整数指数幂
- 格式:ppt
- 大小:160.00 KB
- 文档页数:11
整数指数幂的运算法则
一、整数指数幂的运算法则
1、乘方:乘方运算结果就是把基数(底数)连乘指数(指数)次的结果。
2、幂的乘法:当两个数的指数相同时,可以将它们相乘,结果只是把这两个数的底数相乘,而指数不变。
3、幂的除法:
当两个数的底数相同时,可以将它们相除,结果只是把这两个数的指数相减,而底数不变。
例如25^3/25^2=25.
4、幂的乘方:
当一个数的指数是另一个数的基数时,可以将它们相乘,结果只是把这两个数的基数相乘,而指数相加。
5、根号的指数:
当一个数的指数是另一个数的底数时,可以将它们进行操作,结果只是把这两个数的底数相加,而指数相减。
二、应用实例:
1、计算8^2×8^2
答案:8^2×8^2=8^4
2、计算(5^3)^2
答案:(5^3)^2 = 5^6
3、计算(64^2)÷64
答案:(64^2)÷64 = 64 4、计算(7^2)×7
答案:(7^2)×7 = 7^3 5、计算(49^1/2)×49
答案:(49^1/2)×49 = 49。
初中整数指数幂的定义哎呀,今天咱们来聊聊一个既简单又有趣的话题,整数指数幂!听起来好像很复杂,其实它就是把一个数字重复乘的游戏,想想看,如果你有个神奇的数字,想把它变得大大大,你就可以用指数来帮忙。
就比如说,咱们有个数字2,咱要它大一点儿,咱就把它乘一遍,得出2;如果想让它更大,咱就说2的2次方,哈哈,这就是2乘以2,结果是4。
再往上走,2的3次方,就是2乘以2再乘以2,哇,居然变成了8,这下子可真是飞跃啊!说到这里,可能有人会想,哎呀,这个指数到底是什么鬼?指数就像是一个小小的指挥官,给你指明方向。
数字在下面,指挥官在上面,嘿,你要是看到“3”的时候,就知道下面的数字要被乘三遍,这就有点儿像是在开派对,参加的人越多,热闹得越非凡!所以,2的3次方就像是一个热闹的聚会,参加的朋友都是2,最后一块蛋糕就是8,哈哈,太好吃了。
那咱们再说说这个指数的秘密,真是妙不可言。
假设你用的是3,那3的1次方就简单了,就是3;如果是3的2次方,哦哟,结果就是9;再来3的3次方,哇,27!这玩意儿可真是长得飞快,就像打了鸡血一样。
不过,有时候你可能会碰到一些负数的指数,比如说2的1次方,嘿,你想知道结果吗?结果竟然是1/2!这可让人惊讶,数字都开始玩倒立了,简直让人眼前一亮。
咱们再来说说指数的性质,这可有意思了。
比如说,两个数字相乘,咱们把它们的指数加起来,嘿,就像你在家聚会的时候,每个人的生日都能加在一起一样。
假如有个2的3次方和2的2次方,合起来就是2的5次方,算一算,结果居然是32!这招可真是好用,特别适合打发时间,跟朋友炫耀一下,哎,数字也能这么玩。
再说个有趣的,指数的零次方,那简直就是数字界的万金油!无论你是哪个数字,只要指数是0,嘿,结果就都是1!想想看,就像每个人都有那么一瞬间,感觉自己是个超级英雄,能做任何事,结果就是大家的共识,嘿,咱都是1,哈哈,太好玩了。
现在你可能会问,这么神奇的指数在生活中有什么用呢?哎呀,别说,很多地方都有它的身影。
《整数指数幂》知识全解
课标要求
理解负整数指数幂的概念及负整数指数幂与相应的正整数指数幂之间的关系,会用科学计数法表示绝对值较小的数。
知识结构
1.负整数指数幂
n a -=n
a 1(a ≠0,n 是正整数),即任何不等于零的数的-n (n 为正整数)次幂等于这个数的n 次幂的倒数. 因为零不能作除数,所以在n a -=n a
1中的底数a ≠0是其成立的前提条件. 2.用科学记数法表示绝对值较小的数 用科学记数法可以把绝对值较小的数表示成a ×10-n (1≤a <10,n 为正整数)的形式;确
定n 的具体数值:第一个不为零的数字前面的零的个数(包括小数点前面那个0). 内容解析
本节课重点介绍了两个方面的内容:负整数指数幂和用科学记数法表示较小的数.通过本节课的学习我们对指数的认识将扩大到整数范围,我们还会知道适合于正整数指数幂的其它运算性质都可以进一步推广到整数指数幂,从而给分式的运算带来更大的便利.
由于我们对正整数幂的印象较为深刻,因此初学时我们可能一时难以理解负整数幂的运算,这就需要我们在回忆学过的正整数幂的运算的基础上,由分式的除法约分推导负指数幂的运算结果,通过自己推导计算理解负指数幂的运算.
重点难点
本节内容的重点是整数指数幂的运算性质和用科学计数法表示小于1的数; 难点是负整数指数幂的运算.
教法导引
教师要引导学生善于抓住问题的本质:指数的取值范围由正整数推广到全体整数,但是正整数指数幂的所以运算性质都仍然适用.
学法建议
在学习过程中,要注意新旧知识的类比和衔接,在学过的旧知识的基础之上学习新知识.比如,利用学过的正整数幂的运算和分式除法推导负指数幂的运算规律.。
整数指数幂说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!整数指数幂说课稿整数指数幂说课稿(通用10篇)作为一名为他人授业解惑的教育工作者,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。
整数指数幂的公式
整数指数幂的公式指的是一般的幂运算的形式,即(a^n)。
其中,a是底数,n是指数,指数n必须是整数。
整数指数幂的公式可以表示为:
a^n = aaa*...*a (n个a)
或者
a^n = a^(n-1) * a
例如,2^3 = 222 = 8
根据这个公式,我们可以很容易地计算出整数指数幂的值。
另外,在数学中,对于底数a和指数n是有特殊规定的,a^0 =1, a^-n=1/a^n, a^1=a
还有就是对于0的指数幂的规定,0^n = 0 (n>0)
对于指数幂运算有一些其它结论,比如:
(a^n) * (a^m) = a^(n+m)
(a^n) / (a^m) = a^(n-m)
(a*b)^n = a^n * b^n
(a/b)^n = a^n / b^n
还有就是指数幂的运算有个特殊的指数运算符,例如a^3 可以写成a³
例题:
(3^4) * (3^5) = 3^(4+5) = 3^9 = 3^9 = 333333333 = 729
这些公式对于整数指数幂的计算是非常有用的。
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。