5数量遗传
- 格式:ppt
- 大小:502.50 KB
- 文档页数:41
第十三章数量性状的遗传本章习题1.解释下列名词:广义遗传率、狭义遗传率、近交系数、共祖系数、数量性状基因位点、主效基因、微效基因、修饰基因、表现型值、基因型与环境互作广义遗传率:通常定义为总的遗传方差占表现型方差的比率。
狭义遗传率:通常定义为加性遗传方差占表现型方差的比率。
近交系数:是指个体的某个基因位点上两个等位基因来源于共同祖先某个基因的概率。
共祖系数:个体的近交系数等于双亲的共祖系数。
数量性状基因位点:即QTL,指控制数量性状表现的数量基因在连锁群中的位置。
主效基因:对某一性状的表现起主要作用、效应较大的基因。
微效基因:指一性状受制于多个基因,每个基因对表现型的影响较小、效应累加、无显隐性关系、对环境敏感,这些基因称为微效基因。
修饰基因:对性状的表现的效应微小,主要是起增强或减弱主基因对表现型的作用。
表现型值:是指基因型值与非遗传随机误差的总和即性状测定值。
基因型与环境互作:数量基因对环境比较敏感,其表达容易受到环境条件的影响。
因此,基因型与环境互作是基因型在不同环境条件下表现出的不同反应和对遗传主效应的离差。
2.质量性状和数量性状的区别在哪里?这两类性状的分析方法有何异同?答:质量性状和数量性状的区别主要有:①. 质量性状的变异是呈间断性,杂交后代可明确分组;数量性状的变异则呈连续性,杂交后的分离世代不能明确分组。
②. 质量性状不易受环境条件的影响;数量性状一般容易受环境条件的影响而发生变异,而这种变异一般是不能遗传的。
③. 质量性状在不同环境条件下的表现较为稳定;而控制数量性状的基因则在特定时空条件下表达,不同环境条件下基因表达的程度可能不同,因此数量性状普遍存在着基因型与环境互作。
对于质量性状一般采用系谱和概率分析的方法,并进行卡方检验;而数量性状的研究则需要遗传学方法和生物统计方法的结合,一般要采用适当的遗传交配设计、合理的环境设计、适当的度量手段和有效的统计分析方法,估算出遗传群体的均值、方差、协方差和相关系数等遗传参数等加以研究。
质量性状:指由一对或对基因控制,在个体间能够明显区分,呈不连续性变异的性状。
数量性状:由微效多基因控制,在群体中不能明显区分,呈连续性变异的性状。
门阈性状:由微效多基因控制的,在群体中呈不连续分布的性状,一般能够明显地区分其表现形式。
数量遗传学:指用数理统计方法和数学分析方法研究数量性状遗传和变异规律的科学。
选择:在人类和自然干预下,某一群体的基因在世代传递的过程中,某种基因型个体的比例所发生的变化现象,称作选择。
适应度:比较群体中各种基因型(以个体平均留种子女数为标准)生存适应力的相对指标。
适应度就是特定基因型的留种率和群体最佳基因型留种率之比值。
选择系数:1减去适应度就是该基因型的选择系数。
留种率+淘汰率=1遗传漂变:如果群体规模较小,下一代的实际基因频率都可能由于抽样误差而偏离理论上应有的频率。
始祖效应:当来自大群体的一个小样本在特定环境中成为一个新的封闭群体,其基因库仅包括亲本群体中遗传变异的一小部分,并在新环境中承受新进化压力的作用,因而最终可能与亲本群分体。
这种过程在体现的般规律,称为始祖效应。
瓶颈效应:当大群体经历一个规模缩小阶段之后,以及在漂变中改变了基因库(通常是变异性减少)又重新扩大时,基因频率发生的变化。
同型交配:如果把同型交配严格地定义为同基因型交配,那么近交和同质选配都只有部分的同型交配,只有极端的近交方式——自交才是完全同型交配。
群体遗传学:专门研究群体的遗传结构及其变化规律的遗传学分支学科。
群体:是指一个种、一个变种、一个品种或一个其它类群所有成员的总和。
孟德尔群体:在个体间有相系交配的可能性,并随着世代进行基因交流的有性繁殖群体。
基因库:以各种基因型携带着各种基因的许多个体所组成的群体。
亚群:由于各种原因的交配限制,可能导致基因频率分布不均匀的现象,形成若干遗传特性有一定差异的群落通常称为亚群。
随机资本:在一个有性系列的生物群体中,任何一个雌性式雄性的个体与其任何一个相反性别的个体交配的机率是相同的。
数量性状遗传教案数量性状是指一种性状可以通过计数或测量来度量的性状。
这些性状在遗传中的传递方式可以通过数量性状遗传教案来进行教学和学习。
教案:一、教学目标:1.理解数量性状的概念和特点。
2.掌握数量性状的遗传规律和方法。
3.能够应用数量性状遗传的知识来解决问题和进行实验。
二、教学内容:1.数量性状的定义和特点。
2.数量性状的遗传规律。
3.数量性状的测量方法。
4.应用数量性状遗传的实例分析。
三、教学过程:1.导入(5分钟):通过展示一组根据身高排序的学生图片,引发学生对数量性状的认知和兴趣。
2.知识讲解(15分钟):a.介绍数量性状的定义和特点:数量性状是指可以通过计数或测量来度量的性状,如身高、体重、产量等。
这些性状受多个基因和环境因素的影响。
b.数量性状的遗传规律:数量性状由多对基因控制,遵循连续变异规律。
常见的遗传模式包括寡基因控制和多基因控制。
c.数量性状的测量方法:根据具体性状的特点选择相应的测量方法,如身高可以通过直接测量或问卷调查等方式获得。
3.案例分析(30分钟):通过实例分析来加深学生对数量性状遗传的理解。
a.案例一:一个家族中的兄弟姐妹身高差异很大,其中一个兄弟非常高大而且父母也身高较高。
请分析此现象的遗传原因,并给出可能的遗传模式。
b.案例二:在一个小麦品种改良项目中,科研人员通过测量不同品种小麦的产量来筛选高产的品种。
他们发现产量呈正态分布,即大部分品种产量中等,极少数有很高或很低的产量。
请问这个产量数量性状的遗传基础是什么?4.实验设计(30分钟):让学生设计一个实验来验证数量性状的遗传规律。
a.主题:探究小麦高产性状的遗传方式。
b.实验材料:不同产量的小麦品种种子。
c.实验步骤:-步骤一:选择5个不同产量的小麦品种,分别种植在相同的土壤和环境条件下。
-步骤二:测量和记录每个品种的产量。
-步骤三:通过基因分析或后代观察,确定每个品种高产性状的遗传模式。
-步骤四:总结实验结果,并得出结论。
遗传学名词解释1.遗传:亲代与子代同一性状相似的现象。
2.变异:亲代与子代或子代之间出现性状差异的现象。
3.遗传学:是一门涉及生命起源和生物进化的理论科学,同时也是一门密切联系生产实际的基础科学。
4.数量遗传学:研究生物体数量性状即由多基因控制的性状的遗传规律。
5.群体遗传学:研究基因频率在群体中的变化、群体的遗传结构和物种进化。
6.染色体:在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定形态、结构特征的物体。
7.主缢痕:着丝粒所在的区域是染色体的缢缩部分,称为主缢痕。
8.次缢痕:在某些染色体的一个或两个臂上还常另外有缢缩部位,染色较淡,称为次缢痕。
9.随体:某些染色体次缢痕的末端所具有的圆形或略呈长形的突出体,称为随体。
次缢痕与核仁的形成有关,故称为核仁组织者区。
10.端粒:染色体臂末端的特化部分,可将染色体末端封闭,使染色体之间不能彼此相连。
11.着丝粒:是染色体的缩缢部位,是细胞分裂过程中纺锤丝(spindle fiber)结合的区域。
12.染色质:间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的线性复合结构,易被碱性染料染色。
13.常染色质:在间期细胞核内,对碱性染料着色浅、螺旋化程度低、处于较为伸展状态的染色质。
主要是单一序列DNA和中度重复序列DNA构成。
14.染色质:在间期细胞核内,对碱性染料着色较深、螺旋化程度较高、处于凝集状态的染色质。
15.同源染色体:形态和结构相同的一对染色体称之同源染色体。
16.非同源染色体:形态结构不同的染色体对之间的互称非同源染色体。
17.姊妹染色单体:有丝分裂中期观察到的染色体由相同的2个染色单体构成,它们彼此以着丝粒相连,互称为姊妹染色单体。
18.细胞周期:细胞上一次分裂完成到下一次分裂结束的一段历程。
19.减数分裂:又称为成熟分裂(maturation division),是在性母细胞成熟时,配子形成过程中所发生的一种特殊的有丝分裂。
第五章 数量性状的遗传畜禽的大多数经济性状属于数量性状。
掌握数量性状的遗传规律和遗传参数对种畜生产中种畜群的生产性能的保持、对地方品种经济性能的提高、对新品种新品系的培育等工作都是十分必要的。
数量性状的遗传是有规律所循的,虽然在不同群体、在不同条件下、因估计方法不同,得到的参数有所变化,但遗传参数反映的数量性状的基本遗传规律的趋势是一定的。
第一节 数量性状的遗传基础质量性状的变异一般遵从孟德尔遗传规律,但数量性状的遗传规律与质量性状的遗传规律有一定区别。
数量性状是由大量的、效应微小而类似的、可加的基因控制,呈现连续变异,数量性状的表现还受到大量复杂环境因素的影响。
一、Nilsson-Ehle 假说及其发展生物的性状按照其表现和对其研究的方式,可大致分为质量性状、数量性状和阈性状。
质量性状的变异通常可以区分为几种明显不同的类型,遵从孟德尔遗传规律。
畜禽重要质量性状的遗传规律已经在上一章中进行了阐述。
在动物生产中所关注的绝大多数经济性状呈连续性变异,其在个体间表现的差异只能用数量来区分,这类性状称为数量性状,如奶牛的产奶量、鸡的产蛋量、肉用家畜的日增重、饲料转化率、羊的产毛量等。
与质量性状相比较,数量性状主要有以下特点:①性状变异程度可以用度量衡度量;②性状表现为连续性分布;③性状的表现易受到环境的影响;④控制性状的遗传基础为多基因系统。
遗传基础为多基因控制,而表现为非连续性变异的性状称为阈性状。
如羊的产羔数、肉质的分类、对疾病抗性的有无等。
严格说来,鸡的产蛋数、猪的窝产仔数等也属于这一类性状,但其表型状态过多,作为阈性状分析过于复杂,通常近似的将其作为数量性状来看待。
数量性状在畜牧生产中占有非常重要的地位。
但是,到目前为止,对数量性状的遗传基础的解释主要还是基于Yule (1902,1906)首次提出、由Nilsson-Ehle (1908)总结完善、并由Johannsen (1909)和East (1910)等补充发展的多因子假说,也称为多基因假说或Nilsson-Ehle 假说。
第一章绪论名词解释1. 遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。
同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。
2. 遗传:是指亲代与子代相似的现象。
如种瓜得瓜、种豆得豆。
3. 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。
如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。
第二章遗传的细胞学基础名词解释1.细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。
其中有丝分裂过程分为①DNA合成前期(G1期);②DNA合成期(S期);③DNA合成后期(G2期);④有丝分裂期(M期)。
2.原核细胞:一般较小,约为1~10mm。
细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。
细胞壁内为细胞膜。
内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。
细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。
其DNA存在的区域称拟核,但其外面并无外膜包裹。
各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。
3.真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。
真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。
另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。
真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。
4.染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。
.染色体:是指染色质丝通过多级螺旋化后卷缩而成的一定形态结构。
细菌的全部基因包容在一个双股环形DNA构成的染色体内。
真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。