选填题型1 规律探索型问题(教学)--re
- 格式:ppt
- 大小:2.65 MB
- 文档页数:29
精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。
题型1 规律探索型问题题型解读对于规律探索题型常常会有一定的通式或循环规律,解题时一般先列出前几项,找出规律或通式求解.1.常考类型:①数字规律探索;②数式规律探索;③图形规律探索;④坐标系中图形规律探索;⑤与函数图象相关的规律探索.2.考查形式与题型:一般都是给出一列数字或者图形,求其第n 个数字、第n 个式子或第n 个图形或求末位数值;题型为选择、 填空.类型一 数字规律探索1.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72016的末位数字是( )A . 9B . 7C . 6D . 02.按一定规律排列的一列数:12,1,1, ,911,1113,1317,…,请你仔细观察,按照此规律方框内的数字应为________.3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,….试猜想,32016的个位数字....是________. 类型二 数式规律探索4. “数学是将科学现象升华到科学本质认识的重要工具”.比如在化学中,甲烷的化学式是CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n(n 为正整数),则它们的化学式都可用下列哪个式子来表示( )A . C n H 2n +2B .C n H 2n C . C n H 2n -2D . C n H n +35.古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性.若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,则x n +x n +1=________.6.观察下列等式:1+2+3+4+…+n =12n(n +1);1+3+6+10+…+12n(n +1)=16n(n +1)(n +2)1+4+10+20+…+16n(n +1)(n +2)=124n(n +1)(n +2)(n +3);则有:1+5+15+35+…+124n(n +1)(n +2)(n +3)=________.类型三 图形规律探索7.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( ) A . (12)6 B . (12)7 C . (22)6D . (22)7第7题图 第8题图 第9题图8.如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,依次类推,这样连续旋转2015次后,顶点A 在整个旋转过程中所经过的路程之和是( )A . 2015πB . 3019.5πC . 3018πD . 3024π9.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中“○”的个数,若第n 个“龟图”中有245个“○”,则n =________.10.如图,△ABC 的面积为1,第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连接A 1,B 1,C 1,得到△A 1B 1C 1,第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,…,按此规律,要使得到的三角形的面积超过2016,最少经过________次操作.第10题图 第11题图 第12题图11.如图,∠MON =60°,作边长为1的正六边形A 1B 1C 1D 1E 1F 1,边A 1B 1、F 1E 1分别在射线OM 、ON 上,边C 1D 1所在的直线分别交OM 、ON 于点A 2、F 2,以A 2F 2为边作正六边形A 2B 2C 2D 2E 2F 2,边C 2D 2所在的直线分别交OM 、ON 于点A 3、F 3,再以A 3F 3为边作正六边形A 3B 3C 3D 3E 3F 3,…,依此规律,经第n 次作图后,点B n 到ON 的距离是________.类型四 坐标中的图形规律探索12.如图,已知菱形OABC 的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A . (1,-1)B . (-1,-1)C . (2,0)D . (0,-2)13.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角线OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3,依次类推…,则正方形OB 2015B 2016C 2016的顶点B 2016的坐标是________.第13题图 第14题图 第15题图14.如图,点A 1的坐标为(1,0),A 2在y 轴的正半轴上,且∠A 1A 2O =30°,过点A 2作A 2A 3⊥A 1A 2,垂足为A 2,交x 轴于点A 3;过点A 3作A 3A 4⊥A 2A 3,垂足为A 3,交y 轴于点A 4;过点A 4作A 4A 5⊥A 3A 4,垂足为A 4,交x 轴于点A 5;过点A 5作A 5A 6⊥A 4A 5,垂足为A 5,交y 轴于点A 6,…,按此规律进行下去,则点A 2016的纵坐标为____________.15.如图,在平面直角坐标系中,矩形AOCB 的两边OA 、OC 分别在x 轴和y 轴上,且OA =2,OC =1.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形A 1OC 1B 1,再将矩形A 1OC 1B 1以原点O 为位似中心放大32倍,得到矩形A 2OC 2B 2…,依此规律,得到的矩形A n OC n B n 的对角线交点的坐标为________.16.如图,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,△A 7A 8A 9,…,都是等边三角形,且点A 1,A 3,A 5,A 7,A 9的坐标分别为A 1(3,0),A 3(1,0),A 5(4,0),A 7(0,0),A 9(5,0),依据图形所反映的规律,则A 100的坐标为________.类型五 与函数图象相关的规律探索17.如图,在坐标轴上取点A 1(2,0),作x 轴的垂线与直线y =2x 交于点B 1,作等腰直角三角形A 1B 1A 2;又过点A 2作x 轴的垂线与直线y =2x 交于点B 2,作等腰直角三角形A 2B 2A 3;…,如此反复作等腰直角三角形,当作到A n (n 为正整数)点时,则A n 的坐标是________.第16题图 第17题图 第18题图18.如图,在平面直角坐标系中,将△ABO 绕点B 顺时针旋转到△A 1BO 1的位置,使点A 的对应点A 1落在直线y =33x 上,再将△A 1BO 1绕点A 1顺时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =33x 上,依次进行下去…. 若点A 的坐标是(0,1),点B 的坐标是(3,1),则点A 8的横坐标...是________.答案与解析:类型一 数字规律探索1. D 【解析】根据题意,7的幂次方最终结果的末位数字是7,9,3,1这样的循环,其和的末位数字是0,因为2016=504×4,所以71+72+73+…+72016的末位数字是0.2. 1 【解析】将原来的一列数变形为12,33,55,□,911,1113,1317,…通过观察可以得出分子依次为从小到大排列的连续奇数,分母是依次从小到大排列的质数,故方框内填77,故答案为1. 3. 1 【解析】从前几个3的幂次方结果来看,它的个位数字依次是3,9,7,1,第5个数跟第一个数的个位数字相同,于是3的整数次幂是每四个数一个循环,2016÷4=504,于是32016的个位数字与34的个位数字相同,即为1.类型二 数式规律探索4. A 【解析】由H 的下标可得第1个是4,第二个为6,第三个为8,所以第n 个为2n +2,由C 的下标可得第1个是1,第二个是2,…,所以碳原子的数目为n 时,化学式为C n H 2n +2.5. (n +1)2或n 2+2n +1 【解析】∵x 1+x 2=1+3=4=22,x 2+x 3=3+6=9=32,x 3+x 4=6+10=16=42,x 4+x 5=10+15=25=52,x 5+x 6=15+21=36=62,∴x n +x n +1=(n +1)2=n 2+2n +1.6. 1120n (n +1)(n +2)(n +3)(n +4) 【解析】观察所给等式可以发现,第一个等式的右边系数为12=1×12,因式为n(n +1);第二个等式的右边系数为16=12×13,因式为n(n +1)(n +2);第三个等式的右边系数为124=16×14,因式为n(n +1)(n +2)(n +3),所以第四个等式的右边系数为124×15=1120,因式为n(n +1)(n +2)(n +3)(n +4),结果为1120n(n +1)(n +2)(n +3)(n +4). 类型三 图形规律探索7. A 【解析】由题意得:S 1=22=(12)-2,S 2=(2)2=(12)-1,S 3=(1)2=(12)0,S 4=(12)2=(12)1,…,S 9=(12)9-3=(12)6.故选A. 8. D 【解析】本题考查旋转规律探索和弧长公式.在矩形ABCD 中,AB =4,BC =3,由勾股定理得:AC =AB 2+BC 2=5,画出经过旋转六次后点A 经过的路线,由题图可知经过第①次旋转,点A 运动过的路程是以B 为圆心,AB 长为半径,圆心角为90°的AA 1︵;经过第②次旋转,点A 运动过的路程是以AC 长为半径,圆心角为90°的A 1A 2︵;经过第③次旋转,点A 运动过的路程是以AD 长为半径,圆心角为90°的A 2A 3︵;第④次旋转,点A 在直线上不变化;经过第⑤次旋转,点A 运动过的路程与第①次旋转运动过的路程一致. 故点A 每经过四次旋转后,重复前四次旋转的路程.∵2015÷4=503……3,∴点A 经过的路程正好是503个前四次运动的路程和再加上一个前三次运动的路程和,即一共是504个前三次运动的路程和.由弧长公式得AA 1︵的长为12πAB =2π,A 1A 2︵的长为12πAC =52π;A 2A 3︵的长为12πAD =32π,∴经过2015次旋转后,点A 经过的路程为504×(2π+52π+32π)=3024π. 9. 16 【解析】根据题意得:第1个图形中小圆的个数为5,第2个图形中小圆的个数为7,第3个图形中小圆的个数为11,得出第n 个图形中小圆的个数为n(n -1)+5.据此可以求出“龟图”中有245个“○”时n 的值.方法①:第1个图形有:5个○,第2个图形有:2×(2-1)+5=7个○,第3个图形有:3×(3-1)+5=11个○,第4个图形有:4×(4-1)+5=17个○,…,据此得出:第n 个图形有:n(n -1)+5个○,则可得方程n(n -1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).故答案为:16.方法②:设y =an 2+bn +c ,根据题意得⎩⎪⎨⎪⎧a +b +c =54a +2b +c =79a +3b +c =11,解得⎩⎪⎨⎪⎧a =1b =-1c =5,∴y =n 2-n +5.当y =245时,可得:n 2-n +5=245.10. 四 【解析】△ABC 与△A 1BB 1的底相等(AB =A 1B),高为1∶2(BB 1=2BC),故面积比为1∶2,∵S △ABC =1,∴S △A 1BB 1=2.同理可得,S △C 1B 1C =2,S △AA 1C 1=2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C 1+S △A 1B 1B +S △ABC =2+2+2+1=7,同理可证:S △A 2B 2C 2=7S △A 1B 1C 1=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2016,最少经过四次操作.11. 3n -13 【解析】由题可知,∠MON =60°,不妨设B n 到ON 的距离为h n ,∵正六边形A 1B 1C 1D 1E 1F 1的边长为1,则A 1B 1=1,易知△A 1OF 1为等边三角形,∴A 1B 1=OA 1=1,∴OB 1=2,则h 1=2×32=3,又OA 2=A 2F 2=A 2B 2=3,∴OB 2=6,则h 2=6×32=33,同理可求:OB 3=18,则h 3=18×32=93,…,依此可求:OB n =2×3n -1,则h n =2×3n -1×32=3n -13,∴B n 到ON 的距离h n =3n -1 3. 类型四 坐标中的图形规律探索12. B 【解析】∵菱形OABC 的顶点O (0,0),点B 的坐标是(2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D 是线段OB 的中点,∴点D 的坐标是(1,1),∵菱形绕点O 逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D 关于原点O 成中心对称,∴第60秒时,菱形的对角线交点D 的坐标为(-1,-1).13. (21008,0) 【解析】点B 的位置依次落在第一象限、y 轴正半轴、第二象限、x 轴负半轴、第三象限、y 轴负半轴、第四象限、x 轴正半轴,…,每8次一循环.2016÷8=252,所以点B 2016落在x 轴正半轴,故B 2016的纵坐标是0;OB n 是正方形的对角线,OB 1=2,OB 2=2=(2)2,OB 3=22=(2)3,…,所以OB 2016=(2)2016=21008,所以点B 2016的坐标为(21008,0).14. -310073 【解析】∵A 1(1,0),∠A 1A 2O =30°,∴A 2(0,3),∵A 3A 2⊥A 1A 2 ,∴∠A 3A 2O =60°,∴∠A 2A 3O =30°, ∴A 3(-3,0),同理:A 4(0,-33),A 5(9,0),A 6(0,93),A 7(-27,0),A 8(0,-273),∴n =1007,15. (-3n 2n ,3n2n +1) 【解析】在矩形OABC 中,OA =2,OC =1,∴A(-2,0),C(0,1),∴对角线的交点为(-1,12),将矩形OABC 以原点O 为位似中心,放大为原来的32倍,∴矩形A 1OC 1B 1对角线的交点为(-32,34),即(-32,12×32),继续放大为原来的32倍,∴矩形A 2OC 2B 2对角线的交点为(-94,98),即(-3222,12×3222),…,依次类推,∴矩形A n OC n B n 对角线的交点为(-3n 2n ,3n2n +1).第16题解图16. (52,-5132) 【解析】如解图,继续排列图形如下,观察发现,A 1、A 5、A 9、…、A 4n -3在点(2,0)的右侧,A 3、A 7、A 11、…、A 4n -1在点(2,0)的左侧,A 2、A 6、A 10、…、A 4n -2在第一象限,A 4、A 8、A 12、…、A 4n 在第四象限,∴A 100在第四象限,进一步观察发现:①A 4、A 8、A 12、A4n 的横坐标都为52,②A 4n 所在等边三角形边长为2n +1,可求得A 100所在等边三角形边长为2×25+1=51,进一步可求点A 100的纵坐标为-(32×51)=-5132,从而解得A 100的坐标为(52,-5132). 类型五 与函数图象相关的规律探索 17. (2×3n -1,0) 【解析】∵A 1(2,0)=(2×30,0),且A 1B 1⊥x 轴,与直线y =2x 交于点B 1,∴B 1(2,4),∵作等腰直角三角形△A 1B 1A 2是等腰直角三角形,∴A 2(6,0)=(2×31,0),∵A 2B 2⊥x 轴,且与直线y =2x 交于点B 2,∴B 2(6,12),∴A 3(18,0)=(2×32,0),如此反复作等腰直角三角形,A n (2×3n -1,0).18. 63+6 【解析】由A 点的坐标得OA =1,由B 点的坐标得OB =2,则AB =3,由图象得直线OB 与x 轴的正方向的夹角为30°,于是A 1的横坐标为:OA 1·cos 30°=(2+3)×32;A 2的横坐标为:OO 2·cos 30°=(2+3+1)×32;A 3的横坐标为:OA 3·cos 30°=(2+3+1+2+3)×32;A 4的横坐标为:(2+3+1+2+3+1)×32;…,于是A 8的横坐标为:(2+3+1+2+3+1+2+3+1+2+3+1)×32=63+6.。
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。
中考复习专题-------规律探索题教学目标:1.知识技能:了解规律探究题的基本题型,掌握规律探究题的基本解题思路,提高学生分析问题,综合运用所学知识解决实际问题的能力,特别是归纳概括的能力。
2.过程与方法:经历规律探索的过程,培养学生的观察思考,归纳概括的能力。
3.情感态度与价值观:通过学生的探究过程,获得成功的体验,增强学习的信心,培养科学探究精神。
学生讲题目标:通过学生讲题,培养学生的语言表达能力,提高学生分析问题解决问题的能力,增强学数学的信心。
教学重点、难点:要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.教学过程:一、考点知识梳理:规律探索型问题也是归纳猜想型问题,其特点是:给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.规律探索型问题包括两类问题:数字类规律探索问题,图形类规律探索问题.1.数字类规律探索问题解答数字类规律探索问题,应在读懂题意、领会问题实质的前提下进行,或分类归纳,或整体归纳,得出的规律要具有一般性,而不是一些只适合于部分数据的“规律”.2.图形类规律探索问题解答图形类规律探索问题,要注意分析图形特征和图形变换规律,一要合理猜想,二要加以实际验证.二、中考典例解析考点一数字类规律探索问题例1.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37= 2 187,…解答下列问题:3+32+33+34+…+32 013的末尾数字是( )A.0 B.1 C.3 D.7小试牛刀:(学生讲题)1.2013·日照)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是( )A.M=mn B.M=n(m+1)C.M=mn+1 D.M=m(n+1)2.(2013·衡阳)观察下列按顺序排列的等式:a 1=1-13,a 2=12-14,a 3=13-15,a 4=14-16,…,试猜想第n 个等式(n 为正整数)a n =. 考点二 图形类规律探索问题例2 (2013·衢州)如图,在菱形ABCD 中,边长为10,∠A =60°.顺次连接菱形ABCD 各边中点,可得四边形A 1B 1C 1D 1;顺次连接四边形A 1B 1C 1D 1各边中点,可得四边形A 2B 2C 2D 2;顺次连接四边形A 2B 2C 2D 2各边中点,可得四边形A 3B 3C 3D 3;按此规律继续下去…….则四边形A 2B 2C 2D 2的周长是_______;四边形A 2 013B 2 013C 2 013D 2 013的周长是_______.【点拨】连接AC ,BD ,根据菱形和矩形及三角形的中位线定理可得,矩形A 1B 1C 1D 1的周长为2(5+53),菱形A 2B 2C 2D 2的周长为20,矩形A 3B 3C 3D 3的周长为5+53,菱形A 4B 4C 4D 4的周长为10,矩形A 5B 5C 5D 5的周长为5+532,菱形A 4B 4C 4D 4的周长为5,……所以四边形A 2 013B 2 013C 2 013D 2 013的周长即为第1 007个矩形的周长为25+5321 006.故填20,5+5321 005. 【答案】 20,5+5321 005 方法总结图形中既有矩形又有菱形,序号为奇数的是矩形,序号为偶数的是菱形;后面每一个小矩形的周长都是前一个矩形周长的一半,后面每一个小菱形的周长都是前一个菱形周长的一半;由四边形的序号先确定是矩形还是菱形,再根据图形周长与序号之间的关系求出相应的周长.小试牛刀:(学生讲题)1.(2013·烟台)将正方形图①做如下操作:第1次:分别连接各边中点如图②,得到5个正方形;第2次:将图②左上角正方形按上述方法再分割如图③,得到 9个正方形,……,以此类推,根据以上操作,若要得到2 013个正方形,则需要操作的次数是( )…A .502B .503C .504D .505思考题:(2013·安徽)我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2)、图(3)……(1)观察以上图形并完成下表图形名称基本图的个数特征点的个数图(1) 1 7图(2) 2 12图(3) 3 17图(4) 4⋮⋮⋮n的式子表示).(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=________;图(2 013)的对称中心的横坐标为_________________。
题型一规律探索题类型一探索图形累加规律针对演练1. (xx荆州改编)下列图形是将黑白两种颜色的菱形纸片按一定的规律排列组成,第1个图形有4张白色纸片,第2个图形有7张白色纸片,第3个图形有10张白色纸片,…,依此规律,则第12个图形中白色纸片的个数为 ( )第1题图A. 34B. 37C. 42D. 462. (xx重庆八中初三(下)第三次月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第⑧个图案用火柴棒的根数为 ( )第2题图A. 33B.32C. 31D. 303. (xx重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是( )第3题图A.32B. 29C. 28D. 264. (xx重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是 ( )第4题图A. 22B. 24C. 26D. 285. 如图,下列图形是由边长为2的等边三角形按照一定规律排列而成,第①个图形的周长为6,第②个图形的周长为8,第③个图形的周长为10,第④个图形的周长为12,按照这样的规律来摆放,则第⑧个图形的周长为 ( )第5题图A. 18B. 19C. 20D. 216. (xx天水改编)将一些相同的“○”按如图所示的规律依次摆放,其中图①中“○”的个数为5个,图②中“○”的个数为7个,图③中“○”的个数为11个,图④中“○”的个数为17个,…,若图○,n)中有245个“○”,则n=( )第6题图A. 10B. 12C. 14D. 167. (xx重庆外国语学校二诊)下列图案均是用长度相同的小木棒按一定的规律拼搭而成,拼搭第(1)个图案需4根小木棒,拼搭第(2)个图案需10根小木棒,…,依此规律,拼搭第(6)个图案需小木棒的根数是 ( )第7题图A. 53B. 54C. 55D. 568. (xx重庆江津中学初三下半期考试)用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第⑬个图案需要的黑色五角星的个数是()第8题图A. 18B. 19C. 21D. 229. (xx重庆十一中一诊)下列图形是将正三角形按一定规律排列,则第④个图形中所有正三角形的个数有 ( )第9题图A. 160B. 161C. 162D. 16310. (xx重庆巴蜀一诊)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm2,第②个图形的面积为18 cm2,第③个图形的面积为36 cm2,…,那么第⑥个图形的面积为 ( )第10题图A. 84 cm2B. 90 cm2C. 126 cm2D. 168 cm211. (xx重庆西大附中第九次月考)下列图形都是用同样大小的♥按一定规律组成的,则第(8)个图形中♥共有 ( )第11题图A. 80个B. 73个C. 64个D. 72个12. (xx重庆一中三模)如图所示,图①中含“〇”的矩形有1个,图②“〇”的矩形有7个,图③中含“〇”的矩形有17个,按此规律,图⑥中含“〇”的矩形个数为( )A. 70B. 71C. 72D. 7313. (xx大渡口区诊断性检测)如图是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要棋子的枚数为 ( )第13题图A. 115B. 122C. 127D. 13914. (xx重庆一中二模)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心小圆圈的个数为( )第14题图A. 61B. 63C. 76D. 7815. (xx重庆巴蜀中学保送生考试)如图,各图都由同样大小的图形①按一定规律组成,其中第①个图形中共有一个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑥个图形中完整菱形的个数为 ( )第15题图A. 60B. 61C. 62D. 6316. (xx重庆一中第一次定时作业)已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B、O、D重合),并与A、C连接,如图①,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合),如图②,则三角形个数为24个;若在线段BD 上任意取三点(不与点B、O、D重合),如图③,则三角形个数为35个;…;以此规律,则图⑤中三角形的个数为( )第16题图A. 48B. 56C. 61D. 6317. (xx徐州)如图,每个图案都由大小相同的正方形组成.按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为________.第17题图18. (xx安顺改编)观察下列砌钢管的横截面图:第18题图则第5个图形中钢管数为________个.19. 如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图案中花盆的个数为6个,第2个图案中花盆的个数为12个,第3个图案中花盆的个数为20个,…,则第8个图案中花盆的个数为________.第19题图20. (xx龙岩改编)用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图①几何体表面积为6,图②几何体表面积为18,则图④中所示几何体的表面积为________.第20题图答案类型一探索图形累加规律1.B 【解析】每个图形中白色纸片的个数依次是4,7,10,13,….那么,第n个图形中白色纸片的个数为3n+1,∴第12个图形中白色纸片的个数为3×12+1=37.2.A 【解析】∵图①用了5根火柴,即5=5+4×0;图②用了9根火柴,即9=5+4×1;图③用了13根火柴,即13=5+4×2;…;以此规律,第○n个图形中,火柴的根数为5+4(n-1),故第⑧个图案用火柴棒的根数为5+4×(8-1)=33.3. B 【解析】图①有2+3×0=2个黑色正方形;图②有2+3×1=5个黑色正方形;图③有2+3×2=8个黑色正方形;图④有2+3×3=11个黑色正方形,…,按照这个规律,图○n 有2+3(n -1)个黑色正方形,故图⑩一共有2+3×9=29个黑色正方形.4. C 【解析】第一个图形中有2个三角形:6×1-4=2;第二个图形中有8个三角形:6×2-4=8;第三个图形中有14个三角形:6×3-4=14;…;第n 个图形中三角形的个数为:6n -4,故第五个图形中三角形的个数为:6×5-4=26.5. C 【解析】第①个图形的周长为6+0×2=6,第②个图形的周长为6+1×2=8,第③个图形的周长为6+2×2=10,第④个图形的周长为6+3×2=12,…,依此规律,可知第○n 个图形的周长为6+(n -1)×2,所以第⑧个图形的周长为6+7×2=20.6. D 【解析】图①中有1×(1-1)+5=5个“○”,图②中有2×(2-1)+5=7个“○”,图③中有3×(3-1)+5=11个“○”,图④中有4×(4-1)+5=17个“○”,…,据此得出:图○n 中有n (n -1)+5个“○”,则可得方程n (n -1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).7. B 【解析】观察图形可知,每个图案都是由横排小木棒和纵排小木棒搭建而成,且横排和纵排数相同,其中第(1)个图案有2横排,每排有1个小木棒;第(2)个图案有3横排,每排的小木棒个数分别为2,2,1;第(3)个图案有4横排,每排的小木棒个数分别为3,3,2,1;第(4)个图案有5横排,每排的小木棒个数分别为4,4,3,2,1,…;由此可推测第(n )个图案共有n +1横排,每排木棒个数分别为n ,n ,n -1,n -2,…,2,1,故第(6)个图案共有7横排,每排的小木棒个数分别为6,6,5,4,3,2,1,共有27根,则对应的纵排也有27根小木棒,则搭建第(6)个图案共需要小木棒54根.8. C 【解析】观察图形可以发现图①中黑色五角星的个数为1+2=3,图②中黑色五角星个数为1+2+1=4,图③中黑色五角星个数为1+2+1+2=6,图④中黑色五角星个数为1+2+1+2+1=7,图⑤中黑色五角星个数为1+2+1+2+1+2=9,…,则图○n 中,当n 为奇数时,黑色五角星个数为2)1(3+n ,当n 为偶数时,黑色五角星个数为123+n ,∴第⑬个图案需要的黑色五角星的个数为3×(13+1)2=21个. 9. B 【解析】第①个图形中正三角形的个数为:1+4,第②个图形中正三角形的个数为:1+4+3×4,第③个图形中正三角形的个数为:1+4+3×4+9×4,…,第○n 个图形中正三角形的个数为:1+4+3×4+9×4+…+3n -1×4,∴第④个图形中正三角形的个数为1+4+3×4+9×4+34-1×4=1+4+12+36+108=161.10. C 【解析】∵所有的小矩形都是大小相同的,第①个图形是由2个小矩形组成,面积为6,∴每个小矩形的面积是3,∵第①个图形中有2个小矩形,第②个图形中有6个小矩形,第③个图形中有12个小矩形,12=2+4+6=2×(1+2+3),第④个图形中有20个小矩形,20=2+4+6+8=2×(1+2+3+4),则第○n 个图形中有2×(1+2+…+n )个小矩形,故第⑥个图形中小矩形的个数为2×(1+2+3+4+5+6)=42个,则其面积为42×3=126 cm 2.11. A 【解析】第(1)个图形中♥的个数为3=22-1;第(2)个图形中♥的个数为8=32-1;第(3)个图形中♥的个数为15=42-1;第(4)个图形中♥的个数为24=52-1;…,于是,第(n)个图形中♥的个数为(n+1)2-1,所以第(8)个图形中♥的个数为92-1=80(个),故选A.12.B 【解析】图①中含“○”的矩形有1=2×12-1个,图②中含“○”的矩形有7=2×22-1个,图③中含“○”的矩形有17=2×32-1个,…,按此规律,则图○n中含“○”的矩形个数为2n2-1,所以图⑥中含“○”的矩形有2×62-1=71个,故选B.13.C 【解析】由题意可知,摆第1个图案需要7=1+6枚棋子,摆第2个图案需要19=1+6+6×2枚棋子,摆第3个图案需要37=1+6+6×2+6×3枚棋子,…,则摆第n个图案需要1+6+6×2+6×3+…+6n=3n(n+1)+1枚棋子,所以摆第6个图案需要:3×6×(6+1)+1=127枚棋子,故选C.14.A 【解析】∵第①个图形中空心小圆圈个数为:4×1-3+1×0=1个;第②个图形中空心小圆圈个数为:4×2-4+2×1=6个;第③个图形中空心小圆圈个数为:4×3-5+3×2=13个;…,依此规律,第○n个图形中空心小圆圈个数为:4n-(n+2)+n(n-1),∴第⑦个图形中空心小圆圈个数为:4×7-9+7×6=61个.15.B 【解析】∵第①个图形中菱形个数为02+12=1个;第②个图形中菱形个数为12+22=5个;第③个图形中菱形个数为22+32=13个;第④个图形中菱形个数为32+42=25个,…,依此规律第○n个图形中菱形个数为(n-1)2+n2个,∴第⑥个图形中菱形个数为52+62=61个.16. D 【解析】在图①中,线段BD上共有4个点,所得三角形的个数共15个,15=16-1=42-1;图②中,线段BD上共5个点,所得三角形的个数共24个,24=25-1=52-1;图③中,线段BD上共6个点,所得三角形的个数共35个,35=36-1=62-1,…,由此可猜想,图○n中,线段BD上共有n+3个点,所得三角形的个数为(n+3)2-1,∴图⑤中三角形的个数为(5+3)2-1=63.17. n(n+1) 【解析】由题图知,第1、2、3个图案对应的小正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的小正方形的个数为n(n+1).序号 1 2 3 4钢管数 3 9 18 30找规律3×13×3=3×(1+2) 3×6=3×(1+2+3)3×10=3×(1+2+3+4)综上可知,第5个图形中钢管数为3×(1+2+3+4+5)=3×15=45个.19.90 【解析】观察可得,第1个图案:正三角形每条边上有3个花盆,共计32-3个花盆;第2个图案:正四边形每条边上有4个花盆,共计42-4个花盆;第3个图案:正五边形每条边上有5个花盆,共计52-5个花盆;…;由此可知第n个图案:正(n+2)边形每条边上有(n+2)个花盆,共计(n+2)2-(n+2)个花盆,则第8个图案中花盆的个数为(8+2)2-(8+2)=90.20. 60 【解析】图①几何体的表面积为:6=6×1;图②几何体的表面积为:18=6×(1+2);图③几何体的表面积为:6×(1+2+3)=36.由此规律得,图④几何体的表面积为:6×(1+2+3+4)=60.类型二探索图形循环规律针对演练1. 如图所示,两个全等的等边三角形的边长为1 m,一个微型机器人由A点开始按A→B→C →D→B→E→A的顺序沿等边三角形的边循环运动,行走2017 m停下,则这个微型机器人停在 ( )第1题图A. A点B. B点C. C点D. E点2.(xx重庆八中强化训练一)将正六边形ABCDEF的各边按如图所示延长,从射线FA开始,分别在各射线上标记点O1,O2,O3,…,按此规律,则点O xx所在射线是( )第2题图A. ABB. DEC. BCD. EF3. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前xx个梅花图案中,共有________个“”图案.第3题图4. 有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第xx次后,骰子朝下一面的点数是________.第4题图5.如图,在平面直角坐标系中,已知点A(1, 1),B(-1, 1),C(-1, -2),D(1, -2),把一根长为xx个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在矩形ABCD的边上,则细线的另一端落在________线段上第5题图答案类型二探索图形循环规律1. B 【解析】∵两个全等的等边三角形的边长为 1 m,∴机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动一圈,即为 6 m,∵xx÷6=336……1,即正好行走了336圈多1米,到第二个点,∴行走2017 m停下,则这个微型机器人停在B点.2. C 【解析】观察图形可知12个点依次排列在射线FA、CD、AB、DE、BC、EF、CD、FA、DE、AB、EF、BC上,依此规律循环,又因xx÷12=168,则点O xx在第12条射线BC上,故选C.3. 505 【解析】观察题图可知,“”图案方向依次向上、向右、向下、向左,每四个图案为一个循环周期.∵xx÷4=504……1,∴前xx个梅花图案中,共有505个“”图案.4. 3 【解析】观察可知,点数3与点数4相对,点数2与点数5相对,且循环周期为4. ∵xx÷4=503……2,∴滚动xx次后与第二次相同,∴骰子朝下一面的点数为3.5.CD【解析】∵矩形四个顶点的坐标分别为:A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=CD=2,BC=AD=3,∴矩形的周长为2+3+2+3=10,则循环一周所需的单位长度是10,∵xx÷10=201……6,∴细线的另一端落在绕矩形第202圈的第6个单位长度的位置,即是点C与点D的中间位置,即在线段CD上.拓展类型 数式规律针对演练1. (xx 张家界)观察下列等式:71=7,72=42+92=97,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+7xx 的末位数字是( )A. 9B. 7C. 6D. 02. (xx 丹东)观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.3. (xx 贵港)已知a 1=t t -1,a 2=11-a 1,a 3=11-a 2,…,a n +1=11-a n(n 为正整数,且t ≠0,1),则a xx =________(用含有t 的代数式表示).4. (xx 泉州)指出下列各图形中数的规律,依此,a 的值为________.第4题图5. (xx 南宁)观察下列等式:第1层 1+2=3第2层 4+5+6=7+8第3层 9+10+11+12=13+14+15 第4层 16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,xx 在第________层.答案拓展类型 数式规律 1. D 【解析】根据题意,7的幂的最终结果的末位数字是以7,9,3,1为循环,其和结果的末位数字是0,因为xx÷4=504,所以71+72+73+…+7xx 的末位数字是0.2. -12211 【解析】∵-2=-12+11,52=22+12,-103=-32+13,174=42+14,-265=-52+15,…,∴第11个数据是:-112+111=-12211. 3. t 1【解析】∵a 1=1-t t ,a 2=111--t t =1-t ,a 3=t +-111=t 1,a 4=t111-=1-t t ,…,11 / 11文档可自由编辑打印 ∴每3个一次循环,∵xx ÷3=672,∴a xx 的值为t1.4. 226 【解析】观察可得:2=1×0+2,10=2×3+4,26=4×5+6,50=6×7+8,…,可以得到规律:右下角三角形中的数字等于左下角三角形中的数字与正上方三角形中数字的积加上中间三角形中的数字,故a =14×15+16=226.5. 44 【解析】根据题中给出的式子,观察得出规律,第一层第一个数为12,第2层第一个数为22,第3层第一个数为32,…,∵442=1936,452=2025,且442<xx <452,∴xx 位于第44层.。
初中数学规律探索题教案教学目标:1. 学生能够理解规律探索题的概念和特点;2. 学生能够运用观察、归纳、推理等方法解决规律探索题;3. 学生能够提高逻辑思维能力和解决问题的能力。
教学内容:1. 规律探索题的定义和类型;2. 解决规律探索题的方法和技巧;3. 实际例题讲解和练习。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如算术、几何等;2. 提问:大家在学习过程中是否遇到过一些需要找出规律的题目?这些题目有什么特点?二、新课讲解(15分钟)1. 讲解规律探索题的定义:规律探索题是一种数学题目,要求学生通过观察、归纳、推理等方法找出题目中的规律,并据此解决问题;2. 讲解规律探索题的类型:数字变化规律、图形变化规律、数列变化规律等;3. 讲解解决规律探索题的方法和技巧:观察题目中的规律、归纳总结、推理验证等;4. 给出实际例题,进行讲解和分析。
三、课堂练习(15分钟)1. 布置几道规律探索题,要求学生独立完成;2. 学生在纸上完成题目,教师巡回指导;3. 选取部分学生的作业进行讲解和评价。
四、总结与拓展(10分钟)1. 引导学生总结规律探索题的解题方法和技巧;2. 提问:大家在解决规律探索题时遇到了哪些困难?如何克服?3. 给出一些拓展题目,鼓励学生课后思考和探索。
教学评价:1. 课堂讲解是否清晰易懂,学生是否能理解规律探索题的概念和特点;2. 学生是否能运用观察、归纳、推理等方法解决规律探索题;3. 学生是否能提高逻辑思维能力和解决问题的能力。
教学反思:在教学过程中,要注意引导学生观察题目中的规律,培养学生的归纳总结和推理能力。
同时,要根据学生的实际情况,适当调整教学内容和难度,确保学生能够掌握规律探索题的解题方法和技巧。
规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。
这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。
其目的是考查学生收集、分析数据,处理信息的能力。
所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。
二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。
三.考点精讲 考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。
例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3),3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n[])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n [])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 = 31(1×2×3-0×1×2), 2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.(2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d .(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。
整式规律探索类型题目一.填空题(共11小题)1.一组按规律排列的式子:,,,,…则第n个式子是(n为正整数).2.观察一列单项式:﹣x,4x2,﹣9x3,16x4,…,则第n个单项式是.3.观察下列单项式:3a2、5a5、7a10、9a17、11a26…它们是按一定规律排列的,那么这列式子的第n个单项式是.4.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是.5.观察下列单项式:xy2,﹣2x2y4,4x3y6,﹣8x4y8,16x5y10,…根据你发现的规律写出第n个单项式为.6.观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2015个单项式是;第n个单项式是.7.观察下列关于x的单项式:x,3x2,5x3,7x4,9x5,11x6,…按此规律写出第9个单项式是,第n个单项式是.8.有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是;(2)上列式子中第n个式子为(n为正整数).9.有一个多项式为a8﹣a7b+a6b2﹣a5b3+…,按照此规律写下来,这个多项式的第六项是.10.观察下列多项式:2a﹣b,4a+b2,8a﹣b3,16a+b4,…按此规律,则可以得到第7个多项式是.11.一组按规律排列的多项式:a+b,a2+b3,a3+b5,a4+b7…其中第10个式子是;第n 个式子是.二.解答题(共14小题)12.学规律在数学中有着极其重要的意义,我们要善于抓住主要矛盾,提炼出我们需要的信息,从而解决问题.(1)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,通过观察,用你所发现的规律确定32014的个位数字是;(2)观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是;根据此规律,如果a n(n为正整数)表示这个数列的第n项,那么a18=,a n=;(3)观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第5个单项式为;第7个单项式为;第n个单项式为.13.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①﹣2x,4x2,﹣8x3,16x4,﹣32x5,64x6,…②2x2,﹣3x3,5x4,﹣9x5,17x6,﹣33x7,…③(1)根据你发现的规律,第一行第8个单项式为;(2)第二行第n个单项式为;(3)第三行第8个单项式为;第n个单项式为.14.如图,将正偶数按照图中所示的规律排列下去,若用有序实数对(a,b)表示第a行的第b个数.如(3,2)表示偶数10.(1)图中(8,4)的位置表示的数是,偶数42对应的有序实数对是;(2)第n行的最后一个数用含n的代数式表示为,并简要说明理由.15.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第6行的最后一个数是,第n行的最后一个数是;(2)若用(a,b)表示一个数在数表中的位置,如9的位置是(4,3),则168的位置是.16.观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n=(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.(4)探究计算:.17.观察下面三行数:﹣2,4,﹣8,16,﹣32,64…;0,6,﹣6,18,﹣30,66…;1,﹣,,﹣,,﹣,…;(1)第一行数的第8个数为;(2)若第一行的第n个数用(﹣2)n表示,则第三行的第n个数表示为;(3)取每一行的第m个数,三个数的和记为p,①当m=10时,求p的值;②当m=时,|p+30000|的值最小.18.观察下面三行数:2,﹣4,8,﹣16,32,﹣64,…①0,﹣6,6,﹣18,30,﹣66,…②﹣1,2,﹣4,8,﹣16,32,…③(1)第①行第n个数是.(2)第②③行数与第①行相应的数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.19.观察下面三行数:﹣2,4,﹣8,16,﹣32,64,…;①0,6,﹣6,18,﹣30,66,…;②3,﹣3,9,﹣15,33,﹣63,….③(1)第①行数的第n个数是;(2)请将第②行数中的每一个数分别减去第①行数中对应位置的数,并找出规律,根据你得到的结论,直接写出第②行数的第n个数是;同理直接写出第③行数的第n个数是;(3)取每行的第k个数,这三个数的和能否等于﹣509?如果能,请求出k的值;如果不能,请说明理由.20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第9行的最后一个数是,它是自然数的平方,第9行共有个数;(2)表中第(n+1)行的第一个数是,最后一个数是,第(n+1)行共有个数;(用含n的代数式表示)(3)求第(n+1)行各数之和.21.观察如表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣2 4 ﹣8 a ﹣32 64 …第2行0 6 ﹣6 16 ﹣30 66 …第3行﹣1 2 ﹣4 8 ﹣16 b …(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为5037,若设第1行第n列的数为x,试求x的值.22.仔细观察下列三组数第一组:1、﹣4、9、﹣16、25…第二组:0、﹣5、8、﹣17、24…第三组:0、10、﹣16、34、﹣48…解答下列问题:(1)每一组的第6个数分别是、、;(2)分别写出第二组和第三组的第n个数、;(3)取每组数的第10个数,计算它们的和.23.观察下面三行数:①2,﹣4,8,﹣16,…②﹣1,2,﹣4,8,…③3,﹣3,9,﹣15,…(1)第①•行数按什么规律排列的,请写出来?(2)第②‚、③ƒ行数与第 ①行数分别对比有什么关系?(3)取每行的第9个数,求这三个数的和?24.观察下列3行数﹣2,4,﹣8,16,﹣32,64…①0,6,﹣6,18,﹣30,66…②3,﹣3,9,﹣15,33,﹣63…③(1)第①行的第n个数是.(2)(Ⅰ)请将第 行数中的每个数都减去第 行数中对应位置的数,根据你得到的结论,直接写出第②行数的第n个数是.(Ⅱ)直接写出第③行数的第n个数是.(3)取每行数的第k个数,这三个数的和能否等于﹣509?如果能,请你求出k值;如果不能,请说出理由.25.由从1开始的连续自然数组成如下三角形的数表,观察规律并完成解答.(1)从表中我们发现:第10行的最后一个数是;我们猜想:第n行的最后一个数应为.(2)求第10行各数之和.(3)第n行各数之和是(直接写答案).。
数学专题:规律探索型问题思考与总结:规律探索型问题中常见的数字规律有哪些?同学们!请仔细观察下列各行数列,能否找出它们的规律并完成表格。
针对演练一:(数式规律探索) 一:数式规律探索1、观察分析下列数据: 3 ,6 ,3 ,23 ,15 ,32 ,……根据数据排列的规律得到第15个数据应为 (结果需化简). 2、观察下列关于自然数的等式:① 32-4×12=5 ;② 52-4×22=9 ;③ 72-4×32=13 ; …… (1)请完成第四个等式:92-4×( )2=( );(2)猜想第n 个式子: 针对演练二:(几何图形规律探索)1、(1)下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是________2、 6针对演练三;(点的坐标规律探索)4. 如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.课堂检测::(同学们,相信自己一定行!)1、下列式子按一定规律排列:x ,2x2,4x3,8x4,…,则第2017个式子是2、(2016泉州中考)找出下列各图形中数的规律,依此,a的值为.3.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.4.已知在线段上依次添加1个点,2个点,3个点,……,原线段上所成线段的总条数如下表:若在原线段上添加n为5.如下图,在已知角内画射线,画1条射线,图中共有____个角;画2条射线,图中共有____个角;画3条射线,图中共有____个角;求画n条射线所得的角的个数是__6.观察下列各正方形图案,每条边上有几个圆点,每个图案中圆点的总数是几.按此规律推断出S 与n 的关系式为__S =4n -4__.幻方问题3:请用1至9再填写一个三阶幻方?你有困难吗?我们能把所有可能都写出来吗?问题4:把你自己所填写的三阶幻方与同学一起交流,数字上有什么变化?又能进一步得到什么规律? (1)中心数是5,(2)幻和是 15(各行数字和=各列数字和=各对角线数字和=15) (3)除中心数5外,其余数成对出现(和为10) (4)2,4,6,8四个数在四个角上 (5)如图C=(A+B)÷2(各角都适用)1,2,5,6,7九个数填入方格中,构成幻方。