2018届高三数学文科二轮复习:第一部分课件:层级三 30分的拉分题因人而定酌情自选 含答案 精品
- 格式:doc
- 大小:2.24 MB
- 文档页数:66
[全国卷3年考情分析][典例] (2016·四川高考)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-xx 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身.现有下列命题: ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆上的点的“伴随点”仍在单位圆上;③若两点关于x 轴对称,则它们的“伴随点”关于y 轴对称; ④若三点在同一条直线上,则它们的“伴随点”一定共线. 其中的真命题是________(写出所有真命题的序号).[解析] 对于①,特殊值法.取A (1,1),则A ′⎝ ⎛⎭⎪⎫12,-12,A ′的“伴随点”为点(-1,-1).故①为假命题.对于②,单位圆的方程为x 2+y 2=1,设其上任意一点(x ,y )的“伴随点”为(x ′,y ′),则⎩⎪⎨⎪⎧x ′=yx 2+y2=y ,y ′=-xx 2+y 2=-x ,∴y 2+(-x )2=y 2+x 2=1.故②为真命题.③设A (x ,y ),B (x ,-y ),则它们的伴随点分别为A ′⎝ ⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,B ′⎝ ⎛⎭⎪⎫-yx 2+y 2,-x x 2+y 2,A ′与B ′关于y 轴对称,故③为真命题. ④设共线的三点A (-1,0),B (0,1),C (1,2),则它们的伴随点分别为A ′(0,1),B ′(1,0),C ′⎝ ⎛⎭⎪⎫25,-15,此三点不共线,故④为假命题.故真命题为②③. [答案] ②③1.(2018届高三·湘中高三联考)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________.解析:由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ,①则当n ≥2时,(n -1)·2n=a 1+2a 2+…+2n -2a n -1,②①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,令b n =a n -kn =(2-k )n +2,又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎪⎨⎪⎧b 5≥0,b 6≤0,即⎩⎪⎨⎪⎧-k +2≥0,-k+2≤0,解得73≤k ≤125.答案:⎣⎢⎡⎦⎥⎤73,125[典例] (2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.[解析] 求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2), 则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. [答案] 1-ln 2[针对训练]2.(2017·郑州质检)设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y22x -1≥a 恒成立,则a 的最大值为( )A .2 2B .4 2C .8D .16解析:选 C 法一:依题意得,2x -1>0,y -1>0,4x 2y -1+y22x -1=x -+1]2y -1+y -+1]22x -1≥x -y -1+y -2x -1≥4×22x -1y -1×y -12x -1=8,即4x 2y -1+y22x -1≥8,当且仅当⎩⎪⎨⎪⎧2x -1=1,y -1=1,2x -1y -1=y -12x -1,即⎩⎪⎨⎪⎧x =1,y =2时,取等号,因此4x 2y -1+y22x -1的最小值是8,即a ≤8,故a 的最大值是8.法二:令m =2x -1,n =y -1, 则m >0,n >0,x =m +12,y =n +1,4x 2y -1+y22x -1=4⎝⎛⎭⎪⎫m +122n+n +2m=m +2n+n +2m≥4m n +4n m ≥24mn ×4nm=8,当且仅当m =1且n =1,即x =1,y =2时取等号, 即4x 2y -1+y 22x -1≥8, 故a ≤8,所以a 的最大值是8.[典例] (2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧|x |+2,x <1,x +2x ,x ≥1.设a ∈R ,若关于x的不等式f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,则a 的取值范围是( )A .[-2,2]B .[-23,2]C .[-2,2 3 ]D .[-23,2 3 ][解析] 选A 法一:作出f (x )的图象如图所示.当y =⎪⎪⎪⎪⎪⎪x2+a 的图象经过点(0,2)时,可知a =±2.当y =x 2+a 的图象与y =x +2x 的图象相切时,由x 2+a =x +2x,得x 2-2ax +4=0,由Δ=0, 并结合图象可得a =2. 要使f (x )≥⎪⎪⎪⎪⎪⎪x2+a 恒成立,当a ≤0时,需满足-a ≤2,即-2≤a ≤0, 当a >0时,需满足a ≤2,即0<a ≤2, 综上可知,-2≤a ≤2.法二:∵f (x )≥⎪⎪⎪⎪⎪⎪x2+a 在R 上恒成立,∴-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立.①令g (x )=-f (x )-x2.当0≤x <1时,f (x )=x +2,g (x )=-x -2-x 2=-32x -2≤-2,即g (x )max =-2.当x <0时,f (x )=-x +2,g (x )=x -2-x 2=x2-2,即g (x )<-2. 当x ≥1时,f (x )=x +2x ,g (x )=-x -2x -x 2=-32x -2x ≤-23,即g (x )max =-2 3. ∴a ≥-2.②令h (x )=f (x )-x2.当0≤x <1时,f (x )=x +2,h (x )=x +2-x 2=x2+2≥2,即h (x )min =2. 当x <0时,f (x )=-x +2,h (x )=-x +2-x 2=-32x +2>2,即h (x )>2. 当x ≥1时,f (x )=x +2x ,h (x )=x +2x -x 2=x 2+2x ≥2,即h (x )min =2. ∴a ≤2.综上可知,-2≤a ≤2.法三:若a =23,则当x =0时,f (0)=2, 而⎪⎪⎪⎪⎪⎪x2+a =23,不等式不成立,故排除选项C ,D.若a =-23,则当x =0时,f (0)=2,而⎪⎪⎪⎪⎪⎪x2+a =23,不等式不成立,故排除选项B.故选A.3.(2017·东北四市高考模拟)已知函数f (x )=cos x +mcos x +2,若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫54,6B.⎝ ⎛⎭⎪⎫53,6C.⎝ ⎛⎭⎪⎫75,5D.⎝ ⎛⎭⎪⎫54,5 解析:选C f (x )=cos x +m cos x +2=1+m -2cos x +2,令t =cos x +2,由于-1≤cos x ≤1,因此1≤t ≤3,设g (t )=1+m -2t(1≤t ≤3). 法一:若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,不妨设a <c ,b <c ,则只需满足f (a )+f (b )>f (c )恒成立,故只需2f (x )min >f (x )max 即可,即2g (t )min >g (t )max .当m =2时,f (a )=f (b )=f (c )=1,成立,故m =2符合题意;当m <2时,g (t )=1+m -2t在[1,3]上单调递增,则⎩⎪⎨⎪⎧m -+m -23,m <2,解得75<m <2;当m >2时,g (t )=1+m -2t在[1,3]上单调递减,则⎩⎪⎨⎪⎧2⎝⎛⎭⎪⎫1+m -23>m -1,m >2,解得2<m <5.综上,75<m <5.法二:令m =5,则g (t )=1+3t(1≤t ≤3),∴2≤g (t )≤4.取f (a )=f (b )=2,f (c )=4.不合题意,排除A 、B ;取m =1310,则g (t )=1-710t (1≤t ≤3),∴310≤g (t )≤2330,取f (a )=310,f (b )=310,f (c )=2330,不合题意,排除D ,故选C.[典例] (2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m (x i +y i )=( ) A .0 B .m C .2mD .4m[解析] 法一:因为f (-x )=2-f (x ),所以f (-x )+f (x )= 2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i+y i )=m .法二:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.可设y =f (x )=x +1,由⎩⎪⎨⎪⎧y =x +1,y =x +1x ,得交点(-1,0),(1,2),则x 1+y 1+x 2+y 2=2,结合选项,应选B.[答案] B[针对训练]4.(2017·沈阳质检)已知P 是双曲线x 23-y 2=1上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则PA ―→·PB ―→的值是( )A .-38B.316C .-38D.38解析:选A 法一:令点P (x 0,y 0),因为该双曲线的渐近线分别是x3-y =0,x3+y =0,所以可取|PA |=⎪⎪⎪⎪⎪⎪x 03-y 013+1,|PB |=⎪⎪⎪⎪⎪⎪x 03+y 013+1,又cos ∠APB =-cos ∠AOB =-cos2∠AOx =-cos π3=-12,所以PA ―→·PB ―→=|PA ―→|·|PB ―→|·cos∠APB =⎪⎪⎪⎪⎪⎪x 203-y 2043·⎝ ⎛⎭⎪⎫-12=34×⎝ ⎛⎭⎪⎫-12=-38. 法二:如图,由题意知,双曲线的渐近线方程为y =±33x ,∴∠AOB =60°, ∴∠APB =120°, ∴PA ―→·PB ―→<0.取P 点为双曲线右顶点. 则|PA |=|PB |=12|OP |=32,∴PA ―→·PB ―→=-38.[专题过关检测] 一、选择题1.设a 1,a 2,a 3,…,a n ∈R ,n ≥3.若p :a 1,a 2,a 3,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选A (特殊数列)取大家最熟悉的等比数列a n =2n,代入q 命题(不妨取n =3)满足,再取a n =3n代入q 命题(不妨取n =3)也满足,反之取a 1=a 2=a 3=…=a n =0时,满足q 命题,但不满足p 命题,故p 是q 的充分条件,但不是q 的必要条件.2.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A .-12B .13 C .12D .1解析:选C 法一:由f (x )=x 2-2x +a (e x -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e1-x+ex -1)=x 2-2x +a (ex -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e1-1+e-1+1)=0,解得a =12.法二:由f (x )=0⇔a (e x -1+e-x +1)=-x 2+2x .ex -1+e-x +1≥2ex -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (ex -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.3.已知函数f (x )在(-1,+∞)上单调,且函数y =f (x -2)的图象关于直线x =1对称,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .0D .-50解析:选B 因为函数y =f (x -2)的图象关于直线x =1对称,则函数f (x )的图象关于直线x =-1对称.又函数f (x )在(-1,+∞)上单调,数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100=a 1+a 1002=50(a 50+a 51)=-100.4.(2017·贵州适应性考试)已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,P 在抛物线上且满足|PA |=m |PF |,当m 取最大值时,|PA |的值为( )A .1B . 5 C. 6D .2 2解析:选D 设P (x ,y ),由抛物线的定义知|PF |=y +1,|PA |=x 2+y +2,所以m =x 2+y +2y +1,平方得m 2=x 2+y +2y +2,又x 2=4y ,当y =0时,m =1,当y ≠0时,m 2=4y +y +2y +2=4y y +2+1=1+4y +1y+2,由基本不等式可知y +1y ≥2,当且仅当y =1时取等号,此时m 取得最大值2,故|PA |=4++2=2 2.5.对任意实数a ,b ,c ,d ,定义⎝⎛⎭⎪⎫a b c d =⎩⎪⎨⎪⎧ad -bc ,ad ≥bc ,12bc -ad ,ad <bc ,已知函数f (x )=⎝⎛⎭⎪⎫x41x ,直线l :kx -y +3-2k =0,若直线l 与函数f (x )的图象有两个交点,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-1,23∪⎝ ⎛⎭⎪⎫34,1 B.⎝⎛⎭⎪⎫-1,1724 C.⎝⎛⎭⎪⎫-1,1724∪⎝ ⎛⎭⎪⎫34,1 D .(-1,1)解析:选A 由题意知,f (x )=⎝ ⎛⎭⎪⎫x 41 x =⎩⎪⎨⎪⎧x 2-4,x ≤-2或x ≥2,124-x 2,-2<x <2,直线l :y =k (x -2)+3过定点A (2,3),画出函数f (x )的图象,如图所示,其中f (x )=x 2-4(x ≤-2或x ≥2)的图象为双曲线的上半部分,f (x )=12 4-x 2(-2<x <2)的图象为椭圆的上半部分,B (-2,0),设直线AD 与椭圆相切,D 为切点.由图可知,当k AB <k <1或-1<k <k AD 时,直线l 与f (x )的图象有两个交点.k AB =3-02--=34,将y =k AD (x -2)+3与y =12 4-x 2(-2<x <2)联立消去y ,得(1+4k 2AD )x 2+8k AD (3-2k AD )x +16k 2AD -48k AD +32=0,令Δ=0,解得k AD =23.综上所述,k 的取值范围是⎝ ⎛⎭⎪⎫-1,23∪⎝ ⎛⎭⎪⎫34,1. 6.(2016·浙江高考)已知实数a ,b ,c ,( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:选D 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立,但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立,但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立. 对于C ,取a =10,b =-10,c =0, 显然|a +b +c 2|+|a +b -c 2|≤1成立,但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A 、B 、C 均不成立,所以选D.7.(2017·郑州质检)已知函数f (x )=sin x2+cos x .若当x >0时,函数f (x )的图象恒在直线y =kx 的下方,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤13,33 B.⎣⎢⎡⎭⎪⎫13,+∞ C.⎣⎢⎡⎭⎪⎫33,+∞ D.⎣⎢⎡⎦⎥⎤-33,32 解析:选B 由题意,当x >0时,f (x )=sin x2+cos x <kx 恒成立.由f (π)<k π,知k >0.又f ′(x )=1+2cos x+cos x2,由切线的几何意义知,要使f (x )<kx 恒成立,必有k ≥f ′(0)=13.要证k ≥13时不等式恒成立,只需证g (x )=sin x 2+cos x -13x <0,∵g ′(x )=2cos x +1+cos x 2-13=-x -2+cos x2≤0,∴g (x )在(0,+∞)上单调递减,∴g (x )<g (0)=0,∴不等式成立.综上,k ∈⎣⎢⎡⎭⎪⎫13,+∞. 8.设D ,E 分别为线段AB ,AC 的中点,且BE ―→·CD ―→=0,记α为AB ―→与AC ―→的夹角,则下述判断正确的是( )A .cos α的最小值为22B .cos α的最小值为13C .sin ⎝⎛⎭⎪⎫2α+π2的最小值为825D .sin ⎝ ⎛⎭⎪⎫π2-2α的最小值为725解析:选 D 依题意得CD ―→=12(CA ―→+CB ―→)=12[-AC ―→+(AB ―→-AC ―→)]=12(AB ―→-2AC ―→),BE ―→=12(BA ―→+BC ―→)=12[-AB ―→+(AC ―→-AB ―→)]=12(AC ―→-2AB ―→).由CD ―→·BE ―→=0,得14(AB ―→-2AC ―→)·(AC ―→-2AB ―→)=0,即-2AB ―→2-2AC ―→2+5AB ―→·AC ―→=0,整理得,|AB ―→|2+|AC ―→|2=52|AB ―→|·|AC ―→|cos α≥2|AB ―→|·|AC ―→|,所以cos α≥45,sin π2-2α=cos 2α=2cos 2α-1≥2×⎝ ⎛⎭⎪⎫452-1=725,所以sin π2-2α的最小值是725. 9.(2017·石家庄质检)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD .设AB =BD =CD =1, 则CP AC=x3=PQ1,即PQ =x3, 又QR 1=BQ BC =APAC=3-x 3,所以QR =3-x3, 所以PR =PQ 2+QR 2=⎝ ⎛⎭⎪⎫x 32+⎝⎛⎭⎪⎫3-x 32=332x 2-23x +3, 所以f (x )=36 2x 2-23x +3=66⎝⎛⎭⎪⎫x -322+34,结合图象知选A.10.过坐标原点O 作单位圆x 2+y 2=1的两条互相垂直的半径OA ,OB ,若在该圆上存在一点C ,使得OC ―→=a OA ―→+b OB ―→(a ,b ∈R),则以下说法正确的是( )A .点P (a ,b )一定在单位圆内B .点P (a ,b )一定在单位圆上C .点P (a ,b )一定在单位圆外D .当且仅当ab =0时,点P (a ,b )在单位圆上解析:选B 使用特殊值法求解.设A (1,0),B (0,-1),则OC ―→=a OA ―→+b OB ―→=(a ,-b ).∵C 在圆上,∴a 2+b 2=1,∴点P (a ,b )在单位圆上,故选B. 二、填空题1.已知函数f (x )=⎩⎪⎨⎪⎧a x+1,x ≤0,|ln x |,x >0,当1<a <2时,关于x 的方程f [f (x )]=a 实数解的个数为________.解析:当1<a <2时,作出f (x )的图象如图所示,令u =f (x ),则f (u )=a ,由f (x )的图象可知,若u 满足u <0,此时f (x )=u 无解,若u >0,解得1e 2<u <1e <1或2<e<u <e 2,显然,当x <0时,不可能使得f (x )=u 有解,当x >0,1e 2<u <1e <1时,f (x )=u 有2个解,当x >0,2<e<u <e 2时,f (x )=u 也有2个解.因此f [f (x )]=a 有4个实数解.答案:42.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析:(特殊图形)如图所示,延长BA ,CD 交于E ,平移AD ,当A与D 重合于E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得BCsin ∠E=BEsin ∠C,即2sin 30°=BEsin 75°,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,BFsin ∠FCB=BCsin ∠BFC,即BFsin 30°=2sin 75°,解得BF =6-2,所以AB 的取值范围是(6-2,6+2).答案:(6-2,6+2)3.设0<m <12,若1m +11-2m ≥k 恒成立,则实数k 的取值范围是________.解析:由题可知,k 的最大值即为1m+11-2m 的最小值.因为1m +11-2m=[2m +(1-2m )]⎝ ⎛⎭⎪⎫1m +11-2m =3+1-2m m +2m 1-2m ≥3+22,取等号的条件是当且仅当1-2m =2m ,即m =1-22∈⎝ ⎛⎭⎪⎫0,12时成立,所以k 的最大值为3+2 2.故所求实数k 的取值范围是(-∞,3+2 2 ].答案:(-∞,3+2 2 ]4.设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则ω=________,φ=________.解析:∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x 3+φ. 由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12. 答案:23 π125.已知向量a ,b ,c 满足|a |=2,|b |=a ·b =3,若(c -2a )·(2b -3c )=0, 则|b -c |的最大值是________.解析:设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ,∴cos θ=a ·b |a ||b |=32×3=22,∵θ∈[0,π],∴θ=π4.设OA ―→=a ,OB ―→=b ,c =(x ,y ),建立如图所示的平面直角坐标系. 则A (1,1),B (3,0),∴c -2a =(x -2,y -2),2b -3c =(6-3x ,-3y ), ∵(c -2a )·(2b -3c )=0,∴(x -2)(6-3x )+(y -2)(-3y )=0. 即(x -2)2+(y -1)2=1. 又知b -c =(3-x ,-y ), ∴|b -c |=x -2+y 2≤-2+-2+1=2+1,即|b -c |的最大值为2+1. 答案:2+16.等腰△ABC 中,AB =AC ,BD 为AC 边上的中线,且BD =3,则△ABC 的面积的最大值为________.解析:设AD =x ,则AB =AC =2x ,因为两边之和大于第三边,两边之差小于第三边,所以AB +AD >BD ,即2x +x >3,x >1,AB -AD <BD ,即2x -x <3,x <3,所以x ∈(1,3). 在△ABD 中,由余弦定理得9=(2x )2+x 2-2·2x ·x cos A ,即cos A =5x 2-94x2,S △ABC =2S △ABD =2×12×2x ×x ×sin A=2x21-⎝ ⎛⎭⎪⎫5x 2-94x 22=32-x 4-10x 2+,令t =x 2,则t ∈(1,9),S △ABC =32 -t -2+16,当t =5,即x =5时,S △ABC 有最大值6.答案:67.对于函数f (x )与g (x ),若存在λ∈{x ∈R|f (x )=0},μ∈{x ∈R|g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=ex -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________.解析:易知函数f (x )为增函数,且f (2)=e2-2+2-3=0,所以函数f (x )=ex -2+x -3只有一个零点x =2,则取λ=2,由|2-μ|≤1,知1≤μ≤3.由f (x )与g (x )互为“零点密切函数”知函数g (x )=x 2-ax -x +4在区间[1,3]内有零点,即方程x 2-ax -x +4=0在[1,3]内有解,所以a =x +4x -1,而函数y =x +4x-1在[1,2]上单调递减,在[2,3]上单调递增,所以当x =2时,a 取最小值3,且当x =1时,a =4,当x =3时,a =103,所以a max =4,所以实数a 的取值范围是[3,4].答案:[3,4]8.对于数列{a n },定义{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n (n ∈N *).对正整数k ,规定{Δk a n }为数列{a n }的k 阶差分数列,其中Δk a n =Δk -1a n +1-Δk -1a n =Δ(Δk-1a n ).若数列{Δ2a n }的各项均为2,且满足a 11=a 2 015=0,则a 1的值为________.解析:因为数列{Δ2a n }的各项均为2,即Δa n +1-Δa n =2,所以Δa n =Δa 1+2n -2,即a n +1-a n =Δa 1+2n -2,所以a n -a 1=(n -1)Δa 1+(0+2+4+…+2n -4) =(n -1)Δa 1+(n -1)(n -2)(n ≥2),所以⎩⎪⎨⎪⎧a 11-a 1=10Δa 1+10×9,a 2 015-a 1=2 014Δa 1+2 014×2 013,即⎩⎪⎨⎪⎧0-a 1=10Δa 1+10×9,0-a 1=2 014Δa 1+2 014×2 013,解得a 1=20 140. 答案:20 1409.已知圆O :x 2+y 2=1 和点A (-2,0),若定点B (b,0)(b ≠-2) 和常数 λ满足:对圆 O 上任意一点 M ,都有|MB |=λ|MA |,则b =________ ;λ=________ .解析:法一:(三角换元)在圆O 上任意取一点M (cos θ,sin θ),则由|MB |=λ|MA |可得(cos θ-b )2+sin 2θ=λ2[(cos θ+2)2+sin 2θ],整理得1+b 2-5λ2-(2b +4λ2)·cos θ=0,即⎩⎪⎨⎪⎧1+b 2-5λ2=0,2b +4λ2=0,解得⎩⎪⎨⎪⎧b =-12,λ=12.法二:(特殊点)既然对圆O 上任意一点M ,都有|MB |=λ|MA |,使得λ与b 为常数,那么取M (1,0)与M (0,1)代入|MB |=λ|MA |,得⎩⎪⎨⎪⎧b -2=9λ2,b 2+1=5λ2,解得⎩⎪⎨⎪⎧b =-12,λ=12.答案:-12 1210.(2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎪⎨⎪⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =q p,q ,p ∈N *,p ≥2且p ,q 互质. 若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =n m,m ,n ∈N *,m ≥2且m ,n 互质, 因此10n m =q p,则10n=⎝ ⎛⎭⎪⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分,且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程f (x )-lg x =0的解的个数为8.答案:8压轴专题(二) 第20题解答题“圆锥曲线的综合问题”的抢分策略[全国卷3年考情分析][常考题点逐一突破][典例] (2016·北京高考)已知椭圆C :x 2a 2+y 2b2=1,过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.[解] (1)由题意得,a =2,b =1,所以椭圆C 的方程为x 24+y 2=1.又c =a 2-b 2=3,所以离心率e =c a =32. (2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4. 又A (2,0),B (0,1), 所以直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2, 从而|BM |=1-y M =1+2y 0x 0-2. 直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1.所以四边形ABNM 的面积S =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2=x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值.[针对训练]1.(2017·沈阳质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为(-6,0),e =22.(1)求椭圆C 的方程;(2)如图,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;解:(1)由题意得,c =6,e =22,解得a =23,b =6, ∴椭圆C 的方程为x 212+y 26=1.(2)证明:由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2,化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上, ∴x 2012+y 206=1,即y 20=6-12x 20, ∴k 1k 2=2-12x 2x 20-4=-12.故k 1k 2为定值.[典例] (2017·浙江高考)如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值. [解] (1)设直线AP 的斜率为k , k =x2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)设直线AP 的斜率为k ,则直线BQ 的斜率为-1k.则直线AP 的方程为y -14=k ⎝ ⎛⎭⎪⎫x +12,即kx -y +12k +14=0,直线BQ 的方程为y -94=-1k ⎝ ⎛⎭⎪⎫x -32,即x +ky -94k -32=0,联立⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +3k 2+.因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-k -k +2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,在区间⎝ ⎛⎭⎪⎫12,1上单调递减, 因此当k =12时,|PA |·|PQ |取得最大值2716.[针对训练]2.(2017·沈阳质检)已知椭圆x 2a +y 2b=1(a >b >0)的左、右两个焦点分别为F 1,F 2,离心率e =22,短轴长为2. (1)求椭圆的方程;(2)点A 为椭圆上的一动点(非长轴端点),AF 2的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求△ABC 面积的最大值.解:(1)由题意得⎩⎪⎨⎪⎧e =c a =22,2b =2,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =1,c =1,故椭圆的标准方程为x 22+y 2=1.(2)①当直线AB 的斜率不存在时,不妨取A ⎝ ⎛⎭⎪⎫1,22,B ⎝ ⎛⎭⎪⎫1,-22,C ⎝⎛⎭⎪⎫-1,-22, 故S △ABC =12×2×2= 2.②当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),联立方程⎩⎪⎨⎪⎧y =k x -,x 22+y 2=1,消去y ,化简得(2k 2+1)x 2-4k 2x +2k 2-2=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k 22k +1,x 1x 2=2k 2-22k +1,|AB |=+k 2x 1+x 22-4x 1x 2]=+k2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4k 22k 2+12-4·2k 2-22k 2+1=22·k 2+12k 2+1,点O 到直线kx -y -k =0的距离d =|-k |k 2+1=|k |k 2+1, ∵O 是线段AC 的中点, ∴点C 到直线AB 的距离为2d =2|k |k 2+1,∴S △ABC =12|AB |·2d =12·⎝ ⎛⎭⎪⎫22·k 2+12k 2+1·2|k |k 2+1=2 2k 2k 2+k 2+2=2 214-1k 2+2< 2.综上,△ABC 面积的最大值为 2.[典例] (2016·全国卷Ⅱ)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. [解] 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1,得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t -tk 23+tk2, 故|AM |=|x 1+t |1+k 2=6t +k23+tk2.由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t +k23k 2+t.由2|AM |=|AN |,得23+tk 2=k3k 2+t,即(k 3-2)t =3k (2k -1).当k =32时上式不成立,因此t =3k k -k 3-2. t >3等价于k 3-2k 2+k -2k 3-2=k -k 2+k 3-2<0,即k -2k 3-2<0. 因此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2.故k 的取值范围是(32,2).解决有关范围问题时,先要恰当地引入变量(如点的坐标、角、斜率等),寻找不等关系,其方法有:(1)利用判别式来构造不等式,从而确定参数的取值范围;(2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数之间建立相等关系;(3)利用隐含的不等关系,从而求出参数的取值范围; (4)利用已知不等关系构造不等式,从而求出参数的取值范围; (5)利用函数值域的求法,确定参数的取值范围. [题后悟通][针对训练]3.已知焦点在y 轴上的椭圆E 的中心是原点O ,离心率等于32,以椭圆E 的长轴和短轴为对角线的四边形的周长为4 5.直线l :y =kx +m 与y 轴交于点P ,与椭圆E 相交于A ,B 两个点.(1)求椭圆E 的方程;(2)若AP ―→=3PB ―→,求m 2的取值范围.解:(1)根据已知设椭圆E 的方程为y 2a 2+x 2b 2=1(a >b >0),焦距为2c ,由已知得c a =32,∴c =32a ,b 2=a 2-c 2=a 24.∵以椭圆E 的长轴和短轴为对角线的四边形的周长为45, ∴4a 2+b 2=25a =45, ∴a =2,b =1.∴椭圆E 的方程为x 2+y 24=1.(2)根据已知得P (0,m ),设A (x 1,kx 1+m ),B (x 2,kx 2+m ),由⎩⎪⎨⎪⎧y =kx +m ,4x 2+y 2-4=0消去y ,得(k 2+4)x 2+2mkx +m 2-4=0.由已知得Δ=4m 2k 2-4(k 2+4)(m 2-4)>0, 即k 2-m 2+4>0,且x 1+x 2=-2km k 2+4,x 1x 2=m 2-4k 2+4.由AP ―→=3PB ―→,得x 1=-3x 2. ∴3(x 1+x 2)2+4x 1x 2=12x 22-12x 22=0. ∴12k 2m 2k 2+2+m 2-k 2+4=0,即m 2k 2+m 2-k 2-4=0.当m 2=1时,m 2k 2+m 2-k 2-4=0不成立, ∴k 2=4-m 2m 2-1.∵k 2-m 2+4>0, ∴4-m 2m 2-1-m 2+4>0,即-m 2m2m 2-1>0.解得1<m 2<4.∴m 2的取值范围为(1,4).[典例] (2017·全国卷Ⅰ)已知椭圆C :a 2+b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22.则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得 (4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l过定点(2,-1).[题后悟通]直线过定点问题的解题模型[针对训练]4.(2017·郑州模拟)已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.解:(1)由题意得,点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线的定义知圆心M 的轨迹是以点(0,1)为焦点,直线y =-1为准线的抛物线,则p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明:设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2), 则C (-x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2=4y ,y =kx -2消去y ,得x 2-4kx +8=0,∴x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,直线AC 的方程为y -y 1=x 1-x 24(x -x 1).即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1-x 24x 1+x 214=x 1-x 24x +x 1x 24,∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24x +2,即直线AC 恒过定点(0,2).[典例] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM ―→=NQ ―→?若存在,求出直线的方程;若不存在,说明理由.[解] (1)设椭圆C 的焦距为2c ,则c =1, 因为A ⎝ ⎛⎭⎪⎫1,22在椭圆C 上, 所以2a =|AF 1|+|AF 2|=22, 因此a =2,b 2=a 2-c 2=1, 故椭圆C 的方程为x 22+y 2=1.(2)不存在满足条件的直线,证明如下:假设存在斜率为2的直线,满足条件,则设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎪⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0),由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1消去x ,得9y 2-2ty +t 2-8=0,所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t9,且-3<t <3. 由PM ―→=NQ ―→,得⎝ ⎛⎭⎪⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.也可由PM ―→=NQ ―→,知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t9,⎭⎪⎫可得y 4=2t -159 又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围是[-1,1]矛盾. 因此不存在满足条件的直线.[针对训练]5.(2017·郑州质检)已知椭圆x 2+2y 2=m (m >0),以椭圆内一点M (2,1)为中点作弦AB ,设线段AB 的中垂线与椭圆相交于C ,D 两点.(1)求椭圆的离心率;(2)试判断是否存在这样的m ,使得A ,B ,C ,D 在同一个圆上,并说明理由.解:(1)将方程化成椭圆的标准方程x 2m +y 2m2=1(m >0),则a =m ,c = m -m 2=m2,故e =c a =22. (2)由题意,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -2)+1,代入x 2+2y 2=m (m >0),消去y ,得(1+2k 2)x 2+4k (1-2k )x +2(2k -1)2-m =0(m >0). 所以x 1+x 2=4kk -1+2k2=4,即k =-1,此时,由Δ>0,得m >6.则直线AB 的方程为x +y -3=0,直线CD 的方程为x -y -1=0.由⎩⎪⎨⎪⎧x -y -1=0,x 2+2y 2=m 得3y 2+2y +1-m =0,y 3+y 4=-23,故CD 的中点N 为⎝ ⎛⎭⎪⎫23,-13.由弦长公式,可得|AB |= 1+k 2|x 1-x 2|=2·m -3.|CD |=2|y 3-y 4|=2·12m -83>|AB |,若存在圆,则圆心在CD 上, 因为CD 的中点N 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪23-13-32=423.|NA |2=|NB |2=⎝ ⎛⎭⎪⎫4232+⎝⎛⎭⎪⎫|AB |22=6m -49, 又⎝ ⎛⎭⎪⎫|CD |22=14⎝ ⎛⎭⎪⎫2·12m -832=6m -49,故存在这样的m (m >6),使得A ,B ,C ,D 在同一个圆上.[高考大题通法点拨] 圆锥曲线问题重在“设”——设点、设线[思维流程][策略指导]圆锥曲线解答题的常见类型是:第1小题通常是根据已知条件,求曲线方程或离心率,一般比较简单.第2小题往往是通过方程研究曲线的性质——弦长问题、中点弦问题、动点轨迹问题、定点与定值问题、最值问题、相关量的取值范围问题等等,这一小题综合性较强,可通过巧设“点”“线”,设而不求.在具体求解时,可将整个解题过程分成程序化的三步:第一步,联立两个方程,并将消元所得方程的判别式与根与系数的关系正确写出; 第二步,用两个交点的同一类坐标的和与积,来表示题目中涉及的位置关系和数量关系;第三步,求解转化而来的代数问题,并将结果回归到原几何问题中.在求解时,要根据题目特征,恰当的设点、设线,以简化运算.[典例] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且点P ⎝ ⎛⎭⎪⎫1,32在椭圆C 上,O 为坐标原点.(1)求椭圆C 的标准方程;(2)设过定点T (0,2)的直线l 与椭圆C 交于不同的两点A ,B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围;(3)过椭圆C 1:x 2a 2+y 2b 2-53=1上异于其顶点的任一点P ,作圆O :x 2+y 2=43的两条切线,切点分别为M ,N (M ,N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m ,n ,证明:13m 2+1n2为定值.[解] (1)由题意得c =1,所以a 2=b 2+1,① 又点P ⎝ ⎛⎭⎪⎫1,32在椭圆C 上,所以1a 2+94b 2=1,② 由①②可解得a 2=4,b 2=3, 所以椭圆C 的标准方程为x 24+y 23=1. (2)设直线l 的方程为y =kx +2,A (x 1,y 1), B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +2,x 24+y23=1,得(4k 2+3)x 2+16kx +4=0,因为Δ=16(12k 2-3)>0,所以k 2>14,则x 1+x 2=-16k 4k 2+3,x 1x 2=44k 2+3.因为∠AOB 为锐角,所以OA ―→·OB ―→>0,即x 1x 2+y 1y 2>0, 所以x 1x 2+(kx 1+2)(kx 2+2)>0, 所以(1+k 2)x 1x 2+2k (x 1+x 2)+4>0, 即(1+k 2)·44k 2+3+2k ·-16k 4k 2+3+4>0,。