高三数学基础练习八 指数函数
- 格式:doc
- 大小:89.00 KB
- 文档页数:7
第五节指数与指数函数1.根式(1)如果x n =a ,那么01x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)式子na 叫做02根式,其中n 叫做根指数,a 叫做被开方数.(3)(na )n =03a.当n 为奇数时,na n =04a ;当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂正数的正分数指数幂,a mn =na m (a >0,m ,n ∈N *,n >1).正数的负分数指数幂,a-m n =1a m n=1n a m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于050,0的负分数指数幂没有意义.3.指数幂的运算性质a r a s =06a r +s ;(a r )s =07a rs ;(ab )r =08a r b r (a >0,b >0,r ,s ∈R ).4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R ,a 是底数.(2)指数函数的图象与性质a>10<a <1图象定义域R 值域09(0,+∞)性质图象过定点10(0,1),即当x=0时,y =1当x >0时,11y >1;当x <0时,120<y <1当x <0时,13y >1;当x >0时,140<y <1在(-∞,+∞)上是15增函数在(-∞,+∞)上是16减函数(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数.(2)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1)1(3)如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.(4)指数函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.1.概念辨析(正确的打“√”,错误的打“×”)(1)4(-4)4=-4.()(2)2a·2b=2ab.()(3)na n=(na)n=a.()(4)6(-3)2=(-3)13.()(5)函数y=2x-1是指数函数.()答案(1)×(2)×(3)×(4)×(5)×2.小题热身(1)(人教A必修第一册习题4.1T1改编)下列运算中正确的是()A.(2-π)2=2-πB.a-1a=-aC.(m 14n-38)8=m2n3D.(x3-2)3+2=x9答案C解析对于A,因为2-π<0,所以(2-π)2=π-2,故A错误;对于B,因为-1a>0,所以a<0,则a-1a=-(-a)·1-a=--a,故B错误;对于C,因为(m14n-38)8=(m14)8·(n-38)8=m2n3,故C正确;对于D,因为(x3-2)3+2=x9-2=x7,故D错误.(2)已知指数函数y=f(x)的图象经过点(-1,2),那么这个函数也必定经过点()21C.(1,2)答案D(3)函数y=2x+1的图象是()答案A(4)若函数y=a x(a>0,且a≠1)在区间[0,1]上的最大值与最小值之和为3,则a的值为________.答案2考点探究——提素养考点一指数幂的运算例1(1)(2024·湖北宜昌高三模拟)已知x,y>03x-34y12-14x14y-1y__________.答案-10y解析原式=3x -34y12-3 10 x -34y-12=-10y.(2)-0.752+6-2-23=________.答案1解析+136×-23=32-+136×2=32-916+136×94=1.【通性通法】【巩固迁移】-12·(4ab-1)3(0.1)-1·(a3·b-3)12(a>0,b>0)=________.答案85解析原式=2·432a 32b -3210a 32b-32=85.2.若x 12+x -12=3,则x 2+x -2=________.答案47解析由x 12+x -12=3,得x +x -1=7,再平方得x 2+x -2=47.考点二指数函数的图象及其应用例2(1)(2024·安徽合肥八中月考)函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,12中的一个,则a ,b ,c ,d 的值分别是()A.54,3,13,12 B.3,54,13,12C.12,13,3,54 D.13,12,54,3答案C解析由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>12>13,故选C.(2)(2024·江苏南京金陵高三期末)若直线y =3a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围为________.答案解析当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<3a <1,∴0<a <13;当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<3a <1,∴0<a <13,结合a >1可得a 无解.综上可知,a【通性通法】(1)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.【巩固迁移】3.(2024·广东深圳中学高三摸底)函数y =e -|x |(e 是自然对数的底数)的大致图象是()答案C解析y =e -|x |,x ≥0,x <0,易得函数y =e -|x |为偶函数,且图象过(0,1),y =e -|x |>0,函数在(-∞,0)上单调递增,在(0,+∞)上单调递减,故C 符合题意.故选C.4.(多选)若实数x ,y 满足4x +5x =5y +4y ,则下列关系式中可能成立的是()A .1<x <yB .x =yC .0<x <y <1D .y <x <0答案BCD解析设f (x )=4x +5x ,g (x )=5x +4x ,则f (x ),g (x )都是增函数,画出函数f (x ),g (x )的图象,如图所示,根据图象可知,当x =0时,f (0)=g (0)=1;当x =1时,f (1)=g (1)=9,依题意,不妨设f (x )=g (y )=t ,则x ,y 分别是直线y =t 与函数y =f (x ),y =g (x )图象的交点的横坐标.当t >9时,若f (x )=g (y ),则x >y >1,故A 不正确;当t =9或t =1时,若f (x )=g (y ),则x =y =1或x =y =0,故B 正确;当1<t <9时,若f (x )=g (y ),则0<x <y <1,故C 正确;当t <1时,若f (x )=g (y ),则y <x <0,故D 正确.故选BCD.考点三指数函数的性质及其应用(多考向探究)考向1比较指数式的大小例3(2023·天津高考)若a =1.010.5,b =1.010.6,c =0.60.5,则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >b >cD .b >a >c答案D解析解法一:因为函数f (x )=1.01x 是增函数,且0.6>0.5>0,所以1.010.6>1.010.5>1,即b >a >1.因为函数φ(x )=0.6x 是减函数,且0.5>0,所以0.60.5<0.60=1,即c <1.综上,b >a >c .故选D.解法二:因为函数f (x )=1.01x 是增函数,且0.6>0.5,所以1.010.6>1.010.5,即b >a .因为函数h (x )=x 0.5在(0,+∞)上单调递增,且1.01>0.6>0,所以1.010.5>0.60.5,即a >c .综上,b >a >c .故选D.【通性通法】比较两个指数式的大小时,尽量化成同底或同指.(1)当底数相同,指数不同时,构造同一指数函数,然后利用指数函数的性质比较大小.(2)当指数相同,底数不同时,构造两个指数函数,利用图象比较大小;或构造同一幂函数,然后利用幂函数的性质比较大小.(3)当底数不同,指数也不同时,常借助1,0等中间量进行比较.【巩固迁移】5.(2023·福建泉州高三质检)已知a -13,b -23,c ()A .a >b >cB .c >b >aC .c >a >bD .b >a >c答案C解析-13-23,y 在R 上是增函数,-13-23,即c >a >b .考向2解简单的指数方程或不等式例4(1)(多选)若4x -4y <5-x -5-y ,则下列关系式正确的是()A .x <yB .y -3>x -3C.x >y <3-x答案AD解析由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f (x )=4x -5-x ,则f (x )<f (y ).因为g (x )=4x ,h (x )=-5-x 在R 上都是增函数,所以f (x )在R 上是增函数,所以x <y ,故A 正确;因为G (x )=x -3在(0,+∞)和(-∞,0)上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y 在R 上是减函数,且x <y ,,<3-x ,故D 正确.故选AD.(2)已知实数a ≠1,函数f (x )x ,x ≥0,a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.答案12解析当a <1时,41-a =21,解得a =12;当a >1时,2a -(1-a )=4a -1,无解.故a 的值为12.【通性通法】(1)解指数方程的依据:a f (x )=a g (x )(a >0,且a ≠1)⇔f (x )=g (x ).(2)解指数不等式的思路方法:对于形如a x >a b (a >0,且a ≠1)的不等式,需借助函数y =a x 的单调性求解,如果a 的取值不确定,则需分a >1与0<a <1两种情况讨论;而对于形如a x >b 的不等式,需先将b 转化为以a 为底的指数幂的形式,再借助函数y =a x 的单调性求解.【巩固迁移】6.函数y =(0.5x-8)-12的定义域为________.答案(-∞,-3)解析因为y =(0.5x -8)-12=10.5x -8,所以0.5x -8>0,则2-x >23,即-x >3,解得x <-3,故函数y =(0.5x-8)-12的定义域为(-∞,-3).7.当0<x <12时,方程a x =1x (a >0,且a ≠1)有解,则实数a 的取值范围是________.答案(4,+∞)解析依题意,当x ,y =a x 与y =1x 的图象有交点,作出y =1x的部分图象,如图所示,>1,12>2,解得a>4.考向3与指数函数有关的复合函数问题例5(1)函数f(x)=3-x2+1的值域为________.答案(0,3]解析设t=-x2+1,则t≤1,所以0<3t≤3,故函数f(x)的值域为(0,3].(2)函数yx-+17的单调递增区间为________.答案[-2,+∞)解析设t>0,又y=t2-8t+17=(t-4)2+1在(0,4]上单调递减,在(4,+∞)上单调递增.≤4,得x≥-2,>4,得x<-2,而函数t在R上单调递减,所以函数yx-+17的单调递增区间为[-2,+∞).【通性通法】涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.【巩固迁移】8.(多选)已知定义在[-1,1]上的函数f(x)=-2·9x+4·3x,则下列结论中正确的是() A.f(x)的单调递减区间是[0,1]B.f(x)的单调递增区间是[-1,1]C.f(x)的最大值是f(0)=2D.f(x)的最小值是f(1)=-6答案ACD解析设t=3x,x∈[-1,1],则t=3x是增函数,且t∈13,3,又函数y=-2t2+4t=-2(t-1)2+2在13,1上单调递增,在[1,3]上单调递减,因此f(x)在[-1,0]上单调递增,在[0,1]上单调递减,故A正确,B错误;f(x)max=f(0)=2,故C正确;f(-1)=109,f(1)=-6,因此f (x )的最小值是f (1)=-6,故D 正确.故选ACD.9.若函数f (x )2+2x +3,19,则f (x )的单调递增区间是________.答案(-∞,-1]解析∵y 是减函数,且f (x ),19,∴t =ax 2+2x +3有最小值2,则a >0且12a -224a =2,解得a =1,因此t =x 2+2x +3的单调递减区间是(-∞,-1],故f (x )的单调递增区间是(-∞,-1].课时作业一、单项选择题1.(2024·内蒙古阿拉善盟第一中学高三期末)已知集合A ={x |32x -1≥1},B ={x |6x 2-x -2<0},则A ∪B =()A.12,-12,12-12,+∞答案D解析集合A ={x |32x -1≥1}=12,+B ={x |6x 2-x -2<0}={x |(3x -2)(2x +1)<0}=-12,所以A ∪B -12,+故选D.2.(2024·山东枣庄高三模拟)已知指数函数y =a x 的图象如图所示,则y =ax 2+x 的图象顶点横坐标的取值范围是()-12,-12,+∞答案A解析由图可知,a ∈(0,1),而y =ax 2+x =-14a (a ≠0),其顶点横坐标为x =-12a,所以-12a∈∞,故选A.3.已知函数f (x )=11+2x ,则对任意实数x ,有()A .f (-x )+f (x )=0B .f (-x )-f (x )=0C .f (-x )+f (x )=1D .f (-x )-f (x )=13答案C解析f (-x )+f (x )=11+2-x +11+2x =2x 1+2x +11+2x =1,故A 错误,C 正确;f (-x )-f (x )=11+2-x-11+2x =2x 1+2x -11+2x =2x -12x +1=1-22x +1,不是常数,故B ,D 错误.故选C.4.已知a =243,b =425,c =513,则()A .c <b <aB .a <b <cC .b <a <cD .c <a <b答案A 解析因为a =243=423,b =425,所以a =423>425=b ,因为b =425=(46)115=4096115,c =513=(55)115=3125115,所以b >c .综上所述,a >b >c .故选A.5.(2024·江苏连云港海滨中学高三学情检测)若函数f (x )=a x (a >0,且a ≠1)在[-1,2]上的最大值为4,最小值为m ,则实数m 的值为()A.12B.1142C.116D.12或116答案D解析当a >1时,f (x )=a x 在[-1,2]上单调递增,则f (x )max =f (2)=a 2=4,解得a =2,此时f (x )=2x ,m =f (x )min =2-1=12;当0<a <1时,f (x )=a x 在[-1,2]上单调递减,所以f (x )max =f (-1)=a -1=4,解得a =14,此时f (x ),m =f (x )min =f (2)=116.综上所述,实数m 的值为12或116.故选D.6.(2023·新课标Ⅰ卷)设函数f (x )=2x (x -a )在区间(0,1)上单调递减,则a 的取值范围是()A .(-∞,-2]B .[-2,0)C .(0,2]D .[2,+∞)答案D解析函数y =2x 在R 上单调递增,而函数f (x )=2x (x -a )在区间(0,1)上单调递减,则函数y =x (x -a )-a 24在区间(0,1)上单调递减,因此a2≥1,解得a ≥2,所以a 的取值范围是[2,+∞).故选D.7.(2023·辽宁名校联盟联考)已知函数f (x )满足f (x )x -2,x >0,-2-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)答案B解析当x >0时,-x <0,f (-x )=2-2x =-(2x -2)=-f (x );当x <0时,-x >0,f (-x )=2-x-2=-(2-2-x )=-f (x ),则函数f (x )为奇函数,所以f (a )>f (-a )=-f (a ),即f (a )>0,作出函数f (x )的图象,如图所示,由图象可得,实数a 的取值范围为(-1,0)∪(1,+∞).故选B.8.(2024·福建漳州四校期末)已知正数a ,b ,c 满足2a -1=4,3b -1=6,4c -1=8,则下列判断正确的是()A .a <b <cB .a <c <bC .c <b <aD .c <a <b答案A解析由已知可得a =2,b =2,c =2,则a ,b ,c 可分别看作直线y =2-x 和y ,y ,y 的图象的交点的横坐标,画出直线y =2-x 和y ,y ,y 的大致图象,如图所示,由图象可知a <b <c .故选A.二、多项选择题9.下列各式中成立的是()=n 7m 17(n >0,m >0)B .-1234=3-3C.39=33D .[(a 3)2(b 2)3]-13=a -2b -2(a >0,b >0)答案BCD解析=n 7m7=n 7m -7(n >0,m >0),故A 错误;-1234=-3412=-313=3-3,故B 正确;39=332=332=33,故C 正确;[(a 3)2(b 2)3]-13=(a 6b 6)-13=a -2b -2(a >0,b >0),故D 正确.故选BCD.10.已知函数f (x )=3x -13x +1,下列说法正确的是()A .f (x )的图象关于原点对称B .f (x )的图象关于直线x =1对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案AC解析由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,所以A 正确;因为f (0)=0,f (2)=45,f (0)≠f (2),所以B 错误;设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+y y -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.故选AC.三、填空题11.0.25-12-(-2×160)2×(2-23)3+32×(4-13)-1=________.答案3解析原式=[(0.5)2]-12-(-2×1)2×2-2+213×2231-4×14+2=2-1+2=3.12.不等式10x -6x -3x ≥1的解集为________.答案[1,+∞)解析由10x -6x -3x ≥1,≤1.令f (x ),因为y =,y ,y 均为R 上的减函数,则f (x )在R 上单调递减,且f (1)=1,所以f (x )≤f (1),所以x ≥1,故不等式10x -6x -3x ≥1的解集为[1,+∞).13.若函数f (x )=|2x -a |-1的值域为[-1,+∞),则实数a 的取值范围为________.答案(0,+∞)解析令g (x )=|2x -a |,由题意得g (x )的值域为[0,+∞),又y =2x 的值域为(0,+∞),所以-a <0,解得a >0.14.已知函数f (x )x -a ,x ≤0,x +a ,x >0,关于x 的不等式f (x )≤f (2)的解集为I ,若I(-∞,2],则实数a 的取值范围是________.答案(-∞,-1)解析当a ≥0时,结合图象可得f (x )≤f (2)的解集是(-∞,2],不符合题意.当a <0时,2-a>2a ,由于f (x )在区间(-∞,0]和(0,2]上单调递增,所以要使f (x )≤f (2)的解集I 满足I(-∞,2],则2-a >f (2)=22+a ,解得a <-1.综上,实数a 的取值范围是(-∞,-1).四、解答题15.(2024·辽宁沈阳东北育才学校高三月考)已知函数f (x )是定义在R 上的奇函数,且函数g (x )=f (x )+e x 是定义在R 上的偶函数.(1)求函数f (x )的解析式;(2)求不等式f (x )≥34的解集.解(1)∵g (x )=f (x )+e x 是定义在R 上的偶函数,∴g (-x )=g (x ),即f (-x )+e -x =f (x )+e x ,∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴-f (x )+e -x =f (x )+e x ,∴f (x )=e -x -e x2.(2)由(1),知e -x -e x 2≥34,得2e -x -2e x -3≥0,即2(e x )2+3e x -2≤0,令t =e x ,t >0,则2t 2+3t -2≤0,解得0<t ≤12,∴0<e x ≤12,∴x ≤-ln 2,∴不等式f (x )≥34的解集为(-∞,-ln 2].16.(2024·山东菏泽高三期中)已知函数f (x )3+x.(1)解关于x 的不等式f (x 3+ax +1,a ∈R ;(2)若∃x ∈(1,3),∀m ∈(1,2),f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0,求实数n 的取值范围.解(1)3+x3+ax +1,得x 3+x <x 3+ax +1,即(1-a )x <1.当1-a =0,即a =1时,不等式恒成立,则f (x 3+ax +1的解集为R ;当1-a >0,即a <1时,x <11-a,则f (x 3+ax +1|x 当1-a <0,即a >1时,x >11-a,则f (x 3+ax +1|x 综上所述,当a =1时,不等式的解集是R ;当a <1时,|x当a >1时,|x (2)因为y =x 3和y =x 均为增函数,所以y =x 3+x 是增函数,因为y 是减函数,所以f (x )是减函数,则g (x )=f (x )-x 是减函数.由f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0可得,g (2mnx -4)=f (2mnx -4)-(2mnx -4)≤f (x 2+nx )-(x 2+nx )=g (x 2+nx ),所以2mnx -4≥x 2+nx ,所以2mn -n ≥x +4x ,又x +4x≥2x ·4x =4,当且仅当x =4x,即x =2时,不等式取等号,即∀m ∈(1,2),2mn -n ≥4恒成立,由一次函数性质可知n -n ≥4,n -n ≥4,解得n ≥4,所以实数n 的取值范围是[4,+∞).17.(多选)已知函数f (x )=a |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是()A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案ABD解析∵函数f (x )=a |+b 的图象过原点,∴a +b =0,即b =-a ,则f (x )=a |-a ,又f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-|+2,故A 正确;由于f (x )为偶函数,且f (x )在[0,+∞)上单调递增,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于f (x )=2-|在(-∞,0)上单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;|∈(0,1],∴f (x )=-|+2∈[0,2),故D 正确.故选ABD.18.(多选)已知实数a ,b 满足3a =6b ,则下列关系式可能成立的是()A .a =bB .0<b <aC .a <b <0D .1<a <b答案ABC解析由题意,在同一坐标系内分别画出函数y =3x 和y =6x 的图象,如图所示,由图象知,当a =b =0时,3a =6b =1,所以A 可能成立;作出直线y =k ,当k >1时,若3a =6b =k ,则0<b <a ,所以B 可能成立;当0<k <1时,若3a =6b =k ,则a <b <0,所以C 可能成立.故选ABC.19.(2023·广东珠海一中阶段考试)对于函数f (x ),若其定义域内存在实数x 满足f (-x )=-f (x ),则称f (x )为“准奇函数”.若函数f (x )=e x -2e x +1,则f (x )________(是,不是)“准奇函数”;若g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,则实数m 的取值范围为________.答案不是-54,-1解析假设f (x )为“准奇函数”,则存在x 满足f (-x )=-f (x ),∴e -x -2e -x +1=-e x -2e x +1有解,整理得e x =-1,显然无解,∴f (x )不是“准奇函数”.∵g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,∴2-x+m =-2x -m 在[-1,1]上有解,∴2m =-(2x +2-x)在[-1,1]上有解,令2x =t ∈12,2,∴2m t ∈12,2上有解,又函数y =t +1t在12,,在(1,2]上单调递增,且t =12时,y =52,t =2时,y =52,∴y min =1+1=2,y max =52,∴y =t +1t 的值域为2,52,∴2m ∈-52,-2,解得m ∈-54,-1.。
高三数学指数与指数函数试题1.若则的值为 ____ .【答案】2.【解析】因为,所以,故答案为:2.【考点】分段函数值的求法.2.已知,,则________.【答案】【解析】由得,所以,解得,故答案为.【考点】指数方程;对数方程.3.已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________.【答案】(-∞,4]【解析】令t=|2x-m|,则t=|2x-m|在区间[,+∞)上单调递增,在区间(-∞,]上单调递减.而y=2t为R上的增函数,所以要使函数f(x)=2|2x-m|在[2,+∞)上单调递增,则有≤2,即m≤4,所以m的取值范围是(-∞,4].故填(-∞,4].4.已知,则下列关系中正确的是()A.a>b>c B.b>a>c C.a>c>b D.c>a>b【答案】A【解析】由已知得,,,,故a>b>c.【考点】指数函数的图象和性质.5.已知函数,若,且,则的最小值为(). A.B.C.2D.4【答案】B【解析】因为,所以,整理得,又,所以,解得,即,因此.故正确答案为B.【考点】1.指数函数;2.基本不等式.6.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算7.若为正实数,则.【答案】1【解析】设所以因此【考点】指对数运算8.已知函数,且函数有且只有一个零点,则实数的取值范围是( )A. B.. D.【答案】B【解析】如图,在同一坐标系中分别作出与的图象,其中a表示直线在y轴上截距,由图可知,当时,直线与只有一个交点.故选B.【考点】分段函数图像数形结合9.函数y=a x-3+3恒过定点________.【答案】(3,4)【解析】当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).10.已知函数f(x)=则f(2+log23)=________.【答案】【解析】由3<2+log23<4,得3+log23>4,所以f(2+log23)=f(3+log23)=11.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]【答案】B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.12.设,,,则的大小关系是 .【答案】【解析】由题意可知:,,,,,∴,∴.【考点】1.指数函数、对数函数的性质;2.比较大小.13.已知函数,则 .【答案】.【解析】.【考点】1.分段函数;2.指数与对数运算.14.已知函数则()A.B.C.D.【答案】C【解析】.【考点】函数与指数运算.15.函数的零点个数为A.1B.2C.3D.4【答案】B.【解析】令f(x)=0得.画出两个函数. 图像即可得交点的个数为两个.所以原函数的零点有两个. 故选B.本题关键是的图像的画法是将函数在负y半轴的图像沿x轴翻折.【考点】1.函数的零点问题.2.对数函数图像,指数函数图像的画法.3.函数绝对值的图像的画法.16.设,则的大小关系为()A.B.C.D.【答案】A【解析】由分数指数幂与根式的关系知:,从而易知,故选A.【考点】1.分数指数幂与根式的互换;2.比较大小.17.函数的定义域为,若且时总有,则称为单函数.例如,函数是单函数.下列命题:①函数是单函数;②函数是单函数;③若为单函数,且,则;④函数在定义域内某个区间上具有单调性,则一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】③【解析】根据单函数的定义可知如果函数为单函数,则函数在其定义域上一定是单调递增或单调递减函数,即该函数为一一对应关系,据此分析可知①不是,因为该二次函数先减后增;②不是,因为该函数是先减后增;显然④的说话也不对,故真命题是③.【考点】新定义、函数的单调性,考查学生的分析、理解能力.18.设,则这四个数的大小关系是()A.B.C.D.【答案】D.【解析】是上的减函数,,又.【考点】指数函数、对数函数及幂函数单调性的应用.19.二次函数y=ax2+b x与指数函数y=()x的图象只可能是()A. B. C. D.【答案】A【解析】解:根据指数函数y=()x可知a,b同号且不相等,二次函数y=ax2+bx的对称轴-<0可排除B与D,,C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确,选:A【考点】指数函数图象与二次函数图象点评:本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.20.计算:_____________【答案】4【解析】因为21. .若,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【答案】A【解析】因为,,,因此选A22. .计算(1)(2)【答案】(1)2;(2) 0【解析】本试题主要是考查了指数幂的运算性质和对数式的运算法则的运用。
2023高考数学二轮复习专项训练《指数函数》一 、单选题(本大题共12小题,共60分)1.(5分)某工厂2005年某种产品的年产量为a,,若该产品年增长率为x ,则2010年该厂这种产品的年产量为y ,那么x 与y 的函数关系式是( )A. y=10axB. y= 10x aC. y = a(1+10%)xD. y = a(1+x)52.(5分)把函数y =2x 的图象向右平移t 个单位长度,所得图象对应的函数解析式为y =2x 3,则t =( )A. 12B. log 23C. log 32D. √33.(5分)设a >0,b >0,化简(a 23b 13).(−a 12b 12)÷(13a 16b 56)的结果是( )A. −13a 23B. −3a 23C. −13aD. −3a4.(5分)某地为了保持水土资源,实行退耕还林,如果2013年退耕8万公顷,以后每年比上一年增加10%,那么2018年需退耕( )A. 8×1.14万公顷B. 8×1.15万公顷C. 8×1.16万公顷D. 8×1.13万公顷5.(5分)下列运算正确的是( )A. a2•a3=a6B. (x5)2=x7C. (-3c )2=9c2D. (a-2b )2=a2-2ab+4b26.(5分)给出下列结论,其中正确的序号是( )A. 当a <0时,(a 2)32=a 3 B. √a n n=|a|C. 函数y =(x −2)12−(3x −7)0的定义域是(2,+∞) D. √63=√64127.(5分)已知3x −3−y ⩾5−x −5y 成立,则下列正确的是( )A. x +y ⩽0B. x +y ⩾0C. x −y ⩾0D. x −y ⩽08.(5分)已知集合A ={ x |1<2x ⩽4},B ={ x |x >1},则A ∩B =( )A. { x |1⩽x <2}B. { x |1<x ⩽2}C. { x |0<x ⩽2}D. { x |0⩽x <2}9.(5分)三个数0.76,60.7,log 0.76的大小关系为( )A. log 0.76<0.76<60.7B. 0.76<60.7<log 0.76C. log 0.76<60.7<0.76D. 0.76<log 0.76<60.710.(5分)下列运算中,正确的是( )A. x 3⋅x 2=x 5B. x +x 2=x 3C. 2x 3÷x 2=xD. (x2)3=x 3211.(5分)化3√3√3√3为分数指数幂结果是( )A. 3 78B. 3 158C. 3 74D. 3 17812.(5分)下列判断正确的是( )A. 1.61.5>1.62B. 0.50.2>0.50.3C. 1.60.2<0.53.2D. log 20.5>log 32二 、填空题(本大题共6小题,共30分)13.(5分)log √22√2+log 23⋅log 34= ______ ,当a <0时,√a 2⋅3a 3⋅a −1= ______ . 14.(5分)(279)0.5+0.1−2+(21027)3−π0=__________;lg √2+lg 3−lg √10lg 1.8=__________15.(5分)若√9a 2−6a +1=3a −1,则实数a 的取值范围是________. 16.(5分)若x ⋅log 32=1,则2x +2−x =________________.17.(5分)已知函数f(x)为R 上的奇函数且x <0时f(x)=(12)x −7,则不等式f(x)<1的解集为 ______ .18.(5分)解方程:52x −6×5x +5=0的解集为__________. 三 、解答题(本大题共6小题,共72分) 19.(12分)计算下列各式的结果: (1)lo g 53+lo g 5115+(lo g 3315).(lo g √2216);(2)(6+2√5)12+8−23×(94)−12−(0.01)12−(√5−2)−1.20.(12分)计算下列各式的值:(1)log 4√8+≶50+≶2+5 log 53+(−9.8)0; (2)(2764) 23−(254)0.5+(0.008) −23×25.21.(12分)求值:(1)√49−(278)−13+(π−1)0;(2)4a 23b −13÷(−23a −13b −13)(a >0, b >0).22.(12分)22-1.(1)√259−(827)13−(π+e )0+(14)−12; lg √10.(−lg 10);23.(12分)求值与化简:(1)(179)12+(32)−1−√(√3−2)2; (2)2lg 6−lg 31+12lg 0.36+13lg 8+2log 24−log 29×log 32.24.(12分)已知函数y =f(x)的图象与g(x)=log a x(a >0,且a ≠1)的图象关于x 轴对称,且g(x)的图象过(4,2)点. (Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x −1)>f(5−x),求x 的取值范围. 四 、多选题(本大题共6小题,共30分)25.(5分)已知实数a ,b 满足log 3a −log 3b <(13)a −(13)b ,则下列结论正确的是 ( )A. a<bB. 1a <1bC. 2a−b <1D. ln(b −a)>026.(5分)下列判断正确的有( )A. √(π−4)2=π−4B. 0∈{−1,0,2}C. cos 1°>sin π6D. y =(√x)2与y =x 是同一个函数27.(5分) 已知集合M ={(x,y)|y =f(x)},若对于任意实数对(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”;下列四个集合中,是“垂直对点集”的是()A. M ={(x,y)|y =1x 2} B. M ={(x,y)|y =sinx +1} C. M ={(x,y)|y =2x −2} D. M ={(x,y)|y =log 2x}28.(5分)下列说法不正确的是( )A. 命题“∀x > 0,2x > 1”的否定为“∀x ⩽0,2x ⩽1”B. “xy > 0”是“x +y > 0”的充要条件C. “α=β”是“sinα=sinβ”成立的充分不必要条件D. 若“1 x 3”的必要不充分条件是“m−2 x m+2”,则实数m 的取值范围是[1,3] 29.(5分)已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y( )A. 有最小值4B. 有最小值−4C. 有最大值4D. 无最大值30.(5分)函数f (x )是指数函数,则下列等式中正确的是()A. f(x +y)=f(x)f(y)B. f(x −y)=f(x)f(y)C. f(xy )=f(x)−f(y) D. f(nx)=[f(x)]n (n ∈Q)答案和解析1.【答案】D;【解析】因为2005年年底的产量为a,年平均增长率为x,则2011年年底产量为a+ax=a(1+x),2010年年底的产量为a(1+x)+a(1+x)x=a(1+x)(1+x)=a(1+x)2,由此得出,从2005年年底开始,每一年年底的产量构成以a为首项,以1+x为公比的等比数列,以2005年年底的产量a为首项,则2010年年底的产量为a5所以,2011年年底的产量y=a(1+x)5.故选D。
第二章函数2.4.2 指数函数(针对练习)针对练习针对练习一指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a>0,b>0).(1)a222.计算或化简下列各式:(1)(a-2)·(-4a-1)÷(12a-4)(a>0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0. 3.计算:(1)1111242 114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+-++⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a ba b a b->>⎛⎫⎪⎝⎭4.计算:(1)10132114(2)924---⎛⎫⎛⎫-⨯-+-⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯5.(1)()2163278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .47.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x8.下列函数中为指数函数的是( ) A .23x y =⋅ B .3x y =-C .3x y -=D .1x y =9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠110.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A.1 B .2C D .3针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,5413.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞ C .(,2]-∞ D .[2,)+∞17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,120.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,222.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0 C .5 D .923.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,225.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e --=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .4037.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-第二章 函数2.4.2 指数函数(针对练习)针对练习针对练习一 指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a >0,b >0).(1)a2 2.【答案】(1)52a ; (2)136a ; (3)7362a b ; (4)76a . 【解析】 【分析】由根式与有理数指数幂的关系,结合指数幂的运算性质化简求值即可. (1)原式=11522222a a a a +⋅==. (2)原式=22313333262a a a a +⋅==. (3)原式=1221711333233332622222()()a ab a a b a b a b +⋅===.(4)原式=55722666a a a a --⋅==. 2.计算或化简下列各式: (1)(a -2)·(-4a -1)÷(12a -4)(a >0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0.【答案】(1)-13a ;(2)-1679.【解析】 【分析】直接根据指数幂的运算性质计算即可. 【详解】(1)原式21434114(12)33a a a a ----+=-÷=-=-(2)原式213227118500--⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭213323()5002)12-⎡⎤=-+-+⎢⎥⎣⎦=49+20+1=- 1679. 3.计算:(1)1111242114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+++ ⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭【答案】(1)-16 (2)(0,0)a a b b>> 【解析】 【分析】(1)根据分数指数幂的运算规则化简计算即可; (2)根据分数指数幂的运算规则化简得出结果. (1)原式=111222411010233-⎫⎫⎛⎫⨯⨯++⨯+ ⎪⎝⎭⎝⎭⎝⎭(12410223⎫=⨯-⨯+⎝⎭220216=-+=-(2)原式543311233(0,0)a baa b bab a b-==>> 4.计算:(1)1132114(2)924---⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯【答案】(1)196(2)【解析】 【分析】(1)利用指数幂的运算性质即可求解.(2)利用根式与分数指数幂的互化以及指数幂的运算性质即可求解. (1)原式1111924()1218236=-⨯-+=++-=. (2)原式24119555636333222221[(8)](10)10(2)1010102---=⨯÷=⨯÷=⨯721102=⨯=== 5.(1)()21603278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.【答案】(1)8π+;(2)85. 【解析】 【分析】(1)(2)均根据指数幂的运算性质即可计算; 【详解】(1)原式233(2)=-1+|3﹣π|162(2)+=4﹣1+π﹣3+23=π+8.(2)原式3332223322248510a b a b--⋅==.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】直接根据指数函数的定义依次判断即可. 【详解】根据指数函数的定义,知①①中的函数是指数函数, ①中底数不是常数,指数不是自变量,所以不是指数函数; ①中4x 的系数是1-,所以不是指数函数; ①中底数40-<,所以不是指数函数. 故选:B .7.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x【答案】A 【解析】 【分析】根据指数函数定义判断. 【详解】B 中底数90-<,C 中指数是1x -,不是x ,D 中5x 前面系数不是1,根据指数函数定义,只有A 中函数是指数函数, 故选:A.8.下列函数中为指数函数的是( )A .23x y =⋅B .3x y =-C .3x y -=D .1x y =【答案】C 【解析】 【分析】根据指数函数的定义,逐项判定,即可求解. 【详解】根据指数函数的定义知,()0,1xy a a a =>≠,可得函数23x y =⋅不是指数函数;函数3x y =-不是指数函数;函数3x y -=是指数函数;函数1x y =不是指数函数. 故选:C.9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1【答案】C 【解析】 【分析】根据已知条件列不等式,由此求得正确选项. 【详解】由已知得244101a a a a ⎧-+=⎪>⎨⎪≠⎩,即2301a a a a ⎧+=⎪⎨⎪≠⎩,解得3a =.故选:C10.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A .1 B .2 CD .3【答案】C 【解析】 【分析】由指数函数所过的点求解析式,进而求(1)f -的值. 【详解】由题意,21(2)3f a ==,又a >0,则a =①()x f x =,故1(1)f --== 故选:C针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数的解析式可得函数2x y -=是以12为底数的指数函数,再根据指数函数的图像即可得出答案. 【详解】解:由122xxy -⎛⎫== ⎪⎝⎭,得函数2x y -=是以12为底数的指数函数,且函数为减函数,故D 选项符合题意. 故选:D.12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,54【答案】C 【解析】 【分析】由直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b 即可求解. 【详解】解:直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,511423>>, 所以a ,b ,c ,d 的值分别是12,1354, 故选:C.13.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-【答案】C 【解析】 【分析】令10x -=求出定点的横坐标,即得解. 【详解】解:令10,1-=∴=x x .当1x =时,()1111=2f a -=+,所以函数()f x 的图象过点()1,2. 故选:C.14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +【答案】B 【解析】 【分析】由指数函数过定点的性质进行求解. 【详解】()x f x a =的图象恒过定点()0,1,所以()1x f x a =+的图象恒过定点()0,2故选:B15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1【答案】B 【解析】 【分析】根据指数函数的知识确定正确选项. 【详解】当10x -=,即1x =时,()12f =, 所以()f x 过定点()1,2. 故选:B针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞C .(,2]-∞D .[2,)+∞【答案】D 【解析】 【分析】根据函数的定义域定义求解即可. 【详解】要使得函数y 则390x -≥,39x ≥,233x ≥,解得2x ≥.故函数y [2,)+∞. 故选:D.17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞【答案】D 【解析】求出使函数式有意义的自变量的范围即得、 【详解】由21020x x ⎧-≥⎨-≠⎩得02x x ≥⎧⎨≠⎩,即[0,2)(2,)x ∈⋃+∞.故选:D.18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】求得4x f ⎛⎫= ⎪⎝⎭0,结合指数函数的性质求解即可. 【详解】因为()f x =所以4x f ⎛⎫= ⎪⎝⎭因为44440,44,1,44x x x x -≥≤≤≤,所以4xf ⎛⎫⎪⎝⎭的定义域为(],4-∞,故选A .【点睛】本题主要考查函数的定义域以及指数函数的单调性的应用,是基础题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,1【答案】B 【解析】 【分析】抽象函数的定义域求解,要注意两点,一是定义域是x 的取值范围;二是同一对应法则下,取值范围一致. 【详解】()y f x =的定义域为()0,1,1021x-∴<<,即121121x x ⎧-<-<⎨≠⎩,10x x <⎧∴⎨≠⎩,解得:1x <且0x ≠, ()()21x F x f ∴=-的定义域为()(),00,1-∞⋃.故选:B .20.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1【答案】C 【解析】 【分析】由题意可得10x a -≥,对a 讨论,分1,01a a ><<,运用指数函数的单调性,列不等式即可得到a 的范围. 【详解】要使函数0y a >且1)a ≠有意义, 则10x a -≥, 即01x a a ≥=, 当1a >时,0x ≥;当01a <<时,0x ≤,因为y =的定义域为(],0-∞ 所以可得01a <<符合题意,a ∴的取值范围为01a <<,故选C.【点睛】本题考查函数的定义域以及指数函数的单调性,注意运用偶次根式被开方式非负,意在考查分类讨论思想与运算能力,属于中档题.针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,2【答案】D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.【详解】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,①()222111t x x x =-=--≥-,①(],2120ty ⎛⎫⎪⎭∈= ⎝,①函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D22.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0C .5D .9【答案】A 【解析】 【分析】设23x t =,则2()21=-+f t t t 利用函数()f t 单调性可得答案. 【详解】设23x t =,则()22()211=-+=-f t t t t (3t ), 对称轴为1t =,所以()f t 在[)3,+∞上单调递增,所以2min ()(3)32314f t f ==-⨯+=.故选:A.23.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞【答案】C 【解析】 【分析】将函数化为121xyy+=-,利用20x >列出关于y 的不等式,解出不等式即可. 【详解】设2121x x y -=+,由原式得121xy y +=-,20x >, 101yy+∴>-, ①11y -<<,即函数()f x 的值域为(1,1)-. 故选:C24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,2【答案】A 【解析】 【分析】先求出12x y -=在[)1,+∞上的取值范围,再利用分段函数的值域进行求解.【详解】因为12x y -=在[)1,+∞上单调递增, 所以当1≥x 时,1022=1x y -=≥, 若函数()f x 的值域为R ,则1201231a a a ->⎧⎨-+≥⎩, 解得102a ≤<. 故选:A.25.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32【答案】C 【解析】当0a >且1a ≠时,函数为指数型函数,需要分情况进行讨论解决.当1a >时,函数2x y a =-是增函数;当01a <<时,函数2x y a =-是减函数,由此结合条件建立关于a的方程组,解之即可求得答案. 【详解】当1a >时,2xy a =-在[]1,1-上为增函数, 211523a a-=⎧⎪∴⎨-=-⎪⎩,解得3a =;当01a <<时,2xy a =-在[]1,1-上为减函数,523121a a⎧-=-⎪⎪∴⎨⎪-=⎪⎩,解得13a =.综上可知:3a =或13. 故选:C 【点睛】关键点点睛:本题主要考查了指数函数的单调性和值域,解题的关键是利用函数的单调性求解函数值域,但含有参数时往往需要讨论.针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞【答案】A 【解析】 【分析】利用复合函数的单调性“同增异减”来解题. 【详解】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞. 故选:A.27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】根据复合函数单调性法则“同增异减”求解即可. 【详解】解:因为函数2231y x x =-+在区间3,4⎛⎫-∞ ⎪⎝⎭上单调递减,在3,4⎡⎫+∞⎪⎢⎣⎭上单调递增,函数12xy ⎛⎫= ⎪⎝⎭在定义域内是单调递减函数,所以,根据复合函数单调性法则“同增异减”得223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:D28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-【答案】C 【解析】 【分析】根据复合函数单调性来求得a 的取值范围. 【详解】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-. 故选:C29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据分段函数的性质,以及函数()f x 在R 上单调递减,结合指数函数的性质,可知011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,求解不等式,即可得到结果. 【详解】①函数()f x 在R 上单调递减,①011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,解得1233a <≤,实数a 的取值范围是12,33⎛⎤⎥⎝⎦. 故选:A.30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,【答案】C 【解析】 【分析】根据()f x 的单调性列不等式组,由此求得a 的取值范围. 【详解】 函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,,若()f x 在R 上为单调递增函数,则()14201421a a a a ⎧->⎪>⎨⎪-⨯≤⎩,解得423a ≤<;若()f x 在R 上为单调递减函数,则()142001421a a a a ⎧-<⎪<<⎨⎪-⨯≥⎩,无解. 综上所述,实数a 的取值范围为423⎡⎫⎪⎢⎣⎭,. 故选:C针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<【答案】C 【解析】 【分析】根据指数函数的单调性判断指数式的大小关系. 【详解】由题设,42a -=,2b =,122c =,又2x y =在定义域上递增, ①a c b <<. 故选:C.32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a【答案】B 【解析】 【分析】结合指数函数、幂函数的单调性确定正确选项. 【详解】4x y =在R 上递增,14y x =在()0,∞+上递增.123111334442422893c a b ==<==<==.故选:B33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞【答案】A 【解析】 【分析】根据指数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; 【详解】解:因为12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭等价于214a a +<-,解得1a <,即原不等式的解集为(,1)-∞ 故选:A34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞【答案】B 【解析】【分析】利用指数函数的单调性得到自变量的范围,进而得到指数函数的值域. 【详解】 由221139x x -+⎛⎫ ⎪⎝⎭可得2212(2)1339x x x -+--⎛⎫= ⎪⎝⎭,因为3x y =在R 上单调递增, 所以2124x x +-+即x 2+2x -3≤0, 解得:31x -≤≤ , 所以31222x y -=,即函数2x y =的值域是1,28⎡⎤⎢⎥⎣⎦,故选:B .35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-【答案】D 【解析】 【分析】先根据题干条件和函数13xy ⎛⎫= ⎪⎝⎭的单调性得到a b >,A 选项可以利用函数的单调性进行判断,BC 选项可以举出反例,D 选项用不等式的基本性质进行判断. 【详解】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,若1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则a b >,对于选项A :若a b >,因为()3f x x =单调递增,所以33a b >,故A 错误;对于选项B :当a b >时,若0c ,则ac bc =,故B 错误;对于选项C :由a b >,不妨令1a =,2b =-,则此时11ab>,故C 错误; 对于选项D :由不等式性质,可知D 正确. 故选:D.针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e--=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .40【答案】A 【解析】 【分析】根据()0.1f t =列式,并根据给出参考数据,结合指数函数的性质解相应的指数方程,即可得答案. 【详解】解:因为()0.1f t =,0.22(340)1()1t f t e--=+,所以0.22(340)10.11t e--=+,即0.22(340)011t e --=+,所以0.22(340)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈, 所以0.22(23).240t e e --≈,所以()0.22340 2.2t --≈,解得10t ≈. 故选:A.37.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天【答案】B 【解析】 【分析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为0 3.22R =,10T =,01R rT =+,所以可以得到01 3.2210.22210R r T --===0.2220(0)1I e ⨯==,由题意可知0.2224t e >,ln 42ln 220.696.20.2220.2220.222t ⨯>=≈≈ 所以至少需要7天,累计感染病例数增加至(0)I 的4倍 故选:B38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h【答案】C 【解析】 【分析】根据已知的函数模型以及已知数据,待定系数即可求得结果. 【详解】由题意知1080e b =,1010120e e e k b k b +==⋅,所以()21051201ee 10809kk===, 所以51e 3k =,所以151e 27k =,所以15151ee e 10804027k bk b +=⋅=⨯=. 故选:C .39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时【答案】D 【解析】 【分析】根据题意建立方程组,进而解出11e ,e b k ,然后将22代入即可求得答案. 【详解】由题意,331133e 1922411e e 19282e24b k k k b+⎧=⇒==⇒=⎨=⎩,所以该食品在22C ︒的保鲜时间是2222e e e 1192484k b k b +=⋅=⨯=.故选:D.40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-【答案】A 【解析】 【分析】把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+可求得实数k 的值.【详解】由题意,把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+中得2080e 2060k -+=,可得201e2k-=, 所以,20ln 2k -=-,因此,ln 220k =. 故选:A.。
课时规范练9 指数与指数函数基础巩固组1.(2019四川成都七中一模,2)设集合A=,B=,则A∩B=( ) A.(-1,2) B.[-1,2) C.(-1,2]D.[-1,2]2.化简√64x 12y 66(x>0,y>0)得( ) A.2x 2yB.2xyC.4x 2yD.-2x 2y3.(2019北京通州一模,2)已知c<0,则下列不等式中成立的是( ) A.c>2cB.c>(12)cC.2c >(12)cD.2c <(12)c4.(2019河北承德一中期中)设2x =8y+1,9y =3x-9,则x+y 的值为( ) A.18B.21C.24D.275.函数f (x )=a |2x-4|(a>0,a ≠1),满足f (1)=19,则f (x )的单调递减区间是( ) A.(-∞,2] B.[2,+∞) C.[-2,+∞)D.(-∞,-2]6.(2019黑龙江佳木斯一中调研二,5)设a=log37,b=21.1,c=0.81.1,则( ) A.b<a<c B.c<a<b C.c<b<aD.a<c<b7.(2019陕西西安一中月考)下列函数中,与函数y=2x-2-x 的定义域、单调性、奇偶性均一致的是( ) A.y=sin x B.y=x 3 C.y=(12)xD.y=log 2x8.若偶函数f (x )满足f (x )=2x -4(x ≥0),则{x|f (x-3)>0}=( ) A.{x|x<-3或x>5} B.{x|x<1或x>5} C.{x|x<1或x>7}D.{x|x<-3或x>3}9.(2019广东韶关一中期末)设x>0,且1<b x <a x ,则 ( )A.0<b<a<1B.0<a<b<1C.1<b<aD.1<a<b10.不等式恒建立,则a 的取值范围是 . 11.函数y=xa x|x |(0<a<1)图象的大致形状是( )综合提升组12.(2019福建厦门期末,3)实数x,y满足x>y,则下列不等式成立的是( )<1 B.2-x<2-yA.yxC.lg(x-y)>0D.x2>y213.(2019湖北龙泉中学六月模仿,9)已知a>b>0,x=a+beb,y=b+aea,z=b+aeb,则( )A.x<z<yB.z<x<yC.z<y<xD.y<z<x14.若存在正数x使2x(x-a)<1成立,则a的取值范围是()A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞)15.(2019福建泉州五中模拟)设a>0,且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,则实数a的值为.创新应用组16.(2019湖南衡阳八中模拟)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为( )17.(2019山西吕梁期末,20)已知定义域为R 的函数f(x)=是奇函数.(1)求实数m ,n 的值;(2)若对于任意的t∈[-1,1],不等式f(t2-2)+f(2a-at)≥0恒成立,求实数a 的取值范畴.参考答案课时规范练9 指数与指数函数1.A ∵集合A={x |2x >12},解得x>-1,B={x |x+1x -2≤0}={x|-1≤x<2},则A ∩B={x|-1<x<2},故选A . 2.A原式=(26x 12y 6)16=2x 2|y|=2x 2y.3.D 因为c<0,所以0<2c<1,(12)c>1,所以选项A,B,C 错,故选D .4.D 因为2x =8y+1=23(y+1),所以x=3y+3,因为9y =32y =3x-9,所以x-9=2y ,解得x=21,y=6,所以x+y=27. 5.B 由f (1)=19,得a 2=19.又a>0,∴a=13,即f (x )=13|2x-4|.∵y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,∴f (x )在(-∞,2]上递增,在[2,+∞)上递减,故选B .6.B ∵1<a=log 37<2,b=21.1>2,c=0.81.1<1,∴b>a>c.故选B .7.B y=2x-2-x 是定义域为R 的单调递增函数,且是奇函数.而y=sin x 不是单调递增函数;y=是非奇非偶函数;y=log 2x 的定义域是(0,+∞);只有y=x3是定义域为R 的单调递增函数,且是奇函数,符合题意.8.B ∵f (2)=0,∴f (x-3)>0等价于f (|x-3|)>0=f (2).∵f(x)=2x -4在[0,+∞)内为增函数,∴|x -3|>2,解得x<1或x>5.9.C 因为x>0时,1<b x,所以b>1.因为x>0时,b x<a x,所以x>0时,(a b )x>1.所以ab >1,所以a>b ,所以1<b<a.10.(-2,2) 由指数函数的性质知y=是减函数,由于恒建立,所以x 2+ax>2x+a-2恒成立, 所以x 2+(a-2)x-a+2>0恒成立,所以Δ=(a-2)2-4(-a+2)<0,即(a-2)(a+2)<0, 即a 的取值范围是(-2,2).11.D 函数定义域为{x|x∈R,x≠0},且y=当x>0时,函数是一个指数函数,∵0<a<1,∴函数在(0,+∞)上是减函数;当x<0时,函数图象与指数函数y=ax(x<0,0<a<1)的图象关于x轴对称,在(-∞,0)上是增函数,故选D.12.B 由题意,指数函数y=2x是定义域R上的单调递增函数,又由x>y,则-x<-y,所以2-x<2-y,故选B.13.A∵x=a+b e b,y=b+a e a,z=b+a e b,∴y-z=a(e a-e b).又a>b>0,e>1,∴e a>e b,∴y>z.z-x=(b-a)+(a-b)e b=(a-b)(e b-1).又a>b>0,e b>1,∴z>x.综上,x<z<y,故选A.14.D不等式2x(x-a)<1可变形为x-a<(12)x,如图,作出直线y=x-a与y=(12)x的图象.由题意,在(0,+∞)上,直线有一部分在曲线的下方.观察可知,有-a<1,所以a>-1.15.13或3令t=a x(a>0,且a≠1),则原函数化为y=f(t)=(t+1)2-2(t>0).①当0<a<1,x∈[-1,1]时,t=ax,此时f(t)在上为增函数.所以f(t)max=f-2=14.解得a=-15(舍去)或a=13.②当a>1时,x∈[-1,1],t=ax,此时f(t)在上是增函数.所以f(t)max=f(a)=(a+1)2-2=14,解得a=3或a=-5(舍去).综上,a=13或3.16.D 设原有荒漠化土地面积为b,经过x年后荒漠化面积为z,所以z=b(1+10.4%)x,故y==(1+10.4%)x(x≥0),是底数大于1的指数函数.因此y=f(x)的图象为选项D.17.解(1)∵f(x)是R上的奇函数,∴f(0)==0,∴n=1,∴f(x)=又f(1)=-f(-1),∴1-2 m+4=-1-12m+1,解得m=2,∴f(x)=1-2x2x+1+2.经验证可得函数f(x)为奇函数,∴n=1,m=2.(2)由(1)知f(x)==-,∴f(x)在(-∞,+∞)上为减函数.∵f(t2-2)+f(2a-at)≥0,∴f(t2-2)≥-f(2a-at),又f(x)是奇函数,∴f(t2-2)≥f(at-2a),又f(x)为减函数,∴t2-2≤at-2a对任意的t∈[-1,1]恒成立.∴t2-at+2a-2≤0对任意的t∈[-1,1]恒成立.令g(t)=t2-at+2a-2,则{g(-1)=1+a+2a-2=3a-1≤0, g(1)=1-a+2a-2=a-1≤0,解得a≤1 3 .∴实数a的取值范围为(-∞,13].。
高中数学对数函数指数函数经典题型练习一、选择题1.(多选题)设a,b,c为实数且a>b,则下列不等式一定成立的是()A.1a >1bB.2020a-b>1C.lna>lnb D.a(c²+1)>b(c²+1)2.已知函数f(x)=ln(x+√x²+1)+1,若正实数a,b满足分f(4a)+f(b-1)=2,则1a+1b的最小值为()A.4 B.8C.9 D.133.已知函数,g(x)=f(x)- x+a,若g(x)恰有3个零点,则实数a的取值范围是()A.a<-1 B.a>0C.-1<a<0 D.a>14.(多选题)已知a>b>0,且a+b=1,则()A.loga b>logba B.2a+1b>6C.ab<ba D.2a-2b>2-b-2-a5.下列函数中,其图象与函数y=ln(x+1)的图象关于直线x=1对称的是()A.y=ln(1-x) B.y=ln(3-x)C.y=ln(1+x) D.y=ln(3+x)6.已知a=243,b=e13ln3 ,c=323,则()A. c<b<aB. b<c<aC. c<a<bD. b<a<c7.若t=log2x=log3y=log5z ,且t<-2则()A.5z<2x<3yB.5z<3y<2xC.3y<2x<5zD. 2x<3y<5z8.已知函数f(x)=log 13(-x²+2x+3),则f(x)的递减区间是()A.(-∞,1) B.(-3,-1)C.(-1,1)D.(1,﹢∞)9.已知x=20.2,y=log20.2,z=0.20.3则下列结论正确的是()A.x<y<zB.y<z<xC.z<y<xD.z<x<y10函数f(x)=2x +log12x -3的零点所在区间()A.(0,1)B.(1,2)C. (2,3)D.(3,4)11.已知函数f(x)={|log2x|,0<x≤8−12x+5, x>8,若a、b、c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A. (5,10)B. (5,8)C. (6,8)D. (8,10)12.若,,,则三个数的大小关系是A. B.C. D.13已知,则之间的大小关系是()A. B.C. D.14.设,,,则()A. B.C. D.15.函数的定义域是( )A. B.C. D.16.计算(lg2)2+(lg5)2+lg4•lg5等于()A. 0B. 1C. 2D. 317.函数的单调递减区间为()A. B.C. D.18.函数(a>0且a≠1)一定经过的定点是( )A.(0,1)B.(1,3)C.(1,2)D.(1,1)19.已知是定义在上的奇函数,且当时,,则()20.已知,,,则的大小关系是()A. B.C. D.二、填空题1..2.函数的值域是________.3.已知函数,则______.4.———.5.函数的单调递增区间为______________.三、计算题1.化简、计算:(1)(2)2.求的值.四、解答题1.计算下列各式的值:(1);(2).2.已知函数,且.(1)求使成立的的值;(2)若,试判断函数的奇偶性.参考答案一、选择题1、【答案】BD【解】对于,若,则,所以错误;对于,因为,所以,故正确;对于,函数的定义域为,而,不一定是正数,所以错误;对于,因为,所以,所以正确.故选:BD2、【答案】C【解】解:由函数,设,知,所以是奇函数,则,又因为正实数,满足,,所以,,当且仅当,时取到等号.故选:C.3、【答案】D【解】由恰有个零点,即方程恰有个实数根.即函数的图像与的图像有三个交点,如图.与函数的图像恒有一个交点,即函数与有两个交点.设与函数相切于点,由所以,得,所以切点为,此时,切线方程为将向下平移可得与恒有两个交点,所以故选:D4、【答案】ABD【解】A.由已知可得,由对数函数性质可知y=logax,y=logbx为单调递减函数,因为a>b>0,,,所以logab>logba,正确;B. 由a>b>0,a+b=1,所以,正确;C. 由已知可得,由指数函数性质可知都是单调递减函数,幂函数是单调递减函数,因为a>b>0,,错误;D.令,由知为偶函数,当时,令,,,,所以,所以当时,是单调递增函数,因为a>b>0,所以. 2a+2-a >2b +2-b,即2a-2b>2-b-2-a,正确.故选:A B D.5、【答案】B【解】设为所求曲线上一点,关于对称点,,与关于对称,故选:B.6、【答案】B【解】由题意,,因为函数在上单调递增,所以,即.故选:B.7、【答案】B【解】,,,,单调递减,,.故选:.8、【答案】C【解】令,则是上的减函数,而的递增区间是,根据复合函数的同增异减原则知,的递减区间是,故选C.9、【答案】B【解】∵x=20.2>20=1,=0,,∴y<z<x.故选:B.10、【答案】B【解】由题意,可得函数在定义域上为增函数,,,所以,根据零点存在性定理,的零点所在区间为故选B.11、【答案】D【解】函数的图像如图所示:不相等,令,因为,由图知:,解得.又因为,所以.故选12、【答案】C13、【答案】D14、【答案】A15、【答案】D【解】:可因式分解为,则或解得或,所以函数的定义域为.16、【答案】B17、【答案】A18、【答案】B19、【答案】C20、【答案】B二、填空题1、2、3、解:. 4、5、三、计算题1、(1)π(2)52、原式.四、解答题1、解:(1)(2)2、(1)由可求得,再由可得,进一步求解即可;(2)先判断函数的定义域,再结合奇偶函数的判定性质证明即可;【详解】(1)由,∴可化,∴或,均符合.(2)∵,定义域关于原点对称,∴,因此是奇函数.。
高中数学:指数函数的图像和性质练习及答案指数函数的图象与性质1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-25.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.指数函数的定义域7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( ) A.(0,1)B.(2,4)C.(,1)D.(1,2)8.函数y=的定义域是________.指数函数的值域9.函数y=的值域为________.10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.指数函数的性质11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)指数幂的大小比较14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()指数方程的解法17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.指数不等式的解法20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( ) A.a>0B.a>1C.a<1D.0<a<122.不等式<2-2x的解集是________.指数函数的单调性23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( ) A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)26.函数y=的递增区间是________.27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.指数函数的最值28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.429.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a233.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.答案1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d【答案】A【解析】作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<d<c.故选A.2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.【答案】C【解析】由1>n>m>0可知①②应为两条递减指数函数曲线,故只可能是选项C或D,进而再判断①②与n和m的对应关系,不妨选择特殊点,令x=1,则①②对应的函数值分别为m和n,由m<n知选C.故选C.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.【答案】D【解析】当a>1时,y=a x-为增函数,且在y轴上的截距为0<1-<1,排除A,B.当0<a<1时,y=a x-为减函数,且在y轴上的截距为1-<0,故选D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-2【答案】C【解析】y=2x向上,向右分别平移2个单位得f(x)的图象,所以f(x)=2x-2+2.5.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)【答案】D【解析】方程|a x-1|=2a(a>0且a≠1)有两个不相等的实数根转化为函数y=|a x-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.【答案】(1)f(x)=其图象如图所示.(2)证明由图知,f(x)在(-∞,1]上是减函数,在[1,+∞)上是增函数,故结合条件知必有a<1.若c≤1,则2a<2,2c≤2,所以2a+2c<4;若c>1,则由f(a)>f(c),得1-2a-1>2c-1-1,即2c-1+2a-1<2,所以2a+2c<4.综上知,总有2a+2c<4.7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( )A.(0,1)B.(2,4)C.(,1)D.(1,2)【答案】A【解析】根据题意可知1<2x<2,则0<x<1,所以函数f(2x)的定义域是(0,1).8.函数y=的定义域是________.【答案】(-∞,]【解析】要使函数y=有意义,则必须()3x-1-≥0,即()3x-1≥()3,∴3x-1≤3,解得x≤.∴函数y=的定义域是(-∞,].故答案为(-∞,].9.函数y=的值域为________.【答案】[0,4)【解析】∵2x>0,∴0≤16-2x<16,则0≤<4,故函数y=的值域为[0,4).10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.【答案】[3,5]【解析】因为指数函数y=3x在区间[0,1]上是增函数,所以30≤3x≤31,即1≤3x≤3,于是1+2≤3x+2≤3+2,即3≤f(x)≤5.11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数【答案】B【解析】因为f(x),g(x)的定义域均为R,且f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)为偶函数,g(x)为奇函数,故选B.12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).【答案】③④【解析】①指数函数的定义域为R,故①错误;②指数函数的值域是(0,+∞),故②错误;③∵f(x)=()x=2-x,∴指数函数f(x)=2x和f(x)=()x关于y轴对称,故③正确;④当a>1时,y=ax是增函数;当0<a<1时,y=ax是减函数,所以指数函数都是单调函数,故④正确.故答案为③④.13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)【答案】=【解析】∵对于指数函数f(x)=a x(a>0,a≠1),任意取x 1、x2∈R,有f(x1)f(x2)===f(x1+x2).故答案为=.14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定【答案】A【解析】考察函数y=()x与y=()x知,前者是一个增函数,后者是一个减函数,∴>()0=1,()5<()0=1,∴>()5,即a>b,故选A.15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a【答案】C【解析】∵<()b<()a<1,且y=()x在R上是减函数.∴0<a<b<1,∴指数函数y=a x在R上是减函数,∴a b<a a,∴幂函数y=x a在R上是增函数,∴a a<b a,∴a b<a a<b a,故选C.16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()【答案】B【解析】∵y=f(x+1)是偶函数,故函数的图象关于直线x=1对称,则f()=f(),f()=f(),又∵当x≥1时,f(x)=3x-1为增函数,且<<,故f()<f()<f(),即f()<f()<f(),故选B.17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}【答案】D【解析】因为2是它们的公共元素,所以2a=2,a=1,b=2,因此M∪N={1,2,3},选D.18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.【答案】(3,0),(2,2)【解析】方程2m·3n-3n+1+2m=13变形为3n(2m-3)+2m=13.(*)∵m,n为非负整数,∴当m=0,1时,经验证无解,应舍去.当m=2时,(*)化为3n+22=13,解得n=2.此时方程的非负整数解为(2,2).当m=3时,(*)化为5·3n+23=13,即3n=1,解得n=0.当m≥4时,2m-3≥13,左边>右边,(*)无非负整数解.综上可知:方程2m·3n-3n+1+2m=13的非负整数解(m,n)=(3,0),(2,2).故答案为(3,0),(2,2).19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.【答案】(-3,0)【解析】令()x=t,∵方程有正根,∴t∈(0,1).方程转化为t2+2t+a=0,∴a=1-(t+1)2.∵t∈(0,1),∴a∈(-3,0).20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<【答案】A【解析】由题意可得≤3x≤33,再根据函数y=3x在R上是增函数,可得-≤x<3,故选A.21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( )A.a>0B.a>1C.a<1D.0<a<1【答案】D【解析】∵f(-2)=a2,f(-3)=a3.f(-2)>f(-3),即a2>a3,故0<a<1.选D.22.不等式<2-2x的解集是________.【答案】{x|x>3,或x<-1}【解析】原不等式化为<()2x,又y=()x为减函数,故x2-3>2x,解得{x|x>3,或x<-1}.23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)【答案】B【解析】设u=(x+3)2,y=()u,∵u=(x+3)2在(-∞,-3]上递减,在[-3,+∞)上递增,而y=()u在R上递减,∴y=在[-3,+∞)上递减.24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( )A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)【答案】B【解析】由题意知函数为指数函数,且为实数集R上的增函数,所以底数1-2a>1,解得a<0.25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)【答案】D【解析】因为函数f(n)=是增函数,所以解得4<a<8.26.函数y=的递增区间是________.【答案】[2,+∞)【解析】函数y=的单调递增区间即为y=x2-4x+3的单调递增区间,∵y=x2-4x+3的单调递增区间为[2,+∞),故答案为[2,+∞).27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.【答案】(1)a=1,得f(x)=,∵∈(0,1),∴f(x)的外层函数是一个递减的指数函数;令t=x2-4x+3,则其减区间为(-∞,2),增区间为(2,+∞).∴f(x)的增区间为(-∞,2),减区间为(2,+∞)(2)∵f(x)有最大值为3,∈(0,1),函数t=ax2-4x+3有最小值-1,∴函数t=ax2-4x+3在区间(-∞,)上是减函数,在区间(,+∞)上是增函数由此可得,a>0且f()==3,得-+3=-1,解之得a=1.综上所述,当f(x)有最大值3时,a的值为1.28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.4【答案】B【解析】y=a x(a>1)在[1,2]上是增函数,最大值为a2,最小值为a1,所以a2-a1=2,解得a=2或a=-1(舍).29.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.【答案】令3x=t,∵-1≤x≤1,∴≤t≤3,∴y=t2-2t-1=(t-1)2-2(其中≤t≤3).∴当t=1时(即x=0时),y取得最小值-2,当t=3时(即x=1时),y取得最大值2. 30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.【答案】(1)∵t=3x在[-1,2]是单调增函数,∴t max=32=9,t min=3-1=.(2)令t=3x,∵x∈[-1,2],∴t∈[,9],原方程变为:f(x)=t2-2t+4,∴f(x)=(t-1)2+3,t∈[,9],∴当t=1时,此时x=0,f(x)min=3,当t=9时,此时x=2,f(x)max=67.题组10 与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称【答案】A【解析】设函数y=f(x)=,则此函数的定义域为R.f(-x)===-f(x),故函数是奇函数,故它的图象关于原点O对称,故选A.32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a2【答案】B【解析】∵f(x)是奇函数,g(x)是偶函数,∴由f(x)+g(x)=ax-a-x+2,①得f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2,②①+②,得g(x)=2,①-②,得f(x)=ax-a-x.又g(2)=a,∴a=2,∴f(x)=2x-2-x,∴f(2)=22-2-2=.33.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.【答案】(1)由已知得∴k=1,a=,∴f(x)=2x.(2)函数g(x)为奇函数.证明:g(x)=,其定义域为R,又g(-x)===-=-g(x),∴函数g(x)为奇函数.。
第05讲指数与指数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:指数与指数幂的运算高频考点二:指数函数的概念高频考点三:指数函数的图象①判断指数型函数的图象;②根据指数型函数图象求参数③指数型函数图象过定点问题;④指数函数图象应用高频考点四:指数(型)函数定义域高频考点五:指数(型)函数的值域m n上的值域;②指数型复合函数值域①指数函数在区间[,]③根据指数函数值域(最值)求参数高频考点六:指数函数单调性①判断指数函数单调性;②由指数(型)函数单调性求参数③判断指数型复合函数单调性;④比较大小⑤根据指数函数单调性解不等式高频考点七:指数函数的最值①求已知指数型函数的值域②根据指数函数最值求参数③含参指数(型)函数最值第四部分:高考真题感悟第五部分:第05讲指数与指数函数(精练)1、根式的概念及性质(1)概念:叫做根式,其中n 叫做根指数,a 叫做被开方数. (2)性质:①n a =(n N *∈且1n >);②当n a =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩ 2、分数指数幂①正数的正分数指数幂的意义是mna =0a >,,m n N *∈,且1n >);②正数的负分数指数幂的意义是m na-=(0a >,,m n N *∈,且1n >);③0的正分数指数幂等于0;0的负分数指数幂没有意义.3、指数幂的运算性质①(0,,)rsr sa a aa r s +=>∈R ;②()(0,,)r s rsa a a r s =>∈R ; ③()(0,0,)rr rab a b a b r =>>∈R .4、指数函数及其性质(1)指数函数的概念函数()xf x a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,函数的定义域是R .(2)指数函数()xf x a =的图象和性质定义域为R ,值域为(0,)+∞一、判断题1.(2021·江西·贵溪市实验中学高二阶段练习)函数()11x f x a -=+(0a >且1a ≠)的图象必过定点()1,2( )2.(2021·江西·贵溪市实验中学高二阶段练习)11121321a ba( ) 二、单选题1.(2022·宁夏·银川一中高二期末(文))函数()e 1x f x =+在[1,1]-的最大值是( ) A .eB .e 1-+C .e 1+D .e 1-2.(2022·江苏南通·高一期末)已知指数函数()x f x a -=(0a >,且1a ≠),且()()23f f ->-,则a 的取值范围( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0∞-3.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)-B .(1,0)C .(0,0)D .(0,1)-4.(2022·河北廊坊·高一期末)指数函数()()1xf x a =-在R 上单调递减,则实数a 的取值范围是( ) A .()2,1--B .()2,+∞C .(),2-∞-D .()1,25.(2022·北京·高三专题练习)若函数()21x y m m m =--⋅是指数函数,则m 等于( )A .1-或2B .1-C .2D .12高频考点一:指数与指数幂的运算1.(2022·广东肇庆·高一期末)设62m =,63n =,则222m n mn ++=( ) A .12B .1C .2D .32.(2022·上海杨浦·高一期末)设0a >,下列计算中正确的是( ) A .4334a a a ⋅= B .4334a a a ÷= C .4334a a ⎛⎫= ⎪⎝⎭D .4 334a a -⎛⎫= ⎪⎝⎭3.(2022·广东深圳·高一期末)下列根式与分数指数幂的互化正确的是( ) A .()12x -B .)340xx ->C 13y =D .()31420x x ⎤=<4.(2022·全国·高三专题练习)化简2112333324()3a b a b --⋅÷-的结果为( )A .-23ab B .-8a bC .-6a bD .-6ab高频考点二:指数函数的概念1.(2022·浙江·高三专题练习)函数()(0x f x a a =>,且a ≠1)的图象经过点13,27P ⎛⎫⎪⎝⎭,则f (-2)= ( )A .19B C .13D .92.(2022·黑龙江·嫩江市第一中学校高一期末)已知指数函数()2()253xf x a a a =-+在R 上单调递增,则a的值为( ) A .3B .2C .12D .323.(2022·全国·高一课时练习)函数()2xy a a =-是指数函数,则( ) A .1a =或3a =B .1a =C .3a =D .0a >且1a ≠4.(2022·浙江·高三专题练习)若指数函数x y a =在[-1,1]上的最大值与最小值的差是1,则底数a 等于A B CD 高频考点三:指数函数的图象①判断指数型函数的图象1.(2022·上海市复兴高级中学高一阶段练习)函数3x y -=的大致图像是( )A .B .C .D .2.(2022·上海市进才中学高二阶段练习)函数(01)||xxa y a x =<<的图像的大致形状是( ) A . B .C .D .3.(2022·全国·高三专题练习)已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( ).A .B .C .D .4.(2022·全国·高三专题练习(文))函数(0,1)x y a a a a =->≠的图象可能是 ( )A .B .C .D .②根据指数型函数图象求参数1.(2022·全国·高三专题练习)函数()b x f x a -=的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b <D .01a <<,0b >2.(2022·全国·高三专题练习)函数(0,1)x y a a a =>≠与b y x =的图象如图,则下列不等式一定成立的是( )A .0a b >B .0a b +>C .log 2a b >D .1b a >3.(2021·全国·高一专题练习)函数()x b f x a -=的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .1a >,0b <B .1a >,0b >C .01a <<,0b >D .01a <<,0b <4.(2021·全国·高一专题练习)若函数()x f x a b =-的图象如图所示,则( )A .1a >,1b >B .1a >,01b <<C .01a <<,1b >D .01a <<,01b <<③指数型函数图象过定点问题1.(2022·吉林·长春市第二中学高一期末)函数()21(0x f x a a +=->且1)a ≠的图象恒过定点( )A .(-2,0)B .(-1,0)C .(0,-1)D .(-1,-2)2.(2022·全国·高三专题练习)若函数12x y a -=+过定点P ,以P 为顶点且过原点的二次函数()f x 的解析式为( )A .()236f x x x =-+ B .()224f x x x =-+ C .()236f x x x =-D .()224f x x x =-3.(2022·河南焦作·高一期末)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-4.(2022·全国·高三专题练习)已知函数5()4x f x a +=+(0a >,1a ≠)恒过定点(,)M m n ,则函数()x g x m n =+的图像不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限④指数函数图象应用1.(2021·重庆市涪陵第二中学校高一阶段练习)函数1()(0,1)x f x a a a a=->≠的图象可能是( )A .B .C .D .2.(2021·全国·高一课时练习)函数()(0x f x a a =>,且1a ≠)与()g x x a =-+的图像大致是A .B .C .D .3.(2021·全国·高一课时练习)若1a >,10b -<<,则函数x y a b =+的图像一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第二、三、四象限D .第一、二、四象限高频考点四:指数(型)函数定义域1.(2022·全国·高三专题练习)函数()f x = ) A .[)1,+∞B .1,2⎡⎫+∞⎪⎢⎣⎭C .(),1-∞-D .(),2-∞-2.(2022·全国·高三专题练习)函数()22f x x =-的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞3.(2021·江苏·高一专题练习)函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1D .a ≠14.(2021·广西河池·高一阶段练习)设函数()f x 2x f ⎛⎫ ⎪⎝⎭的定义域为( )A .(],4∞-B .(],1-∞C .(]0,4D .(]0,1高频考点五:指数(型)函数的值域①指数函数在区间[,]m n 上的值域1.(2022·全国·高一)当x ∈[-1,1]时,函数f (x )=3x -2的值域为________2.(2022·全国·高三专题练习)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.3.(2022·全国·高三专题练习)已知函数()2421x x f x a =⋅--.当1a =时,求函数()f x 在[]3,0x ∈-的值域;4.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax x g x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围.②指数型复合函数值域1.(2022·山西·临汾第一中学校高一期末)函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,22.(2022·湖南邵阳·高一期末)函数2212x y -⎛⎫= ⎪⎝⎭的值域为______.3.(2022·全国·高三专题练习)函数1()41(0)2xxf x x -⎛⎫=++≥ ⎪⎝⎭的值域是___________.4.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值.5.(2022·全国·高三专题练习)已知函数()24x x f x =-.(1)求()y f x =在[]1,1-上的值域;③根据指数函数值域(最值)求参数1.(2022·广东湛江·高一期末)已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[1,0]-,则a b +=( ) A .32-B .1-C .1D .322.(2022·辽宁鞍山·高一期末)若函数()f x =的值域为[0,)+∞,则实数a 的取值范围是( )A .12⎧⎫⎨⎬⎩⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎤-∞ ⎥⎝⎦D .[0,)+∞3.(2022·全国·高一)已知函数()(0xf x a a =>且1)a ≠在区间[]1,2上的最大值比最小值大2a ,求a 的值.4.(2022·湖南·高一期末)已知函数()245x xf x a a =+-.(1)求()f x 的值域;(2)当[]1,2x ∈-时,()f x 的最大值为7,求a 的值.5.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.高频考点六: 指数函数单调性①判断指数函数单调性1.(2022·广西南宁·高一期末)设函数()122xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在()0,+∞单调递增B .是偶函数,且在()0,+∞单调递减C .是奇函数,且在()0,+∞单调递增D .是奇函数,且在()0,+∞单调递减2.(2022·福建宁德·高一期末)已知()21x b f x a =-+是R 上的奇函数,且()113f =. (1)求()f x 的解析式;(2)判断()f x 的单调性,并根据定义证明.3.(2021·贵州·六盘水红桥学校高一阶段练习)若函数()(3)3(1)x f x k a b a =++->是指数函数 (1)求k ,b 的值;(2)求解不等式(27)(43)f x f x ->-4.(2021·全国·高一期末)设函数2()12xx f x a =++,(1)判断()f x 的单调性,并证明你的结论;②由指数(型)函数单调性求参数1.(2022·辽宁朝阳·高一开学考试)若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫ ⎪⎝⎭2.(2022·内蒙古·赤峰二中高一期末(文))若函数()33,0,0xx a x f x a x -+-<⎧=⎨⎩是R 上的减函数,则实数a 的取值范围是___.3.(2022·河北张家口·高一期末)已知函数()()2,1,32,1x a x x f x a x -⎧-<=⎨⋅-≥⎩在R 上单调递减,则实数a 的取值范围是______.4.(2022·湖南·高一课时练习)若函数2()2535xm y m m ⎛⎫- ⎝=+⎪⎭-是指数函数,且为指数增长型函数模型,则实数m =________.5.(2022·安徽·歙县教研室高一期末)若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.6.(2022·湖南·高一课时练习)若函数()()28xf x a =-是区间(),-∞+∞上的减函数,求实数a 的取值范围.③判断指数型复合函数单调性1.(2022·安徽省蚌埠第三中学高一开学考试)函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭2.(2022·河南·商丘市第一高级中学高一开学考试)已知函数()24,18,1x x ax x f x a x ⎧-+≤=⎨+>⎩,且对于任意的12,x x ,都有()()()1212120f x f x x x x x ->≠-,则实数a 的取值范围是( )A .(]1,2B .(]1,3C .[)1,+∞D .1,2⎡⎫+∞⎪⎢⎣⎭3.(2022·宁夏·吴忠中学高一期末)已知函数2251()2x x f x -+⎛⎫= ⎪⎝⎭在(),a +∞上单调递减,则实数a 的取值范围是______.4.(2022·河南·林州一中高一开学考试)已知函数2()21x x af x +=+是奇函数.(1)求a 的值;(2)判断并证明函数()f x 的单调性.④比较大小1.(2022·广东汕尾·高一期末)若1312a ⎛⎫= ⎪⎝⎭,1314b ⎛⎫= ⎪⎝⎭,1412c ⎛⎫= ⎪⎝⎭,则( )A .c a b >>B .c b a >>C .b c a >>D .a b c >>2.(2022·陕西·略阳县天津高级中学高三阶段练习(文))设233a =,1413b ⎛⎫= ⎪⎝⎭,133c =,则a ,b ,c 的大小关系是( ) A .b c a >>B .a b c >>C .c a b >>D .a c b >>3.(2022·福建三明·高一期末)已知0.20.30.30.30.2,2,a b c ===,则它们的大小关系是( ) A .a b c <<B .b a c <<C .c a b <<D .b c a <<4.(2022·海南·模拟预测)设0.22e a -=,0.2e b =, 1.2c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c b a <<⑤根据指数函数单调性解不等式1.(2022·全国·高一)若1()273x >,则x 的取值范围是______.2.(2022·海南鑫源高级中学高一期末)已知不等式124x ->的解集是__________.3.(2022·福建·莆田一中高一开学考试)已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数a 满足()(212a f f ->,则a 的取值范围是______.4.(2022·福建福州·高一期末)已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()23x f x =+.(1)求()f x 的解析式; (2)解不等式()()22f x f x ≥.高频考点七:指数函数的最值①求已知指数型函数的值域1.(2022·新疆·石河子第二中学高二阶段练习)已知函数4()f x x x =+,()2x g x a =+,若11,12x ⎡⎤∀∈⎢⎥⎣⎦,2[2,3]x ∃∈,使得()()12f x g x ,则实数a 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[3,)-+∞D .[1,)+∞2.(2022·北京·高三学业考试)已知函数()2x f x =,[0,)x ∈+∞,则()f x ( ) A .有最大值,有最小值 B .有最大值,无最小值 C .无最大值,有最小值D .无最大值,无最小值3.(2022·全国·高三专题练习(文))设函数1()422x x f x +=-+,则(1)f =________;函数()f x 在区间[1,2]-的最大值为_________.4.(2022·贵州贵阳·高一期末)已知函数2()35,()2x f x x x g x a =-++=+,若12[0,2],[2,3]x x ∀∈∃∈,使得()()12f x g x <,则实数a 的取值范围是___________.5.(2022·甘肃·兰州一中高一期末)已知02x ≤≤,则函数124325x x y -=-⨯+的最大值为__________.②根据指数函数最值求参数1.(2022·辽宁·渤海大学附属高级中学高一期末)若函数()213ax a f x +⎛⎫= ⎪⎝⎭在[)1,+∞上有最大值19,则实数a的值为( ) A .1B .2-C .1或2-D .1或1-2.(多选)(2022·江苏常州·高一期末)若函数()xf x a =(0a >且1a ≠)在区间[]22-,上的最大值和最小值的和为103,则a 的值可能是( )A .13B CD .33.(2022·上海虹口·高一期末)已知函数x y a =(0a >且1a ≠)在[]1,2的最大值与最小值之差等于2a,则实数a 的值为______.4.(2022·青海·海南藏族自治州高级中学高一期末)已知指数函数()x f x a =(0a >且1a ≠)在区间[]2,3上的最大值是最小值的2倍,则=a ______.5.(2022·全国·高三专题练习)若函数()0,1xy a a a =>≠在区间[]1,2上的最大值和最小值之和为6,则实数=a ______.6.(2022·湖南·高一课时练习)若函数()22x x f x a a =+-(0a >且1a ≠)在区间[]1,0-上的最小值为54-,求a 的值.③含参指数(型)函数最值1.(2022·全国·高三专题练习)如果函数y =a 2x +2ax -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.2.(2022·宁夏吴忠区青铜峡市教育局高一开学考试)已知函数()1423x x f x a +=⋅--.(1)当1a =时,求函数()f x 的零点;(2)若0a >,求()f x 在区间[]1,2上的最大值()g a .3.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+. (1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值; (2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.4.(2022·全国·高一课时练习)求函数2()2x x f x e e =-的最值.1.(2020·山东·高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .2.(2021·湖南·高考真题)已知函数()2,0282,24x x f x x x ⎧≤≤=⎨-<≤⎩(1)画出函数()f x 的图象; (2)若()2f m ≥,求m 的取值范围.一、单选题1.(2022·江苏江苏·一模)设全集U =R ,集合{}21A x x =-≤,{}240x B x =-≥,则集合()UAB =( )A .()1,2B .(]1,2C .[)1,2D .[]1,22.(2022·河南·模拟预测(文))已知58a =,45b =,则ab =( ) A .2B .32C .43D .13.(2022·辽宁朝阳·高二开学考试)已知函数()x x f x ππ-=-,若32(2)2a fb fc f ===,则a ,b ,c 的大小关系为( ) A .a b c >>B .a b c >>C .c b a >>D .b c a >>4.(2022·四川宜宾·二模(文))物理学家和数学家牛顿(IssacNewton )提出了物体在常温下温度变化的冷却模型:设物体的初始温度是1T (单位:℃),环境温度是0T (单位:℃),且经过一定时间t (单位:min )后物体的温度T (单位:℃)满足10e kt T T T T -=-(k 为正常数).现有一杯100℃热水,环境温度20℃,冷却到40℃需要16min ,那么这杯热水要从40℃继续冷却到30℃,还需要的时间为( ) A .6minB .7minC .8minD .9min5.(2022·湖北·石首市第一中学高一阶段练习)已知函数211()3x f x -⎛⎫= ⎪⎝⎭,则不等式()f x ≥( ) A .1,6⎡⎫+∞⎪⎢⎣⎭B .1,6∞⎛⎤- ⎥⎝⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞- ⎥⎝⎦6.(2022·河南·模拟预测(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x xf x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为( ) A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞7.(2022·云南玉溪·高一期末)函数||()2x f x =,4()g x x =,则函数()()y f x g x =+的图象大致是( )A .B .C .D .8.(2022·全国·高三专题练习)已知432a =,254b =,1325c =,则( ) A .b a c << B .a b c << C .b c a << D .c a b <<二、填空题9.(2022·江苏连云港·二模)函数()1293x x f x -=+的最小值是___________.10.(2022·全国·高一)下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是________. (填序号)①()12f x x =;②()3f x x =;③()12xf x ⎛⎫= ⎪⎝⎭;④f (x )=3x11.(2022·江西宜春·高三期末(文))高斯是德国著名的数学家,近代数学莫基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设R x ∈,用[x ]表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74 2.32-=-=,.已知()112x x e f x e =-+,则函数()y f x ⎡⎤=⎣⎦的值域为_________.12.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x的取值范围是________ 三、解答题13.(2022·湖南·高一课时练习)已知1x >,且13x x -+=,求下列各式的值: (1)1122x x -+; (2)1122x x --; (3)3322x x -+.14.(2022·贵州·凯里一中高一开学考试)已知函数()f x 是定义在[2,2]-上的奇函数,且(]0,2x ∈时,()21x f x =-,()22g x x x m =-+.(1)求()f x 在区间[)2,0-上的解析式;(2)若对[]12,2x ∀∈-,则[]22,2x ∃∈-,使得()()12f x g x =成立,求m 的取值范围.15.(2022·河南·高一阶段练习)已知函数()24x m x f x +=-.(1)当0m =时,求关于x 的不等式()2f x >-的解集;(2)若对[]0,1x ∀∈,不等式()22xf x m >-⋅恒成立,求实数m 的取值范围.16.(2022·辽宁丹东·高一期末)已知函数()22x x af x a-=+是奇函数.(1)求实数a 的值; (2)求()f x 的值域.。
2023年高中数学【指数函数的定义、解析式、定义域和值域】专题练习卷二考试总分:188 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 11 小题 ,每题 3 分 ,共计33分 )1. 指数函数在上的最大值与最小值的和为,则( )A.B.C.或D.2. 已知集合,,则 A.B.C.D.3. 令,,,则三个数,,的大小顺序是 A.B.C.D.4. 设集合,,则 A.B.C.y =b ⋅a x [b,2]6a =12−32−32A ={x |y =(x −1)}log 2B ={y |y =+1,x ∈A}2x A ∩B =()φ(1,3)(3,+∞)(1,+∞)a =60.7b =0.76c =6log 0.7a b c ()b <c <ab <a <cc <a <bc <b <aS ={y |y =−2,x ∈R}e x T ={x |−4≤x ≤1}S ∪T =()[−4,+∞)(−2,+∞)[−4,1](−2,1]D.5. 已知 ,则A.B.C.D.6. 函数是指数函数,则的值为( )A.B.C.或D.不确定7. 定义在上的函数满足,当时,,则 A.B.C.D.8. 设,若仅有一个常数使得对于任意的,都有满足方程,这时的取值为( )A.B.C.D.9. 函数是指数函数,则有( )A.或B.C.(−2,1]a =0.2,b =,c =log 220.20.20.3()a <b <ca <c <bc <a <bb <c <ay =(−3a +3)a 2a x a 1212R f(x)f(−x)=−f(x)x <0f(x)=(13)x f()=(12)3–√33–√−3–√9a >1c y ∈[a,2a]x ∈[a,]a 2x +y =c log a log a a +c 3456y =(−5a +5)a 2a x a =1a =4a =1a =4a ≠1D.,且10. 已知集合,,则 A.B.C.D.11. 设,若仅有一个常数使得对于任意的,都有满足方程,则的取值集合为( )A.B.C.D.二、 多选题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )12. 若函数,且是指数函数,则下列说法正确的是( )A.=B.=C.D.=E.=13. 下列命题中的真命题是( )A.,B.,C.,D.,a >0a ≠1M ={x |x <1}N={x |>1}2x M ∩N =()∅{x |x <0}{x |x <1}{x |0<x <1}a >1c x ∈[a,]a 2y ∈[1+ 2−,2−a]log a a 3=c a x a y a {4}{,2}32{2}{}32(a >0a ≠1)a 8f(0)−3a 4f(2)16∀x ∈R ≥0x 2∀x ∈R >02x−1∃x ∈R lgx <1∃x ∈R sin x +cos x =2(x)=(a −3)⋅(a >0114. 若函数,且)是指数函数,则下列说法正确的是( )A.B.C.D.卷II (非选择题)三、 填空题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )15. 集合为函数的值域,集合为函数的值域,则________.16. 函数=,的值域为________.17. 函数的定义域是,且最大值与最小值的差为,则________.18. 函数的值域是________.19. 函数的定义域是________;值域是________.20. 已知指数函数且的图象过点,则________.21. 已知函数是指数函数,且当时,,则实数的取值范围是________.22. 已知的值域为________.23. 函数的定义域是________.24. 函数的值域为________.f(x)=(a −3)⋅(a >012a x a ≠1a =8f (0)=−3f ()=2122–√a =4A y =(x ≠0)2x −1x B y =(−1(x ∈R)13)x A ∩B =y (12)x (x ≥0)y =(a >1)a x [−1,1]1a =y =(x ∈R)1−2x −−−−−√y =1−(12)x −−−−−−−√y =(a >0a x a ≠1)(2,9)a =y =(a −1)x x <0y >1a f(x)=−1e x +1e x y =(−12)3x−118−−−−−−−−−−√f(x)=(12)x √{x |<2011}⊆(−∞,a)2x25. 若集合,则整数的最小值为________.26. 若函数的图象与轴有公共点,则的取值范围是________.四、 解答题 (本题共计 11 小题 ,每题 10 分 ,共计110分 )27. 已知幂函数,且在上单调递增.(1)求实数的值;(2)若,求实数的取值范围. 28. 漳州市某研学基地,因地制宜划出一片区域,打造成“生态水果特色区”.经调研发现:某水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,且单株施用肥料及其它成本总投入为元.已知这种水果的市场售价大约为元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).求函数的解析式;当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?29. 已知指数函数 的图象经过点,且函数 的图象与 的图象关于轴对称.求函数的解析式;若,求的取值范围.30. 函数 的图像恒过定点,且点在指数函数 的图像上,则 ________. 31. 设的定义域是,且对任意不为零的实数都满足.已知当时(1)求当时,的解析式(2)解不等式. 32. 已知命题,;命题:函数在区间上为减函数.若命题为真命题,求实数的取值范围;若命题"或"为真命题,且“且”为假命题,求实数的取值范围.33. 已知函数的图象经过点,其中且.求的值;求函数的值域.34. 一工厂计划生产某种当地政府控制产量的特殊产品,月固定成本为万元,设此工厂一个月内生{x |<2011}⊆(−∞,a)2x a y =(−m 12)|1−x|x m f(x)=(−m −1)m 2x 2m−2(0,+∞)m f(3−)>f()2t+12t t W x W (x)= 2(+17),0≤x ≤2x 250−,2<x ≤58x −120x +1010f(x)(1)f(x)(2)f (x)P (3,8)g(x)f (x)y (1)g(x)(2)g(2−3x +1)>g(+2x −5)x 2x 2x f (x)=(x −1)+4(a >0,a ≠1)log a A A g(x)g(3)=f(x)(−∞,0)∪(0,+∞)f(x)x f(−x)=−f(x)x >0f(x)=x 1−2xx <0f(x)f(x)<−x 3p :∀x ∈R a −2x −1≤0x 2q y =(x +3)log a (0,+∞)(1)p a (2)¬p q p q a f(x)=(x ≥0)a x−1(2,)12a >0a ≠1(1)a (2)y =f(x)(x ≥0)1产该特殊产品万件并全部销售完.根据当地政府要求产量满足,每生产万件需要再投入万元,每万件的销售收入为(万元),且每生产万件产品政府给予补助(万元).(注:月利润月销售收入月政府补助月总成本).写出月利润(万元)关于月产量(万件)的函数解析式;求该工厂在生产这种特殊产品中所获得的月利润最大值(万元)及此时的月生产量(万件). 35. 已知函数,为常数且,的图象经过,.试求,的值;若不等式在时恒成立,求实数的取值范围. 36. 已知是定义在上的奇函数,且 时,.求函数的解析式;画出函数的图象,并写出函数单调递增区间及值域.37. 已知函数,(1)讨论函数的奇偶性;(2)证明:.x x 1≤x ≤3x 3x 15−13x 211+2ln x x=+−(1)f(x)x (2)f(x)=b ⋅(a a x b a >0a ≠1)A(1,8)B(3,32)(1)a b (2)(+(−m ≥01a )x 1b )x x ∈(−∞,1]m y =f(x)R x <0f(x)=+23x (1)f(x)(2)y =f(x)y =f(x)f(x)=(+)x 1−12x 12f(x)>0参考答案与试题解析2023年高中数学【指数函数的定义、解析式、定义域和值域】专题练习卷二一、选择题(本题共计 11 小题,每题 3 分,共计33分)1.【答案】此题暂无答案【考点】指数函数单调性的应用指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】交集及其运算指数函数的定义、解析式、定义域和值域对数函数的定义域【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】对数值大小的比较指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域并集及其运算【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】对数值大小的比较指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】函数奇偶性的性质指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】指、对数不等式的解法指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域交集及其运算【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答二、多选题(本题共计 3 小题,每题 3 分,共计9分)12.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答13.【答案】此题暂无答案【考点】两角和与差的正弦公式命题的真假判断与应用正弦函数的定义域和值域对数函数的值域与最值指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答14.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答三、填空题(本题共计 12 小题,每题 3 分,共计36分)15.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答16.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答17.【答案】此题暂无答案【考点】指数函数单调性的应用指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答18.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答19.【答案】此题暂无答案【考点】函数的定义域及其求法函数的值域及其求法指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答20.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答21.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答22.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答23.【答案】此题暂无答案指数函数单调性的应用指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答24.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答25.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答26.【答案】此题暂无答案函数恒成立问题指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答四、解答题(本题共计 11 小题,每题 10 分,共计110分)27.【答案】此题暂无答案【考点】幂函数的概念、解析式、定义域、值域幂函数的性质【解析】此题暂无解析【解答】此题暂无解答28.【答案】此题暂无答案【考点】函数解析式的求解及常用方法函数模型的选择与应用二次函数在闭区间上的最值基本不等式在最值问题中的应用【解析】此题暂无解析29.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域指数函数单调性的应用【解析】此题暂无解析【解答】此题暂无解答30.【答案】此题暂无答案【考点】对数函数的图象与性质对数的运算性质指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答31.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域函数奇偶性的性质【解答】此题暂无解答32.【答案】此题暂无答案【考点】命题的真假判断与应用逻辑联结词“或”“且”“非”已知函数的单调性求参数问题【解析】此题暂无解析【解答】此题暂无解答33.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答34.【答案】此题暂无答案【考点】利用导数研究函数的最值函数模型的选择与应用函数最值的应用函数解析式的求解及常用方法【解析】此题暂无解析【解答】此题暂无解答35.【答案】此题暂无答案【考点】函数恒成立问题指数函数的定义、解析式、定义域和值域【解析】此题暂无解析【解答】此题暂无解答36.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域函数奇偶性的性质函数的单调性及单调区间分段函数的解析式求法及其图象的作法【解析】此题暂无解析【解答】此题暂无解答37.【答案】此题暂无答案【考点】指数函数的定义、解析式、定义域和值域函数奇偶性的判断函数奇偶性的性质【解析】此题暂无解析【解答】此题暂无解答。
完整)高中数学必修1基础练习题1.下面的结论正确的是()A。
a∈Q,则a∈ND。
以上结论均不正确重写:哪个结论是正确的?A。
如果a是有理数,则a是自然数。
D。
没有任何结论是正确的。
2.下列说法正确的是()A。
某班中年龄较小的同学能够形成一个集合B。
由1,2,3和9,1,4组成的集合不相等C。
不超过20的非负数组成一个集合D。
方程x2-4=和方程|x-1|=1的解构成了一个四元集重写:哪个说法是正确的?A。
每个年龄较小的同学都可以形成一个集合。
B。
由1,2,3和1,4,9组成的集合不相等。
C。
非负整数不超过20组成一个集合。
D。
方程x2-4和|x-1|=1的解构成一个四元组。
3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A。
{(1,3),(3,1)}B。
{(2,2)}C。
{(1,3),(3,1),(2,2)}D。
{(4,0),(0,4)}重写:用列举法表示{(x,y)|x是正整数,y是正整数,x+y=4}应该是哪一个?A。
{(1,3),(3,1)} B。
{(2,2)} C。
{(1,3),(3,1),(2,2)} D。
{(4,0),(0,4)}4.下列命题:1)方程x-2+|y+2|=的解集为{2,-2};2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};3)集合{x|x-1a,a∈R}没有公共元素.其中正确的个数为()A。
0B。
1C。
2D。
3重写:有多少命题是正确的?A。
0 B。
1 C。
2 D。
35.对于集合A={2,4,6,8},若a∈A,则8-a∈A,则a的取值构成的集合是________.重写:集合A={2,4,6,8},如果a是A的元素,那么8-a也是A的元素。
a的可能值是什么?6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.重写:定义集合A*B={x|x=a-b,a是A的元素,b是B的元素},如果A={1,2},B={0,2},那么A*B中所有元素的总和是多少?7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.重写:如果集合A={-1,2},集合B={x|x2+ax+b=0},并且A=B,那么a和b是多少?8.已知集合A={a-3,2a-1,a2+1},a∈R.1)若-3∈A,求实数a的值;2)当a为何值时,集合A的表示不正确.重写:已知集合A={a-3,2a-1,a2+1},其中a是实数。
(每日一练)高中数学第四章指数函数与对数函数基础知识题库高中数学第四章指数函数与对数函数基础知识题库单选题1、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减 答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果. 由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称, 又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增,根据复合函数单调性可知:f(x)在(−∞,−12)上单调递减,D正确.故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f(−x)与f(x)的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.2、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个,故选:A3、已知对数式log(a+1)24−a(a∈Z)有意义,则a的取值范围为()A.(−1,4)B.(−1,0)∪(0,4)C.{1,2,3}D.{0,1,2,3}答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可.由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.4、已知f (x )=a −x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是( ) A .a >0B .a >1 C .a <1D .0<a <1 答案:D分析:把f (-2),f (-3)代入解不等式,即可求得.因为f (-2)=a 2, f (-3)=a 3,f (-2)>f (-3),即a 2>a 3,解得:0<a <1. 故选:D5、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( ) A .−1B .−5C .11D .13 答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值. 令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x) =log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.6、在同一平面直角坐标系中,一次函数y=x+a与对数函数y=log a x(a>0且a≠1)的图象关系可能是()A.B.C.D.答案:C分析:根据对数函数的图象以及直线方程与图象关系分别进行讨论即可.A.由对数图象知0<a<1,此时直线的纵截距a>1,矛盾,B.由对数图象知a>1,此时直线的纵截距0<a<1,矛盾,C.由对数图象知0<a<1,此时直线的纵截距0<a<1,保持一致,D.由对数图象知a>1,此时直线的纵截距a<0,矛盾,故选:C.7、若y=log3a2−1x在(0,+∞)内为增函数,且y=a−x也为增函数,则a的取值范围是()A.(√33,1)B.(0,12)C.(√33,√63)D.(√63,1)答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果.若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 8、指数函数y =a x 的图象经过点(3,18),则a 的值是( ) A .14B .12C .2D .4 答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值. 因为y =a x 的图象经过点(3,18),所以a 3=18,解得a =12, 故选:B.9、已知y 1=(13)x ,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为( )A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x与y 3=10−x=(110)x是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A . 故选:A10、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12C .12,13,√3,54,D .13,12,54,√3, 答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13. 故选:C . 多选题11、下列函数中,有零点且能用二分法求零点的近似值的是( ) A .y =2x −3B .y ={−x +1,x ≥0x +1,x <0C .y =x 2−3x +3D .y =|x −2| 答案:AB分析:根据二分法定义,只有零点两侧函数值异号才可用二分法求近似值. 对于选项A ,当x =1时,y =21−3=−1<0,当x =12时,y =212−3=1>0,所以能用二分法求零点的近似值.对于选项B ,当x =2时,y =−2+1=−1<0,当x =12时,y =−12+1=12>0,能用二分法求零点的近似值.对于选项C ,y =x 2−3x +3=(x −32)2+34>0,故不能用二分法求零点的近似值. 对于选项D ,y =|x −2|≥0,故不能用二分法求零点的近似值. 故选:AB .12、下列命题正确的是( )A .若a >0,且a ≠1,则∀x >0,y >0,log a (x +y )=log a x +log a yB .若a >0,且a ≠1,则∃x >0,y >0,log a x ⋅log a y =log a (xy )C .∀a >0,b >0,ln (ab )=lna +lnbD .∀a >1,b >0,a log a b =b 答案:BCD分析:根据对数的运算法则即可判断.解:对于选项AC ,由对数的运算性质知∀x >0,y >0有log a (xy )=log a x +log a y ,而log a (x +y )≠log a x +log a y ,选项A 错误,C 正确;对于选项B ,当x =y =1时,log a x ⋅log a y =log a (xy )成立,选项B 正确; 对于选项D ,由对数的概念可知选项D 正确. 故选:BCD .13、已知函数f(x)=log 2(2x +8x )−2x ,以下判断正确的是( ) A .f (x )是增函数B .f (x )有最小值 C .f (x )是奇函数D .f (x )是偶函数 答案:BD分析:由题设可得f(x)=log 2(12x +2x ),根据复合函数的单调性判断f(x)的单调情况并确定是否存在最小值,应用奇偶性定义判断奇偶性.由f(x)=log 2(2x +23x )−log 222x =log 2(12x+2x ),令μ=2x >0为增函数;而t =1μ+μ在(0,1)上递减,在(1,+∞)上递增; 所以t 在x ∈(−∞,0)上递减,在x ∈(0,+∞)上递增;又y =log 2t 在定义域上递增,则y 在x ∈(−∞,0)上递减,在x ∈(0,+∞)上递增; 所以f(x)在(−∞,0)上递减,在(0,+∞)上递增,故最小值为f(0)=1, f(−x)=log 2(12−x +2−x)=log 2(2x +12x)=f(x),故为偶函数.故选:BD14、定义运算a ⊕b ={a(a ≥b)b(a <b),设函数f(x)=1⊕2−x ,则下列命题正确的有( )A .f(x)的值域为 [1,+∞)B .f(x)的值域为 (0,1]C .不等式f(x +1)<f(2x)成立的范围是(−∞,0)D .不等式f(x +1)<f(2x)成立的范围是(0,+∞) 答案:AC分析:求得f (x )的解析式,画出f (x )的图象,由此判断f (x )的值域,并求得不等式f(x +1)<f(2x)的解. 由函数f(x)=1⊕2−x ,有f(x)={1(1≥2−x )2−x(1<2−x ),即f(x)={2−x(x <0)1(x ≥0),作出函数f(x)的图像如下,根据函数图像有f(x)的值域为[1,+∞),所以A 选项正确,B 选项错误. 若不等式f(x +1)<f(2x)成立,由函数图像有 当2x <x +1≤0即x ≤−1时成立, 当{2x <0x +1>0即−1<x <0时也成立. 所以不等式f(x +1)<f(2x)成立时,x <0.所以C 选项正确,D 选项错误. 故选:AC.小提示:本小题主要考查分段函数图象与性质,属于中档题.15、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C,函数f(x)定义域{x|x>0}内任意的x1,x2,f(x1)+f(x2)=log12x1+log12x2=log12(x1x2)=f(x1⋅x2),C是;对于D,函数f(x)定义域{x|x>0}内任意的x1,x2,f(x1)+f(x2)=log3x1+log3x2=log3(x1x2)=f(x1⋅x2),D是.故选:CD填空题16、函数f(x)=lg(kx)−2lg(x+1)仅有一个零点,则k的取值范围为________.答案:(−∞,0)∪{4}分析:由题意f(x)仅有一个零点,令y1=kx、y2=(x+1)2,即y1、y2在f(x)定义域内只有一个交点,讨论k>0、k<0并结合函数图象,求k的范围.由题意,f(x)=lg(kx)−2lg(x+1)=0,即lg(kx)=lg(x+1)2,∴在f(x)定义域内,y1=kx、y2=(x+1)2只有一个交点,当k>0时,即(0,+∞)上y1、y2只有一个交点;∴仅当y1、y2相切,即x2+(2−k)x+1=0中Δ=(2−k)2−4=0,得k=4或k=0(舍),∴当k=4时,(0,+∞)上y1、y2只有一个交点;当k<0时,即(−1,0)上y1、y2只有一个交点,显然恒成立.∴k∈(−∞,0)∪{4}.所以答案是:(−∞,0)∪{4}17、计算:1634−8×(6449)−12−8×(87)−1= ________.答案:−6分析:结合指数幂的运算性质,计算即可.由题意,1634−8×(6449)−12−8×(87)−1=(24)34−8×[(87)2]−12−8×78=23−8×(87)−1−7=8−8×78−7=8−7−7=−6.所以答案是:−6.18、函数y=log12(3x−1)的单调递减区间为_____答案:(13,+∞)分析:根据复合函数单调性规律即可求解函数y=log12(3x−1)的定义域为(13,+∞)又y=log12(3x−1)是由y=log12u与u=3x−1复合而成,因为外层函数y=log12u单调递减,所以求函数y=log12(3x−1)的单调递减区间即是求内层函数u=3x−1的增区间,而内层函数u=3x−1在(13,+∞)上单调递增,所以函数y=log12(3x−1)的减区间为(13,+∞)所以答案是:(13,+∞)解答题19、计算:(1)lg14−2lg73+lg7−lg18;(2)log535+2log5√2−log515−log514;(3)12lg3249−43lg√8+lg√245.答案:(1)0(2)2(3)12分析:直接利用对数的运算性质进行运算即可.(1)原式=lg(2×7)−2(lg7−lg3)+lg7−lg(32×2) =lg2+lg7−2lg7+2lg3+lg7−2lg3−lg2=0.(2)原式=log535+log52−log515−log514=log535×215×14=log535014=log525=2.(3)原式=12(5lg2−2lg7)−43×32lg2+12(2lg7+lg5)=52lg2−lg7−2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12.20、当0<x<1时,若关于x的二次方程x2+2mx+1=−2m有两个不相等的实根,求实数m的取值范围.答案:{m|−12<m<1−√2}.分析:根据二次函数在区间上的零点问题,数形结合列式求解即可.令y=x2+2mx+2m+1(0<x<1),则由题意知其图象与x轴有2个交点,故当x=0,1时y>0,判别式大于0且对称轴在0到1之间,则{2m+1>0 4m+2>04m2−4(2m+1)>0 0<−m<1,即{m>−12(m−1)2>20<−m<1,得−12<m<1−√2.故实数m的取值范围是{m|−12<m<1−√2}.。
人教版高中数学第四章指数函数与对数函数考点精题训练单选题1、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) . f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b , 又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.2、设a =30.7, b =(13)−0.8, c =log 0.70.8,则a,b,c 的大小关系为( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b 答案:D分析:利用指数函数与对数函数的性质,即可得出a,b,c 的大小关系. 因为a =30.7>1,b =(13)−0.8=30.8>30.7=a ,c =log 0.70.8<log 0.70.7=1, 所以c <1<a <b . 故选:D.小提示:本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:y =a x ,当a >1时,函数递增;当0<a <1时,函数递减; (2)利用对数函数的单调性:y =log a x ,当a >1时,函数递增;当0<a <1时,函数递减; (3)借助于中间值,例如:0或1等.3、中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =Wlog 2(1+SN ).它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至4000,则C大约增加了()附:lg2≈0.3010A.10%B.20%C.50%D.100%答案:B分析:根据题意,计算出log24000log21000的值即可;当SN =1000时,C=Wlog21000,当SN=4000时,C=Wlog24000,因为log24000log21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.4、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果多长时间后失去40%新鲜度()A.25天B.30天C.35天D.40天答案:B分析:根据给定条件求出m及a10的值,再利用给定公式计算失去40%新鲜度对应的时间作答.依题意,{10%=m⋅a1020%=m⋅a20,解得m=120,a10=2,当ℎ=40%时,40%=120⋅a t,即40%=120⋅a10⋅a t−10,解得a t−10=4=(a10)2=a20,于是得t−10=20,解得t=30,所以采摘下来的这种水果30天后失去40%新鲜度.故选:B5、已知函数f (x )是奇函数,当x >0时,f (x )=2x +x 2,则f (2)+f (−1)=( ) A .11B .5C .−8D .−5 答案:B分析:利用奇函数的定义直接计算作答. 奇函数f (x ),当x >0时,f (x )=2x +x 2,所以f (2)+f (−1)=f(2)−f(1)=22+22−(21+12)=5. 故选:B6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( ) A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增 C .是偶函数,且在(−∞,−12)单调递增 D .是奇函数,且在 (−∞,−12)单调递增 答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0,得x ≠±12.又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ), ∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增,又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增, 在(﹣∞,−12),(12,+∞)上单调递减. 故选:B .7、设f(x)={e x−1,x <3log 3(x −2),x ≥3,则f(f (11))的值是( )A .1B .eC .e 2D .e −1 答案:B分析:根据自变量的取值,代入分段函数解析式,运算即可得解. 由题意得f(11)=log 3(11−2)=log 39=2, 则f(f (11))=f (2)=e 2−1=e . 故选:B.小提示:本题考查了分段函数求值,考查了对数函数及指数函数求值,属于基础题. 8、设m ,n 都是正整数,且n >1,若a >0,则不正确的是( )A.a mn=√a mn B.(a12+a−12)2=a+a−1C.a−mn=√a mn D.a0=1答案:B解析:由指数运算公式直接计算并判断. 由m,n都是正整数,且n>1,a>0,、得(a 12+a−12)2=(a12)2+2a12⋅a−12+(a−12)2=a+a−1+2,故B选项错误,故选:B.9、已知f(x)={2x−x2,x≥5f(x+3),x<5,则f(4)+f(-4)=()A.63B.83C.86D.91答案:C分析:由给定条件求得f(-4)=f(5),f(4)=f(7),进而计算f(5)、f(7)的值,相加即可得解.依题意,当x<5时,f(x)=f(x+3),于是得f(-4)=f(-1)=f(2)=f(5),f(4)=f(7),当x≥5时,f(x)=2x-x2,则f(5)=25-52=7,f(7)=27-72=79,所以f(4)+f(-4)=86.故选:C10、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e−kt,其中k是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1)A.3B.3.6C.4D.4.8答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅ln e−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.多选题11、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数,也称取整函数,例如:[−3.7]=−4,[2.3]=2,已知f(x)=e xe x+1−12,则函数y=2[f(x)]+[f(−x)]的函数值可能为()A.−2B.−1C.0D.1答案:ABC分析:利用定义可知函数f(x)为奇函数,根据解析式可得f(x)∈(−12,12),分三种情况讨论f(x)可求得结果.因为f(x)=e xe x+1−12,所以f(−x)=e−xe−x+1−12=11+e x−12,所以f(x)+f(−x)=e xe x+1−12+1e x+1−12=0,即f(−x)=−f(x),因为f(x)=e xe x+1−12=e x+1−1e x+1−12=12+−1e x+1,因为e x>0,e x+1>1,所以0<1e x+1<1,所以−1<−1e x+1<0,所以−12<12+−1e x +1<12即f(x)∈(−12,12)当f(x)∈(−12,0)时,f(−x)∈(0,12),所以[f(x)]=−1,[f(−x)]=0,此时y =−2,当f(x)=0时,f(−x)=0,所以[f(x)]=0,[f(−x)]=0,此时y =0,当f(x)∈(0,12)时,f(−x)∈(−12,0),此时[f(x)]=0,[f(−x)]=−1,此时y =−1, 所以函数y =2[f(x)]+[f(−x)]的值域为{−2,−1,0}. 故选:ABC12、若函数f(x)的图像在R 上连续不断,且满足f(0)<0,f(1)>0,f(2)>0,则下列说法错误的是( ) A .f(x)在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点 B .f(x)在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点 C .f(x)在区间(0,1)上一定有零点,在区间(1,2)上可能有零点 D .f(x)在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 答案:ABD解析:根据f (x )的图像在R 上连续不断,f (0)<0,f (1)>0,f (2)>0,结合零点存在定理,判断出在区间(0,1)和(1,2)上零点存在的情况,得到答案.由题知f (0)⋅f (1)<0,所以根据函数零点存在定理可得f (x )在区间(0,1)上一定有零点, 又f (1)⋅f (2)>0,无法判断f (x )在区间(1,2)上是否有零点,在区间(1,2)上可能有零点. 故选:ABD .13、下列各选项中,值为1的是( ) A .log 26·log 62B .log 62+log 64C .(2+√3)12⋅(2−√3)12D .(2+√3)12−(2−√3)12答案:AC解析:对选项逐一化简,由此确定符合题意的选项. 对于A 选项,根据log a b ⋅log b a =1可知,A 选项符合题意. 对于B 选项,原式=log 6(2×4)=log 68≠1,B 选项不符合题意.对于C 选项,原式=[(2+√3)⋅(2−√3)]12=112=1,C 选项符合题意.对于D 选项,由于[(2+√3)12−(2−√3)12]2=2+√3+2−√3−2(2+√3)12⋅(2−√3)12=4−2=2≠1,D 选项不符合题意. 故选:AC小提示:本小题主要考查对数、根式运算,属于基础题.14、已知函数f(x)=2x2x +1+m(m ∈R)则下列说法正确的是( ) A .f (x )的定义域为R .B .若f(x)为奇函数,则m =−12 C .f(x)在R 上单调递减D .若m =0,则f(x)的值域为(0,1) 答案:ABD分析:根据函数的定义域的求法,可判定A 正确;根据函数的奇偶性列出方程,求得m 的值,可判定B 正确,化简f(x)=−12x +1+m +1,结合指数函数的单调性,可判定C 错误;化简函数f(x)=1−12x +1,结合指数函数的值域,可判定D 正确.由题意,函数f(x)=2x2x +1+m(m ∈R),对于A 中,由2x +1≠0,所以函数f (x )的定义域为R ,所以A 正确;对于B 中,由函数f (x )为奇函数,则满足f (−x )=−f (x ),即2−x 2−x +1+m =−2x2x +1−m ,所以2m =−2x2x +1−2−x2−x +1=−2x2x +1−12x 12x+1=−2x2x +1−12x +1=−1,即m =−12,所以B 不正确;对于C 中,由f(x)=2x 2x +1+m =2x +1−12x +1+m =−12x +1+m +1,因为函数y =2x +1为单调递增函数,则y =−12x +1递增函数, 所以f (x )函数在R 上单调递减,所以C 不正确;对于D 中,当m =0时,可得f(x)=2x 2x +1=1−12x +1,因为2x +1>1,可得−1<−12x +1<0,所以1−12x +1∈(0,1), 即函数f (x )的值域为(0,1),所以D 正确. 故选:ABD.15、某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( )A .该单位每月处理量为400吨时,才能使每吨的平均处理成本最低B .该单位每月最低可获利20000元C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40000元才能使该单位不亏损 答案:AD分析:根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案.由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x−200≥2√12x ⋅80000x−200=200,当且仅当12x =80000x,即x =400时等号成立,故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A正确;设该单位每月获利为S元,则S=100x−y=100x−(12x2+80000−200x)=−12x2+300x−80000=−12(x−300)2−35000,因为x∈[400,600],所以S∈[−80000,−40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D正确,BC错误,故选:AD小提示:本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.双空题16、已知函数f(x)=ln(ax2+2x+1),若f(x)的定义域为R,则实数a的取值范围为______;若f(x)的值域为R,则实数a的取值范围为______.答案:(1,+∞)[0,1]分析:由f(x)的定义域为R知u=ax2+2x+1的图象恒在x轴的上方,由二次函数性质可构造不等式组求得结果;由f(x)的值域为R知u=ax2+2x+1要取遍所有的正数,由二次函数值域可构造不等式组求得结果.若f(x)的定义域为R,则u=ax2+2x+1的图象恒在x轴的上方,∴{a>0Δ=4−4a<0,解得:a>1,即实数a的取值范围是(1,+∞);若f(x)的值域为R,则u=ax2+2x+1要取遍所有的正数,∴a=0或{a>0Δ=4−4a≥0,解得:0≤a≤1,即实数a的取值范围是[0,1].所以答案是:(1,+∞);[0,1].17、若函数f(x)=ln(ax+11−x)+b是奇函数,则a=___________,b=___________.答案: 1 0分析:根据奇函数在x =0处有定义则f (0)=0可得b ,再根据奇函数的满足f (x )+f (−x )=0求解a 即可 因为函数f (x )=ln (ax+11−x )+b 是奇函数,故f (0)=0,即ln 1+b =0,即b =0.又f (x )+f (−x )=0,故ln (ax+11−x )+ln (−ax+11+x )=0,即(ax+11−x )⋅(−ax+11+x )=1,1−a 2x 21−x 2=1恒成立,故a 2=1,所以a =1或a =−1,当a =−1时f (x )=ln (−x+11−x)=ln (−1)无意义.当a =1时f (x )=ln (x+11−x )满足奇函数.故a =1 综上,a =1,b =0所以答案是:1;018、某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站______km 处,最少费用为______万元.答案: 5 8解析:根据题意设出y 1和y 2的函数表达式,利用“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”列方程,由此求得y 1和y 2的解析式.利用基本不等式求得费用的最小值和建站位置.设仓库与车站距离为x ,依题意y 1=k 1x ,y 2=k 2x .由于“在距离车站10 km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元”,所以2=k 110,8=k 2⋅10,解得k 1=20,k 2=45.所以y 1=20x ,y 2=45x ,所以总费用20x +45x ≥2√20x ⋅45x =8,当且仅当20x =45x ,即x =5时,取得最小值.所以答案是:(1)5;(2)8.小提示:本小题主要考查函数模型在实际生活中的运用,考查利用基本不等式求最值,属于基础题. 解答题19、(1)已知函数g (x )=(a +1)x−2+1(a >0)的图像恒过定点A ,且点A 又在函数f (x )=log √3(x +a )的图像上,求不等式g (x )>3的解集;(2)已知−1≤log 12x ≤1,求函数y =(14)x−1−4(12)x +2的最大值和最小值.答案:(1)(3,+∞);(2)y min =1,y max =54.分析:(1)结合指数函数性质首先求a 的值,再解指数不等式;(2)通过换元,设t =(12)x ,并且求变量的取值范围,转化为二次函数在定义域内的最大值和最小值.(1)由题意知定点A 的坐标为(2,2),∴2=log √3(2+a )解得a =1.∴g (x )=2x−2+1.∴由g (x )>3得,2x−2+1>3.∴2x−2>2.∴x −2>1.∴x >3.∴不等式g (x )>3的解集为(3,+∞).(2)由−1≤log 12x ≤1得12≤x ≤2令t =(12)x ,则14≤t ≤√22, y =4t 2−4t +2=4(t −12)2+1. ∴当t =12,即(12)x =12,x =1时,y min =1,当t =14,即(12)x =14,x =2时,y max =54. 小提示:本题考查指数函数与对数函数的图象与性质,考查求对数型函数的值域,求值域的方法是用换元法把函数转化为二次函数,然后求解.20、已知函数f(x)=2x −12x .(1)判断f(x)在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x的不等式f(log2x)<f(1).答案:(1)f(x)在R上是增函数,证明见解析;(2)(0,2).分析:(1)由题可判断函数为奇函数且为增函数,利用定义法的步骤证明即可;(2)利用函数f(x)的单调性及对数函数的单调性即解.(1)∵f(−x)=2−x−2x=−(2x−12x)=−f(x),则函数f(x)是奇函数,则当x⩾0时,设0⩽x1<x2,则f(x1)−f(x2)=2x1−12x1−2x2+12x2=2x1−2x2+2x2−2x12x12x2=(2x1−2x2)2x12x2−12x12x2,∵0⩽x1<x2,∴1⩽2x1<2x2,即2x1−2x2<0,2x12x2>1,则f(x1)−f(x2)<0,即f(x1)<f(x2),则f(x)在[0,+∞)上是增函数,∵f(x)是R上的奇函数,∴f(x)在R上是增函数.(2)∵f(x)在R上是增函数,∴不等式f(log2x)<f(1)等价为不等式log2x<1,即0<x<2.即不等式的解集为(0,2).。
高中数学:指数函数的概念练习及答案指数函数的概念1.下列函数中,是指数函数的是( )A.y=2·3xB.y=3x+1C.y=3xD.y=x32.下列以x为自变量的函数中,是指数函数的是( )A.y=(-5)xB.y=e x(e≈2.71828)C.y=-5xD.y=πx+23.函数y=(a2-5a+5)ax是指数函数,则有( )A.a=1或a=4B.a=1C.a=4D.a>0,且a≠14.若函数f(x)=(a-3)·a x是指数函数,则f(2)的值为( )A.4B.8C.2D.165.函数y=(m-2)x是指数函数,则m的取值范围是________.待定系数法求指数函数解析式6.指数函数y=a x的图象经过点(2,16),则a的值是( )A.B.C.2D.47.已知指数函数的图象经过点(-1,2),则指数函数的解析式为________.8.已知f(x)是指数函数,且f(1+)·f(1-)=9,则f(2+)·f(2-)的值为________.9.若指数函数f(x)的图象过点(1,),则f(-2)=________.指数函数的求值10.已知指数函数f(x)=a x(a>0,且a≠1)的图象过点(3,8),则a2.5与a2.3的大小为( )A.a2.5=a2.3B.a2.5<a2.3C.a2.5>a2.3D.无法确定11.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于( )A.5B.7C.9D.1112.已知函数f(x)=则f[f(-4)]等于( )A.-4B.-C.4D.613.给出函数f(x)=,则f(-1)=________.14.若f(2x-1)=3x-2x,则f(4)=________.指数函数的实际应用15.设f(x)=则f(f(-2))等于( )A.-1B.C.D.16.某种细菌经60分钟培养,可繁殖为原来的2倍,且知该细菌的繁殖规律为y=10e kt,其中k为常数,t 表示时间(单位:小时),y表示细菌个数,10个细菌经过7小时培养,细菌能达到的个数为( ) A.640B.1280C.2560D.512017.某环保小组发现某市生活垃圾年增长率为b,2009年该市生活垃圾量为a吨,由此可以预测2019年垃圾量为( )A.a(1+10b)吨B.a(1+9b)吨C.a(1+b)10吨D.a(1+b)9吨18.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其它20台未感染病毒的计算机.现有一台计算机被第一轮病毒感染,问被第4轮病毒感染的计算机有( )台.A.60B.400C.8000D.16000019.一种产品的成本是a元,在今后的n年内,计划成本每年比上一年降低p%,则成本随着年数变化的函数关系式是( )A.a(1-p%)n(n∈N*)B.a(p%)n(n∈N*)C.a(1-p)n%(n∈N*)D.a(1-np%)(n∈N*)20.据报道,全球变暖,使北冰洋冬季冰盖面积在最近50年内减少了5%,如果按此规律,设2000年的冬季冰盖面积为m,从2000年起,经过x年后冬季冰盖面积y与x的函数关系是( )A.y=·mB.y=(1-)·mC.y=0.9550·x·mD.y=(1-0.0550·x)·m21.某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,服药后每毫升血液中的含药量y(μg)与服药后的时间t(h)之间近似满足如图所示的曲线.其中OA是线段,曲线段AB是函数y=k·at(t ≥1,a>0,k,a是常数)的图象.(1)写出服药后每毫升血液中含药量y关于时间t的函数关系式;(2)据测定:每毫升血液中含药量不少于2(μg)时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后在过3h,该病人每毫升血液中含药量为多少μg?(精确到0.1μg)答案1.下列函数中,是指数函数的是( )A.y=2·3xB.y=3x+1C.y=3xD.y=x3【答案】C【解析】形如y=ax(a>0,a≠1)的函数为指数函数,y=2·3x的3x系数不为1,y=3x+1的指数不是x,y=x2是幂函数,只有y=3x符合指数函数定义.故选C.2.下列以x为自变量的函数中,是指数函数的是( )A.y=(-5)xB.y=e x(e≈2.71828)C.y=-5xD.y=πx+2【答案】B3.函数y=(a2-5a+5)ax是指数函数,则有( )A.a=1或a=4B.a=1C.a=4D.a>0,且a≠1【答案】C【解析】∵函数y=(a2-5a+5)ax是指数函数,∴解得a=4.故选C.4.若函数f(x)=(a-3)·a x是指数函数,则f(2)的值为( ) A.4B.8C.2D.16【答案】D【解析】∵函数f(x)是指数函数,∴a-3=1,∴a=4.∴f(x)=4x,f(2)=42=16.5.函数y=(m-2)x是指数函数,则m的取值范围是________.【答案】m>2且m≠3【解析】根据指数函数的定义,y=ax中的底数a规定a>0且a≠1. 故此m-2>0且m-2≠1.所以m>2且m≠3.6.指数函数y=a x的图象经过点(2,16),则a的值是( )A.B.C.2D.4【答案】D【解析】指数函数y=ax(a>0且a≠1),将(2,16)代入,得16=a2,解得a=4,所以y=4x,故选D.7.已知指数函数的图象经过点(-1,2),则指数函数的解析式为________.【答案】y=()x【解析】设指数函数的解析为:y=ax(a>0,且a≠1),∵函数的图象经过(-1,2)点,∴2=a-1,∴a=,∴指数函数的解析式为y=()x,故答案为y=()x.8.已知f(x)是指数函数,且f(1+)·f(1-)=9,则f(2+)·f(2-)的值为________.【答案】81【解析】∵f(x)是指数函数,∴设f(x)=ax(a>0且a≠1),∵f(1+)·f(1-)=9,∴·=a2=9,即a=3.∴f(2+)·f(2-)=·=34=81,故答案为81.9.若指数函数f(x)的图象过点(1,),则f(-2)=________.【答案】4【解析】设指数函数为f(x)=ax(a>0且a≠1),将(1,)代入得=a1,解得a=,所以f(x)=()x,则f(-2)=()-2=4.故答案为4.10.已知指数函数f(x)=a x(a>0,且a≠1)的图象过点(3,8),则a2.5与a2.3的大小为( ) A.a2.5=a2.3B.a2.5<a2.3C.a2.5>a2.3D.无法确定【答案】C【解析】∵指数函数f(x)=ax(a>0,且a≠1)的图象过点(3,8),∴a3=8,解得a=2.∴f(x)=2x,且在R上单调递增,∴22.3<22.5.故选C.11.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于( )A.5B.7C.9D.11【答案】B【解析】由f(a)=3,得2a+2-a=3,两边平方得,22a+2-2a+2=9,即22a+2-2a=7,∴f(2a)=7.选B项.12.已知函数f(x)=则f[f(-4)]等于( )A.-4B.-C.4D.6【答案】C【解析】f[f(-4)]=f[()-4]=f(16)==4.13.给出函数f(x)=,则f(-1)=________.【答案】9【解析】f(-1)=f(1)=f(3)=32=9.14.若f(2x-1)=3x-2x,则f(4)=________.【答案】21【解析】令2x-1=4,得x=3,将其代入f(2x-1)=3x-2x,得f(4)=33-2×3=21.15.设f(x)=则f(f(-2))等于( )A.-1B.C.D.【答案】C【解析】因为f(-2)=2-2=,所以f(f(-2))=f()=1-=1-=,故答案选C.16.某种细菌经60分钟培养,可繁殖为原来的2倍,且知该细菌的繁殖规律为y=10e kt,其中k为常数,t 表示时间(单位:小时),y表示细菌个数,10个细菌经过7小时培养,细菌能达到的个数为( ) A.640B.1280C.2560D.5120【答案】B【解析】设原来的细菌数为a.由题意可得,在函数y=10e kt中,当t=1时,y=2a.∴2a=10e k即e k=.当a=10时,e k=2,y=10e kt=10·2t,若t=7,则可得此时的细菌数为y=10×27=1280,故选B.17.某环保小组发现某市生活垃圾年增长率为b,2009年该市生活垃圾量为a吨,由此可以预测2019年垃圾量为( )A.a(1+10b)吨B.a(1+9b)吨C.a(1+b)10吨D.a(1+b)9吨【答案】C【解析】2009年该市生活垃圾量为a吨,所以2010年产生的垃圾量是a(1+b)吨,2011年产生的垃圾量是a(1+b)(1+b)=a(1+b)2吨,…由此可以预测2019年垃圾量为a(1+b)10吨.故选C.18.某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其它20台未感染病毒的计算机.现有一台计算机被第一轮病毒感染,问被第4轮病毒感染的计算机有( )台.A.60B.400C.8000D.160000【答案】C【解析】由题意可得,每一轮感染的计算机数量构成以1为首项,以20为公比的等比数列,故第4轮病毒感染的计算机数量为1×203=8000台,故选C.19.一种产品的成本是a元,在今后的n年内,计划成本每年比上一年降低p%,则成本随着年数变化的函数关系式是( )A.a(1-p%)n(n∈N*)B.a(p%)n(n∈N*)C.a(1-p)n%(n∈N*)D.a(1-np%)(n∈N*)【答案】A【解析】设成本经过x年降低到y元,第一年为y=a(1-p%),第二年为y=a(1-p%)(1-p%)=a(1-p%)2,第三年为y=a(1-p%)(1-p%)(1-p%)=a(1-p%)3,…则随着年数n变化的函数关系式是y=a(1-p%)n(n∈N*).故选A.20.据报道,全球变暖,使北冰洋冬季冰盖面积在最近50年内减少了5%,如果按此规律,设2000年的冬季冰盖面积为m,从2000年起,经过x年后冬季冰盖面积y与x的函数关系是( )A.y=·mB.y=(1-)·mC.y=0.9550·x·mD.y=(1-0.0550·x)·m【答案】A【解析】设北冰洋冬季冰盖面积的年平均变化率为p,则p50=0.95,∴p=,∴设2000年的冬季冰盖面积为m,从2000年起,经过x年后冬季冰盖面积y与x的函数关系是:y=·m. 故选A.21.某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,服药后每毫升血液中的含药量y(μg)与服药后的时间t(h)之间近似满足如图所示的曲线.其中OA是线段,曲线段AB是函数y=k·at(t ≥1,a>0,k,a是常数)的图象.(1)写出服药后每毫升血液中含药量y关于时间t的函数关系式;(2)据测定:每毫升血液中含药量不少于2(μg)时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后在过3h,该病人每毫升血液中含药量为多少μg?(精确到0.1μg)【答案】(1)当0≤t<1时,y=8t;当t≥1时,把A(1,8)、B(7,1)代入y=kat,得解得故y =(2)设第一次服药后最迟过t小时服第二次药,则解得t=5,即第一次服药后5h服第二次药,也即上午11:00服药.(3)第二次服药3h后,每毫升血液中含第一次服药后的剩余量为:y1=8()8=μg,含第二次服药量为:y2=8()3=4μg,所以此时两次服药剩余的量为+4≈4.7μg,故该病人每毫升血液中的含药量为4.7μg.11/11。
课时作业8 指数与指数函数[基础落实练]一、选择题1.若指数函数y =(1-3a )x 在R 上为单调递增函数,则实数a 的取值范围为( )A .⎝⎛⎭⎫0,13 B .(1,+∞) C .R D .(-∞,0)2.设函数f (x )=x 2-a 与g (x )=a x (a >1且a ≠2)在区间(0,+∞)上具有不同的单调性,则M =(a -1)0.2与N =⎝⎛⎭⎫1a 0.1 的大小关系是( )A .M =NB .M ≤NC .M <ND .M >N3.函数y =(12)√−x 2+x+2的单调增区间是( ) A .⎣⎡⎦⎤-1,12 B .(-∞,-1] C .[2,+∞) D .⎣⎡⎦⎤12,24.在我国西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为( )5.当x ∈[-2,2]时,a x<2(a >0且a ≠1),则实数a 的取值范围是( )A .(1,2 )B .⎝⎛⎭⎫22,1 C .⎝⎛⎭⎫22,1 ∪(1,2 ) D .(0,1)∪(1,2 ) 二、填空题 6.已知a >0,b >0,则√a 3b 2√ab 23(a 14b 12)4a −13b 13=________.7.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围是________.8.已知函数f (x )=⎩⎪⎨⎪⎧-⎝⎛⎭⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.三、解答题9.已知函数f (x )=a x (a >1)在区间[1,2]上的最大值比最小值大2,求实数a 的值.10.已知函数f (x )=⎝⎛⎭⎫23 |x |-a .(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值.[素养提升练]11.[2023·衡水检测]当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A .(-2,1)B .(-4,3)C .(-3,4)D .(-1,2)12.设函数f (x )=e x +ax 2+bx +c (a ,b ,c 为非零实数),且f (a )=e a ,f (b )=e b ,若a <-1且c <0,则b 的最小值为( )A .1B .2C .3D .413.已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是________.①a <0,b <0,c <0;②a <0,b ≥0,c >0;③2-a <2c ;④2a +2c <2.14.已知函数y =a ⎝⎛⎭⎫12 |x | +b 的图象过原点,且无限接近直线y =2,但又不与该直线相交.(1)求该函数的解析式,并画出图象;(2)判断该函数的奇偶性和单调性.15.定义在D 上的函数f (x ),如果满足:对任意x ∈D ,存在常数M >0,都有|f (x )|≤M成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界,已知函数f (x )=14x +a 2x +1.(1)当a =-1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围.[培优创新练]16.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +32x +1,则函数y =[f (x )]的值域为( ) A .{0,1,2,3} B .{0,1,2}C .{1,2,3}D .{1,2}17.已知函数f (x ),若在其定义域内存在实数x 满足f (-x )=-f (x ),则称函数f (x )为“局部奇函数”,若函数f (x )=4x -m ·2x -3是定义在R 上的“局部奇函数”,则实数m 的取值范围是( )A .[-2,2)B .[-2,+∞)C .(-∞,2)D .[-4,-2)。
4.2.2指数函数的图象和性质基础过关练题组一指数函数的图象特征1.(2020山西大学附中高一上期中)在同一坐标系中,函数y=ax+a与y=a x的图象大致是()2.(2020北京丰台高一上期中联考)函数y=(12)|x|的图象是()3.(2020湖南衡阳八中高一上期中)设a,b,c,d均大于0,且均不等于1,y=a x,y=b x,y=c x,y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序为()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d4.(2020山西长治二中高一上期中)函数f(x)=a x-2+1(a>0,且a ≠1)的图象恒过定点( ) A.(2,2) B.(2,1) C.(3,1) D.(3,2)5.已知函数f(x)=ax,g(x)=(1a)x(a>0,且a ≠1), f(-1)=12.(1)求f(x)和g(x)的函数解析式;(2)在同一坐标系中画出函数f(x)和g(x)的图象; (3)若f(x)<g(x),请直接写出x 的取值范围.题组二 指数函数的单调性及其应用 6.方程4x -3×2x +2=0的解构成的集合为( ) A.{0} B.{1} C.{0,1} D.{1,2}7.(2020山东师大附中高一上第一次学分认定考试)设y1=40.9,y2=80.61,y3=(12)-1.5,则()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y18.(2020广东湛江一中高一上第一次大考)若f(x)=-x2+2ax与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则a的取值范围是()A.(12,1] B.(0,12]C.[0,1]D.(0,1]9.若不等式2x2+1≤(14)x-2的解集是函数y=2x的定义域,则函数y=2x的值域是()A.[18,2) B.[18,2]C.(-∞,18] D.[2,+∞)10.(2020广东珠海高一上期末)已知函数f(x)满足f(x+1)的定义域是[0,31),则f(2x)的定义域是()A.[1,32)B.[-1,30)C.[0,5)D.(-∞,30]11.(2020甘肃兰州一中高一月考)函数y=(12)8-2x-x2的单调递增区间为.12.(2020浙江嘉兴一中高一上期中)已知集合A={x|12≤2x-4< 4},B={x|x2-11x+18<0}.(1)求∁R(A∩B);(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.题组三指数函数性质的综合应用13.(2020浙江温州十五校联合体高一上期中联考)函数f(x)=√x+12x-1的定义域为()A.[-1,0)∪(0,+∞)B.(-1,+∞)C.[-1,+∞)D.(0,+∞)14.已知函数f(x)=3x-(13)x,则f(x)是()A.奇函数,且在R上是增函数B.偶函数,且在R上是增函数C.奇函数,且在R上是减函数D.偶函数,且在R上是减函数15.(2019湖南醴陵一中高一上期中)函数f(x)=13x+1+a是奇函数,则实数a的值是()A.0B.12C.-12D.116.已知a>0,且a≠1,若函数f(x)=2a x-4在区间[-1,2]上的最大值为10,则a=.17.(2020浙江杭州高级中学高一上期末)函数y=(14)-|x|+1的单调递增区间为;奇偶性为(填“奇函数”“偶函数”或“非奇非偶函数”).18.(2020山东泰安一中高一上期中)已知函数f(x)=a+22x-1.(1)求函数f(x)的定义域;(2)若f(x)为奇函数,求a的值,并求f(x)的值域.能力提升练题组一指数函数的图象特征1.(2020福建厦外高一上期中,)已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()2.(2020陕西西安中学高一上期中,)已知实数a,b满足等式2019a=2 020b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有()A.1个B.2个C.3个D.4个3.(2020河北唐山一中高一上期中,)若函数y=(12)|1-x|+m的图象与x轴有公共点,则m的取值范围是.题组二指数函数的单调性及其应用4.(2020湖南长郡中学高一上模块检测,)已知a=√0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a5.()函数f(x)=-a2x-1+5a x-8(a>0,且a≠1)在[2,+∞)上单调递减,则实数a 的取值范围为(易错)A.(0,1)∪[52,+∞) B.[45,1)∪(1,+∞) C.(0,1)∪(1,52] D.(1,52]6.()若函数f(x)=√2x 2+2ax -a -1的定义域为R,则实数a 的取值范围是 .7.(2020黑龙江大庆实验中学高一上月考,)已知函数f(x)=ba x (其中a,b 为常数,a>0,且a ≠1)的图象经过A(1,6),B(2,18)两点.若不等式(2a )x +(1b )x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为 .8.(2020福建福州八县(市)一中高一上期末联考,)已知定义在R 上的偶函数f(x)满足:当x ≥0时, f(x)=2x +a 2x , f(1)=52. (1)求实数a 的值;(2)用定义法证明f(x)在(0,+∞)上是增函数; (3)求函数f(x)在[-1,2]上的值域.题组三 指数函数性质的综合应用 9.(2020安徽安庆高一上期末,)某数学课外兴趣小组对函数f(x)=2|x-1|的图象与性质进行了探究,得到下列四条结论:①函数f(x)的值域为(0,+∞);②函数f(x)在区间[0,+∞)上单调递增;③函数f(x)的图象关于直线x=1对称;④函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点.则其中正确结论的个数为(深度解析)A.1B.2C.3D.410.(2020浙江温州十五校联合体高一上期中联考,)已知a>0,设函数f(x)=2 019x+1+32 019x+1(x∈[-a,a])的最大值为M,最小值为N,那么M+N=()A.2025B.2022C.2020D.201911.(2020浙江浙北G2高一上期中联考,)已知实数a>0,定义域为R的函数f(x)=3xa +a3x是偶函数.(1)求实数a的值;(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;(3)是否存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立?若存在,求出m的取值范围;若不存在,请说明理由.答案全解全析 基础过关练1.B 函数y=ax+a 的图象经过(-1,0)和(0,a)两点,选项D 错误;在图A 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得0<a<1,选项A 错误;在图B 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得a>1,选项B 正确;在图C 中,由指数函数y=a x 的图象得0<a<1,由y=ax+a 的图象得a>1,选项C 错误.故选B.2.D y=(12)|x|={(12)x,x ≥0,2x ,x <0.因此,当x ≥0时,y=(12)|x|的图象与y=(12)x的图象相同;当x<0时,y=(12)|x|的图象与y=2x 的图象相同,故选D. 3.C 作出直线x=1,如图所示.直线x=1与四个函数图象的交点从下到上依次为(1,b),(1,a),(1,d),(1,c),因此a,b,c,d 的大小顺序是b<a<d<c,故选C. 4.A ∵a 0=1,∴令x-2=0,得y=a 0+1=2, ∴x=2时,y=2,因此函数f(x)的图象恒过定点(2,2),故选A. 5.解析 (1)因为f(-1)=a -1=1a =12,所以a=2,所以f(x)=2x,g(x)=(12)x.(2)在同一坐标系中画出函数f(x)和g(x)的图象如图所示:(3)由图象知,当f(x)<g(x)时,x 的取值范围是{x|x<0}.6.C 令2x =t,则4x =(2x )2=t 2,原方程可化为t 2-3t+2=0,解得t=1或t=2. 当t=1时,2x =1=20,解得x=0, 当t=2时,2x =2=21,解得x=1.因此原方程的解构成的集合为{0,1}. 故选C.7.B 由题意知,y 1=40.9=22×0.9=21.8,y 2=80.61=23×0.61=21.83,y 3=(12)-1.5=21.5,∵y=2x 在R 上是增函数,∴y 2>y 1>y 3.故选B.8.D 由f(x)=-x 2+2ax=-(x-a)2+a 2在区间[1,2]上是减函数得a ≤1;由g(x)=(a+1)1-x=(1a+1)x -1在区间[1,2]上是减函数得0<1a+1<1,因此a+1>1,解得a>0.因此a 的取值范围是(0,1],故选D. 9.B 由2x 2+1≤(14)x -2得2x 2+1≤2-2x+4,即x 2+1≤-2x+4,解得-3≤x ≤1,∴函数y=2x 的定义域为[-3,1].由于函数y=2x 在R 上单调递增,故当x=-3时取得最小值18,当x=1时取得最大值2,所以函数的值域为[18,2].故选B.10.C ∵f(x+1)的定义域是[0,31),即0≤x<31,∴1≤x+1<32,∴f(x)的定义域是[1,32),∴f(2x )有意义必须满足20=1≤2x <32=25,∴0≤x<5. 11.答案 [-1,+∞)解析 设t=8-2x-x 2,则y=(12)t,易知y=(12)t在R 上单调递减,又知t=8-2x-x 2在(-∞,-1]上单调递增,在[-1,+∞)上单调递减, 所以由y=(12)t与t=8-2x-x 2复合而成的函数y=(12)8-2x -x 2的单调递增区间为[-1,+∞).12.解析 由12≤2x-4<4得2-1≤2x-4<22,∴-1≤x-4<2,即3≤x<6,∴A=[3,6).由x 2-11x+18<0得2<x<9,∴B=(2,9).(1)∵A=[3,6),B=(2,9), ∴A ∩B=[3,6),∴∁R (A ∩B)=(-∞,3)∪[6,+∞).(2)由C ⊆B 得{a ≥2,a +1≤9,解得2≤a ≤8,故实数a 的取值集合为{a|2≤a ≤8}.13.A 依题意得{x +1≥0,2x -1≠0,即{x ≥-1,x ≠0.故函数f(x)的定义域为[-1,0)∪(0,+∞),故选A.14.A 由题知x ∈R,且f(-x)=3-x-(13)-x=(13)x-3x =-f(x),所以f(x)是奇函数;又y=3x是增函数,且y=(13)x是减函数,所以f(x)=3x-(13)x是R 上的增函数,故选A. 15.C 函数f(x)=13x +1+a 的定义域为R,且f(x)是奇函数,因此f(0)=0,即130+1+a=0,解得a=-12.此时f(x)=13x +1-12=1-3x2(3x +1)符合题意,故选C.16.答案 √7或17解析 若a>1,则函数y=a x 在区间[-1,2]上是单调递增的,当x=2时, f(x)取得最大值,则f(2)=2a 2-4=10,即a 2=7,又a>1,所以a=√7. 若0<a<1,则函数y=a x 在区间[-1,2]上是单调递减的, 当x=-1时, f(x)取得最大值,则f(-1)=2a -1-4=10,所以a=17.综上所述,a 的值为√7或17.17.答案 [0,+∞);偶函数 解析 设u=-|x|+1,则y=(14)u.易知u=-|x|+1的单调递减区间为[0,+∞),y=(14)u是减函数,∴y=(14)-|x|+1的单调递增区间为[0,+∞).∵f(-x)=(14)-|-x|+1=(14)-|x|+1=f(x),∴f(x)是偶函数.18.解析 (1)由2x -1≠0,可得x ≠0, ∴函数f(x)的定义域为{x|x ≠0}. (2)∵f(x)为奇函数,∴f(-x)=-f(x). 又∵f(-x)=a+22-x -1=a+2×2x 1-2x=a-2(2x -1)+22x -1=(a-2)-22x -1,-f(x)=-a-22x -1,∴a-2=-a,解得a=1. 因此f(x)=1+22x -1.∴当x>0时,2x -1>0,f(x)>1; 当x<0时,-1<2x -1<0,f(x)<-1. ∴f(x)的值域为(-∞,-1)∪(1,+∞).能力提升练1.A 由函数f(x)的图象知,b<-1<0<a<1. ∴g(x)=a x +b 的图象是单调递减的.又g(0)=a 0+b=1+b<0,∴图象与y 轴交于负半轴,故选A.2.B 在同一平面直角坐标系中作出y=2 019x 与y=2 020x 的图象如图所示.设2 020b =2 019a =t, 当t>1时,0<b<a,①正确; 当t=1时,a=b=0,⑤正确;当0<t<1时,a<b<0,②正确,③④不成立. 故选B.3.答案 [-1,0) 解析 作出函数g(x)=(12)|1-x|={(12)x -1,x ≥1,2x -1,x <1的图象如图所示.由图象可知0<g(x)≤1,则m<g(x)+m ≤1+m,即m<f(x)≤1+m, 要使函数y=(12)|1-x|+m 的图象与x 轴有公共点,则{1+m ≥0,m <0,解得-1≤m<0. 故答案为[-1,0). 4.A a=√0.3=0.30.5.∵f(x)=0.3x 在R 上单调递减, ∴0.30.5<0.30.2<0.30⇒a<c<1. 又b=20.3>20=1,∴a<c<b,故选A.5.A 设y=f(x)=-1a ·a 2x +5a x -8,令a x =u(u>0),则y=-1a u 2+5u-8=-1a (u -5a2)2+25a4-8(u>0).∴y=-1au 2+5u-8在(0,5a2]上单调递增,在[5a2,+∞)上单调递减.①当0<a<1时,u=a x 是减函数, ∵x ≥2,∴0<u ≤a 2<5a2,此时y=-1au 2+5u-8是增函数,从而f(x)是减函数,符合题意. ②当a>1时,u=a x 是增函数, ∵x ≥2,∴u ≥a 2,由f(x)在[2,+∞)上单调递减,得a 2≥5a2,又a>0,∴a ≥52,即当a ≥52时,f(x)是减函数.综上所述,实数a 的取值范围是(0,1)∪[52,+∞),故选A.易错警示 解决与指数函数有关的复合函数的单调性问题时,一要注意底数的取值对单调性的影响,必要时进行分类讨论;二要注意中间变量的取值范围. 6.答案 [-1,0] 解析 依题意得2x2+2ax -a-1≥0恒成立,即x 2+2ax-a ≥0恒成立.∴Δ=4a 2+4a ≤0,解得-1≤a ≤0, 故实数a 的取值范围是[-1,0]. 7.答案 76解析 由已知可得{ba =6,ba 2=18,解得{a =3,b =2,则不等式(23)x+(12)x-m ≥0在x ∈(-∞,1]上恒成立,设g(x)=(23)x+(12)x-m,显然函数g(x)=(23)x+(12)x-m 在(-∞,1]上单调递减,∴g(x)≥g(1)=23+12-m=76-m,故76-m ≥0,即m ≤76,∴实数m 的最大值为76.8.解析 (1)由题意得f(1)=2+a 2=52,∴a=1.(2)证明:由(1)知a=1,∴f(x)=2x +12x ,任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 1)-f(x 2)=(2x 1+12x 1)-(2x 2+12x 2)=(2x 1-2x 2)+2x 2-2x 12x 1·2x 2=(2x 1-2x 2)·(2x 1+x 2-1)2x 1+x 2.∵0<x 1<x 2,∴1<2x 1<2x 2,2x 1+x 2>1, ∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(0,+∞)上是增函数.(3)易得f(0)=2, f(2)=174, f(-1)=52, f(x)在[-1,0]上为减函数,在[0,2]上为增函数,∴f(x)的值域为[2,174].9.B 函数f(x)的值域为[1,+∞),①错误;函数f(x)在区间[0,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f(x)的图象关于直线x=1对称,③正确;因为y=-a 2≤0,所以函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点,④正确.正确结论的个数为2,故选B.解题模板 研究指数型复合函数的性质,借助图象是常见的手段,画出简图很多问题可迎刃而解. 10.B f(x)=2 019x+1+2 019-2 0162 019x +1=2 019-2 0161+2 019x,∴f(-x)=2 019-2 0161+2 019-x=2 019-2 016×2 019x 2 019x +1.因此f(x)+f(-x) =4 038-2 016(11+2 019x+2 019x2 019x +1)=4 038-2 016=2 022. 又f(x)在[-a,a]上是增函数,∴M+N=f(a)+f(-a)=2 022,故选B.11.解析 (1)定义域为R 的函数f(x)=3xa+a3x 是偶函数,则f(-x)=f(x)恒成立,即3-xa+a3-x =3xa+a 3x ,故(1a-a)(3x -3-x )=0恒成立.因为3x -3-x 不可能恒为0,所以当1a-a=0时,f(-x)=f(x)恒成立,而a>0,所以a=1.(2)函数f(x)=3x +13x 在(0,+∞)上单调递增,证明如下:设任取x 1,x 2∈(0,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=(3x 1+13x 1)-(3x 2+13x 2)=(3x 1-3x 2)+(13x 1-13x 2)=(3x 1-3x 2)+3x 2-3x 13x 1·3x 2=(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2.因为0<x 1<x 2,所以3x 1<3x 2,3x 1>1,3x 2>1, 所以(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2<0,即f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 故函数f(x)=3x +13x 在(0,+∞)上单调递增.(3)不存在.理由如下:由(2)知函数f(x)在(0,+∞)上单调递增,而函数f(x)是偶函数,则函数f(x)在(-∞,0)上单调递减.若存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立,则|t-2|<|2t-m|恒成立,即(t-2)2<(2t-m)2,即3t2-(4m-4)t+m2-4>0对任意的t∈R恒成立,则Δ=[-(4m-4)]2-12(m2-4)<0,得到(m-4)2<0,故m∈⌀,所以不存在.。
高考数学考点知识专题讲解与练习指数函数的概念学习目标1.理解指数函数的概念,了解对底数的限制条件的合理性.2.了解指数增长型和指数衰减型在实际问题中的应用.知识点一 指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 思考 为什么底数应满足a >0且a ≠1?答案 ①当a ≤0时,a x 可能无意义;②当a >0时,x 可以取任何实数;③当a =1时,a x =1 (x ∈R ),无研究价值.因此规定y =a x 中a >0,且a ≠1. 知识点二 两类指数模型1.y =ka x (k >0),当a >1时为指数增长型函数模型. 2.y =ka x (k >0),当0<a <1时为指数衰减型函数模型.1.y =x x (x >0)是指数函数.(×)2.y =a x +2(a >0且a ≠1)是指数函数.(×) 3.y =⎝ ⎛⎭⎪⎫12x 是指数衰减型函数模型.(√)4.若f (x )=a x 为指数函数,则a >1.(×)一、指数函数的概念例1(1)下列函数中是指数函数的是________.(填序号) ①y =2·(2)x ;②y =2x -1;③y =⎝ ⎛⎭⎪⎫π2x ;④13;x y -=⑤13.y x =(2)若函数y =(a 2-3a +3)·a x 是指数函数,则实数a =________. 答案 (1)③(2)2解析 (1)①中指数式(2)x 的系数不为1,故不是指数函数;②中y =2x -1,指数位置不是x ,故不是指数函数;④中指数不是x ,故不是指数函数;⑤中指数为常数且底数不是唯一确定的值,故不是指数函数,故填③.(2)由y =(a 2-3a +3)·a x 是指数函数,可得⎩⎨⎧a 2-3a +3=1,a >0且a ≠1,解得a =2.反思感悟 判断一个函数是否为指数函数的方法 (1)底数的值是否符合要求; (2)a x 前的系数是否为1; (3)指数是否符合要求.跟踪训练1(1)若函数y =a 2(2-a )x 是指数函数,则() A .a =1或-1 B .a =1 C .a =-1 D .a >0且a ≠1答案 C解析 因为函数y =a 2(2-a )x 是指数函数,所以⎩⎨⎧a 2=1,2-a >0,2-a ≠1,解得a =-1.(2)若函数y =(2a -3)x 是指数函数,则实数a 的取值范围是________________. 答案 ⎝ ⎛⎭⎪⎫32,2∪(2,+∞)解析 由题意知⎩⎨⎧2a -3>0,2a -3≠1,解得a >32且a ≠2.二、求指数函数的解析式、函数值例2(1)已知函数f (x )是指数函数,且f ⎝ ⎛⎭⎪⎫-32=525,则f (3)=________.答案 125解析 设f (x )=a x (a >0,且a ≠1), 由f ⎝ ⎛⎭⎪⎫-32=525得133222255,255a--=== 所以a =5,即f (x )=5x ,所以f (3)=53=125.(2)已知函数y =f (x ),x ∈R ,且f (0)=3,f (1)f (0)=12,f (2)f (1)=12,…,f (n )f (n -1)=12,n ∈N *,求函数y =f (x )的一个解析式.解 当x 增加1时函数值都以12的衰减率衰减, ∴函数f (x )为指数衰减型, 令f (x )=k ⎝ ⎛⎭⎪⎫12x (k ≠0),又f (0)=3,∴k =3,∴f (x )=3·⎝ ⎛⎭⎪⎫12x . 反思感悟 解决此类问题的关键是观察出函数是指数增长型还是指数衰减型,然后用待定系数法设出函数解析式,再代入已知条件求解.跟踪训练2已知函数f (x )=a x +b (a >0,且a ≠1)经过点(-1,5),(0,4),则f (-2)的值为________. 答案 7解析 由已知得⎩⎨⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝ ⎛⎭⎪⎫12x+3,所以f (-2)=⎝ ⎛⎭⎪⎫12-2+3=4+3=7.三、指数增长型和指数衰减型函数的实际应用例3 甲、乙两城市现有人口总数都为100万人,甲城市人口的年自然增长率为1.2%,乙城市每年增长人口1.3万.试解答下面的问题:(1)写出两城市的人口总数y (万人)与年份x (年)的函数关系式; (2)计算10年、20年、30年后两城市的人口总数(精确到0.1万人); (3)对两城市人口增长情况作出分析.参考数据:(1+1.2%)10≈1.127,(1+1.2%)20≈1.269,(1+1.2%)30≈1.430. 解 (1)1年后甲城市人口总数为y 甲=100+100×1.2%=100×(1+1.2%); 2年后甲城市人口总数为y 甲=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2;3年后甲城市人口总数为y甲=100×(1+1.2%)3;…;x年后甲城市人口总数为y甲=100×(1+1.2%)x.x年后乙城市人口总数为y乙=100+1.3x.(2)10年、20年、30年后,甲、乙两城市人口总数(单位:万人)如表所示.(3)甲、乙两城市人口都逐年增长,而甲城市人口增长的速度快些,呈指数增长型,乙城市人口增长缓慢,呈线性增长.从中可以体会到,不同的函数增长模型,增长变化存在很大差异.反思感悟解决有关增长率问题的关键和措施(1)解决这类问题的关键是理解增长(衰减)率的意义:增长(衰减)率是所研究的对象在“单位时间”内比它在“前单位时间”内的增长(衰减)率,切记并不总是只和开始单位时间内的比较.(2)具体分析问题时,应严格计算并写出前3~4个单位时间的具体值,通过观察、归纳出规律后,再概括为数学问题,最后求解数学问题即可.(3)在实际问题中,有关人口增长、银行复利、细胞分裂等增长率问题常可以用指数函数模型表示,通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.跟踪训练3中国共产党第十八届中央委员会第五次全体会议认为,到2020年全面建成小康社会,是我们党确定的“两个一百年”奋斗目标的第一个百年奋斗目标.全会提出了全面建成小康社会新的目标要求:经济保持中高速增长,在提高发展平衡性、包容性、可持续性的基础上,到2020年国内生产总值和城乡居民人均收入比2010年翻一番,产业迈向中高端水平,消费对经济增长贡献明显加大,户籍人口城镇化率加快提高.设从2011年起,城乡居民人均收入每一年比上一年都增长p%.下面给出了依据“到2020年城乡居民人均收入比2010年翻一番”列出的关于p的四个关系式:①(1+p%)×10=2;②(1+p%)10=2;③10(1+p%)=2;④1+10×p%=2.其中正确的是()A.①B.②C.③D.④答案 B解析已知从2011年起,城乡居民人均收入每一年比上一年都增长p%.则由到2020年城乡居民人均收入比2010年翻一番,可得:(1+p%)10=2;正确的关系式为②.1.下列函数:①y=2·3x;②y=3x+1;③y=3x;④y=x3.其中,指数函数的个数是()A.0 B.1 C.2 D.3答案 B解析 ①中,3x 的系数是2,故①不是指数函数;②中,y =3x +1的指数是x +1,不是自变量x ,故②不是指数函数;③中,y =3x ,3x 的系数是1,指数是自变量x ,且只有3x 一项,故③是指数函数; ④中,y =x 3中底数为自变量,指数为常数,故④不是指数函数. 所以只有③是指数函数.故选B.2.若函数y =(m 2-m -1)·m x 是指数函数,则m 等于() A .-1或2 B .-1 C .2 D.12答案 C解析 依题意,有⎩⎨⎧m 2-m -1=1,m >0且m ≠1,解得m =2(舍m =-1),故选C.3.如表给出函数值y 随自变量x 变化的一组数据,由此可判断它最可能的函数模型为()A.一次函数模型 B .二次函数模型 C .指数函数模型 D .幂函数模型答案 C解析 观察数据可得y =4x .4.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…,现有2个这样的细胞,分裂x 次后得到细胞的个数y 与x 的函数关系式是()A .y =2xB .y =2x -1C .y =2xD .y =2x +1答案 D解析 分裂一次后由2个变成2×2=22(个),分裂两次后变成4×2=23(个),…,分裂x 次后变成y =2x +1(个).5.f (x )为指数函数,若f (x )过点(-2,4),则f (f (-1))=________. 答案 14解析 设f (x )=a x (a >0且a ≠1), 所以f (-2)=4,a -2=4,解得a =12, 所以f (x )=⎝ ⎛⎭⎪⎫12x,所以f (-1)=⎝ ⎛⎭⎪⎫12-1=2,所以f (f (-1))=f (2)=⎝ ⎛⎭⎪⎫122=14.1.知识清单: (1)指数函数的定义.(2)指数增长型和指数衰减型函数模型. 2.方法归纳:待定系数法.3.常见误区:易忽视底数a 的限制条件:a >0且a ≠1.1.下列函数中,指数函数的个数为() ①y =⎝ ⎛⎭⎪⎫12x -1;②y =a x (a >0,且a ≠1); ③y =1x ; ④y =⎝ ⎛⎭⎪⎫122x -1.A .0B .1C .3D .4 答案 B解析 由指数函数的定义可判定,只有②正确. 2.若函数f (x )=⎝ ⎛⎭⎪⎫12a -3·a x 是指数函数,则f ⎝ ⎛⎭⎪⎫12的值为() A .2 B .-2 C .-2 2 D .2 2 答案 D解析 因为函数f (x )是指数函数, 所以12a -3=1,所以a =8, 所以f (x )=8x,f ⎝ ⎛⎭⎪⎫12=128=2 2.3.下列函数关系中,可以看作是指数型函数y =ka x (k ∈R ,a >0且a ≠1)的模型的是() A .竖直向上发射的信号弹,从发射开始到信号弹到达最高点,信号弹的高度与时间的关系(不计空气阻力)B .我国人口年自然增长率为1%时,我国人口总数与年份的关系C .如果某人t s 内骑车行进了1 km ,那么此人骑车的平均速度v 与时间t 的函数关系D .信件的邮资与其重量间的函数关系 答案 B解析 A 中的函数模型是二次函数; B 中的函数模型是指数型函数; C 中的函数模型是反比例函数; D 中的函数模型是一次函数.故选B.4.据报道,某淡水湖的湖水在50年内减少了10%,若每年以相同的衰减率呈指数衰减,按此规律,设2019年的湖水量为m ,从2019年起,经过x 年后湖水量y 与x 的函数关系为() A .y =500.9x B .y =(1-500.1x )m C .y =500.9x m D .y =(1-0.150x )m 答案 C解析 方法一 设每年的衰减率为q %, 则(q %)50=0.9, 所以q %=1500.9,所以x 年后的湖水量y =500.9x m . 方法二 设每年的衰减率为q %, 则(1-q %)50=0.9,所以q %=1-1500.9,所以y =m ·[1-(1-1500.9)]x =500.9x m .5.下列函数图象中,有可能表示指数函数的是()答案 C解析 A 为一次函数;B 为反比例函数;D 为二次函数;选项C 的图象呈指数衰减,是指数衰减型函数模型,故选C.6.已知函数f (x )=2a x -1+3(a >0且a ≠1),若f (1)=4,则f (-1)=________. 答案 0解析 由f (1)=4得a =3,把x =-1代入f (x )=23x -1+3得到f (-1)=0. 7.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________.答案 1解析 由指数函数的定义得⎩⎨⎧ a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.8.已知某种放射性物质经过100年剩余质量是原来质量的95.76%,设质量为1的这种物质,经过x 年后剩余质量为y ,则x ,y 之间的关系式是________.答案 y =1000.957 6x解析 设质量为1的物质1年后剩余质量为a ,则a 100=0.957 6.所以a =11000.957 6,所以y =a x =1000.957 6x . 9.已知函数f (x )=2x +2ax +b ,且f (1)=52,f (2)=174.求a ,b 的值.解 由题意得⎩⎪⎨⎪⎧ 52=2+2a +b ,174=22+22a +b ,即⎩⎨⎧2-1=2a +b ,2-2=22a +b , 所以⎩⎨⎧ a +b =-1,2a +b =-2,解得⎩⎨⎧a =-1,b =0.10.有一种树栽植5年后可成材.在栽植后5年内,该种树的产量年增长率为20%,如果不砍伐,从第6年到第10年,该种树的产量年增长率为10%,现有两种砍伐方案: 甲方案:栽植5年后不砍伐,等到10年后砍伐.乙方案:栽植5年后砍伐重栽,然后过5年再砍伐一次.请计算后回答:10年内哪一个方案可以得到较多的木材?解 设该种树的最初栽植量为a ,甲方案在10年后的木材产量为y 1=a (1+20%)5(1+10%)5=a (1.2×1.1)5≈4.01a .乙方案在10年后的木材产量为y 2=2a (1+20%)5=2a ·1.25≈4.98a .y 1-y 2=4.01a -4.98a <0,因此,乙方案能获得更多的木材.11.已知函数f (x )=⎩⎪⎨⎪⎧1-x 12-,x >0,2x ,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19等于() A .4 B.14 C .-4 D .-14答案B解析 ∵f ⎝ ⎛⎭⎪⎫19=1-⎝ ⎛⎭⎪⎫1912-=1-3=-2, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=f (-2)=2-2=14. 12.某股民购买一公司股票10万元,在连续十个交易日内,前5个交易日,平均每天上涨5%,后5个交易日内,平均每天下跌4.9%,则股民的股票盈亏情况(不计其他成本,精确到元)为()A .赚723元B .赚145元C .亏145元D .亏723元答案 D解析 由题意得10×(1+5%)5×(1-4.9%)5≈10×0.992 77=9.927 7;100 000-99 277=723,故股民亏723元,故选D.13.若函数y =(m 2-5m +5)⎝ ⎛⎭⎪⎫2-m 3x 是指数函数,且为指数增长型函数模型,则实数m =________.答案 1解析 依题意知⎩⎪⎨⎪⎧ m 2-5m +5=1,2-m 3>1,解得m =1(舍m =4).14.已知函数f (x )为指数函数且f ⎝ ⎛⎭⎪⎫-32=39,则f (-2)=________,f (f (-1))=________. 答案1933解析 设f (x )=a x (a >0且a ≠1),∴32a -=39=323-,∴a =3, ∵f (x )=3x ,∴f (-2)=19, f (f (-1))=f ⎝ ⎛⎭⎪⎫13=133=33.15.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知该年9月份两食堂的营业额又相等,则该年5月份()A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相等D .不能确定甲、乙哪个食堂的营业额较高答案 A解析 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x .由题意,可得m +8a =m (1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m (1+x )4=m (m +8a ),因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故该年5月份甲食堂的营业额较高.16.某公司拟投资100万元,有两种获利的情况可供选择:一种是年利率10%,按单利计算,5年后收回本金和利息;另一种是年利率9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年后可多得利息多少元?解①本金100万元,年利率10%,按单利计算,5年后的本利和是100×(1+10%×5)=150(万元).②本金100万元,年利率9%,按每年复利一次计算,5年后的本利和是100×(1+9%)5≈153.86(万元).由①②可见,按年利率9%每年复利一次计算的,要比按年利率10%单利计算的更有利,5年后可多得利息3.86万元.。
【高中数学】高中数学知识点:指数函数的解析式及定义(定义域、值域)指数函数的定义:一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞)。
指数函数的解析式:y=ax(a>0,且a≠1)理解指数函数定义,需注意的几个问题:①因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R.②规定底数a大于零且不等于1的理由:如果a<0,比如y=(-4)x,这时对于在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.③像等函数都不是指数函数,要注意区分。
相关高中数学知识点:指数与指数幂的运算(整数、有理、无理)n次方根的定义:一般地,如果xn=a,那么x叫做a的n次方根,其中n>1,且n∈N*。
分数指数幂的意义:(1);(2);(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。
n次方根的性质:(1)0的n次方根是0,即=0(n>1,n∈N*);(2)=a(n∈N*);(3)当n为奇数时,=a;当n为偶数时,=|a|。
幂的运算性质:(1);(2);(3);注意:一般地,无理数指数幂(a>0,α是无理数)是一个确定的实数,上述有理指数幂的运算性质,对于无理指数幂都适用。
感谢您的阅读,祝您生活愉快。
高三基础练习八 指数函数
时间:45分钟 分值:100分
一、选择题(每小题5分,共30分)
1.已知f (x )=2x +2-x ,若f (a )=3,则f (2a )等于( ) A .5 B .7 C .9
D .11
解析:由f (a )=3得2a +2-a =3, 两边平方得22a +2-2a +2=9, 即22a +2-2a =7,故f (2a )=7,选B. 答案:B
2.已知函数f (x )=⎩
⎪⎨⎪⎧
log 4x ,x >03x ,x ≤0,则f [f (1
16)]等于( )
A .9 B.1
9 C .-9
D .-19
解析:因为f (116)=log 41
16=-2, 于是f [f (116)]=f (-2)=3-2=1
9,故选B. 答案:B
3.(2013·辽宁测试)函数y =(1
2)2x -x 2的值域为( ) A .[1
2,+∞)
B .(-∞,1
2]
C .(0,1
2]
D .(0,2]
解析:u =f (x )=2x -x 2
=-(x -1)2
+1≤1,函数y =(12)u
是减函数,由复合函数的单调性可知,y ≥(12)1,即函数的值域是[1
2,+∞),故选A.
答案:A
4.(2013·蚌埠检查)函数y =e sin x (-π≤x ≤π)的大致图象为( )
解析:当x ∈[-π,0]时,函数值由1减小为1
e 再增大到1,当x ∈[0,π]函数值由1增大到e 再减小到1,故选D.
答案:D
5.若函数y =a x
+b 的图象如图所示,则函数y =b +1
x +a
的图象
为( )
解析:由函数y =a x +b 的图象,可知函数y =a x +b 在R 上单调递减,故0<a <1.
因为函数y =a x +b 的图象与y 轴的交点在负半轴上,故b <0. 函数y =b +1x +a 的图象可以看做是由函数y =1
x 的图象向左平移
a 个单位,然后向下平移-
b 个单位得到的,结合反比例函数的图象和a 、b 的范围可知选C.
答案:C
6.(2013·广东联考)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,必成立的是( )
A .a <0,b <0,c <0
B .a <0,b ≥0,c >0
C .2-a <2c
D .2a +2c <2
解析:画出函数f (x )=|2x -1|的图象,若a <b <c 时,f (a )>f (c )>f (b ),
则a <0,0<c <1.故一定有2a +2c <2,故选D.
答案:D
二、填空题(每小题5分,共15分) 7.已知函数f (x )=
⎩⎪⎨⎪⎧ 3x ,
5,log 15
x ,
x <0,
0≤x ≤1,
x >1,
则f (f (f (-2 012)))=__________.
解析:f (-2 012)=3-2 012,f (3-2 012)=5,f (5)
=log 15
5=-1
2.
答案:-1
2
8.(2013·南京一模)已知f (x )=a -1
2x -1是定义在(-∞,-1]∪[1,
+∞)上的奇函数,则f (x )的值域为__________.
解析:f (x )=a -1
2x -1在(-∞,-1]∪[1,+∞)上是奇函数,可
以求得a =-1
2,
∴f (x )=a -12x -1
=-12-12x -1,且在(-∞,-1],[1,+∞)是增函数.
当x 在[1,+∞)上时,f (x )∈[-32,-1
2),当x 在(-∞,-1]上时,f (x )∈(12,32],则f (x )的值域为[-32,-12)∪(12,3
2].
答案:[-32,-12)∪(12,3
2]
9.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是__________.
解析:令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点;
若a >1,y =a x 与y =x +a 的图象如图所示.
答案:(1,+∞) 三、解答题(共55分) 10.(15分)求函数y =2--x 2-3x +4
的定义域、值域和单调区间.
解:要使函数有意义, 则只需-x 2-3x +4≥0, 即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}. 令t =-x 2-3x +4,
则t =-x 2
-3x +4=-(x +32)2+25
4,
∴当-4≤x ≤1时,t max =254,此时x =-3
2, t min =0,此时x =-4或x =1. ∴0≤t ≤254,∴0≤-x 2
-3x +4≤52. ∴函数y =(1
2)
-x 2-3x +4
的值域为[2
8,1].
由t =-x 2
-3x +4=-(x +32)2+25
4(-4≤x ≤1)可知,当-4≤x ≤
-3
2时,t 是增函数,
当-3
2≤x ≤1时,t 是减函数. 根据复合函数的单调性知: y =(12)
-x 2-3x +4
在[-4,-3
2]上是减函数,
在[-3
2,1]上是增函数. ∴函数的单调增区间是[-3
2,1], 单调减区间是[-4,-3
2].
11.(20分)已知f (x )=a
a 2-1(a x -a -x )(a >0且a ≠1).
(1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;
(3)当x ∈[-1,1]时,f (x )≥b 恒成立,求b 的取值范围. 解:(1)因为f (-x )=a
a 2-1(a -x -a x )=-f (x ),
所以f (x )为奇函数.
(2)当a >1时,a 2-1>0,y =a x 为增函数,y =a -x 为减函数, 从而y =a x -a -x 为增函数,所以f (x )为增函数. 当0<a <1时,a 2-1<0,
y =a x 为减函数,y =a -x 为增函数,
从而y =a x -a -x 为减函数,所以f (x )为增函数, 故当a >0,且a ≠1时,f (x )在定义域内单调递增.
(3)由(2)知f (x )在R 上是增函数, 所以在区间[-1,1]上为增函数, 所以f (-1)≤f (x )≤f (1),
所以f (x )min =f (-1)=a a 2-1(a -1-a )=a
a 2-1·1-a 2
a
=-1,
所以要使f (x )≥b 在[-1,1]上恒成立,则只需b ≤-1, 故b 的取值范围是(-∞,-1].
12.(20分)已知函数f (x )=b ·a x (其中a ,b 为常数且a >0,a ≠1)的反函数的图象经过点A (4,1)和B (16,3).
(1)求a ,b 的值;
(2)若不等式(1a )2x +b 1-x
-|m -1|≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.
解:(1)∵f -1(x )图象经过点A (4,1),B (16,3),∴f (x )图象经过点A (1,4),B (3,16),
∴⎩⎪⎨⎪⎧
ab =4,ba 3=16,
∴a =b =2,∴f (x )=2x +1. (2)∵不等式(1a )2x +b 1-x
-|m -1|≥0在x ∈(-∞,1]时恒成立, ∴不等式(1
2)2x +21-x ≥|m -1|在x ∈(-∞,1]时恒成立, [(1
2)2x +21-x ]min ≥|m -1|恒成立,
设t =(12)x ,g (t )=t 2+2t ,∵x ≤1,∴t ≥12, ∴g (t )min =g (12)=54,∴|m -1|≤5
4,
∴-14≤m ≤94,∴实数m 的取值范围是[-14,94].。