD=1(单位长度)在数轴上运动.点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC=(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,若BC=6(单位长度),求t的值(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,设M为AC中点,N为BD中点,则线段MN的长为.39.如图,点C在线段AB上,AC=12厘米,CB=8厘米,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AB=a厘米,其他条件不变,你能猜想MN的长度吗?用一句简洁的语言表述你发现的规律;(3)若C在线段AB的延长线上,且满足AB=b厘米,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.40.如图,A,B两点在数轴上,点A表示的数为﹣10,OB=4OA,点M以每秒2个单位长度的速度从点A 开始向左运动,点N以每秒3个单位长度的速度从点B开始向左运动(点M和点N同时出发)(1)数轴上点B对应的数是线段AB的中点C对应的数是(2)经过几秒,点M,点N到原点的距离相等(3)当M运动到什么位置时,点M与点N相距20个单位长度?七年级—线段的动点问题参考答案与试题解析一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发1或4秒钟时,点D到点M,点N的距离相等(直接写出答案).【解】(1)如图所示,∵点B表示的数为﹣4,点C在原点位置∴A:6,D:﹣1;(2)①当点F在点A左侧时,则点F表示的数为6﹣3=3,点E表示的数为3﹣2=1,∴x=1﹣(﹣1)=2;②当点F在点A右侧时,则点F表示的数为6+3=9,点E表示的数为9﹣2=7,∴x=7﹣(﹣1)=8;(3)设出发x秒后,点D到点M,点N的距离相等,由题意得:﹣1﹣(﹣4﹣x)=6﹣3x﹣(﹣1)或﹣1﹣(﹣4﹣x)=3x﹣6﹣(﹣1)解得:x=1或x=4故答案为:1或4.2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B 之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是15;点C表示的数是3;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【解】(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.故答案为:15,3;(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;点P与点Q相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P在点C左侧时,PC=6﹣4t,QB=2t,∵PC+QB=4,∴6﹣4t+2t=4,解得t=1.此时点P表示的数是1;当点P在点C右侧时,PC=4t﹣6,QB=2t,∵PC+QB=4,∴4t﹣6+2t=4,解得t=.此时点P表示的数是.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.【解】(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综上所述:DP的长为5cm或10cm.(2)①根据题意得:(1+2)t=15,解得:t=5.答:当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【解】(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点是这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=4或6或8cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解】(1)如图,当C是线段AB的中点,则AB=2AC,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;。
七年级上期末复习动点问题专题训练1.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是_________.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?2.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.3.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是_________.(2)若AC=8,求x的值(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C 同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?4.如图1,已知数轴上有三点A、B、C,AC=2AB,点A对应的数是400.(1)若AB=600,求点C到原点的距离;(2)在(1)的条件下,动点P、Q分别从C、A同时出发,其中P、Q向右运动,R向左运动如图2,已知点Q的速度是点R速度2倍少5个单位长度/秒,点P的速度是点R的速度的3倍,经过20秒,点P、Q之间的距离与点Q、R的距离相等,求动点Q的速度.5.已知:数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x(1)若点P到点A、点B的距离相等,则点P对应的数为_________.(2)若点P在A、B之间,请化简:|x+1|﹣|x﹣3|.(3)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值;若不存在,请说明由.(4)当点P以每分钟1个单位长度的速度从O(原点)向左运动,同时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问它们同时出发,几分钟后点P到点A、点B的距离相等?6.如图,数轴上有A、B、C、D四个点,分别对应的数是a、b、c、d,且满足|a+9|=1,b=a+2,(c﹣16)2与|d﹣20|互为相反数.(1)求a、b、c、d的值.(2)如果点M为A、B两点的中点,点N到点C有5个单位长,求M、N两点之间的距离.(3)若A、B两点以6个单位长度/秒的速度向右匀速运动,同时C、D两点以2个单位长度/秒向左匀速运动,并设运动时间为t秒,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍?若存在,求时间t;若不存在,请说明理由.7.如图1,数轴上E点表示的数是﹣10,Q点表示的数是20,P、F分别从Q、E点出发,沿箭头所示的方向运动,它们的速度都是5个单位长度/秒;它们的运动时间为t秒;(1)C为PF的中点,求C点表示的数,并用含t的式子表示F、P表示的数.(2)如图2,M是数轴上任意一点,线段PQ以P点的速度向左运动,点M以3个单位长度/秒的速度向右运动,点M在线段PQ上的时间为4秒,求线段PQ的长;(3)如图3,N是数轴上任意一点,线段EF、PQ在数轴上沿箭头所示的方向运动,它们的运动速度都是5个单位长度/秒,且EF=PQ,N向数轴正方向运动,已知N在线段PQ上的时间为6秒,N在线段EF上的时间为10秒,求PQ的长.8.已知数轴上顺次有A、B、C三点,分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数.两只电子小蜗牛甲、乙分别从A,C两点同时相向而行,甲的速度为2个单位/秒,乙的速度为3个单位/秒.(1)求A、B、C三点分别表示的数,并在数轴上表示A、B、C三点(2)运动多少秒时,甲、乙到点B的距离相等?(3)设点P在数轴上表示的数为x,且点P满足|x+12|+|x+5|+|x﹣5|=20,若甲运动到点P时立即调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.9.如图,数轴上点A、C对应的数分别为a,c,且a,c满足|a+4|+(c﹣1)2014=0,点B对应的数为﹣3,(1)求数a,c;(2)点A,B沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A,B两点到原点O的距离相等时,求t的值;(3)在(2)的条件下,若点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C 处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,求在此运动过程中,A,B两点同时到达的点在数轴上表示的数.10.已知:数轴上A.B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣|c2﹣3(a﹣c2)|的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?11.如图所示,数轴上有A、B、C三点,点B恰好在原点,点A表示的数是9,AC表示数轴上点A与点C两点的距离,BC表示数轴上点B与点C两点的距离,且AB=BC.(1)求点C表示的数;(2)若数轴上有一点P,且PC+P A=19,求点P表示的数;(3)有一条2个单位长度的青色毛毛虫从点C出发,以每秒0.5个单位长度的速度沿数轴正方向匀速运动到点A 时,绕点A处的木杆(不考虑绕木杆所用的时间)改变方向后始终沿数轴负方向匀速运动,速度保持不变.青色毛毛虫从点C出发的同时,一条3个单位长度的白色毛毛虫从点B出发,始终沿数轴正方向以每秒0.2个单位长度的速度匀速运动.求两条毛毛虫在第几秒时头头相遇?在第几秒时尾尾相遇?每次从相遇到相离经过了多长时间?12.已知A、B在数轴上对应的数分别用a、b表示,且(ab+100)2+|a﹣20|=0.P是数轴上的一个动点(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)数轴上一点C距A点24个单位长度,其对应的数c满足|ac|=﹣ac.当P点满足PB=2PC时,求P点对应的数;(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P移动到与A或B重合的位置吗?若能,请探究第几次移动是重合;若不能,请说明理由.13.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.14.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为P A的中点,N为PB的中点,当点P在射线BA 上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示,且d=|a+b|﹣|﹣2﹣b|﹣|a﹣2c|﹣5,试求7(d+2c)2+2(d+2c)﹣5(d+2c)2﹣3(d+2c)的值.15.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间距离记作|AB|,定义:|AB|=|a﹣b|.(Ⅰ)求线段AB的长|AB|;(Ⅱ)设点P在数轴上对应的数为x,当|P A|﹣|PB|=3时,求x的值;(Ⅲ)若点P在A的左侧,M、N分别是P A、PB的中点,当P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.16.如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN 的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.17.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0(1)求线段AB的长;(2)如图1 点C在数轴上对应的数为x,且x是方程2x+1=x﹣5的根,在数轴上是否存在点P使P A+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,P A的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值18.如图1,已知数轴上两点A、B对应的数分别﹣1、3,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时间P点到点A、点B的距离相等?(3)若P从B点出发向左运动(只在线段AB上运动),M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你在图2中画出图形,并求出线段MN的长.19.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N 为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.20.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.21.已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m﹣2n|=﹣(6﹣n)2.(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①是定值;②是定值,请选择正确的一个并加以证明.22.数轴上两个质点A、B所对应的数为﹣8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在﹣10处,求此时B点的位置?23.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是_________;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.参考答案1.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?(3)当点M运动到什么位置时,恰好使AM=2BN?,×﹣;运动到或2.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使PA+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.x=此时对应点为;﹣,故甲乙相遇点所表示的数为:3.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为10,线段BC的中点D所表示的数是﹣1.(2)若AC=8,求x的值(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C 同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?所表示的数是t=;、4.如图1,已知数轴上有三点A、B、C,AC=2AB,点A对应的数是400.(1)若AB=600,求点C到原点的距离;(2)在(1)的条件下,动点P、Q分别从C、A同时出发,其中P、Q向右运动,R向左运动如图2,已知点Q 的速度是点R速度2倍少5个单位长度/秒,点P的速度是点R的速度的3倍,经过20秒,点P、Q之间的距离与点Q、R的距离相等,求动点Q的速度.5.已知:数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x(1)若点P到点A、点B的距离相等,则点P对应的数为1.(2)若点P在A、B之间,请化简:|x+1|﹣|x﹣3|.(3)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值;若不存在,请说明由.(4)当点P以每分钟1个单位长度的速度从O(原点)向左运动,同时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问它们同时出发,几分钟后点P到点A、点B的距离相等?;6.如图,数轴上有A、B、C、D四个点,分别对应的数是a、b、c、d,且满足|a+9|=1,b=a+2,(c﹣16)2与|d﹣20|互为相反数.(1)求a、b、c、d的值.(2)如果点M为A、B两点的中点,点N到点C有5个单位长,求M、N两点之间的距离.(3)若A、B两点以6个单位长度/秒的速度向右匀速运动,同时C、D两点以2个单位长度/秒向左匀速运动,并设运动时间为t秒,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍?若存在,求时间t;若不存在,请说明理由.)或,<,t=,≤>;<,t=,满足<,t=>t=,满足>t=4t=,使7.如图1,数轴上E点表示的数是﹣10,Q点表示的数是20,P、F分别从Q、E点出发,沿箭头所示的方向运动,它们的速度都是5个单位长度/秒;它们的运动时间为t秒;(1)C为PF的中点,求C点表示的数,并用含t的式子表示F、P表示的数.(2)如图2,M是数轴上任意一点,线段PQ以P点的速度向左运动,点M以3个单位长度/秒的速度向右运动,点M在线段PQ上的时间为4秒,求线段PQ的长;(3)如图3,N是数轴上任意一点,线段EF、PQ在数轴上沿箭头所示的方向运动,它们的运动速度都是5个单位长度/秒,且EF=PQ,N向数轴正方向运动,已知N在线段PQ上的时间为6秒,N在线段EF上的时间为10秒,求PQ的长.8.已知数轴上顺次有A、B、C三点,分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数.两只电子小蜗牛甲、乙分别从A,C两点同时相向而行,甲的速度为2个单位/秒,乙的速度为3个单位/秒.(1)求A、B、C三点分别表示的数,并在数轴上表示A、B、C三点(2)运动多少秒时,甲、乙到点B的距离相等?(3)设点P在数轴上表示的数为x,且点P满足|x+12|+|x+5|+|x﹣5|=20,若甲运动到点P时立即调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.(不合题意舍去)+t.;(不合题意舍去)或﹣9.如图,数轴上点A、C对应的数分别为a,c,且a,c 满足|a+4|+(c﹣1)2014=0,点B对应的数为﹣3,(1)求数a,c;(2)点A,B沿数轴同时出发向右匀速运动,点A速度为2个单位长度/秒,点B速度为1个单位长度/秒,若运动时间为t秒,运动过程中,当A,B两点到原点O的距离相等时,求t的值;(3)在(2)的条件下,若点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,求在此运动过程中,A,B两点同时到达的点在数轴上表示的数.t=..,.在此,﹣10.已知:数轴上A.B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣|c2﹣3(a﹣c2)|的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?c|c||×;11.如图所示,数轴上有A、B、C三点,点B恰好在原点,点A表示的数是9,AC表示数轴上点A与点C两点的距离,BC表示数轴上点B与点C两点的距离,且AB=BC.(1)求点C表示的数;(2)若数轴上有一点P,且PC+PA=19,求点P表示的数;(3)有一条2个单位长度的青色毛毛虫从点C出发,以每秒0.5个单位长度的速度沿数轴正方向匀速运动到点A 时,绕点A处的木杆(不考虑绕木杆所用的时间)改变方向后始终沿数轴负方向匀速运动,速度保持不变.青色毛毛虫从点C出发的同时,一条3个单位长度的白色毛毛虫从点B出发,始终沿数轴正方向以每秒0.2个单位长度的速度匀速运动.求两条毛毛虫在第几秒时头头相遇?在第几秒时尾尾相遇?每次从相遇到相离经过了多长时间?AB=x=9(秒)=(秒)=,34+(秒)=12.已知A、B在数轴上对应的数分别用a、b 表示,且(ab+100)2+|a﹣20|=0.P是数轴上的一个动点(1)在数轴上标出A、B的位置,并求出A、B之间的距离;(2)数轴上一点C距A点24个单位长度,其对应的数c满足|ac|=﹣ac.当P点满足PB=2PC时,求P点对应的数;(3)动点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度第四次向右移动7个单位长度,….点P移动到与A或B重合的位置吗?若能,请探究第几次移动是重合;若不能,请说明理由.13.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.AP+BP==AB=14.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N为PB的中点,当点P在射线BA 上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.(3)若有理数a、b、c在数轴上的位置如图所示:且d=|a+b|﹣|﹣2﹣b|﹣|a﹣2c|﹣5,试求7(d+2c)2+2(d+2c)﹣5(d+2c)2﹣3(d+2c)的值.AP+BPAP15.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间距离记作|AB|,定义:|AB|=|a﹣b|.(Ⅰ)求线段AB的长|AB|;(Ⅱ)设点P在数轴上对应的数为x,当|PA|﹣|PB|=3时,求x的值;(Ⅲ)若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.(=|PM|=×16.如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN 的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.OA+50=OB,即OA+50=9017.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0(1)求线段AB的长;(2)如图1 点C在数轴上对应的数为x,且x是方程2x+1=x﹣5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值PA+PB=PM=BN= BN②PM+2x+1=xBC+AB2|=PN=PB=BN=﹣××②PM+BN=××n(随BN18.如图1,已知数轴上两点A、B对应的数分别﹣1、3,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时间P点到点A、点B的距离相等?(3)若P从B点出发向左运动(只在线段AB上运动),M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你在图2中画出图形,并求出线段MN的长.;=,19.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.AB=,进而得出y,得出﹣yAB=××=4×[600一半则是点为:y﹣AM=﹣20.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.3x+(OC=a OM=OD==8+MN=8+﹣21.附加题:已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m﹣2n|=﹣(6﹣n)2.(1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①是定值;②是定值,请选择正确的一个并加以证明.AM=(BD=AM=(BD==2==2②是定值22.数轴上两个质点A、B所对应的数为﹣8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在﹣10处,求此时B点的位置?=,,即:=,得,当=秒,的位置为.=,=,,处,所用时间为:=的位置为=.23.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式=3时,点=3PC=,即t=PC=,即当t时,。
动点问题专题训练1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD△与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M 的坐标.5、在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接..写出t 的值.6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ; A C BQED图16OE CDAα lOCA (备用图)②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中C点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;ADFCGB图1ADF C GB 图2ADFC GE B图3(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD=时,求AM BN的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN的值等于 ;方法指导:为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(1)ABCD EFMN若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)12..如图所示,在直角梯形ABCD 中,AD//BC ,∠A =90°,AB =12,BC =21,AD=16。
中考数学总复习《动点问题》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________例题1.如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是()A B C D解:连接BD,过B作BE⊥AD于E,当0≤x<2时,点M在AB上在菱形ABCD中,∠A=60°,AB=4∴AB=AD∴△ABD是等边三角形∴AE=ED=12AD=2,BE=√3AE=2√3∵AM=2x,AN=x∴AMAN=ABAE=2∵∠A=∠A∴△AMN∽△ABE∴∠ANM=∠AEB=90°∴MN=√AM2−AN2=√3xx×√3x=√32x2∴y=12当2≤x≤4时,点M在BC上y=12AN⋅BE=12x×2√3=√3x综上所述,当0≤x<2时的函数图象是开口向上的抛物线的一部分,当2≤x≤4时,函数图象是直线的一部分故选:A.2.如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,P A﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC=.解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用两点之间线段最短,得到P A﹣PE≤AE.∴y的最大值为AE∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25设BE的长度为t则AB=t+1∴(t+1)2+t2=25即:t2+t﹣12=0∴(t+4)(t﹣3)=0解得t=﹣4或t=3由于t>0∴t=3∴AB=t+2=3+2=5,AD=BC=3×2=6.故答案为:6.3.如图①,在△ABC中,AB=AC,AD⊥BC于点D(BD>AD),动点P从B点出发,沿折线BA→AC方向运动,运动到点C停止,设点P的运动路程为x,△BPD的面积为y,y与x的函数图象如图②,则BC的长为.解:由题意得:AB+AC=2√13,△ABD的面积=3∵AB=AC∴AB=AC=√13∵AD⊥BC∴∠ADB=90°,BC=2BD∴AD2+BD2=AB2∴AD2+BD2=13∵△ABD的面积=3∴12AD•BD=3∴AD•BD=6∴(AD+BD)2=AD2+2BD•AD+BD2=13+2×6=25∴AD+BD=5或AD+BD=﹣5(舍去)∵AD2+BD2=AB2∴BD2+(5﹣BD)2=13∴BD=2或BD=3当BD=2时,AD=5﹣BD=3(舍去)当BD=3时,AD=5﹣BD=2∴BC=2BD=6故答案为:6.4.如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y 轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F 以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.(1)求直线AD的解析式;(2)连接MN,求△MDN的面积S与运动时间t的函数关系式;(3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.(1)解:解方程x2﹣4x﹣12=0得:x1=6,x2=﹣2∴OC=6∵四边形AOCB是菱形,∠AOC=60°∴OA=OC=6,∠BOC=1∠AOC=30°2∴CD=OC•tan30°=6×√3=2√33∴D(6,2√3)过点A作AH⊥OC于H∵∠AOH=60°OA=3,AH=OA•sin60°=6×√32=3√3∴OH=12∴A(3,3√3)设直线AD的解析式为y=kx+b(k≠0)代入A(3,3√3),D(6,2√3)得:{3k+b=3√36k+b=2√3解得:{k=−√3 3b=4√3∴直线AD的解析式为y=−√33x+4√3;(2)解:由(1)知在Rt△COD中,CD=2√3,∠DOC=30°∴OD=2CD=4√3,∠EOD=90°﹣∠DOC=90°﹣30°=60°∵直线y=−√33x+4√3与y轴交于点E∴OE=4√3∴OE=OD∴△EOD是等边三角形∴∠OED=∠EDO=∠BDF=60°,ED=OD=4√3∴∠OFE=30°=∠DOF∴DO=DF=4√3①当点N在DF上,即0≤t≤2√3时由题意得:DM=OD−OM=4√3−t,DN=4√3−2t过点N作NP⊥OB于P则NP=DN×sin∠PDN=DN×sin60°=(4√3−2t)×√32=6−√3t∴S=12DM×NP=12(4√3−t)×(6−√3t)=√32t2﹣9t+12√3;②当点N在DE上,即2√3<t≤4√3时由题意得:DM=OD﹣OM=√3−t,DN=2t﹣4√3过点N作NT⊥OB于T则NT =DN •sin ∠NDT =DN •sin60°=(2t ﹣4√3)×√32=√3t −6 ∴S =12DM ⋅NT =12(4√3−t)(√3t −6)=−√32t 2+9t −12√3; 综上,S ={√32t 2−9t +12√3(0≤t ≤2√3)−√32t 2+9t −12√3(2√3<t ≤4√3);(3)解:存在,分情况讨论:①如图,当AN 是直角边时,则CN ⊥EF ,过点N 作NK ⊥CF 于K∵∠NFC =30° OE =4√3 ∴∠NCK =60° OF =√3OE =12 ∴CF =12﹣6=6 ∴CN =12CF =3∴CK =CN ×cos60°=3×12=32 NK =CN ×sin60°=3×√32=3√32 ∴将点N 向左平移32个单位长度,再向下平移3√32个单位长度得到点C ∴将点A 向左平移32个单位长度,再向下平移3√32个单位长度得到点Q∵A(3,3√3) ∴Q (32,3√32); ②如图,当AN 是对角线时,则∠ACN =90°,过点N 作NL ⊥CF 于L∵OA =OC ,∠AOC =60° ∴△AOC 是等边三角形 ∴∠ACO =60°∴∠NCF=180°﹣60°﹣90°=30°=∠NFC∴CL=FL=12CF=3∴NL=CL•tan30°=3×√33=√3∴将点C向右平移3个单位长度,再向上平移√3个单位长度得到点N ∴将点A向右平移3个单位长度,再向上平移√3个单位长度得到点Q ∵A(3,3√3)∴Q(6,4√3);∴存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形,点Q的坐标是(32,3√32)或(6,4√3).练习题1.如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP 长与运动时间t(单位:s)的关系如图2,则AC的长为()A.15√52B.√427C.17D.5√32.如图1,正方形ABCD的边长为4,E为CD边的中点.动点P从点A出发沿AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,线段PE的长为y,y与x的函数图象如图2所示,则点M的坐标为()A.(4,2√3)B.(4,4)C.(4,2√5)D.(4,5)3.如图,在正方形ABCD中,AB=4,动点M,N分别从点A,B同时出发,沿射线AB,射线BC 的方向匀速运动,且速度的大小相等,连接DM,MN,ND.设点M运动的路程为x(0≤x≤4),△DMN的面积为S,下列图象中能反映S与x之间函数关系的是()A B C D4.如图,在边长为4的菱形ABCD中,∠A=60°,点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是()A B C D5.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ 的面积为y,则能反映y与x之间函数关系的图象是()A B C D6.如图(1),在平面直角坐标系中,矩形ABCD在第一象限,且BC∥x轴,直线y=2x+1沿x轴正方向平移,在平移过程中,直线被矩形ABCD截得的线段长为a,直线在x轴上平移的距离为b,a、b间的函数关系图象如图(2)所示,那么矩形ABCD的面积为.7.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是平面内一个动点,且AP=3,Q 为BP的中点,在P点运动过程中,设线段CQ的长度为m,则m的取值范围是.8.如图1,E为矩形ABCD的边AD上一点,点P从点B出发沿折线BE﹣ED﹣DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、点Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.=48cm2;③当14<t<22时,y 给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=110﹣5t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤△BPQ与△ABE相似时,t=14.5.其中正确结论的序号是.9.如图,在平面直角坐标系中,点A的坐标为(9,0),点C的坐标为(0,3),以OA,OC为边作矩形OABC.动点E,F分别从点O,B同时出发,以每秒1个单位长度的速度沿OA,BC向终点A,C移动.当移动时间为4秒时,求AC•EF的值.10.在平面直角坐标系中,O为原点,菱形ABCD的顶点A(√3,0),B(0,1),D(2√3,1),矩形EFGH的顶点E(0,12),F(−√3,12),H(0,32).(1)填空:如图①,点C的坐标为点G的坐标为;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当2√33≤t≤11√34时,求S的取值范围(直接写出结果即可).11.已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.(1)如图①,连接BG、CF,求CFBG的值;(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别取CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.12.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC 的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连接CF 时,求线段CF的长;①当m=13②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y 与m的关系式.参考答案1.C.2.C.3.A.4.A.5.B.6.8.7.72≤m≤132.8.①③⑤.9.30.10.(1)(√3,2)(−√3,32);(2)当2√33≤t≤11√34时,则√316≤S≤√3.11.(1)√2;(2)BE=2MN MN⊥BE (3)9π.12.(1)①√23;②h=﹣m2+m=﹣(m−12)2+14,∴m=12时,h最大值是14;(2)y={1−12m−1−m2(1+m)+m2(0≤m≤12) 1+m22m2+2m(m>12).。
七年级—线段的动点问题(含答案)一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发秒钟时,点D 到点M,点N的距离相等(直接写出答案).2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B 之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.7.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?请直接写出你的答案.(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.8.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=cm.②求线段CD的长度.(2)①点B沿点A→D运动时,AB=cm;②点B沿点D→A运动时,AB=cm.(用含t的代数式表示AB的长)(3)在运动过程中,若AB中点为E,则EC的长是否变化,若不变,求出EC的长;若发生变化,请说明理由.9.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.10.已知线段AB=a,MN=b(a,b为常数,且a>2b),线段MN在直线AB上运动(点B、M在点A的右侧.点N在点M的右侧).点P是线段AB的中点,点Q是线段MN的中点.(1)如图1,当点N与点B重合时,求线段PQ的长度(用含a,b的代数式表示);(2)如图2,当线段MN运动到点B、M重合时,求线段AN、PQ之间的数量关系式;(3)当线段MN运动至点Q在点B的右侧时,请你画图探究线段AN、BM、PQ三者之间的数量关系式.11.如图,数轴上点A,B表示的有理数分别为﹣6,3,点P是射线AB上一个动点(不与点A,B重合).M 是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是6,那么MN的长为.(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.12.已知点C在线段AB上,且AC=6,BC=4,M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)如果AC=a,BC=b,其他条件不变,你能猜出MN的长度吗?(3)如果我们这样叙述它:“已知点C与线段AB在同一直线上,线段AC=6,BC=4,M,N分别是AC,BC的中点,求MN的长度.”结果会有变化吗?如果有,求出结果.13.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.14.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC的中点,你能猜想MN 的长度吗?并说明理由;16.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.17.如图,点B、C是线段AD上的两点,点M和点N分别在线段AB和线段CD上.(1)当AD=8,MN=6,AM=BM,CN=DN时,BC=;(2)若AD=a,MN=b①当AM=2BM,DN=2CN时,求BC的长度(用含a和b的代数式表示)②当AM=nBM,DN=nCN(n是正整数)时,直接写出BC=.(用含a、b、n的代数式表示)18.如图所示.(1)若线段AB=4cm,点C在线段AB上(如图①),点M、N分别是线段AC、BC的中点,求线段MN长.(2)若线段AB=acm,点C在线段AB的延长线上(如图②),点M、N分别是线段AC、BC的中点,你能猜想出MN的长度吗?请写出你的结论,并说明理由.19.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照如图回答下列问题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度到达点B,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度到达点B,那么终点B表示的数是;A、B两点间的距离为.(3)一般地,如果A点表示的数为a,将A点向右移动x个单位长度,再向左移动y个单位长度到达点B,请你求出终点B表示什么数?A、B两点间的距离为多少?20.已知多项式﹣2x2y﹣a+3xy2﹣4y+5次数是4,项数是b,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=,b=,并在数轴上标出A、B两点的位置.(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由.(3)点D以每秒2个单位的速度从A点出发向左运动,同时点E以3个单位每秒的速度从B点出发向右运动,点F以每秒4个单位的速度从O点出发向左运动.若P为DE的中点,DE=16,求PF的长.21.如图,M是定长线段AB上一个定点,点C在线段AM上,点D在线段BM上.点C、点D分别从点M、点B出发,分别以1cm/s、2cm/s的速度沿直线BA左运动,运动方向如箭头所示.(1)若AB=20cm,当点C、D运动了2s时,求AC+MD的长度;(2)若点C、D运动时,总有MD=2AC,若AM=ncm,求AB的长;(3)在(2)的条件下,N是直线AB上一点,且MN+BN=AN,求的值.22.如图,C是线段AB上一点,AB=16cm,BC=6cm.(1)AC=cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?23.如图,数轴上A,B两点对应的有理数分别为﹣10和20,点P从点O出发,以每秒1个单位长度的速度沿数轴正方向匀速运动,点Q同时从点A出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.(1)分别求当t=2及t=12时,对应的线段PQ的长度;(2)当PQ=5时,求所有符合条件的t的值,并求出此时点Q所对应的数;(3)若点P一直沿数轴的正方向运动,点Q运动到点B时,立即改变运动方向,沿数轴的负方向运动,到达点A时,随即停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ=8?若存在,求出所有符合条件的t值,若不存在,请说明理由.24.已知数轴上有A、B、C三个点,分别表示有理数﹣24,﹣10,8,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:P A=,PC=;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由25.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为(2)如果点A表示数﹣4,将A点向右移动68个单位长度,再向左移动156个单位长度,那么终点B 表示的数是,A,B两点间的距离是.(3)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?26.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.27.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..28.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为,当t=2秒时,AC的长为.(2)用含有t的代数式表示AC的长为.(3)当t=秒时AC﹣BD=5,当t=秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.29.如图,数轴上的点O和A分别表示0和10,点P是线段OA上一动点,沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(0≤t≤10).(1)线段BA的长度为;(2)当t=3时,点P所表示的数是;(3)求动点P所表示的数(用含t的代数式表示);(4)在运动过程中,若OP中点为Q,则QB的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含t的代数式QB的长度.30.(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.31.在射线OM上有三点A,B,C,满足OA=15cm,AB=30cm,BC=10cm,点P从点O出发,沿OM 方向以1cm/s的速度匀速运动;点Q从点C出发,沿线段CO匀速向点O运动(点Q运动到点O时停止运动).如果两点同时出发,请你回答下列问题:(1)已知点P和点Q重合时P A=AB,求OP的长度;(2)在(1)题的条件下,求点Q的运动速度.32.如图,已知数轴上A、B两点所表示的数分别为﹣2和8.(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一点,且M为P A的中点,N为PB的中点.请你画出图形,观察MN的长度是否发生改变?若不变,求出线段MN的长;若改变,请说明理由.33.如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是,点P对应的数是(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.34.如图,射线OM上有三点A、B、C,满足OA=20 cm,AB=60 cm,BC=10 cm,点P从点O出发,沿OM方向以1 cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O 时停止运动),两点同时出发.(1)当点P运动到线段AB上时,分别取OP和AB的中点E、F,=.(2)若点Q运动速度为3 cm/秒,经过秒P、Q两点相距70 cm.35.如图,先在数轴上画出表示点A的相反数的点B,再把点A向右移动10个单位,得到点C.(1)点B表示的数为;点C表示的数为;B、C两点之间的距离为个单位长度;(2)动点P从点B出发,以2个单位/秒的速度向右运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点P、Q相遇在点D,求点D对应的数.(3)动点P从点B出发,以2个单位/秒的速度向左运动,动点Q从C点出发,以3个单位/秒的速度向左运动,若点Q在点E处追上点P,则求点E对应的数.36.阅读下列材料:点A、点B在数轴上分别表示两个有理数,A、B两点之间的距离表示为AB.(1)当点A在原点时,若点B表示的数为5时,则AB=|5﹣0|=5;若点B表示的数为﹣5时,则AB =|﹣5﹣0|=|﹣5|=5;若点B表示的数为a时,则AB=|a﹣0|=|a|,当a>0,AB=a,当a=0,AB=0,当a<0,AB=﹣a(2)当A、B都不在原点时,A表示的数为a,B表示的数为b,则AB=|a﹣b|,当a﹣b>0时,AB=|a ﹣b|=a﹣b;当a﹣b=0时,AB=|a﹣b|=0;当a﹣b<0时,AB=|a﹣b|=﹣(a﹣b).根据上述材料,回答下列问题:有理数a、b、c在数轴上的位置如图所示:(1)化简|a|=|c|=|a+b|=|a﹣b|=(2)若点C表示的数为x,当|x+1|+|x﹣2|取得的值最小时,x的取值范围?37.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.即点A、B在数轴上分别表示数a、b,则A、B两点的距离可表示为:|AB|=|a﹣b|.根据以上信息,回答下列问题:(1)数轴上表示2和5的两点之间的距离是;数轴上表示﹣3和15的两点之间的距离是;(2)点A、B在数轴上分别表示数x和﹣1.①用代数式表示A、B两点之间的距离;②如果|AB|=2,求x值.38.如图,有两段线段AB=2(单位长度),CD=1(单位长度)在数轴上运动.点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC=(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.设运动时间为t秒,若BC=6(单位长度),求t的值(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒,当0<t<24时,设M为AC中点,N为BD中点,则线段MN的长为.39.如图,点C在线段AB上,AC=12厘米,CB=8厘米,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AB=a厘米,其他条件不变,你能猜想MN的长度吗?用一句简洁的语言表述你发现的规律;(3)若C在线段AB的延长线上,且满足AB=b厘米,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.40.如图,A,B两点在数轴上,点A表示的数为﹣10,OB=4OA,点M以每秒2个单位长度的速度从点A 开始向左运动,点N以每秒3个单位长度的速度从点B开始向左运动(点M和点N同时出发)(1)数轴上点B对应的数是线段AB的中点C对应的数是(2)经过几秒,点M,点N到原点的距离相等(3)当M运动到什么位置时,点M与点N相距20个单位长度?七年级—线段的动点问题参考答案与试题解析一.解答题(共40小题)1.已知数轴上有A,B,C,D,E,F六个点,点C在原点位置,点B表示的数为﹣4,下表中A﹣B,B﹣C,D﹣C,E﹣D,F﹣E的含义为前一个点所表示的数与后一个点所表示的数的差,比如B﹣C为﹣4﹣0=﹣4.A﹣B B﹣C D﹣C E﹣D F﹣E10﹣4﹣1x2(1)在数轴上表示出A,D两点;(2)当点A与点F的距离为3时,求x的值;(3)当点M以每秒1个单位长度的速度从点B出发向左运动时,同时点N从点A出发,以每秒3个单位长度的速度向点C运动,到达点C后立即以同样的速度反方向运动,那么出发1或4秒钟时,点D到点M,点N的距离相等(直接写出答案).【解】(1)如图所示,∵点B表示的数为﹣4,点C在原点位置∴A:6,D:﹣1;(2)①当点F在点A左侧时,则点F表示的数为6﹣3=3,点E表示的数为3﹣2=1,∴x=1﹣(﹣1)=2;②当点F在点A右侧时,则点F表示的数为6+3=9,点E表示的数为9﹣2=7,∴x=7﹣(﹣1)=8;(3)设出发x秒后,点D到点M,点N的距离相等,由题意得:﹣1﹣(﹣4﹣x)=6﹣3x﹣(﹣1)或﹣1﹣(﹣4﹣x)=3x﹣6﹣(﹣1)解得:x=1或x=4故答案为:1或4.2.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B 之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是15;点C表示的数是3;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【解】(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.故答案为:15,3;(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;点P与点Q相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P在点C左侧时,PC=6﹣4t,QB=2t,∵PC+QB=4,∴6﹣4t+2t=4,解得t=1.此时点P表示的数是1;当点P在点C右侧时,PC=4t﹣6,QB=2t,∵PC+QB=4,∴4t﹣6+2t=4,解得t=.此时点P表示的数是.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.3.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.【解】(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综上所述:DP的长为5cm或10cm.(2)①根据题意得:(1+2)t=15,解得:t=5.答:当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.4.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【解】(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.5.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点是这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=4或6或8cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由【解】(1)如图,当C是线段AB的中点,则AB=2AC,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.6.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;。
人教版八年级上册数学期末动点问题压轴题专题训练(1)当时,点C 的坐标为 .(2)动点A 在运动的过程中,试判断发生变化,请说明理由.(3)当时,在坐标平面内是否存在一点若存在,请直接写出点P 的坐标;若不存在,请说明理由.(1)如图1,当点在边上时.①求证:;②求证:;(2)如图2,当点在边的延长线上时,其他条件不变,请写出2a =3a =D BC ABD ACE ≌△△BC DC CE =+D BC(1)请直接写出点A 和点B 的坐标;(2)请判断的形状并说明理由;(3)下列结论:①四边形为定值.请选择一个正确的结论并说明理由.(1)求证:;(2)求的面积;(3)点M ,N 分别是线段,上的动点,连接,求的最小值.DEF OEDF OEF DFE ∠+∠CD CE =CDE BC BD MN 12MN DN +(1)求出点的坐标.(2)求证:.(3)数学活动小组进行深入探究后发现变,你同意这个说法吗?请说明理由B OD BC =(1)如图①,请找出图中与相等的角,并说明理由;(2)如图②,交轴于点,过点作轴于点,求证:平分;(3)如图③,若,点在轴正半轴移动,且,取,连交轴OAB ∠BC x M C CD x ⊥,2D AM CD =AD BAC ∠()3,0A B y OB OA >()0,3P CP x边三角形,使其与点在直线的两侧,与直线相交于点(点与点A 不重合),连接.(1)如图,当时,①求证:;②在点A 运动的过程中,的度数是否会发生改变?如果会请说明理由,如果不会请求出的度数;(2)在点A 运动的过程中,试探究线段,,之间的数量关系.11.在平面直角坐标系中,点在轴的正半轴上,点在第一象限,,.(1)如图1,求证:是等边三角形;(2)如图1,若点M 为y 轴正半轴上一动点,以为边作等边三角形,连接并延长交轴于点,求证:;(3)如图2,若,,点为的中点,连接、交于,请问、与之间有何数量关系,并证明你的结论.12.在平面直角坐标系中,点A 为y 轴正半轴上一点,点B 为x 轴上一动点,连接ABD C AB DC l E E EB 120BAC ∠<︒ABE ACE =∠∠DCB ∠DCB ∠EA EB ED A y B OB AB =150BOP ∠=︒OAB BM BMN NA x P 2AP AO =BC BO ⊥BC BO =D CO AC DB E AE BE CE,以为腰作等腰,.(1)如图1,点B 在x 轴负半轴上,点C 的坐标是,直接写出点A 和点B 的坐标;(2)如图2,点B 在x 轴负半轴上,交x 轴于点D ,若平分.且点C 的纵坐标是,求线段的长;(3)如图3,点B 在x 轴正半轴上,以为边在左侧作等边,连接,,若,且,求的面积.13.等腰直角中,,,,点、分别是轴,轴上两个动点,直角边交轴于点,斜边交轴于点.(1)如图1,已知点的横坐标为,直接写出点的坐标;(2)如图2,若点为轴上的固定点,且,当点在轴正半轴运动时,分别以、为直角边在第一、二象限作等腰直角和等腰直角,连接交轴于点,问当点在轴的正半轴上运动时,的长度是否变化?若变化请说明理由;若不变化,请求出的长度.14.在平面直角坐标系中,点为坐标原点,点、分别位于轴和轴AB AB Rt ABC △90BAC ∠=︒(2,2)-AC BD ABC ∠3-BD BC BC BCE EO CO 60COE ∠=︒8CO =AOC ABC 90BAC ∠=︒AB AC =ABC C ∠=∠B A x y AC x D BC y E C 2-A A x ()6,0A -B y OB AB BOD ABC CD y P B y BP BP O ()6,0B -()0,6A x y上,连接,交轴于点.(1)求点的坐标;(2)动点从出发以个单位/秒的速度沿轴向终点运动,连接,将线段绕着点逆时针旋转后得到线段,与为对应点.连接、,为的面积,用含的式子表示;(3)在()的条件下,连接,过点作于,交轴于,交于,若,求点的坐标.15.如图①,在中,,现有一动点,从点出发,沿着三角形的边运动,回到点停止,速度为,设运动时间为秒.(1)如图①,当的面积等于面积的一半时,求的值:(2)如图②,点在边上,点在边上,在的边上,若另外有一个动点与点同时从点出发,沿着边运动,回到点停止.在两点运动过程中的某一时刻,以为顶点的三角形恰好与全等,求点的运动速度.16.如图,在平面直角坐标系中,,点在轴正半轴上,.AB CA AB ⊥x C C P B 2x C AP AP A 90︒AQ P Q PQ CQ S PCQ △t S 2BQ A AH BQ ⊥G x H PQ AC M :2:1APM AQM S S = H Rt ABC △90,12cm,16cm,20cm B AB BC AC ∠=︒===P A AB BC CA →→A 2cm /s t ABP ABC t D BC 4cm CD =E AC 5cm,,3cm CE ED BC ED =⊥=ABC Q P A AC CB BA →→A ,,A P Q EDC △Q ()0,9A B x 45OAB ∠=︒(1)求出点坐标;(2)动点从点出发,以每秒个单位长度的速度沿轴正半轴运动,同时点从点出发,以相同速度沿轴向左运动,连接,过点作交直线于点,连接,设点的运动时间为,请用含的式子表示的面积;(3)在(2)的条件下,直线与直线交于点,当时,求点坐标.17.已知中,,过点的直线交轴于,其中是方程组的解,(1)求的值(2)动点从点出发,沿线段以每秒1个单位的速度运动,运动时间为秒;请用含的式子表示线段的长度;并直接写出此时的取值范围;(3)在(2)的条件下,当为何值时,直线与直线互相垂直.18.在平面直角坐标系中,O 为坐标原点,直线交x 轴的正半轴于点A ,交y 轴的B P O 1y Q B x PQ O OG PQ ⊥AB G PG P t t OPG PQ AB H 72OPG S =△H AOB OA OB a ==A AM x (),0M b ,a b 3830a b a b +=⎧⎨+=⎩,a b P A AO t t OP t t BP AM AB(1)如图1求的长;(2)如图2动点E 在第二象限,点E 的坐标为,连接,,请写出面积s 与t 的关系;(3)在(2)的条件下,如图3点F 在第一象限,连接、、,,连接,当,求的值.OD (,)t m DE OE ODE FE FD FA 30ADF ∠=FE FA =EB 12,4EBO ODA ODA EFA EOB ∠=∠∠+∠=∠t m +参考答案:1.(1)(2)动点A 在运动的过程中,的值不变,(3)或或【分析】本题考查全等三角形判定及性质.(1)根据题意过点C 作轴于点,证明出,利用全等性质即可得到本题答案;(2)由(1)得,利用全等性质及点坐标表示线段长即可得到本题答案;(3)根据题意分3种情况讨论P 点位置,利用全等三角形性质及判定即可得到本题答案.【详解】(1)解:如下图,过点C 作轴于点E ,则,,∵是等腰直角三角形,∴,∴,∴.在和中,∴(AAS ),∵,∴,∴,∴;(2)解:动点A 在运动的过程中,的值不变.理由如下:(2,3)-+c d (4,)1-(3,2)--(2,1)-CE y ⊥E ACE BAO ≌ACE BAO ≌CE y ⊥CEA AOB ∠=∠ABC ,90AC BA BAC =∠︒=90ACE CAE BAO CAE ∠+∠=︒=∠+∠ACE BAO ∠=∠ACE △BAO CEA AOB ACE BAOAC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩ACE BAO ≌(0,1),(0,2)B A -12BO AE AO CE ====,123OE =+=2,3C -()+c d由(1)知,,∵,,∴,∴,∴,又∵点C 的坐标为,∴,即的值不变;(3)解:存在一点P ,使与全等,符合条件的点P 的坐标是或或,分为三种情况讨论:①如下图,过点P 作轴于点E ,则,∴,∴,在和中,,∴(AAS ),∴,∴,即点P 的坐标是,②如下图,过点C 作轴于点M ,过点P 作轴于点E ,ACE BAO ≌(0,1)B (0,)A a -1,BO AE AO CE a ====1OE a =+(,1)C a a --(,)c d 11c d a a +=--=-+c d PAB ABC (4,)1-(3,2)--(2,1)-PE x ⊥90PBA AOB PEB ∠=∠=∠=︒90,90EPB PBE PBE ABO ∠+∠=︒∠+∠=︒EPB ABO ∠=∠PEB △BOA △EPB OBA PEB BOA PB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩PEB BOA △≌△1,3PE BO EB AO ====314OE =+=(4,)1-CM x ⊥PE x ⊥则.∵,∴,∴,∴,∴,在和中,,∴(AAS ),∴.∵,∴,即点P 的坐标是;③如下图,过点P 作轴于点E ,则.∵,∴,∴,90CMB PEB ∠=∠=︒CAB PAB △≌△45,PBA CBA BC BP ∠=∠=︒=90CBP ∠=︒90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒MCB PBE ∠=∠CMB BEP △MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩CMB BEP △≌△,PE BM CM BE ==3,4),10C B -((,)2,413PE OE BE BO ==-=-=(3,2)--PE x ⊥90BEP BOA ∠=∠=︒CAB PBA △≌△,90AB BP CAB ABP =∠=∠=︒90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒∴.在和中,,∴(AAS ),∴,∴,即点P 的坐标是,综上所述,符合条件的点P 的坐标是或或.2.(1)①见解析;②见解析;(2),见解析【分析】本题主要考查了等边三角形,全等三角形.(1)①根据等边三角形的性质得出,,,根据得出,从而说明三角形全等;②根据全等的性质得出,然后根据即得;(2)根据等边三角形的性质得出,,,根据得出,从而说明,根据全等的性质得出,然后根据即得.【详解】(1)证明:①∵和是等边三角形,∴,,.∴,∴.在和中,,∴;②∵,ABO BPE ∠=∠BOA △PEB △ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩BOA PEB △≌△1,3PE BO BE OA ====312OE BE BO =-=-=(2,1)-(4,)1-(3,2)--(2,1)-BC CD CE +=AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠-∠=∠-∠BAD EAC ∠=∠BD CE =BC BD CD =+AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠+∠=∠+∠BAD EAC ∠=∠ABD ACE ≌△△BD CE =+=BC CD BD ABC ADE V 60BAC DAE ∠=∠=︒AB BC AC ==AD DE AE ==BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD △ACE △AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE △≌△ABD ACE ≌△△∵,,∴,∴是等腰直角三角形,即∵点D 是线段中点,∴,,(0,6)A (6,0)B 6O A O B ==AOB ∠AB OD AB ⊥12OD AD AB ==∠∵,,∴在中,∵在(1)中已求出根据翻折可知:、∴N 点关于的对称点H 在根据对称性有:∴,∴是等边三角形,∵N 点关于的对称点是点H ,3BD =30CBD ∠=︒DG Rt BDG △12DG BD =CE CD =11BDC BKC △BE BK DBC KBC ∠=∠60BDK DBC KBC ∠=∠+∠=︒BDK BE NH如图,,即:,在中,PNC DNC∠=∠24PNC αβ∠==2αβ=MCN DCM DCN x β∠=∠+∠=+MCN △180MCN DCN NMC ∠+∠+∠=2180x βαα+++=︒3180x βα++=︒解得:,.II.当点在线段上时,如图,,,即:,在中,,,即:联立得:,解得:,此时:,不合题意舍去;III .当点在线段上时,如图,,52550x βα=︒⎧⎪=︒⎨⎪=︒⎩∴5DCM ∠=︒N PD 180PNC DNC ∠+∠=︒∴24180αβ+=︒290αβ+=︒∴MCN DCM DCN x β∠=∠+∠=+ CMN PCN MCN CMN x βα∠=∠+∠=++∴4180PCN NDC x βαβ∠+∠=+++=︒5180x βα++=︒2602905180x x ααββα+=︒⎧⎪+=︒⎨⎪++=︒⎩11.2526.2537.5x βα=︒⎧⎪=︒⎨⎪=︒⎩11.2526.5PCN DCN ∠=︒<∠=︒N DM PNC DNC ∠=∠【详解】(1)解:过点B 作轴于点D ,∵,∴,∵轴,∴,∵,∴,∴,在和中,,∴,∴,∵,∴;(2)解:∵,∴,∴,∵轴,∴,∴,∴,在和中,BD y ⊥()()6,0,0,3A C -6,3OA OC ==BD y ⊥90BCD CBD ∠+∠=︒90ACB ∠=︒90BCD ACO ∠+∠=︒ACO CBD ∠=∠ACO △CBD △90AOC CDB ACO CBDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩≌ACO CBD 6,3OA CD OC BD ====()0,3C ()3,3B -90ACB ∠=︒90BCF ∠=︒90CBF F ∠+∠=︒BE y ∥90AEF ∠=︒90CAD F ∠+∠=︒CAD CBF ∠=∠CAD CBF V∴,∴,∵,∴∴.【点睛】本题主要考查了三角形综合,折叠的性质,全等三角形的判定和性质,角平分线的性质,解题的关键是掌握全等三角形的判定方法,全等三角形对应边相等,对应角相等;折叠前后对应角相等;角平分线上的点到两边距离相等.7.(1)(2)见解析(3)的度数总是保持不变,理由见解析【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质,坐标与图形;(1)根据等腰三角形的性质解答即可;(2)根据等式的性质得出,进而利用证明与全等,进而解答即可;(3)根据全等三角形的性质得出,进而利用平角的定义解答即可.【详解】(1)解:如图所示,过作轴于,()Rt Rt HL EFO EFN ≌FN FO =(),0F t FO t=-2FG HG t +=-()2,0-COD ∠BAC OAD ∠=∠SAS BAC OAD AOD ABO ∠=∠A AE x ⊥E),点C 是的中点,,D 作轴于点F ,,,4=AB 114222AB ==⨯=DF x ⊥90DFO =︒90FDO DOF +∠=︒),的坐标为,关于x 轴的对称点,则的坐标为,交x 轴于点,则为定值,此时的周长最小.作轴于点Q ,114222AB '==⨯=M '()0,2M '''M ''M AM ''P PAM C AM AP ''=+ AM 'PAM '△()4,4A -AQ y ⊥对于(3),作轴,先证明,可得,再得出,进而得出,根据等腰直角三角形的性质和判定即可得出答案.【详解】(1).理由:,;(2)证明:如图②中,延长交的延长线于点..∵,,,.,即.垂直平分,平分.(3)的长度不变,.理由:如图③中,过点作轴于点...CH y ⊥≌CHB BOA △△,3===CH BO BH OA 3==OA OP ==OB PH CH OAB OBC ∠=∠90,90OAB OBA OBC OBA ∠+∠=∠+∠=︒︒ OAB OBC ∴∠=∠AB CD T ,90,90,AD CD ADT T BAM BCT BAM ⊥∴∠=∴∠+∠=∴∠=∠︒︒ BC BA ===90CB T A B M ∠∠︒()CBT ABM ASA ∴≌△△CT AM ∴=2,2AM CD CT CD =∴= CD DT =,AD CT AD ⊥∴ CT ,AC AT AD ∴=∴BAC ∠OQ 3OQ =C CH y ⊥H 90,90CHB BOA HBC HCB ∴∠=∠=∴∠+∠=︒︒90,90,ABC OBA HBC HCB OBA ∠=∴∠+∠=︒︒∴∠=∠..,..,.【点睛】本题主要考查了全等三角形的性质和判定,同角的余角相等,线段垂直平分线的性质,等腰直角三角形的性质和判定等,构造辅助线是解题的关键.10.(1)①见解析;②不变,(2)或【分析】(1)①根据垂直平分线的性质得出,再由等边对等角及各角之间的数量关系求解即可;②设与交于点M ,根据等边三角形的性质及各角之间的关系得出,即可求解;(2)分两种情况进行分析:当时,当时,分别利用全等三角形的判定和性质及等边三角形的判定和性质分析求解即可.【详解】(1)证明:①点A 、E 在线段的垂直平分线l 上,∴,∴,∴,即;②在点A 运动的过程中,的度数不变,理由如下:如图,设与交于点M ,(),CB AB CHB BOA AAS =∴ ≌△△,3∴===CH BO BH OA ()()3,0,0,3,3A P OA OP ∴== ,BH OP OB PH CH ∴=∴==90,45CHP CPH OPQ ∠=∴∠=∠=︒︒ 90,45∠=∴∠=︒=︒∠ POQ OQP OPQ 3OQ OP ∴==30DCB ∠=︒ED EB EA =+EB ED EA=+AC AB EC EB ==,AB CD 260ECB ∠=︒120BAC ∠<︒120BAC ∠>︒BC ,AC AB EC EB ==,ABC ACB EBC ECB ∠∠∠∠==ABC EBC ACB EBC ∠∠∠∠-=-ABE ACE ∠∠=DCB ∠AB CD∵是等边三角形,∴ ,∴,∴,∴,∴,∴,∵,∴,即;(2)当时,在上截取,连接,∵,∴,由(1)得直线,,∴,∴是等边三角形,∴ ,∴,即,ABD ,60AB AD BAD ∠==︒AD AC =ADC ACE ∠∠=,ABE ADC EBC ECB ∠∠∠∠==,180,180AMD EMB BED ABE EMB BAD ADC AMD ∠∠∠∠∠∠∠∠==︒--=︒--60BED BAD ∠∠==︒,EBC ECB BED EBC ECB ∠∠∠∠∠+==260ECB ∠=︒30DCB ∠=︒120BAC ∠<︒ED EF EA =AF ED DF EF =+ED DF EA =+l BC ⊥30DCB ∠=︒903060AED ∠=︒-︒=︒AEF 60,EAF BAD AE AF ∠∠==︒=–EAF BAF BAD BAF ∠∠∠∠=-BAE DAF ∠∠=∴,∴,∵,∴;当时,如图所示在上截取,连接,∵,∴,由(1)得直线,,,∴,∴F 是等边三角形,∴,∴,∴,∴,∴,∵,∴;综上可得:或.【点睛】题目主要考查线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质等,理解题意,作出相应辅助线是解题关键,同时注意进行分类讨论.11.(1)见解析(2)见解析(3),证明见解析【分析】(1)根据有一个角是的等腰三角形是等边三角形可得结论;(SAS)BAE DAF ≌ EB DF =ED DF EA =+ED EB EA =+120BAC ∠>︒EB EF EA =AF EB BF EF =+EB BF EA =+l BC ⊥30DCB ∠=︒BE BC =903060AEB AEC ∠∠==︒-︒=︒AE 60,EAF BAD AE AF ∠∠==︒=–EAF DAF BAD DAF ∠∠∠∠-=EAD BAF ∠∠=(SAS)BAF DAE ≌ BF ED =EB BF EA =+EB ED EA =+ED EB EA =+EB ED EA =+AE BE CE =+60︒(2)根据证明,得,由8字形可得,最后由含角的直角三角形的性质可得结论;(3)如图2,在上截取,先证,方法是根据题意得到三角形为等边三角形,三角形为等腰直角三角形,确定出度数,根据,且,得到度数,进而确定出为,再由,得到,再由,且夹角,利用得到三角形与三角形全等,利用全等三角形的对应边相等得到,得到三角形为等边三角形,得到,由,等量代换即可得证.【详解】(1)解:证明:,,,,是等边三角形;(2)证明:由(1)知:是等边三角形,,是等边三角形,,,,,,,,,,,,SAS MBO NBA ≌OMB ANB ∠∠=60FAM FBN ∠∠==︒30︒AC AG CE =60AEB ∠=︒ABO BOC ABD ∠AB BC =150ABC ∠=︒BAE ∠AEB ∠60︒AG CE =AE CG =AB CB =BAC BCA ∠=∠SAS BCG BAE BG BE =BEG BE EG =AE EG AG =+150BOP ∠=︒ 90AOP ︒=∠60AOB ∴∠=︒OB AB = OAB ∴ OAB 60ABO ∴∠=︒BMN BM BN ∴=60MBN ∠=︒MBO NBA ∴∠=∠AB OB = (SAS)MBO NBA ∴△≌△OMB ANB ∴∠=∠AFM BFN ∠=∠ 60FAM FBN ∴∠=∠=︒60OAP FAM ∠=∠=︒ 90AOP ︒=∠30APO ∴∠=︒;(3),理由如下:如图2,在上截取,连接,,即,,,,为的中点,平分,即,,,,,,,在和中,,,,为等边三角形,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的性质和判定,全等三角形的判定和性质,以及含角的直角三角形的性质,添加辅助线.12.(1),2AP AO ∴=AE BE CE =+AC AG EC =BG AG EG CE EG +=+AE CG =BC BO ⊥ BC BO =90OBC ∴∠=︒D CO BD ∴OBC ∠45CBD OBD ∠=∠=︒60ABO ∠=︒ 105ABD ∴∠=︒150ABC ∠=︒AB OB BC == 15BAC BCA ∴∠=∠=︒154560AEB ∴∠=︒+︒=︒ABE CBG AB CB BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE CBG ∴△≌△BG BE ∴=BEG ∴△BE EG ∴=AE AG EG CE BE ∴=+=+30︒()02A ,()40B -,∴,∵∴,∵,∴,,90ADC BOA ∠=︒=∠90CAD BAO ABO ∠+∠=︒=∠CAD ABO ∠=∠(2,2)C -2CD =2OD =∴,,∴,;(2)解:如图2,作轴,交轴于,交的延长线于,∴,∵平分,∴,,,∴,∴,∵,∴,∵,∴,∴,∵,,∴,∴,∴的长为6;(3)解:∵为等边三角形,∴,,如图3,在上截取,使,连接,2AO CD ==4BO AD AO OD ==+=()02A ,()40B -,CM x ⊥x N BA M 90BNM BNC ∠=︒=∠BD ABC ∠MBN CBN ∠=∠BN BN =90BNM BNC ∠=︒=∠()ASA MBN CBN ≌3MN CN ==∥CM AO ACM CAO ∠=∠90CAO BAO ABD BAO ∠+∠=︒=∠+∠CAO ABD ∠=∠ACM ABD ∠=∠AC AB =90MAC DAB ∠=︒=∠()ASA ACM ABD ≌6BD CM CN MN ==+=BD BCE BE CE =60BEC EBC ECB ∠=∠=∠=︒OC OF OF OE =EF∴是等边三角形,∴,∴∵,∴,∴,OEF OE EF =60OEF ∠=︒=∠OEF BEF BEC ∠-∠=∠-∠OE EF =BEO CEF ∠=∠()SAS BEO CEF ≌OBE FCE ∠=∠13.(1)(2)【分析】(1)如图①,过作 轴于, 证明可得从而可得答案;(2)如图①,过点作 轴于点.证明 ,可得 ,再证明,从而可得: .【详解】(1)解: 如图①,过作 轴于,∴,∵,∴,∴,∵,∴.∴,,∴,∴,故答案为 : .(2)的长度不变,理由如下:如图②, 过点作 轴于点.()0,23BP =C CF y ⊥F ,ACF BAO ≌CF AO =C CE y ⊥E CBE BAO ≌,6CE BO BE AO ===CPE DPB ≌3BP EP ==C CF y ⊥F 90,90CFA AOB ACF CAF ∠=∠=︒∠+∠=︒90BAC ∠=︒90CAF OAB ∠+∠=︒ACF OAB ∠=∠AC AB =()AAS ACF BAO ≌CF AO =2c x =- 2CF AO ==()0,2A ()0,2BP C CE y ⊥E∵ ,∴∵∴ .∵90ABC ∠=︒90CBE ABO ∠+∠=︒90BAO ABO ∠+∠=︒CBE BAO ∠=∠90CEB AOB ∠=∠=∵,∴,在和中,90BAC PAQ ∠=∠=︒BAP CAQ ∠=∠BAP △CAQ AB AQ =⎧∴四边形为正方形,∴,过作于点,∵AOCN 6OA CN OC ===T TL CN ⊥L AH BQ⊥AOH TLQ ≌∴,解得;②当点在上,点∴,解得;3AP DE cm AQ EC ===,352x =103x =cm/s P AB 5AP EC cm AQ ==,532x =65x =cm/s∴点P 的路程为∴点P 的路程为3AP ED AQ EC ===,AB +1216205AQ =++-=4543x =5AP EC cm AQ ==,AB +1216203AQ =++-=4345x =从出发,以每小时从出发,以相同速度沿,①当在线段上时,P O Q B OQ ∴=AP =t P AO,等腰,,设,,为的一个外角,RO PO ∴=∴POR 45R BAO ∴∠=∠=︒QPO α∠=45RPQ α∴∠=︒-QON BOG α∠==∠ABO ∠ OBG,,,,90HTA ∴∠=︒45HAT OAB ∠=∠=︒45HAT AHT ∴∠=∠=︒HT AT ∴=由(1)知,,则,∵直线与直线互相垂直,∴,()1.0M -1OM =BP AM 90MNB ∠=︒。
人教版七年级下册数学期末复习: 动点问题压轴题1. 如图, 点A在x轴的负半轴上, 点D在y轴的正半轴上, 将三角形AOD沿x轴向右平移, 平移后得到三角形BEC, 点A的对应点是点B. 已知点A的坐标为(a, 0), 点C 的坐标为(b, c), 且a, b, c满足.(1)求点B的坐标;(2)求证: ∠DAE=∠BCD;(3)点P是线段BC上一动点(不与点B、C重合), 连接DP、AP, 在点P运动过程中, ∠CDP、∠DPA、∠PAE之间是否存在永远不变的数量关系?若存在, 写出它们之间的数量关系, 并请证明;若不存在, 请说明理由.2. 已知, 直线, 直线和, 分别交于C, D点, 点A, B分别在直线, 上, 且位于直线的左侧, 动点P在直线上, 且不和点C, D重合.(1)如图1, 当动点P在线段CD上运动时, 求证: ∠APB=∠CAP+∠DBP;(2)如图2, 当动点P在点C上方运动时(P, A, B不在同一直线上), 请写出∠APB, ∠CAP, ∠DBP之间的数量关系, 并选择其中一种的数量关系说明理由.3. 如图①, 平直角坐标系中, 已知点A(a, 0), B(0, b), 其中a, b满足|2a﹣3b﹣39|=0, 将点B向右平移24个单位长度得到点C.(1)点A和点C的坐标;(2)如图①, 点D为线段BC上一动点, 点D从点C以2个单位长度/秒的速度向点B运动, 同时点E为线段OA上一动点, 从点O以3个单位长度/秒的速度向点A运动, 设运动的时间为t秒(0<t<10), 四边形BOED的面积记为S四边形BOED(以下同理表示), 若S四边形BOEDS四边ACDE, 求t的取值范围;(3)如图②, 在(2)的条件下, 在点D, E运动的过程中, DE交OC于点F, 求证:S△OEF>S△DCE总成立.4. 在平面直角坐标系中, O为原点, 点A(0, 2), B(﹣2, 0), C(4, 0).(1)如图1, △ABC的面积为;(2)如图2, 将点B向右平移7个单位长度, 再向上平移4个单位长度, 得到对应点D.①求①ACD的面积;②点P是x轴上一动点, 若△PAO的面积等于3, 请求出点P的坐标.5. 在平面直角坐标系中, O为原点, 点A(0, −3), B(−2, 0).(1)如图①, 则三角形OAB的面积为_______;(2)如图②, 将线段AB向右平移5个单位长度, 再向上平移4个单位长度, 得到平移后的线段A′B′.连接OA′, OB′.①求三角形OA′B′的面积;②P(−1, m)(m>0)是一动点, 若SΔPOB′=10, 请直接写出点P坐标.6. 在平面直角坐标系中, , 满足.(1)直接写出、的值: ;;(2)如图1, 若点满足的面积等于6, 求的值;(3)设线段交轴于C, 动点E从点C出发, 在轴上以每秒1个单位长度的速度向下运动, 动点F从点出发, 在轴上以每秒2个单位长度的速度向右运动, 若它们同时出发, 运动时间为秒, 问为何值时, 有?请求出的值.7. 如图1, ABCD, 定点E, F分别在直线AB, CD上, 在平行线AB, CD之间有一动点P, 满足0°<∠EPF<180°.(1)试问∠AEP, ∠EPF, ∠PFC满足怎样的数量关系?解: 由于点P是平行线AB, CD之间有一动点, 因此需要对点P的位置进行分类讨论: 如图1, 当P点在EF的左侧时, ∠AEP, ∠EPF, ∠PFC满足数量关系为, 如图2, 当P点在EF的右侧时, ∠AEP, ∠EPF, ∠PFC满足数量关系为.(2)如图3, EQ, FQ分别平分∠PEB和∠PFD, 且点P在EF左侧.①若∠EPF=60°, 则∠EQF=.②猜想∠EPF与∠EQF的数量关系, 并说明理由;③如图4, 若∠BEQ与∠DFQ的角平分线交于点Q1, ∠BEQ1与∠DFQ1的角平分线交于点Q2, ∠BEQ2, 与∠DFQ2的角平分线交于点Q3;此次类推, 则∠EPF与∠EQ2021F满足怎样的数量关系?(直接写出结果)8. 已知直线、, 直线与直线、分别交于点C和点D, 在直线上有动点P(点P与点C.D 不重合), 点A在直线上, 点B在直线上.(1)如图①, 如果点P在C.D之间运动时, 且满足∠1+∠3=∠2, 请写出与之间的位置关系并说明理由;(2)如图②, 如果, 点P在直线的上方运动时, 请写出∠1, ∠2与∠3之间的数量关系并说明理由;(3)如图③, 如果, 点P在直线的下方运动时, 请直接写出∠PAC、∠PBD、∠APB之间的关系(不需说明理由).9. 如图, , 平分, 设为, 点E是射线上的一个动点.(1)若时, 且, 求的度数;(2)若点E运动到上方, 且满足, , 求的值;(3)若, 求的度数(用含n和的代数式表示).10. 如图所示, 已知, 点P是射线AM上一动点(与点A不重合), BC.BD分别平分和, 分别交射线AM于点C.D, 且(1)求的度数.(2)当点P运动时, 与之间的数量关系是否随之发生变化?若不变化, 请写出它们之间的关系, 并说明理由;若变化, 请写出变化规律.(3)当点P运动到使时, 求的度数.11. 已知点D在∠ABC内, E为射线BC上一点, 连接DE, CD. (1)如图1, 点E在线段BC上, 连接AE, ∠AED=∠A+∠D.①求证AB①CD;②过点A作AM∥ED交直线BC于点M, 请猜想∠BAM与∠CDE的数量关系, 并加以证明;(2)如图2, 点E在BC的延长线上, ∠AED=∠A﹣∠D.若M平面内一动点, MA∥ED, 请直接写出∠MAB与∠CDE的数量关系.12. 如图1, 在平面直角坐标系中, 点A, B的坐标分别为(1, 0), (4, 0), 现同时将点A, B分别向上平移3个单位长度, 再向左平移1个单位长度, 分别得到A, B的对应点C, D, 连接AC, BD, CD.图1图2(1)求点C, D的坐标.(2)P是x轴上(除去B点)的动点.①连接PC, BC, 使S△PBC=2S△ABC, 求符合条件的P点坐标.②如图2, Q是线段BD上一定点, 连接PQ, 请直接写出∠BPQ+∠PQB与∠CDB的数量关系.13. 如图, 在长方形ABCD中, AB=8cm, BC=6cm, 点E是CD边上的一点, 且DE=2cm, 动点P从A点出发, 以2cm/s的速度沿A→B→C→E运动, 最终到达点E. 设点P运动的时间为t秒.(1)请以A点为原点, AB所在直线为x轴, 1cm为单位长度, 建立一个平面直角坐标系, 并用t表示出点P在不同线段上的坐标.(2)在(1)相同条件得到的结论下, 是否存在P点使△APE的面积等于20cm2时,若存在, 请求出P点坐标;若不存在, 请说明理由.14. 如图, 直线PQ∥MN, 点C是PQ、MN之间(不在直线PQ, MN上)的一个动点.(1)若∠1与∠2都是锐角, 如图甲, 请直接写出∠C与∠1, ∠2之间的数量关系;(2)若把一块三角尺(∠A=30°, ∠C=90°)按如图乙方式放置, 点D, E, F是三角尺的边与平行线的交点, 若∠AEN=∠A, 求∠BDF的度数;(3)将图乙中的三角尺进行适当转动, 如图丙, 直角顶点C始终在两条平行线之间, 点G在线段CD上, 连接EG, 且有∠CEG=∠CEM, 求值.15. 如图,在直角坐标系中,点A. C分别在x轴、y轴上,CB∥OA, OA=8,若点B的坐标为.(1)直接写出点A, C的坐标;(2)动点P从原点O出发沿x轴以每秒2个单位的速度向右运动, 当直线PC把四边形OABC分成面积相等的两部分时停止运动, 求P点运动时间;(3)在(2)的条件下, 点P停止运动时, 在y轴上是否存在一点Q, 连接PQ, 使三角形CPQ的面积与四边形OABC的面积相等?若存在, 求点Q的坐标;若不存在, 请说明理由.16. 如图, 已知点, 且, 满足.过点分别作轴、轴, 垂足分别是点、.(1)求出点B的坐标;(2)点是边上的一个动点(不与点重合), 的角平分线交射线于点, 在点运动过程中, 的值是否变化?若不变, 求出其值;若变化, 说明理由.(3)在四边形的边上是否存在点, 使得将四边形分成面积比为1:4的两部分?若存在, 请直接写出点的坐标;若不存在, 说明理由.17. 如图, 在平面直角坐标系中, 点A, B的坐标分别为A(0, a), B(b, a), 且a、b满足(a﹣2)2+|b﹣4|=0, 现同时将点A, B分别向下平移2个单位, 再向左平移1个单位, 分别得到点A, B的对应点C, D, 连接AC, BD, AB.(1)求点C, D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M, 连接MC, MD, 使S△MCD=S四边形ABDC?若存在这样一点, 求出点M的坐标, 若不存在, 试说明理由;(3)点P是直线BD上的一个动点, 连接PA, PO, 当点P在BD上移动时(不与B, D 重合), 直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.18. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴). (3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.19. 如图1, 在平面直角坐标系中, 点A为x轴负半轴上一点, 点B为x轴正半轴上一点, C(0, a), D(b, a), 其中a, b满足关系式: |a+3|+(b-a+1)2=0.(1)a=___, b=___, △BCD的面积为______;(2)如图2, 若AC⊥BC, 点P线段OC上一点, 连接BP, 延长BP交AC于点Q, 当∠CPQ=∠CQP时, 求证:BP平分∠ABC;(3)如图3, 若AC⊥BC, 点E是点A与点B之间一动点, 连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时, 的值是否变化?若不变, 求出其值;若变化, 请说明理由.20. 已知: 在平面直角坐标系中, 四边形ABCD是长方形, ∠A=∠B=∠C=∠D=90°, AB∥CD, AB=CD=8, AD=BC=6, D点与原点重合, 坐标为(0, 0).(1)直接写出点B的坐标__________.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动, 动点Q从点C出发以每秒4个单位长度的速度沿射线CD方向匀速运动, 若P, Q两点同时出发, 设运动时间为t秒, 当t为何值时, PQ∥y轴?(3)在Q的运动过程中, 当Q运动到什么位置时, 使△ADQ的面积为9?求出此时Q 点的坐标?。
七年级数学上册《动点问题》专项练习带解析,给孩子期末复习!1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=1/2PA,PN=1/2PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=1/2(PA+PB)=1/2AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=1/2|PA﹣PB|=1/2|AB|=2.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:AB-OP/MN的值是否发生变化?请说明理由.解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)AB-OP/MN的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=1/2AP=1/2+3t,OM=OA﹣AM=5t+1﹣(1/2+3t)=2t+1/2,ON=1/2OB=10t+3/2,∴MN=OM+ON=12t+2,∴AB-OP/MN=25t+4-t/12t+2=2,∴在运动过程中,M、N分别是AP、OB的中点,AB-OP/MN的值不发生变化.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①PA-PB/PC的值不变;②PA+PB/PC的值不变,请选择一个正确的结论并求其值.解:(1)∵AP=8,点M是AP中点,∴MP=1/2AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=1/2PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=1/2AB=7.(3)选择②.设AC=BC=x,PB=y,①PA-PB/PC=AB/x+y=14/x+y(在变化);PA+PB/PC=2x+2y/x+Y(定值)4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s 的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ/AB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,结论:①PM﹣PN的值不变;②MN/AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的1/3处;(2)如图:∵AQ﹣BQ=PQ∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴PQ=1/3AB,∴PQ/AB=1/3当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以PQ/AB=1/3;(3)②PQ/AB的值不变理由:如图,当点C停止运动时,有CD=1/2AB,∴CM=1/4AB∴PM=CN-CP=1/4AB-5∵PD=2/3AB-10∴PN=1/2(2/3AB-10)=1/3AB-5∴MN=PN-PM=1/2AB当点C停止运动,D点继续运动时,MN的值不变,所以,MN/AB=(1/12AB)/AB=1/12。
线段中的动点问题专项训练(30道)【类型1 一般性问题】1.如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;①当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.2.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且P A=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;3.如图,P是线段AB上任一点,AB=12厘米,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若AP=8厘米.①运动1秒后,求CD的长;①当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2秒时,CD=1厘米,直接写出AP的值是厘米.4.如图,C是线段AB上一点,AC=5cm,点P从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;①直接写出点P与点Q相距2cm时,t的值.5.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.若AB =18,DE=8,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;①点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长.6.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)如图2,动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿BA向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?【类型2 满足关系式问题】7.如图,点B在线段AC上,点M、N分别是AC、BC的中点.AC,则线段MN的长为(1)若线段AC=15,BC=25(2)若B为线段AC上任一点,满足AC﹣BC=m,其它条件不变,求MN的长;(3)若原题中改为点B在直线AC上,满足AC=a,BC=b,(a≠b),其它条件不变,求MN的长.8.如图,已知数轴上,点O为原点,点A对应的数为9,点B对应的数为b,点C在点B 右侧,长度为2个单位的线段BC在数轴上移动.(1)当b=5时,试求线段AC的长;AB,求此时(2)当线段BC在数轴上沿射线AO方向移动的过程中,若存在AC﹣OB=12满足条件的b值.(3)当线段BC在数轴上移动时,满足关系式|AC﹣OB|=|AB﹣OC|,则此时的b的取值范围是.9.如图,已知数轴上有三点A、B、C,它们对应的数分别为a,b,c,且c﹣b=b﹣a,点C对应的数是20.(1)若BC=30,求a、b的值;(2)在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R 从B点出发向右运动,点P、R、Q的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M为线段PR的中点,点N为线段RQ的中点,在R、Q相遇前,多少秒时恰好满足MR=4RN?10.已知点C在线段AB上,AC=2BC,点D,E在直线AB上,点D在点E的左侧.(1)若AB=15,DE=6,线段DE在线段AB上移动.①如图1,当E为BC中点时,求AD的长;①点F(异于A,B,C点)在线段AB上,AF=3AD,CF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式AD+ECBE =32,求CDBD的值.11.已知数轴上有A、B两个点.(1)如图1,若AB=a,M是AB的中点,C为线段AB上的一点,且ACCB =34,则AC=,CB=,MC=(用含a的代数式表示);(2)如图2,若A、B、C三点对应的数分别为﹣40,﹣10,20.①当A、C两点同时向左运动,同时B点向右运动,已知点A、B、C的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M为线段AB的中点,点N为线段BC的中点,在B、C相遇前,在运动多少秒时恰好满足:MB=3BN.①现有动点P、Q都从C点出发,点P以每秒1个单位长度的速度向终点A移动;当点P 移动到B点时,点Q才从C点出发,并以每秒3个单位长度的速度向左移动,且当点P 到达A点时,点Q也停止移动(若设点P的运动时间为t).当PQ两点间的距离恰为18个单位时,求满足条件的时间t值.12.如图,数轴上有点A、B两个点,OA=16,点B所表示的数为20,AC=6AB.(1)求点C所表示的数;(2)动点P、Q分别自A、B两点同时出发,均以每秒2个单位长度的速度沿数轴向左运动,点E为线段CP的中点,点F为线段CQ的中点,求出线段EF的长度;(3)在(2)的条件下,点P、Q分别自A、B出发的同时,动点M自点C出发,以每秒6个单位长度的速度沿数轴向右运动,设运动时间为t(秒),3<t<7时,数轴上的2有一点N与点M的距离始终为2,且点N在点M的左侧,点T为线段MN上一点(点T 不与点M、N重合),在运动的过程中,若满足MQ﹣NT=3PT(点T不与点P重合),求出此时线段PT的长度.【类型3 存在性问题】13.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运动.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.14.如图,点C在线段AB上,AC=6cm,CB=4cm,点M以1cm/s的速度从点A沿线段AC向点C运动;同时点N以2cm/s从点C出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点M运动到点C时,点M、N都停止运动,设点M运动的时间为ts.(1)当t=1时,求MN的长;(2)当t为何值时,点C为线段MN的中点?(3)若点P是线段CN的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.15.如图,点A、B和线段CD都在数轴上,点A、C、D、B起始位置所表示的数分别为﹣2、0、3、12;线段CD沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)当t=0秒时,AC的长为,当t=2秒时,AC的长为.(2)用含有t的代数式表示AC的长为.(3)当t=秒时AC﹣BD=5,当t=秒时AC+BD=15.(4)若点A与线段CD同时出发沿数轴的正方向移动,点A的速度为每秒2个单位,在移动过程中,是否存在某一时刻使得AC=2BD,若存在,请求出t的值;若不存在,请说明理由.16.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C 在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q 从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.【类型4 定值问题】17.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=,若CF=m,BE与CF的数量关系是;(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出10DF值;若不存在,请说明理由.CF18.如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是;=3,若(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式BD−APPC 存在,求线段PD的长;若不存在,请说明理由.19.如图,已知线段AB=15cm,CD=3cm,点E是AC的中点,点F是BD的中点.(1)若AC=4cm,求线段EF的长;(2)当线段CD在线段AB上从左向右或从右向左运动时,试判断线段EF的长度是否发生变化?若不变,请求出线段EF的长度;若变化,请说明理由.20.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB=cm,①此时线段CD的长度=cm;(2)用含有t的代数式表示运动过程中AB的长;(3)在运动过程中,若AB中点为E,则EC的长度是否变化?若不变,求出EC的长;若变化,请说明理由.21.如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM;(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;①MN+PN 的值不变.选出一个正确的结论,并求其值.22.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,(1)写出数轴上点B所表示的数;(2)点P所表示的数;(用含t的代数式表示);(3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长.23.如图,P是定长线段AB上一点,C、D两点同时从P、B出发分别以1cm/s和2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上).已知C、D运动到任一时刻时,总有PD=2AC.(1)线段AP与线段AB的数量关系是:;(2)若Q是线段AB上一点,且AQ﹣BQ=PQ,求证:AP=PQ;AB,此时C点停止运动,D点在线段PB上继(3)若C、D运动5秒后,恰好有CD=12的值是否发生变化?若变化,请说明理由;续运动,M、N分别是CD、PD的中点,问MNAB的值.若不变,请求出MNAB24.如图,已知数轴上有三点A、B、C,它们对应的数分别为a,b,c,且c﹣b=b﹣a,点C对应的数是20.(1)若BC=30,求a、b的值;(2)在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R 从B点出发向右运动,点P、R、Q的速度分别为8个单位长度/秒、4个单位长度/秒、2个单位长度/秒,点M为线段PR的中点,点N为线段RQ的中点,在R、Q相遇前,多少秒时恰好满足MR=4RN?(3)在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,P向左运动,Q 向右运动,P点的运动速度为8个单位长度/秒,Q点的运动速度为4个单位长度/秒,N 为OP的中点,M为BQ的中点,在P、Q运动的过程中,PQ﹣2MN的值是否发生变化?若不变,求其值;若变化,请说明理由.【类型5 新定义问题】25.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B.两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为a+b2【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;①用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;AB;(3)求当t为何值时,PQ=12(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.26.如图1,点C在线段AB上,图中共有3条线段:AB、AC和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”(填“是”或“不是”).(2)【深入研究】如图2,点A表示数﹣10,点B表示数20.若点M从点B的位置开始.以每秒3cm的速度向点A运动,当点M到达点A时停止运动.设运动的时间为t秒.①点M在运动的过程中表示的数为(用含t的代数式表示).①求t为何值时,点M是线段AB的“二倍点”.①同时点N从点A的位置开始.以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.27.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”(填“是”或“不是”);(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图①,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q 三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由28.直线l上的三个点A、B、C,若满足BC=1AB,则称点C是点A关于点B的“半距点”.如2AB,此时点C就是点A关于点B的一个“半距点”.图1,BC=12若M、N、P三个点在同一条直线m上,且点P是点M关于点N的“半距点”,MN=6cm.(1)MP=cm;(2)若点G也是直线m上一点,且点G是线段MP的中点,求线段GN的长度.29.定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的1,则称该点是其2BC,他两个点的“倍分点”.例如数轴上点A,B,C所表示的数分别为﹣1,0,2,满足AB=12此时点B是点A,C的“倍分点”.已知点A,B,C,M,N在数轴上所表示的数如图所示.(1)A,B,C三点中,点是点M,N的“倍分点”;(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有个,分别是;(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数.30.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.①若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.。
人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。
专题01数形思想之与线段有关的动点问题专练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、填空题1.(2021·河南)线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为________.2.(2021·全国)如图1,点C 在线段AB 上,图中共有三条线段AB ,AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2,已知AB =15cm .动点P 从点A 出发,以2cm /s 的速度沿AB 向点B 匀速运动;点Q 从点B 出发,以1cm /s 的速度沿BA 向点A 匀速运动,点P ,Q 同时出发,当其中一点到达终点时,运动停止.设移动的时间为t (s ),当t =__s 时,Q 为A ,P 的“巧点”.二、解答题3.(2021·江苏七年级期末)(新知理解)如图①,点M 在线段AB 上,图中共有三条线段AB 、AM 和BM ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点M 是线段AB 的“奇点”.(1)线段的中点______这条线段的“奇点”(填“是”或“不是”)(初步应用)(2)如图②,若18CD cm =,点N 是线段CD 的奇点,则______CN cm =;(解决问题)(3)如图③,已知15AB cm =动点P 从点A 出发,以1/cm s 速度沿AB 向点B 匀速移动:点Q 从点B 出发,以2/m s 的速度沿BA 向点A 匀速移动,点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t ,请直接写出t 为何值时,A 、P 、Q 三点中其中一点恰好是另外两点为端点的线段的奇点?4.(2021·河南七年级期末)(背景知识)数轴上A 、B 两点在对应的数为a ,b ,则A 、B 两点之间的距离定义为:AB b a =-.(问题情境)已知点A 、B 、O 在数轴上表示的数分别为-4、10和0,点M 、N 分别从O 、B 出发,同时向左匀速运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,设运动的时间为t 秒(0t >).(1)填空:①OA = OB = ;②用含t 的式子表示:AM = ;AN = ;(2)当t 为何值时,恰好有2AN AM =;(3)求410t t -++的最小值.5.(2021·湖南七年级期末)如图,直线l 上有A ,B 两点,AB =18cm ,点O 是线段AB 上的一点,OA =2OB .(1)OA = _______cm ,OB =________cm .(2)若点C 是线段AB 上一点(点C 不与A ,B 重合),且AC =CO +CB ,求CO 的长;(3)若动点P ,Q 分别从A ,B 同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s ,当点P 与点Q 重合时,P ,Q 两点停止运动.设运动时间为t (s),求当t 为何值时,2OP -OQ =6(cm)?6.(2021·湖北七年级期末)已知:如图,在数轴上点A 表示数a ,点B 表示数b ,AB 表示A 点和B 点之间的距离,且a ,b 满足()2230a b a +++=.(1)求A ,B 两点之间的距离;(2)若在数轴上存在一点C ,且2AC BC =,求点C 表示的数;(3)一小球甲在数轴上从点A 处以1个单位/秒的速度向右运动,同时另一小球乙从点B 处以7个单位/秒的速度向左运动,当甲乙两小球开始运动时,立即在点P 和点B 处各放一块挡板,其中点P 所表示的数为1-,当球在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),问:t 为何值时,甲、乙两小球之间的距离为4.7.(2021·河南七年级期末)如图1,M ,N 是直线l 上的两个点,且10MN =.线段AB (A 在B 的左侧)可以在直线l 上左右移动.已知5AB =,点C 是AN 的中点.(1)如图2,当B 与N 重合时,AM = ,BC = ;(2)在图2的基础上,将线段AB 沿直线MN 向左移动(05)a a <<个单位长度得到图3.①若3a =,求AM 和BC 的长;②若2BC =,则a 的值是 .(3)在图2的基础上,将线段AB 沿直线MN 向右移动0b b >()个单位长度.请直接写出AM 与BC 之间的数量关系 .8.(2021·贵州)如图,在数轴上点A ,点B ,点C 表示的数分别为2,1,6.-(1)线段AB 的长度为 个单位长度,线段AC 的长度为个单位长度.(2)点P 是数轴上的一个动点,从A 点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t 秒(018)££. 用含t 的代数式表示:点P 在数轴上表示的数为 线段BP 的长为 个单位长度;(3)点M ,点N 都是数轴上的动点,点M 从A 点出发以每秒2个单位长度的速度沿数轴正方向运动,点N 从点C 出发以每秒1个单位长度的速度沿数轴负方向运动.设点,M N 同时出发,运动时间为x 秒当点,M N 两点间的距离为13个单位长度时,求x 的值,并直接写出此时点M 在数轴上表示的数.9.(2021·广东七年级期末)如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.10.(2021·全国)如图,射线OM 上有A 、B 、C 三点,满足OA =40cm ,AB =30cm ,BC =20cm .点P 从点O 出发,沿OM 方向以2cm /秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P ,Q 停止运动.(1)当点P 与点Q 都同时运动到线段AB 的中点时,求点Q 的运动速度;(2)当PA =2PB 时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度;(3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,求OB AP EF-的值.11.(2021·全国七年级专题练习)A ,B 两地相距a 千米,C 地在AB 的延长线上,且3BC a =千米,D 是A 、C 两地的中点.(1)求AD 长(结果用含a 的代数式表示).(2)若90BD =千米,求a 的值.(3)甲、乙两车分别从A 、D 两地同时出发,都沿着直线AC 匀速去C 地,经4小时甲追上乙.当甲追上乙后甲马上原路返回,甲返回行驶1小时时发现甲车距D 地50千米,已知600a =千米,求乙车行驶的平均速度12.(2021·石家庄市第二十八中学)已知A ,B 是数轴上两点,点A 在原点左侧且距原点20个单位,点B 在原点右侧且距原点100个单位.(1)点A 表示的数是: ;点B 表示的数是: .(2)A ,B 两点间的距离是 个单位,线段AB 中点表示的数是 .(3)现有一只电子蚂蚁P 从点B 出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从点A 出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.13.(2021·江苏七年级期末)如图1,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/s的速度运动,同时点Q沿线段BA自B点向A点以3cm/s的速度运动,几秒后,P,Q两点相遇?(2)如图2,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/s的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若点P,Q两点也能相遇,求点Q运动的速度.14.(2021·陕西七年级期末)如图,已知线段24AB=,动点P从A出发,以每秒2个t>),点M为AP的中点.单位的速度沿射线AB方向运动,运动时间为t秒(0t=时,求线段MB的长度;(1)当3(2)当t为何值时,点P恰好是MB的中点?(3)当t为何值时,2=?AM PB15.(2021·福建七年级期末)(1)如图:若点C在线段AB上,线段AC=10cm,BC=6cm,点M,N分别是AC,BC的中点,求线段MN的长度;(2)若点C在线段BA的延长线上,点M,N分别是AC,BC的中点,设BC﹣AC=a,请根据题意画出图形,并求MN的长度(用含a的式子表示);(3)在(1)的条件下,动点P、Q分别从A、B两端同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,CP:CQ=1:2?16.(2021·天津七年级期末)如图,直线l上有A,B两点,AB=12cm,点O是线段AB上的一点,OA=2OB.(1)则OA = cm ,OB = cm ;(2)若点C 是线段AB 上一点(点C 不与点A 、B 重合),且满足AC =CO +CB ,求CO 的长;(3)若动点P 从点A 出发,动点Q 从点B 同时出发,都向右运动,点P 的速度为2cm/s .点Q 的速度为1cm/s ,设运动时间为t (s )(其中t ≥0).①若把直线l 看作以O 为原点,向右为正方向的一条数轴,则t (s )后,P 点所到的点表示的数为 ;此时,Q 点所到的点表示的数为 .(用含t 的代数式表示)②求当t 为何值时,2OP ﹣OQ =4(cm ).17.(2021·辽宁七年级期末)如图,数轴上点A 在原点左侧,点B 在原点右侧,且2OA OB =,动点P 、Q 分别从A 、B 两点同时出发,都向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 与点Q 重合时,P ,Q 两点停止运动.设运动时间为t 秒.(1)若点A 表示的数为12-,则点B 表示的数为________,线段AB 中点表示的数为___________;(2)在(1)的条件下,若122OP OQ AB -=,求t 的值;(3)当点P 在线段AO 上运动时,若AP BP OP -=,请探究线段OP 与线段AB 之间的数量关系,并说明理由.18.(2021·安徽七年级期末)如图,点,A B 在数轴上分别表示有理数,a b ,且,a b 满足2|2|(5)0a b ++-=.(1)点A 表示的数是___________,点B 表示的数是____________.(2)若动点P 从点A 出发以每秒3个单位长度向右运动,动点Q 从点B 出发以每秒1个单位长度向点A 运动,到达A 点即停止运动,P Q 两点同时出发,且Q 点停止运动时,P 也随之停止运动,求经过多少秒时,,P Q 第一次相距3个单位长度?(3)在(2)的条件下整个运动过程中,设运动时间为t 秒,若AP 的中点为,M BQ 的中点为N ,当t 为何值时,3BM AN PB +=?19.(2021·陕西)如图,点A ,B 在数轴上所对应的数分别为-5,7(单位长度为1cm ),P 是A ,B 间一点,C ,D 两点分别从点P ,B 出发,以1cm /s ,2cm /s 的速度沿直线AB 向左运动(点C 在线段AP 上,点D 在线段BP 上),运动的时间为s t .(1)AB =______cm .(2)若点C ,D 运动到任一时刻时,总有2PD AC =,请求出AP 的长.(3)在(2)的条件下,Q 是数轴上一点,且AQ BQ PQ -=,求PQ 的长.20.(2021·浙江七年级期末)数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A ,B ,C 所表示的数分别为1, 3,4,此时点B 是点A ,C 的“关联点”.(1)若点A 表示数-2,点B 表示数1,下列各数-1, 2, 4, 6所对应的点分别是1C ,2C ,3C ,4C ,其中是点A ,B 的“关联点”的是(2)点A 表示数-10,点B 表示数15,P 为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A ,B 的“关联点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P 表示的数.。
期末复习专题08 线段与角有关动点的计算问题考点一 有关线段的中点计算问题考点二 有关角的平分线计算问题考点三 线段上动点计算问题 考点四 角上动点计算问题考点一 有关线段的中点计算问题故选:D .【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.2.(2022·新疆·乌鲁木齐八一中学七年级期中)如图,数轴上M ,N ,P ,Q 四点对应的数都是整数,且M 为线段NQ 的中点,P 为线段NM 的中点.若点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,则数轴上的原点是( )A .点MB .点NC .点PD .点Q【答案】D 【分析】由已知条件可知2QN QM =,因为点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,依此可得到数轴上的原点.【详解】解:∵点M 为线段NQ 的中点,∴2QN QM =,∵点M 对应的整数是a ,点N 对应的整数是b ,且20b a -=,∴数轴上的原点是Q .故选:D .【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.(2022·云南·楚雄市中山镇初级中学七年级期末)C 为直线AB 上一点,且线段3cm AB =,5cm =BC ,则AC 的长度是 ________.【答案】8cm 或2cm【分析】分A 、C 在点B 异侧和A 、C 在点B 同侧两种情况,分别作出图形,根据线段的和差计算即可.【详解】解:如图1,当A 、C 在点B 异侧时,358cm AC AB BC =+=+=,如图2,当点A 、C 在点B 同侧时,532cm AC BC AB =-=-=,即AC 的长度是8cm 或2cm ,故答案为:8cm 或2cm .【点睛】本题考查了线段的和差计算,注意分类讨论思想的应用.4.(2022·全国·七年级专题练习)如图,M 是AB 的中点,N 是BC 的中点,7cm AB =,2cm BN =,则BC =________cm ,MC =______cm .AB=,点C线段(1)如图,已知线段8cmQ 点M 是AC 中点,12MC AC \=,M Q 为AC 的中点,N 为BC 的中点,1CM AC \=,1CN BC =,(1)若点C 为图1中线段AB 的“优点”6()AC AC BC =<(2)若点D 也是图1中线段AB 的“优点”(不同于点C )(填“=”或“¹”)[解决问题]∵点D是线段AB的“优点”,考点二有关角的平分线计算问题【点睛】本题主要考查了角平分线有关的计算以及几何图形中角的计算,解题关键是根据题意作出图形,运用分类讨论的思想分析问题.2.(2022·浙江台州·七年级期末)直线AB ,CD 相交于点O ,OE 是BOD Ð的角平分线,若3AOE BOC Ð=Ð,则EOC Ð的度数为( )A .36°B .72°C .108°D .144°【答案】C 【分析】根据OE 是BOD Ð的角平分线,得出DOE BOE Ð=Ð,根据3AOE AOD DOE BOC Ð=Ð+Ð=Ð,得出2DOE BOC Ð=Ð,求出36BOC Ð=°,即可得出272BOE BOC Ð=Ð=°,即可得出答案.【详解】解:∵OE 是BOD Ð的角平分线,∴DOE BOE Ð=Ð,∵3AOE AOD DOE BOC Ð=Ð+Ð=Ð,又∵AOD BOC Ð=Ð,∴3BOC DOE BOC Ð+Ð=Ð,∴2DOE BOC Ð=Ð,∴2BOE DOE BOC Ð=Ð=Ð,∵180DOE BOE BOC Ð+Ð+Ð=°,∴22180BOC BOC BOC Ð+Ð+Ð=°,解得:36BOC Ð=°,272BOE BOC \Ð=Ð=°,∴108EOC BOE BOC Ð=Ð+Ð=°,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,根据已知条件得出2DOE BOC Ð=Ð,是解题的关键.3.(2022·全国·七年级课时练习)如图,AB 、CD 交于点O ,若170=°∠,射线OE 平分∠AOC ,那么∠EOD =__________度.【答案】42°##42度【分析】先由对顶角相等求出【详解】解:∵∠AOC =∠∴∠BOD =70°,∵:2:3BOE EOD ÐÐ=,Ð,OD(1)如图1,OE平分AOB(2)如图2,OE、OD分别平分ÐÐ(3)若OE、OD分别平分AOC 接填空).则EOD EOC Ð=Ð1122AOC =Ð-Ð1(2AOB BOC =Ð+Ð45=°;则1(2EOD AOC Ð=Ð1(360)2AOB °=-Ð1(36090)2°°=-(1)如图1,过点O 作射线OE ,使OE 为AOD Ð的角平分线,当Ð=COE (2)如图2,过点O 作射线OE ,当OE 恰好为AOC Ð的角平分线时,另作射线求EOF Ð的度数;(3)过点O 作射线OE ,当OC 恰好为AOE Ð的角平分线时,另作射线OF ,时,求BOD Ð的度数.考点三线段上动点计算问题考点四 角上动点计算问题1.(2022·河北·石家庄外国语学校七年级期中)如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,90C Ð=°,则旋转角BAB Т为( )A .60°B .100°C .120°D .150°【答案】C 【分析】直接根据180BAB BAC ¢Ð=°-Ð即可得出答案.【详解】解:∵将直角三角板ABC 绕顶点A 顺时针旋转到AB C ¢V ,点B ¢恰好落在CA 的延长线上,60BAC Ð=°,∴180********BAB BAC ¢Ð=°-Ð=°-°=°,故选:C .【点睛】本题考查了旋转角,题目比较简单,属于基础题.2.(2022·陕西·西安辅轮中学七年级期末)已知:O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .Ð=°Q,POB68\Ð=°-°,68POM nÐ=°Q,MON90\Ð=°-°-°=°-°,1809090AON n n\Ð-Ð=°-°-°-°=°;AON POM n n(90)(68)22当6890<<时,如图2,理由如下:nQ,Ð=°68POB\Ð=°-°,POM n68Q,Ð=°90MON\Ð=°-°-°=°-°,AON n n1809090\Ð+Ð=°-°+°-°=°;(90)(68)22AON POM n n故答案为:068n<<,6890<<.n【点睛】本题主要考查角的加减运算,能够熟练根据要求列角的等量关系是解题关键.。
人教版七年级上册数学期末动点压轴题训练1.已知线段AB =15cm ,点C 在线段AB 上,且AC :CB =3:2.(1)求线段AC ,CB 的长;(2)点P 是线段AB 上的动点,线段AP 的中点为M ,设AP =m cm .①请用含有m 的代数式表示线段PC ,MC 的长;①若三个点M ,P ,C 中恰有一点是其它两点所连线段的中点,则称M ,P ,C 三点为“共谐点”,请直接写出使得M ,P ,C 三点为“共谐点”的m 的值.2.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a 、b 、c 满足2(5)||0c a b -++=.请回答问题:(1)=a _______,b =________,c =_________.(2)点P 为一动点,其对应的数为x ,点P 在0到2之间运动时,请化简式子:|2||2|x x +--(写出化简过程).(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则:①BC =_________,AB =________.(用含t 的代数式表示)①探究:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,直接写出结果.3.如图,在数轴上A 点表示的数为a ,B 点表示的数为b ,C 点表示的数为c ,b 是最大的负整数,且a ,c 满足|a +3|+(c ﹣9)2=0.点P 从点B 出发以每秒3个单位长度的速度向左运动,到达点A 后立刻返回到点C ,到达点C 后再返回到点A 并停止.(1)a = ,b = ;(2)点P 从点B 离开后,在点P 第二次到达点B 的过程中,经过x 秒钟,P A +PB +PC =13,求x 的值.(3)点P 从点B 出发的同时,数轴上的动点M ,N 分别从点A 和点C 同时出发,相向而行,速度分别为每秒4个单位长度和每秒5个单位长度,假设t 秒钟时,P 、M 、N 三点中恰好有一个点是另外两个点的中点,请直接写出所有满足条件的t的值.4.如图,已知在数轴上有A,B两点,点A表示的数为8,点B在A点的左边,且12AB=.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动.设点P的运动时间为t秒.(1)解决问题:t=时,写出数轴上点B,P所表示的数;①当1①若点P,Q分别从A,B两点同时出发,问点P运动多少秒与点Q相距3个单位长度?(2)探索问题:若M为AQ的中点,N为BP的中点.当点P在A,B两点之间运动时,探索线段MN与线段PQ的数量关系(写出过程).5.如图,在数轴上点A表示数a,点B表示数b,且a,b满足(a+20)2+|b﹣40|=0.(1)求a,b的值;(2)点C是数轴上一点,且BC=2AC,求点C在数轴上对应的数;(3)点O表示原点,动点P从点A出发以1个单位长度/秒的速度向左运动,同时动点Q,R分别从点O,B 出发分别以3个单位长度/秒和2个单位长度/秒的速度向右运动,点M为线段QR的中点,点N为线段OP的中点,当点Q,R重合时,点R立即以m个单位长度/秒向左运动,直至点M,N重合时运动停止,此时全程运动时间为90秒,求m的值.6.如图,点A、O、C、B为数轴上的点,O为原点,A表示的数是﹣8,C表示的数是2,B表示的数是6.我们将数轴在点O和点C处各弯折一次,弯折后CB与AO处于水平位置,线段OC处产生了一个坡度,我们称这样的数轴为“折坡数轴”,其中O为“折坡数轴”原点,在“折坡数轴”上,每个点对应的数就是把“折坡数轴”拉直后对应的数.记AB为“折坡数轴”拉直后点A和点B的距离:即AB=AO+OC+CB,其中AO、OC、CB代表线段的长度.(1)若点T 为“折坡数轴”上一点,且16TA TB +=,请求出点T 所表示的数;(2)定义“折坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.动点P 从点A 处沿“折坡数轴”以每秒2个单位长度的速度向右移动到点O ,再上坡移动,当移到点C 时,立即掉头返回(掉头时间不计),在点P 出发的同时,动点Q 从点B 处沿“折坡数轴”以每秒1个单位长度的速度向左移动到点C ,再下坡到点O ,然后再沿OA 方向移动,当点P 重新回到点A 时所有运动结束,设点P 运动时间为t 秒,在移动过程中:①点P 在第 秒时回到点A ;①当t = 时,2PQ PO =.(请直接写出t 的值)7.a 的几何意义表示数轴上a 所对应的点与原点的距离,1a -表示数轴上a 所对应的点与1所对应的点之间的距离.情景:点P 为数轴上的一个动点,其所表示的数为a ,A 、B 、C 三点表示的数分别为2-、6、b ,点P 从原点向数轴的负方向以每秒一个单位长度运动,当到达数轴上3-时立即以原速返回向沿数轴正方向运动.点P 分别到点A 、B 的距离之和可以用绝对值表示为:26a a ++-问题: (1)1a +表示数轴上a 所对应的点与_______所对应的点之间的距离;(2)P 分别到点A 、B 的距离之和的最小值是_______;(3)P 点到点A 、B 的距离之和达到最小值时所用时间一共是_______秒:(4)当b 的值是_______时,6a a b -+-的最小值是2.8.如图所示,在数轴上点A 表示的数是4,点B 位于点A 的左侧,与点A 的距离是10个单位长度.(1)点B 表示的数是____________,并在数轴上将点B 表示出来.(2)动点P 从点B 出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P 与点A 的距离是2个单位长度?(3)在(2)的条件下,点P 出发的同时,点Q 也从点A 出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q 到点B 的距离是点P 到点A 的距离的2倍?9.如图,在长方形ABCD 中,AD =16cm ,AB =12cm ,动点P 从点A 出发,沿线段AB 、BC 向点C 运动,速度为2cm/s ;动点Q 从点B 出发,沿线段BC 向点C 运动,速度为1cm/s .P ,Q 同时出发,当其中一点到达终点,另一点也停止运动,设运动时间是t (s ).(1)请用含有t 的代数式表示:当点P 在AB 上运动时,BP = ;当点P 在BC 上运动时,BP = ;(2)在运动过程中,t 为何值,能使PB =BQ ?10.已知数轴上两点A ,B 对应的数分别是10-,4,P 、M 、N 为数轴上的三个动点,点M 从B 点出发速度为每秒2个单位,点N 从A 点出发速度为M 点的2倍,点P 从原点出发速度为每秒1个单位.(1)线段AB 之间的距离为________个单位长度.(2)若点M 向左运动,同时点N 向右运动,求多长时间点M 与点N 相遇?(3)若点M 、N 、P 同时都向右运动,求多长时间点P 到点M ,N 的距离相等?11.在数轴上,点O 为原点,点A 表示的数为9,动点B ,C 在数轴上移动(点C 在点B 右侧),总保持BC n =(n 大于0且小于4.5),设点B 表示的数为m .(1)如图,当动点B ,C 在线段OA 上移动时,①若2n =,且B 为OA 中点时,则点B 表示的数为__________,点C 表示的数为__________;①若AC OB =,求多项式6340m n +-的值;(2)当线段BC 在射线AO 上移动时,且12AC OB AB -=,求m (用含n 的式子表示).12.数轴上两点A 、B ,A 在B 左边,原点O 是线段AB 上的一点,已知AB =4,且OB =3OA .A 、B 对应的数分别是a 、b ,点P 为数轴上的一动点,其对应的数为x .(1)a = ,b = ,并在数轴上面标出A 、B 两点;(2)若P A =2PB ,求x 的值;(3)若点P 以每秒2个单位长度的速度从原点O 向右运动,同时点A 以每秒1个单位长度的速度向左运动,点B 以每秒3个单位长度的速度向右运动,设运动时间为t 秒.请问在运动过程中,3PB -P A 的值是否随着时间t 的变化而改变?若变化,请说明理由若不变,请求其值.13.如图,直线l 上有AB 两点,36cm AB =,点O 是线段AB 上的一点,且2OA OB =.(1)若点C 是直线AB 上一点,且满足AC CO CB =+,求CO 的长;(2)若动点P 、Q 分别从A 、B 两点同时出发,向右运动,点P 的速度为3cm/s ,点Q 的速度为1cm/s .设运动时间为t 秒,当点P 与点Q 重合时,P 、Q 两点停止运动.当t 为何值时,28OP OQ -=.14.已知数轴上两点A ,B 对应的数分别为﹣1、3,点P 为数轴上一动点,其对应的数为x ,(1)若点P 到点A 、点B 的距离相等,则点P 对应的数是 .(2)数轴上存在点P 到点A 、点B 的距离之和为8,则x = .(3)若将数轴折叠,使﹣1与3表示的点重合,则点P 与数 表示的点重合(用含x 代数式表示);(4)若点P 从A 点出发沿数轴的正方向移动,速度为每秒2个单位长度,设运动时间为t ,在移动过程中,是否存在某一时刻t ,使得点P 到点A 距离等于点P 到点B 距离的2倍,若存在,请求出t 的值;若不存在,请说明理由.15.已知在纸面上有一个数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-4表示的点与______表示的点重合;(2)若8表示的点与-2表示的点重合,回答下列问题:①12表示的点与______表示的点重合;①数轴上A,B两点间的距离为2022(A在B的左侧),且A,B两点经折叠后重合,则A,B两点表示数分别为______,______.①在①的条件下,点C为数轴上的一个动点,从点O出发,以2个单位每秒的速度向右运动,求当时间t 为多少秒时,AC之间的距离恰好是BC之间距离的2倍.16.如图,在数轴上有两点A、B,所对应的数分别是a、b,且满足6a-是最大的负整数,9b+是绝对值最小的有理数.点C在点A左侧,到点A的距离是2个单位长度.(1)AB两点间的距离是.(2)点P、Q为数轴上两个动点,点P从A点出发速度为每秒2个单位长度,点Q从B点出发速度为每秒3个单位长度.若P、Q两点同时出发,相向而行,运动时间为t秒.求当t为何值时,点P与点Q之间的距离是6个单位长度?(3)在(2)的条件下,在点P、Q运动的过程中,是否存在t值,使点Q到点A、点B、点C的距离之和为15,若存在,直接写出此时点P在数轴上所表示的数;若不存在,请说明理由.17.已知数轴上两点A、B对应的数分别为-1、3, 点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,直接写出点P对应的数;(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8 ? 若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?18.如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:;(2)A、B两点间的距离是,A、C两点间的距离是;(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?19.如图,将数轴在原点O与点C处各折一下得到“折线数轴”,点A表示 8,点B表示20,点C表示12,我们称点O与点B在“折线数轴”上相距20长度单位.动点P从点A出发,以2单位/秒速度沿“折线数轴”正向运动,从点O运动到点C期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点B 出发,以1单位/秒速度沿数轴负向运动,从点C运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设它们运动的时间为t秒.(1)直接写出点A与点C在“折线数轴”上相距的长度单位数;(2)动点P从点A运动至点B,动点Q从点B运动至点A,各需要多少时间?(3)当P,Q两点在点M相遇时,点M所对应的数是多少?20.已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc0,a+b0,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=1且点B到点A,C的距离相等.①当b2=9时,求c的值;①P是数轴上B,C两点之间的一个动点,设点P表示的数为x.当P点在运动过程中,bx+cx+|c﹣x|﹣8|x+a|的值保持不变,求b的值.答案1.(1)AC =9cm ,CB =6cm ;(2)①当点P 在线段AC 上时,PC=(9-m )cm ,MC =(9-12m )cm ;当点P 在线段BC 上时,PC =(m -9)cm ,MC =(9-12m )cm ;①m 的值为6或12.2.(1)-1,1,5(2)|x +2|﹣|x ﹣2|=2x(3)①3t +4,3t +2;①BC ﹣AB 的值不随着时间t 的变化而改变,其值是23.(1)﹣3,﹣1; (2)13或1或53或233; (3)1,2617,167,8. 4.(1)①点B 表示-4,点P 表示5;①1.8秒或3秒(2)2MN +PQ =12或2MN -PQ =12,过程见解析5.(1)a =-20,b =40(2)0或-80(3)106.(1)−9和7; (2)①212;①2或225或315或345 7.(1)-1(2)8(3)10(4)8或4.8.(1)6-,(2)经过4秒或6秒点P 与点A 的距离是2个单位长度;(3)经过103秒或6秒,点Q 到点B 的距离是点P 到点A 的距离的2倍 9.(1)()122t cm -;()212t cm -;(2)当t 为4或12时,PB BQ =.10.(1)14 (2)73秒 (3)7秒或1.5秒11.(1)①4.5,6.5;①-13; (2)233m n =-或m =2n -932.(1)1,3-, (2)53或7 (3)不变,8,13.(1)4cm 或36cm(2)当t 为4s 或13.6s 时,28OP OQ -=34.(1)1(2)3-或5(3)2x - (4)43t =或4 15.(1)4;(2)①-6;①-1008;1014;①170秒或1518秒16.(1)14;(2)t 为85或4;(3)存在,73-或113- 17.(1)1;(2)存在;x =5;(3)-3或-2718.(1)6-,1,4;(2)7,10;(3)将点B 向左移动2个单位 19.(1)20;(2)20,22;(3)203. 20.(1)>,<,>;(2)①c =﹣7;①﹣83。
线段上的动点问题
名师点金:解决线段上的动点问题一般需注意:(1)找准点的各种可能的位置;(2)通常可用设元法,表示出移动变化后的线段的长(有可能是常数,那就是定值),再由题意列方程求解.
线段上动点与中点问题的综合
1.(1)如图①,D是线段AB上任意一点,M,N分别是AD,DB的中点,若AB=16,求MN的长.
(2)如图②,AB=16,点D是线段AB上一动点,M,N分别是AD,DB的中点,能否求出线段MN的长?若能,求出其长;若不能,试说明理由.
(3)如图③,AB=16,点D运动到线段AB的延长线上,其他条件不变,能否求出线段MN的长?若能,求出其长;若不能,试说明理由.
(4)你能用一句简洁的话,描述你发现的结论吗?
(第1题)
线段上动点问题中的存在性问题
2.如图,已知数轴上A,B两点对应的数分别为-2,6,O为原点,点P为数轴上的一动点,其对应的数为x.
(第2题)
(1)PA=______,PB=______(用含x的式子表示).
(2)在数轴上是否存在点P,使PA+PB=10?若存在,请求出x的值;若不存在,请说
明理由.
(3)点P 以1个单位长度/s 的速度从点O 向右运动,同时点A 以5个单位长度/s 的速度向左运动,点B 以20个单位长度/s 的速度向右运动,在运动过程中,M ,N 分别是AP ,
OB 的中点,问:AB -OP MN
的值是否发生变化?请说明理由.
线段和差倍分关系中的动点问题
3.如图,线段AB =24,动点P 从A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为AP 的中点,设P 的运动时间为x 秒.
(1)当PB =2AM 时,求x 的值.
(2)当P 在线段AB 上运动时,试说明2BM -BP 为定值.
(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变.选择一个正确的结论,并求出其值.
(第3题)
线段上的动点的方案问题
4.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.
(第4题)
情景二:如图,A,B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由.
你赞同以上哪种做法
答案
1.解:(1)MN =DM +DN =12AD +12BD =12(AD +BD)=12
AB =8. (2)能.MN =DM +DN =12AD +12BD =12(AD +BD)=12
AB =8. (3)能.MN =MD -DN =12AD -12BD =12(AD -BD)=12
AB =8. (4)若点D 在线段AB 所在直线上,点M ,N 分别是AD ,DB 的中点,则MN =12
AB. 2.解:(1)|x +2|;|x -6|
(2)分三种情况:
①当点P 在A ,B 之间时,PA +PB =8,故舍去;
②当点P 在B 点右边时,PA =x +2,PB =x -6,
因为(x +2)+(x -6)=10,所以x =7;
③当点P 在A 点左边时,PA =-x -2,PB =6-x ,
因为(-x -2)+(6-x)=10,所以x =-3.
综上,当x =-3或7时,PA +PB =10.
(3)AB -OP MN
的值不发生变化.理由如下: 设运动时间为t s ,
则OP =t ,OA =5t +2,OB =20t +6,AB =OA +OB =25t +8,
AB -OP =24t +8,AP =OA +OP =6t +2,AM =12
AP =3t +1, OM =OA -AM =5t +2-(3t +1)=2t +1,ON =12
OB =10t +3, 所以MN =OM +ON =12t +4.所以AB -OP MN =24t +812t +4
=2. 3.解:(1)当点P 在点B 左边时,PA =2x ,PB =24-2x ,AM =x ,所以24-2x =2x ,即x =6;当点P 在点B 右边时,PA =2x ,PB =2x -24,AM =x ,所以2x -24=2x ,方程无解.综上可得,x 的值为6.
(2)当P 在线段AB 上运动时,BM =24-x ,BP =24-2x ,所以2BM -BP =2(24-x)-(24-2x)=24,即2BM -BP 为定值.
(3)①正确.当P 在AB 延长线上运动时,PA =2x ,AM =PM =x ,PB =2x -24,PN =12
PB =x -12,
所以①MN =PM -PN =x -(x -12)=12.
所以MN 长度不变,为定值12.
②MA +PN =x +x -12=2x -12,
所以MA+PN的值是变化的.
4.解:情景一:横穿草坪是为了所走路程最短.因为两点之间的所有连线中,线段最短;
情景二:点P的位置如图.
(第4题)
理由:两点之间的所有连线中,线段最短.
赞同情景二中的做法.。