pp. 280–289 SIMPLE HOLES TRIANGULATION IN SURFACE RECONSTRUCTION
- 格式:pdf
- 大小:917.42 KB
- 文档页数:10
丙烯分子几何构型的优化——极小值点的寻找内容一:实验数据:丙烯分子构型一(0度):第一次(满足收敛条件为0)Item Value Threshold Converged? Maximum Force 0.042656 0.000450 NORMS Force 0.009621 0.000300 NOMaximum Displacement 0.084978 0.001800 NORMS Displacement 0.031197 0.001200 NOPredicted change in Energy=-3.590550D-03第二次(满足收敛条件为0)Item Value Threshold Converged? Maximum Force 0.007600 0.000450 NORMS Force 0.001965 0.000300 NOMaximum Displacement 0.071653 0.001800 NORMS Displacement 0.018839 0.001200 NOPredicted change in Energy=-2.152360D-04第三次(满足收敛条件为1)Item Value Threshold Converged? Maximum Force 0.001051 0.000450 NORMS Force 0.000294 0.000300 YES Maximum Displacement 0.006072 0.001800 NORMS Displacement 0.002673 0.001200 NOPredicted change in Energy=-4.763308D-06第四次(满足收敛条件为4)Item Value Threshold Converged? Maximum Force 0.000278 0.000450 YESRMS Force 0.000065 0.000300 YES Maximum Displacement 0.000830 0.001800 YESRMS Displacement 0.000326 0.001200 YESPredicted change in Energy=-1.978186D-07Optimization completed.能量为:SCF Done: E(RHF) = -117.068177491 A.U. after 9 cyclesConvg = 0.2580D-08 -V/T = 2.0006S**2 = 0.0000丙烯分子构型二(180度):第一次(收敛条件为0)Item Value Threshold Converged?Maximum Force 0.042157 0.000450 NORMS Force 0.009986 0.000300 NOMaximum Displacement 0.089064 0.001800 NORMS Displacement 0.035042 0.001200 NOPredicted change in Energy=-4.005876D-03第二次(收敛条件为0)Item Value Threshold Converged?Maximum Force 0.006993 0.000450 NORMS Force 0.001925 0.000300 NOMaximum Displacement 0.055491 0.001800 NORMS Displacement 0.020592 0.001200 NOPredicted change in Energy=-2.311170D-04第三次(收敛条件为0)Item Value Threshold Converged?Maximum Force 0.001498 0.000450 NORMS Force 0.000318 0.000300 NOMaximum Displacement 0.004827 0.001800 NORMS Displacement 0.001655 0.001200 NOPredicted change in Energy=-3.601955D-06第四次(收敛条件为4)Item Value Threshold Converged?Maximum Force 0.000299 0.000450 YESRMS Force 0.000067 0.000300 YESMaximum Displacement 0.000815 0.001800 YESRMS Displacement 0.000267 0.001200 YESPredicted change in Energy=-1.743225D-07Optimization completed.能量为:SCF Done: E(RHF) = -117.071471088 A.U. after 8 cyclesConvg = 0.3200D-08 -V/T = 2.0006S**2 = 0.0000数据记录与处理:1.构型一:优化步数4次,前两步均不满足收敛条件,第3步满足收敛条件个数为1个,第4步满足收敛条件个数为4个.构型二:优化步数4次,前三步均不满足收敛条件,第4步满足收敛条件个数为4个.2.构型一优化后的能量(-117.068177491)大于构型二优化后的能量(-117.071471088),即丙烯分子构型二(180度)最稳定。
塑料弯曲性能试验2008-1-23 10:44:19 来源:1.概述弯曲试验主要用来检验材料在经受弯曲负荷作用时的性能,生产中常用弯曲试验来评定材料的弯曲强度和塑性变形的大小,是质量控制和应用设计的重要参考指标。
弯曲试验采用简支梁法,把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或变形达到预定值,以测定其弯曲性能。
2.试验原理弯曲试验在《塑料弯曲性能试验方法》(《GB/T 9341-2000》)中使用的是三点式弯曲试验。
三点式弯曲试验是将横截面为矩形的试样跨于两个支座上,通过一个加载压头对试样施加载荷,压头着力点与两支点间的距离相等。
在弯曲载荷的作用下,试样将产生弯曲变形。
变形后试样跨度中心的顶面或底面偏离原始位置的距离称为挠度,单位mm。
试样随载荷增加其挠度也增加。
弯曲强度是试样在弯曲过程中承受的最大弯曲应力,单位MPa。
弯曲应变是试样跨度中心外表面上单元长度的微量变化,用无量纲的比或百分数(%)表示。
3.试验方法3.1试验应在受试材料标准规定的环境中进行,若无类似标准时,应从GB/T2918中选择最合适的环境进行试验。
另有商定的,如高温或低温试验除外。
3.2测量试样中部的宽度b,精确到0.1mm; 厚度h,精确到0.01mm,计算一组试样厚度的平均值h。
剔除厚度超过平均厚度允差±0.5%的试样,并用随机选取的试样来代替。
调节跨度L,使L=(16±1)h ,并测量调节好的跨度,精确到0.5%。
除下列情况外都用上式计算:3.2.1对于较厚且单向纤维增强的试样,为避免剪切时分层,在计算两撑点间距离时,可用较大L/h比。
3.2.2对于较薄的的试样,为适应试验设备的能力,在计算跨度时应用较小的L/h比。
c、对于软性的热塑性塑料,为防止支座嵌入试样,可用较大的L/h比。
3.3.3试验速度使应变速率尽可能接近1%/min,这一试验速度使每分钟产生的挠度近似为试样厚度值的0.4倍,推荐试样的试验速度为2mm/min。
SIGMACOVER 280 (SIGMA UNIVERSAL/SIGMACOVER PRIMER)环氧通用底漆280共五页 2008年2月版简介双组份聚酰胺固化环氧底漆主要性能—用于钢铁和非铁金属的多用途环氧底漆—对钢和镀锌钢有良好的附着力—对非铁金属有良好的附着力—有良好的流平性和湿润性—良好的抗水和抗腐蚀性—固化温度可低达5℃—在建造过程中,可用本底漆修补焊缝和环氧漆破损处—优异的重涂性—能用醇酸树脂,氯化橡胶,乙烯基漆,环氧漆和双组份聚氨脂漆覆涂—适合于湿喷砂处理的基底(有潮气或干燥)上施工—有良好的阴极保护适应性颜色与光泽黄绿色(红棕色可根据需要)- 蛋壳光基本数据(20℃)(1克/厘米3 =8.25磅/美加仑,1米2/升=40.7英尺2 /美加仑)比重 1.3克/厘米3体积固体含量57% ±2%挥发性有机成份(VOC):最大327克/公斤(按1999/13/EC,SED标准)最大432克/升(约3.6磅/加仑)推荐干膜厚度50-100微米,根据不同系统理论涂布率11.4米2/升,50微米厚;5.7米2/升,100微米厚*表干时间 1.5小时覆涂间隔最小:见附表*最大:见附表*完全固化7天*(成份数据)贮藏有效期至少24个月(阴凉干燥处)SIGMACOVER 280 (SIGMA UNIVERSAL/SIGMACOVER PRIMER)环氧通用底漆280推荐基底—对于水下部位:状况与温度 钢材:喷砂处理(不论干法或湿法)达到ISO标准Sa2.5级,喷砂粗糙度(Rz)30-75微米涂有认可的硅酸锌车间底漆的钢材:清扫处理达SPSS标准Ss级,动力工具处理至SPSS标准Pt3级涂有油漆的旧钢板:超高压水清理至VIS WJ2L级(粗糙度40-70微米)—IMO-MSC.215(82)压载水舱要求:钢材:ISO 8501-3 P2级,所有的边角打磨成最小直径为2毫米或削边钢材和涂有未认可的车间底漆的钢材:喷砂处理(干法或湿法)达到ISO标准Sa2.5级,表面粗糙度达(Rz)30-75微米涂有认可的硅酸锌车间底漆的钢材:焊缝和车间底漆破损及返锈处喷砂处理达到ISO标准Sa2.5级,或动力工具处理至SPSS标准Pt3级对于涂有IMO认可的车间底漆:无其他要求对于涂有无IMO认可的车间底漆:喷砂处理(干法或湿法)达到ISO标准Sa2.5级,去除至少70%的车间底漆,表面粗糙度(Rz)30-75微米表面清洁度为ISO 8502-3:1992标准的1级(仅对尺寸为3、4、5级的大颗粒灰尘;但任何肉眼可见的小颗粒灰尘必须清除干净)—对于暴露于大气中的部位:钢材:处理最好达ISO标准Sa2.5级,表面粗糙度达(Rz)30-75微米或按ISO标准St3级处理涂有车间底漆的钢材;处理达SPSS标准Pt3级镀锌钢材:清除油脂、盐、污染物—施工与固化时基底温度必须高于5℃并至少高于露点3℃—施工和固化时最大相对湿度为85%使用说明混合体积比基料: 固化剂 = 80 : 20—基料与固化剂混合后,温度需高于15℃,否则应添加稀释剂以达到施工所需粘度—过多稀释剂会导致抗流挂性降低与固化减慢—稀释剂应在组份混合后加熟化时间无混合使用期(20℃) 8小时*无气喷涂推荐稀释剂稀释剂91-92稀释剂体积0-10% 根据膜厚要求和施工条件喷咀孔径约0.46毫米(0.018英寸)喷出压力15兆帕(约150大气压或2130磅/英寸2 )环氧通用底漆280有气喷涂推荐稀释剂稀释剂91-92稀释剂体积0-10% 根据膜厚要求和施工条件喷咀孔径 1.5-2毫米喷出压力0.3-0.4兆帕(约3-4大气压或43-57磅/英寸2 )刷涂/辊涂推荐稀释剂不需要稀释剂,如欲添加,最多添加91-92稀释剂至5%稀释剂体积工具清洗稀释剂90-53安全防范涂料及推荐的稀释剂见安全表1430,1431和相关材料的安全数据这是溶剂型涂料,必须避免吸入漆雾和溶剂,并尽量不使皮肤和眼睛暴露,避免接触到未干的油漆附录膜厚与涂布率环氧通用底漆 280覆涂间隔时间表 对双组份环氧或聚氨酯漆— 表面应干燥且无任何污物对其他种类油漆如: 氯化橡胶、乙烯、醇酸漆— 高光泽面漆需要有中间漆固化时间表(干膜厚度100微米)混合后使用期 (处于施工粘度时)全球适用性 PPG 船舶及工业防护涂料公司的意图是在全世界范围内提供相同的产品,但有时需要对产品作细小的修改以满足各地和国际规范/实情,在这些实情下,应使用变更的产品数据环氧通用底漆280参考产品数据说明请参阅表1411安全指导请参阅表1430密闭场所安全和健康安全爆炸危害 - 毒品危害请参阅表1431密闭舱室内的安全工作请参阅表1433通风技术指导请参阅表1434责任范围本产品说明书所提供的资料,是基于我们认为精确的实验室测试结果,仅供你们作指导用。
微切片制作(二十)1.20 树脂缩陷基材空洞通孔高温漂锡时,(2880C十秒钟之热应力试验),多量液锡涌入孔腔而焊在镀铜孔壁上,多余的热量对通孔附近的基材结构(自截面上孔环外缘向外再各加3mil所涵盖的区域,特称为感热区Zone A)造成甚大的膨胀,产生可观的热应力(Thermo-Stress),进而在通孔结构方面产生数种不同的缺点:一、使孔壁与孔环之"互连"被拉开,称为"Post-Separation".二、其他无内环处的铜壁自基材上小部份被拉开称为"弹开"(Blip),全部或大部份自基材上被拉开称为"拉离"(Pull Away).三、铜孔壁原封不动,部份树脂却向后出现收缩现象,称为"树脂缩陷(Resin Receission)多呈半圆形后退。
美军规范MIL-P-55110E(本刊85期有全文翻译)曾规定,到货进厂的喷锡板或熔锡板,其Zone A感热区出现"树脂缩陷"时,其深度不许超过3mil,长度不可超过单壁树脂总长的40%。
至于额外加做的热应力试验而再出现者,则不再视为"剔退"。
另IPC-6012曾附图3之Notes 2中,已明文指出Zone A处的树脂缩陷已经无需再检验了,不过日本客户仍坚持此项"缺点"不能允收。
此为MIL-P-55110E与IPC-6012对Zone A与Zone B的说明图。
至于另一术语"压合空洞"(Laminate Voids,改称基材空洞似乎更为正确)系指多层板的高热Zone A区以外的板材中,所发生的不良空洞者,称之为"基材空洞"。
此种缺失的原因可能是树脂聚合度不够,或挥发物并未全数赶光,而在后续高热中又再发生变化而形成。
以下即利用一照片说明其间的不同。
图1 左500X低光率长时间曝光所得较暗画面,可清楚见到喷锡后互连处产生"后分离"之缺点,(已另辟专文详论之)。
毕业设计(论文)矿泉水瓶瓶盖注塑模设计系别:机械与电子工程系专业(班级):机械设计制造及其自动化11级升本作者(学号):任方成(51101090008)指导教师:王贤才完成日期:2013年5月16日目录中文摘要 (3)英文摘要 (4)1 前言 (5)1.1 本研究领域的现状和国内外的发展趋势 (5)1.1.1 概述 (5)1.1.2 国外的发展情况 (5)1.1.3 国内的发展情况 (6)1.2 本课题的研究内容、要求、目的及意义 (6)1.2.1 本课题的研究内容 (6)1.2.2 本课题的研究要求 (7)1.2.3 本课题的研究目的 (7)1.2.4 研究意义 (7)2 注塑模具设计部分 (8)2.1 塑件分析 (8)2.2 塑料材料的成型特性 (8)2.3 设备的选择 (9)2.3.1 塑件的体积 (9)2.3.2 锁模力的校核 (11)2.3.3 开模行程的校核 (12)2.4 浇注系统的设计 (12)2.4.1 主流道的设计 (12)2.4.2 分流道的设计 (12)2.4.3 冷料穴的设计 (14)2.4.4 设计所用的浇口形式 (14)2.4.5 分型面的设计 (15)2.4.6 排气槽的设计 (15)2.5 成型零部件的设计和计算 (15)2.5.1 成型零部件的设计 (15)2.5.2 成型零件工作尺寸的计算 (15)2.5.3 型腔壁厚计算 (18)2.6 脱模机构的设计和计算 (20)2.6.1 脱模阻力的计算 (20)2.6.2 脱模机构的设计 (21)2.7 脱螺纹机构的设计 (21)2.7.1 脱螺纹的形式 (21)2.7.2 旋转脱螺纹扭距的计算 (21)2.7.3 对主流道凝料能否脱出的校核 (22)2.7.4 止转装置的设计 (23)2.7.5 驱动装置和传动装置的设计和计算 (23)2.8 合模导向机构的设计 (27)2.8.1 顶出系统的导向 (27)2.8.2 成型零件的导向及定位 (28)2.9.1 冷却系统的设计 (28)2.9.2 模具冷却时间的计算 (29)2.9.3 冷却参数的计算 (30)2.10 支承与连接零件的设计与选择 (31)2.10.1 非标零件的设计 (31)2.10.2 标准零件的选取 (31)结论 (32)谢辞 (33)参考文献 (34)图2-1塑件2D图 (8)图2-2浇口套 (13)图2-3分流道的设计 (14)图2-4主流道冷料穴和拉料装置 (14)图2-5分流道浇口 (15)图2-6型芯与塑件 (16)图2-7支撑柱 (28)图2-8导柱和导套的设计 (28)图2-9冷却水道的设计 (29)表2-1聚丙烯的力学性能 (8)表2-2聚丙烯的热性能及电性能 (9)表2-3聚丙烯的物理性能 (9)表2-4聚丙烯的工艺参数 (9)表2-5一模两腔 (11)表2-6设计中所用螺钉 (31)表2-7设计中所用螺母 (31)矿泉水瓶盖注射模具设计摘要:本文详细介绍了矿泉水瓶盖注射模具的设计。
上海嘉注材料科技有限公司 TEL:021‐61114119 TAX:021‐60759800 MOB:013817456600快速成型胶(浇注树脂)快速成型胶(浇注树脂)即PU 胶、AB 胶、ABS 及PP 材质产品。
1. 功能特点:该产品是应用户的需要而进行研发的新产品,是具有ABS 材质,综合性能优越于日本产8150的一种新型手板模型材料;2009年该材料的研究被列入公司科技计划,从立项到小试、中试,最后到工业化试生产及用户上机使用确认,历时一年时间研制成功。
该产品用于真空浇注模型及部件的生产中,体现出流动性好,反应平稳,2秒~7分钟固化,15~60分钟脱模,广泛应用于模型制造、电器机壳、飞机舵手、车辆方向盘、仪表盘、保险杠、人体骨架、环保型人体模特和玩具及板材的生产;也可应用于矿山、地铁、隧道建设专用快速堵漏剂,及防水、防潮、防坍塌支架浇注和顶部喷涂加固材料。
其主要特性是生产出的部件硬度高,成品尺寸精度高,易修补打磨,深受广大用户欢迎,产品销往全国各地区用户。
2. 性能指标:项 目 技术参数 备 注 外观A 液 米黄色/白色B 液淡黄色/褐色 成品颜色 象牙白色/纯白色黏度 (Mpas25℃) A 液 150-300 BM 型黏度计B 液 160-300 比重(25℃)A 液 0.9-1.0 标准比重杯B 液1.18 混合比 A:B 100:50-100重量比 成品比重 1.20 JIS K-6911硬度 Shore D 75-85 拉伸强度 Mpa 45-60 IS0527.1993 断裂伸长率 % 15-16 JIS K-6911 弯曲强度 Mpa 90-118 ISO178.2001 弯曲弹性模量 Mpa 1800-2000 ISO178.2001 抗冲击强度 Kg/cm2 30-45 ISO178.2001 收缩率% <0.4 企业标准 热变形温度(HDT )℃ 80-120 ISO75ae.1993最大浇注厚度mm103. 简要使用方法:1) 计量:A 液B 液的重量混合比为1:0.5-1(请根据不同型号产品说明书使用),若重量偏差过大,可能会使固化物表面固化不完全或固化物的颜色发生偏差;2) 混合:搅拌混合要均匀,一般搅拌时间10秒到30秒为宜,A 液B 液混合后,会在2秒-7分钟固化 ,故操作时间适量而定; 3) 抽真空时间:根据制品所用原料的重量,抽真空一般在3-10分钟即可浇注,15-60分钟可脱模。
Figure 1 DIMENSIONAL DATA(see figure, all measurements in Inches)∙ Tool weight (without riveter): 1.20 Lbs (0.540 Kg).CHOICE OF RIVETERS∙ G747, G704B Cherry® Riveters ∙ G800 Cherry® Hand Riveter MOUNTING INSTRUCTIONS∙ Attach riveter to air source for correct piston positioning; for hand powered riveters (G800), make sure that the pressure has been released and that the correct adaptors are used.∙ Push the collet bolt assembly forward (see Figure 1) before mounting.∙ While holding collet bolt in a forward position, engage 1 or 2 threads of drawbolt (18) onto riveter head piston before threading adapter fitting (19) into end of riveter head cylinder; turn clockwise until snug.∙ Rotate pulling head to desired position and tighten jam nut (20) to secure pulling headorientation.∙ Cycle the tool to make sure it is functional.USAGE∙ The H753A-280NP pulling head can be used for installing Cherry Rivetless Nutplates for alluminum applications in hole diameter .280-.284”BEFORE USE, MAKE SURE THAT: ∙ Proper air source is connected.∙ The sleeve and pilot are in proper working condition; any sign of damage is an indication thatcomponents need to be replaced. No installations should be made if tooling is worn or damaged.DURING OPERATION∙ Inspect the active area of the sleeve and pilot regularly.∙ Keep the tool clean, especially the pilot, sleeve and jaws; pay special attention when sealants are used. ∙ If stem slippage occurs, the jaws need to be either cleaned or replaced.PREVENTATIVE MAINTENANCE∙ Clean the sleeve, pilot, jaw set and collet every 1,000 installations or when failures occurs; use a wire brush to clean the copper deposited inside the jaw set.∙ Lubricate outside of the jaw set with Lubriplate® or similar light lubricant.1 2345678 910 1111 1213141415151617181920PARTS LISTGENERAL / TECHNICAL QUESTIONS1224 E. Warner Avenue Santa Ana, CA 92705 USA 1-714-850-6022 (Phone) 1-714-850-6093 (Fax)LOCTITE ® is a registered trademark of Henkel Corporation.LUBRIPLATE® is a registered trademark of Fiske Brothers Refining Co.18975-021DRAWBOLT 117753A11GUIDE PIN 116753B6BELL CRANK 115753A9LINK PIN 414P-954LINK813753A10PIVOT PIN 212753A16GUARD 111P-930SET SCREW210P-413BUTTON HEAD SCREW19753B5LEVER 18975-018COLLET BOLT 17975-019FRAME 16P-1319SPRING 15975-017JAW FOLLOWER 14975-014JAW SET 13753A13A COLLET 12975-026PILOT INSERT 11975-025SLEEVE 1ITEMNo.PART NUMBER DESCRIPTIONQTY. PERWARRANTYSeller warrants the goods conform to applicable specifications and drawings and will be manufactured and inspected according to generally accepted practices of companies manufacturing industrial or aerospace fasteners. In the event of any breach of the foregoing warranty, Buyer’s sole remedy shall be to return defective goods (after receiving authorization from Seller) for replacement or refund of the purchase price, at the Seller’s option. Seller agrees to any freight costs in connection with the return of any defective goods, but any costs relating to removal of the defective or nonconforming goods or installation of replacement goods shall be Buyer’s responsibility. SELLER’S WARRANTY DOES NOT APPLY WHEN ANY PHYSICAL OR CHEMICAL CHANGE IN THE FORM OF THE PRODUCT IS MADE BY BUYER. THEWHEN RE-ASSEMBLING:- Lubricate outside of pilot insert with o-ring lubricant or eqiovalent.- Oil or grease heavily all sliding surfaces with Lubriplate® or equivalent.- Use Loctite® 242 (removable) on sleeve and collet threads.。
dna30nm中空螺旋管的形成下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!DNA30nm中空螺旋管的形成导言DNA30nm中空螺旋管的形成是细胞核内基因表达和染色质结构调节的关键过程之一。
叔丁基的弯曲振动的双峰裂距尔莎叔丁基的弯曲振动双峰裂距是一个重要的技术指标,用来衡量各种液体和固体的状态和性质。
由于它能够清晰地反映出液体或固体的液态状态,它经常被用于仪器制造、农业生产、药物检测、制冷剂检测等领域。
尔莎叔丁基的弯曲振动双峰裂距由尔莎叔丁基计算得出。
它是指液体中两个一氧化二氢分子间的偏振状态周期性变化产生的双峰图,裂距是指液体中两个一氧化二氢分子彼此之间的夹角的变化幅度。
通常情况下,尔莎叔丁基的弯曲振动双峰裂距只能在单一状态中测量,也就是说,只能在液体或固体的单一状态下进行测量,这也是它的一大缺点之一。
尔莎叔丁基的弯曲振动双峰裂距的测量原理是通过液体或固体中的氢离子极化状态和态势之间的相互作用来检测液体或固体状态和性质的。
将一个氢离子放入到液体或固体中,会使其他氢离子极化,从而形成氢离子链;当一氧化二氢分子间的势差足够大时,双峰图就会形成。
这个双峰图表现出尔莎叔丁基的弯曲振动双峰裂距,用来表征液体或固体的状态和性质。
尔莎叔丁基的弯曲振动双峰裂距的测量,一般需要一台专业的测量仪器。
这种仪器由一个电磁感应线、一个传感器和一个显示屏组成。
使用这种仪器,操作者可以清楚地看到双峰图,而双峰图中裂距的大小就可以反映出液体或固体的状态和性质。
尔莎叔丁基的弯曲振动双峰裂距的测量,可以有效的检测液体或固体的变化情况,从而使研究人员可以准确无误地进行参数分析,以及正确地检查液体或固体的液态体系。
同时,它可以在单一状态下有效地检测液体或固体的分子结构和液化度,在许多学界和行业中有着广泛的应用,如仪器制造、农业生产、药物检测、制冷剂检测等领域。
尔莎叔丁基的弯曲振动双峰裂距是一种非常有效的技术指标,它可以准确地描述液体和固体的液态状态。
目前,尔莎叔丁基的弯曲振动双峰裂距的测量,已经应用于许多行业,为这些行业提供了正确的参数分析,更加准确地检测液体或固体的状态和性质。
MB8变形镁合金超声疲劳试样解析设计邓海鹏;何柏林【摘要】对MB8变形镁合金超声疲劳试样进行设计计算.为了减小试样振幅,使试样产生较少的热量,减轻冷却系统压力的同时防止试样产生相变等组织变化,将试样设计成变截面形状.根据试样振动位移方程、边界条件和位移连续条件推导出试样谐振长度与其他尺寸的关系,计算出一系列超声疲劳试样的尺寸.结果表明:变截面圆柱和板状试样随着圆弧过渡段长度增大,谐振长度减小,圆弧过渡半径增大;对于无中间等截面段试样,位移应力系数Cs和应力放大系数M随着圆弧过渡段长度减小而减小;对于含有中间等截面段试样,位移应力系数Cs和应力放大系数M随着中间等截面段长度减小而减小.【期刊名称】《航空材料学报》【年(卷),期】2016(036)004【总页数】7页(P64-70)【关键词】变形镁合金;超声疲劳;试样;解析计算【作者】邓海鹏;何柏林【作者单位】华东交通大学机电工程学院,南昌330013;华东交通大学机电工程学院,南昌330013【正文语种】中文【中图分类】V216.3镁合金作为一种轻质结构材料,广泛应用于交通领域等工程结构中。
在实际服役过程中,很多零部件因承受低幅、高频循环载荷的作用,会发生超高周疲劳断裂失效[1-3〗[4-5]。
超高周疲劳实验原理与常规疲劳实验不同,所采用的试样形状尺寸必须经过严格设计,使试样具有特定的固有频率和振动特性。
只有严格设计的试样安装在疲劳试验机上才能与变幅杆发生谐振,达到高频加载的效果[6-8];因此,超声疲劳试样的正确设计是进行超声疲劳试验的重要前提。
本工作对MB8镁合金圆柱和板状超声疲劳试样进行解析设计,为MB8变形镁合金及其他镁合金超高周疲劳性能实验研究提供参考。
图1所示为典型的超声疲劳纵向拉压实验系统,该系统主要由七个部分组成,分别为计算机控制系统、超声发生器、换能器、变幅杆、光纤位移传感器和放大器。
在实验过程中,由于高频振动超声疲劳试样会产生大量热量,所以超声疲劳拉压实验系统还要配备冷却辅助系统对试样进行冷却,冷却介质可以采用压缩冷凝空气或水。
ISSN 100020054CN 1122223 N 清华大学学报(自然科学版)J T singhua U niv (Sci &Tech ),2004年第44卷第12期2004,V o l .44,N o .1213 31163021633用无梯度仿生技术对叠层复合材料方板开孔形状优化刘 毅, 金 峰(清华大学水利水电工程系,北京100084)收稿日期:2003211221作者简介:刘毅(19792),男(汉),湖南,博士研究生。
通讯联系人:金峰,教授,E 2m ail :jinfeng @tsinghua .edu .cn摘 要:为了改善叠层复合材料方板孔周应力分布,采用一种无梯度仿生技术——固定网格渐进优化方法,建立了等限制T sai 2H ill 准则——即使孔周的限制T sai 2H ill 值更加均匀,来求解切孔形状优化问题。
用各向同性材料方板在二轴拉力荷载下单孔形状优化的例子验证了方法的正确性。
研究了按照[±45° 0° 90°]对称搁置的碳纤维 环氧树脂材料准各向同性叠层复合材料方板受单拉和拉剪荷载的例子。
优化后的孔形在T sai 2H ill 强度值的均匀度上比正方形开孔有了显著的改善,计算结果比传统的渐进优化方法更精确和更光滑。
关键词:叠层复合材料;固定网格;渐进优化方法;形状优化中图分类号:TB 301文献标识码:A文章编号:100020054(2004)1221630204Shape opti m iza tion of i n ter ior cutouts i n square lam i na ted com posite panels usi ng non -grad ien t b iom i m etic techn iqueL I U Yi ,J I N Fe ng(D epart men t of Hydraulic and Hydropower Engi neer i ng ,Tsi nghua Un iversity ,Be ij i ng 100084,Chi na )Abstract :T he stress distributi on around interi o r cutouts in square lam inated compo site panels w as op ti m ized using a non 2gradient bi om i m etic fixed grid evo luti onary structural op ti m izati on m ethod to achieve the mo st unifo rm T sai 2H ill facto r,w h ich p rovides an effective m eans fo r shape op ti m izati on of cutouts in lam inated compo site panels .T he m ethod w as first validated using benchm ark ing p roblem s of iso trop ic m aterial p lates loaded in biaxial tensi on .T he op ti m al shape of cutouts in quasi 2iso trop ic symm etrical [±45° 0° 90°]carbon fibre lam inated compo site panels w as sought fo r biaxial and biaxial 2shear stress loads .T he unifo r m ity of the T sai 2H ill facto r fo r op ti m ized interi o r cutouts w as m uch better than fo r the non 2op ti m ized square interi o r cutouts .T he resulting boundaries are m uch s moo ther and mo re accurate than tho se designed by the conventi onal evo luti onary structural op ti m izati on m ethod .Key words :lam inatedcompo sites;fixedgrid;evo luti onarystructural op ti m izati on;shape op ti m izati on对称布置的叠层复合材料板(又称层合板)从宏观力学性能来看表现出一定的各向同性,称为准各向同性层合板。
Proceedings of ALGORITMY2005pp.280–289SIMPLE HOLES TRIANGULATION IN SURF ACERECONSTRUCTIONMICHAL V ARNUˇSKA,∗,JINDˇRICH PARUS§,AND IV ANA KOLINGEROV´A†Abstract.Surface reconstruction is a common task in the modern computer graphics and computational geometry.Given a set of points P sampled from some unknown surface S,we have to create the triangle mesh interpolating or approximating the input points.Various algorithms were developed during the past years to satisfy this task,but no one is able to handle all kinds of data.We use the algorithm based on the CRUST algorithm and we present some modifications which improve the quality of the resulting triangle mesh.Key words.Surface reconstruction,holes triangulation,meshfiltering.AMS subject classifications.65D18,68U051.Introduction.This paper presents a simple approach for triangle mesh im-provement.This mesh is created using the surface reconstruction algorithm,which produces holes in the sampled surface in the case of badly sampled data,so a holes filling step has to be done then.This paper consists offive sections.Section1contains the introduction to the task and the state of the art.Section2describes briefly the CRUST algorithm and its problems.Next section aims to the description of the holesfiling algorithm.The results are in Section4and Section5concludes the paper.1.1.Input.One of many ways for the real objects models acquisition is sam-pling of the object by various scanning devices followed by the surface reconstruction algorithm.Given the input set P of the points p sampled from the surface S of the real object,we want to create a triangle mesh interpolating or approximating the surface.So,the input to our task is:∀p∈P,P⊂S:p=[x,y,z];x,y,z∈RWe do not have any other additional information about the reconstructed surface, such as normal vectors in the sampled points.We do not know either,whether the surface was sampled uniformly or with regard to the surface curvature,whether it contains noise or not.1.2.State of the art.The problem of surface reconstruction has been solved by many research groups in the whole world.Starting in the80s,many algorithms have been developed which interpolate or approximate the input sampled points.The methods can be divided into four groups[23](division is not strict,some methods can belong to more groups):SIMPLE HOLES TRIANGULATION IN SURF ACE RECONSTRUCTION281•warping•incremental surface construction•distance function methods•spatial subdivisionWarping works on the basic idea that we deform some starting surface to the surface that forms the object.The M¨u ller’s approach[25]uses the starting triangle mesh which deforms to the mesh which is close to the original surface.Szeliski[26] uses oriented particles,where every particle has some parameters whose values are updated during the modeling simulation.The methods of incremental surface reconstruction start at some starting simplex (triangle,edge)and other simplices are incrementally added.Boissonat[8]presented the approach which begins on the shortest edge from all edges between points and incrementally appends the points to create triangle mesh.Mencl and M¨u ller[22,24] developed a similar algorithm based on creation of an extended minimum spanning tree,identification and extraction of typical features and using these properties for triangle mesh extraction.The distance function describes the shortest distance from the point to the surface. For closed surfaces,the value of the function is negative or positive depending on whether the point is inside or outside the object.This function is computed for each point using the tangent plane.The plane can be estimated from k−nearest neighbours (points,the parameter k is set by the user)by the least square approximation.A typical representative of this methods class is Hoppe[19,20].Curless and Levoy [9,21]gave another effective algorithm which represents the signed distance function on a voxel grid and is able to reconstruct eventual holes in a post-processing step.The basic feature of the spatial subdivision methods is the boundary hull(convex hull,box around points,etc.)division to the independent areas forming e.g.the regular grid,octree or tetrahedra.The surface is then extracted using the relationship to the surface described by the input set(e.g.the surface triangles should be small, etc.).Delaunay triangulation[11](tetrahedronization)and its subgraphs,such as Gabriel graph and relative neighbourhood graph,are very popular in this class of methods because the surface is contained as a subgraph in Delaunay triangulation.The best known is theα-shape algorithm by Edelsbrunner and M¨u cke[16,17]. They use the Delaunay triangulation and delete simplices whose radius is bigger than the radiusαof someα-ball.Algorri and Schmitt[1]gave an effective algorithm in which the space is divided by a regular grid(voxels).In the next steps those voxels are chosen which contain points from the input set and the surface is extracted. Bernardini and Bajaj[5]developed an algorithm which gets the surface subcomplex of Delaunay tetrahedronization.This algorithm extends the idea ofα-shapes and it uses the binary search for the parameter alpha tofind this subcomplex.A paper by Bernardini[6]describes an algorithm to interpolate a set of points.It is not based on Delaunay sculpturing,but it extends the surface(Delaunay triangles initially)like in surface growing methods.Amenta introduced a concept of CRUST,e.g.[3,2].It selects the surface triangles from triangles in Delaunay triangulation using the information from dual Voronoi di-agram.Dey extended the ideas of Amenta and gave an effective COCONE algorithm. The basic idea is presented in[2].Other papers presented by Dey introduced the way how to handle large data[13],which is the common problem of Delaunay based algo-rithms,and what to do with boundaries[14],undersampling and oversampling[12]. These ideas are based on the observation that the places with point density changes282M.V ARNU ˇSKA,J.PARUS,I.KOLINGEROV ´Acan be detected using shape of the Voronoi cells in these places.Both authors gave an algorithm for a watertight surface reconstruction,Nina Amenta her PowerCRUST based on medial axis transformation [4]and Tamal Dey his TightCOCONE based on tetrahedra removal [15].The above presented methods are just the best known methods,there exist many other algorithms and it is not the goal of this paper to collect all of them.For the readers looking for other,we recommend e.g.the papers by M¨u ller [23]or Bernardini[7].2.CRUST algorithm.In our reconstruction program we use the CRUST al-gorithm developed by Nina Amenta [3,2].It belongs to the group of spatial divi-sion algorithms,it uses the Delaunay tetrahedronization.There are two versions of the algorithm (onepass and twopass)depending on the number of Delaunay tetrahe-dronizations (DT)used in the method.We use for our purpose the algorithm which uses only one DT.The reason is simple,the DT is memory-consuming and the second DT in the twopass algorithm needs three times more points than the onepass version.2.1.Principle of the algorithm.We describe the basic principle of the al-gorithm very briefly,the details with strong theoretical background can be found in the related papers.The DT is the first step of the algorithm,the second step is the Voronoi diagram creation by the dualization process.The surface triangles are selected from the DT triangles using the information from the Voronoi diagram.The fundamental term used in this method is the pole .The positive pole p +for each point (see Fig. 2.1)is the farthest Voronoi vertex of the Voronoi cell related to the point while the negative pole p −is the farthest Voronoi vertex on the ”opposite side”(the dot product of the vector −−−−→p +−p and −−−−→p −−p is approximately −1).Fig.2.1.The part of the surface and the Voronoi cell of the point p and its poles,the positive pole p +and the negative pole p −.As visible in the figure above,the Voronoi cell is very thin and long,so the vector from the point p to the positive pole p +is roughly perpendicular to the surface and can be taken as the normal vector.This observation is true for sufficiently sampled surface,the correctness of the sampling can be determined using the LFS criterion (local feature size,described also in [3]).2.2.Problems in the algorithm.A big advantage of the method is its in-sensitivity to the changes in the sampling density,so the algorithm does not need uniformly sampled data.The problems arise when the input dataset contains big undersampled or oversampled places,boundaries,outliers,sharp edges or noise.All these properties of the algorithm come from the fact that the shapes of the Voronoi cells do not satisfy the conditions (they have to be thin and long)and the computed surface is incorrect,see Fig.2.2.For more details please refer the Amenta’s papers.SIMPLE HOLES TRIANGULATION IN SURF ACE RECONSTRUCTION283Fig.2.2.The reconstruction of some of problematic datasets,a)the dataset with the boundaries and highlighted incorrect parts,b)a badly sampled terrain,c)a dataset with a lot of noise.3.Holesfilling.The presented problems cause the failure of the surface recon-struction algorithm and the triangle mesh is not correct,big unwanted triangles,a lot of overlapping triangles and holes appear there.There exist some robust algorithms able to repair the incorrectly reconstructed surfaces containing complicated holes and unconnected parts,such as David’s volumetric diffusion approach[10]or Emelyanov’s bridge approach[18].The problem is paradoxically with their robustness,they are too complicated for simple holesfilling.However,reconstructed surfaces in case of well sampled data usually do not contain so complicated holes,most of the holes is quite simple.In this section we introduce a simple approach able tofill the holes in the re-constructed surface.Because thefilling algorithm is not connected to the surface reconstruction algorithm,it can be used for the mesh improvement generally.Thus we assume(and our surface reconstruction algorithm produces such surfaces)that the reconstructed surface is well reconstructed with no overlapping triangles,correctly de-tected and reconstructed boundaries and with simple holes(two approaches how to improve the mesh containing incorrect boundary triangles and overlapping triangles can be found in[27,28].3.1.Holes tracing.Firstly,the holes have to be located in the triangle mesh, we can use the tracing approach(see Fig.3.1a).The whole triangle mesh is processed and we look for the triangles without neighbours on the edges.When such a triangle is found(e.g.the triangle with the edge v1v2in thefigure)one vertex(v1)is marked as the starting vertex.Then,we look for the next empty edge(empty edge is the edge associated with one triangle only)around the second vertex v2of the starting edge and using this approach the whole hole is found.The problem occurs in the case of point v4where more than two empty edges coincide.As the traced hole should be as small as possible,we want to select v4v5(not e.g.the edge v4v bad,see(Fig. 3.1b))as the next edge.We create the plane which separates the space into two halfspaces given by the edge v3v4and the normal vector n t of the triangle t.When there are other edges lying in the same halfspace(given by this plane)as the rest of the traced hole,we take the edge with the smallest angle to the edge v3v4.In the other case,when no other edges are in the same halfspace,we select the edge with the biggest angle to the edge v3v4.This approach of choosing next hole edge works amazingly well and we have found only few cases when it did not work correctly,especially in the noisy datasets,where the configurations of holes were awful and it was difficult to decide where to continue.284M.V ARNUˇSKA,J.PARUS,I.KOLINGEROV´AFig.3.1.Holes tracing,a)the vertices v1v2v3v4v5v6represent the hole,the vertex v4is prob-lematic,b)the plane created using the edge v3v4and a triangle t(with normal n t)coincident to the edge,the vertex v bad is the vertex with the smallest angle to the edge v3v4.According to our experiments,such problems are common in other reconstruction programs,too.3.2.Holesfilling.When the holes tracing isfinished,a set of traced holes is created and for each member of this set the holesfilling is done.Because we want to fill only small holes and leave the big holes,which represent the boundary,unaffected, there has to be some limit on the hole size.Unfortunately,there is not an exact way how to determine whether the hole is small or not,the user has to have the last word, but the heuristic limit of50edges seems to be good enough to separate small holes from big boundary holes.Thus we perform holesfilling only for small holes Fig.3.2a) and for boundary holes(Fig.3.2b)only shape improving is performed(few triangles are added to create better boundary shape).Fig.3.2.Typical holes,a)small holes which have to be triangulated,b)boundary holes,only a few of triangles have to be added to correct the shape.For the holesfilling we use an approach similar to the ear cut algorithm known in polygon triangulation.The polygon,or the hole in our case,is given by the vertices v0v1v2...v n−1and the ear is the triangle created by the vertices v(i−1)%n v i v(i+1)%n where”%”means modulo division.The main difference is in the fact that polygon triangulation is done in E2but in our case in many cases we are not able to project the holes to the plane due to complicated shapes,so we have to triangulate the hole in E3.The algorithm is simple,see Fig.3.2.Thefirst step in the holes triangulation procedure is the ear evaluation.We have tried three possible approaches how to evaluate an ear(a possible triangle v i−1v i v i+1) based on:SIMPLE HOLES TRIANGULATION IN SURF ACE RECONSTRUCTION285 procedure triangulate hole(hole=v0v1...v n−1)for i=0to n−1evaluate ear v(i−1)%n v i v(i+1)%nwhile the hole is not triangulated yet{v best=−1;for i=0to n−1if v i has better evaluation then v best AND∆v(i−1)%n v i v(i+1)%n is correctv best=v iif v best=−1exit;create triangle∆v(best−1)%n v best v(best+1)%nevaluate ear v(best−2)%n v(best−1)%n v(best+1)%nevaluate ear v(best−1)%n v(best+1)%n v(best+2)%nremove v best from the hole}Fig.3.3.The code for the hole triangulation(the character%means modulo division).•the smallest angle•the smallest length of the edges•the smallest neighbours anglev i−1−v i and The smallest angle approach computes the angle between the vectors−−−−−−→−−−−−−→v i+1−v i using the dot product,see Fig.3.4a.The smallest length approach computesv i−1−v i+1 ,v i+1−v i + −−−−−−−−→v i−1−v i + −−−−−−→the sum of distances between ear vertices,thus −−−−−−→see Fig.3.4b.The last approach computes the anglesα1andα2between the triangle normal vector n1(triangle coincident with the edge v i+1,v i),n2(triangle coincident with the edge v i−1v i)and the ear normal vector n t,see Fig. 3.4c.Both angles are then multiplied to get thefinal evaluation(the second possibility is the summarization of angles,but multiplication is better because it prefers ears with both angles small).After the evaluation procedure the ears are recursively cut depending on their evaluation in the loop.First,the ear with the best evaluation is chosen.In the case that the ear is not correct(when we insert the ear triangle to the triangle mesh,the triangles will overlap,see Fig.3.4d)we have to choose another one.The correctness is determined using the angles between the existing triangles and the new ear triangle. When we are not able tofind a correct ear,the procedure ends and the hole remains triangulated only partially.Otherwise,the ear is put to the triangle mesh,the hole is reduced by one vertex and the ears v(best−2)%n v(best−1)%n v(best+1)%n and v(best−1)%n v(best+1)%n v(best+2)%n are reevaluated because the hole was locally changed in this place.The above described procedure is used for the holes triangulation of both small and boundaries holes,the difference is only in the angle limit when the correctness of the inserted ear is computed.When the boundary holes are triangulated,we use a smaller angle limit,thus the triangle normal of the newly added triangle must have a small difference from the normal vector of the coincident triangles.286M.V ARNUˇSKA,J.PARUS,I.KOLINGEROV´AFig.3.4.The ear v i−1v i v i+1evaluation,a)the smallest angle,αis the angle between the vector v i−1−v i and the vector v i+1−v i,b)the smallest length of the edges,the variables d1,d2 and d3are the lengths,c)the smallest angle between neighbours,n1is the normal vector of the triangle with the edge v i+1,v i,n2is the normal vector of the triangle with the edge v i−1,v i,n t is the normal vector of the ear,d)an invalid ear.4.Results.We have tried the trianglefilling procedure on those datasets whose triangle meshes contain holes after the reconstruction.The holes tracing procedure worked well with the exception showed at the end of Subsection3.1and it traced correctly the holes.The procedure of holesfilling worked correctly.All three evaluation approaches seemed to work,but they produced different results.Fig. 4.1and Fig. 4.2show examples of the reconstruction followed by the holesfilling.Thefirst approach,the evaluation using the smallest angle,produces very often high number triangles coin-cident with one vertex(see e.g.Fig. 4.1c).The reason is following:when we cut the ear then on the place of cutting the angle becomes smaller than before and the next cutting will continue in the same place.The approach using the smallest edge length seems to be better,the triangles are not so thin as using the previous approach. But the best results,especially in the places with sharp edges,are reached using the approach with neighbours angles,the inserted triangles adapt to the local geometry, so sharp edges are preserved.Very problematic places are the places where one part of the surface is very close to another surface and the sampling process was not completely correct.Fig.4.3shows an example with one of these datasets,two parts of surface are in the problematic places connected with”bridges”and the hole cannot be correctly triangulated.Unfortunately,the approach presented in this paper was not very successful on the noisy datasets,which contain a lot of holes,because the reconstructed surface was too spare to triangulate it correctly.Although the holes werefilled,thefilling was not correct due to overlapped and intersected triangles.It is almost unable to reconstruct these datasets using currently existing algorithms and we suppose to concentrate on this problem more in the future.SIMPLE HOLES TRIANGULATION IN SURF ACE RECONSTRUCTION287Fig.4.1.The”distcap”datafile,a)the whole mesh with holes highlighted,b)a zoom to one part with holes,c)the smallest anglefilling,d)the smallest edge lengthfilling,e)the neighbours dependentfilling.Fig.4.2.The”cat”datafile,a)the head of the cat with highlighted holes,b)a zoom to one ear with holes,c)the smallest anglefilling,d)the smallest edge lengthfilling,e)the neighbours dependentfilling.5.Conclusion and acknowledgment.We have presented a simple approach tofill the holes remained after the surface reconstruction.Although it is simple to understand it and program it,the results of the algorithm are good and usable for our surface reconstruction approach.Open question and a big challenge is the problem of the noisy datasets reconstruction,our research will continue in this direction to produce higher quality results of these datasets.6.Acknowledgement.The authors want to thank prof.V´a clav Skala for good work conditions and to our colleagues,especially to Petr Vanˇeˇc ek for technical help with the paper preparation.288M.V ARNUˇSKA,J.PARUS,I.KOLINGEROV´AFig.4.3.The”women”datafile with problematic connected places,a)the whole surface,b)the legs with big point undersampling,c)the feet with the same problem.REFERENCES[1]Algorri M.E.,Schmitt F.Surface reconstruction from unstructured3D puterGraphic Forum,1996,pp.47-60[2]Amenta N.,Choi S.,Dey T.K.,Leekha N.A simple algorithm for homeomorphic surfaceput.Geometry,2000,pp.125-141[3]Amenta N.,Bern M.,Kamvysselis M.A new Voronoi-based surface reconstructionalgorithm.SIGGRAPH,1998,pp.415-421[4]Amenta N.,Choi S.,Kolluri R.The Power Crust.Proc.of6th ACM Sympos.on SolidModeling,2001,pp.127-153[5]Bernardini F.,Bajaj C.A triangulation based Sampling and reconstruction manifolds usinga-shapes.9th Canad.Conf.on Comput.Geometry,1997,pp.193-68[6]Bernardini F.,Mittleman J.,Rushmeier H.,Silva S.,Taubin.The ball pivoting algorithmfor surface reconstruction.IBM Technical Report RC21463(96842).[7]Bernardini F.,Rushmeier H.The3d model acquisition pipeline.State of the art report,EUROGRAPHICS2000,pp.41-62[8]Boissonat J. D.Geometric structures for three-dimensional shape representation.ACMTrans.Graphics3,1984,pp.266-286[9]Curless B.,Levoy M.A Volumetric Method for Building Complex Models from Range Images.Computer Graphics1996,pp.303-312[10]Davis J.,Marschner S.,Garr M.,Levoy M.Filling holes in complex surfaces using volu-metric diffusion.First Int.Symp.on3D Data Proc.,Visual.and Transmission2002 [11]Delaunay B.Sur la sphre vide.Izvestia,Akademii Nauk SSSR,Otdelenie Matematich-eskii i Estestvennyka Nauk7,1934,pp.793-800[12]Dey T.K.,Giesen J.Detecting undersampling in surface reconstruction.Proc.of17thACM put.Geometry,2001,pp.257-263[13]Dey T.K.,Giesen J.,Hudson J.Delaunay Based Shape Reconstruction from Large Data.Proc.IEEE Sympos.in Parallel and Large Data Visualization and Graphics,2001, pp.19-27[14]Dey T.K.,Giesen J.,Leekha N.,Wenger R.Detecting boundaries for surface reconstructionusing puter Graphics and CAD/CAM,vol.16,pp.141-159 [15]Dey T.K.,Goswami S.Tight Cocone:A water-tight surface reconstructor.Proc.8th ACMSympos.Solid Modeling application(2003),pp.127-134[27][16]Edelsbrunner H.Weighted alpha shapes.technical report UIUCDCS-R92-1760DCS Uni-versity of Illinois at Urbana-Champaign,Urbana,Illinois,1992[17]Edelsbrunner H.,M¨u cke E.P.Three-dimensional alpha shapes.ACM Trans.Graphics13,1994,pp.43-72[18]Emelyanov A.I.Surface reconstruction from clouds of points PhD thesis,University ofWest Bohemia,Pilsen,Czech Republic2004[19]Hoppe H.,DeRose T.,Duchamp T.,McDonald J.,Stuetzle W.Surface reconstructionfrom unorganized puter Graphics26(2),1992,pp.71-78[20]Hoppe H.,DeRose T.,Duchamp T.,Halstead M.,Jin H.,McDonald J.,Schweitzer J.,SIMPLE HOLES TRIANGULATION IN SURF ACE RECONSTRUCTION289 Stuetzle W.Piecewise smooth surface reconstruction.SIGGRAPH,1994,pp.295-302[21]Levoy M.,Ginsberg J.,Shade J.,Fulk D.,Pulli K.,Curless B.,Rusinkiewicz S.,KollerD.,Pereira L.,Ginzton M.,Anderson S.,Davis J.The digital Michelangelo project:3Dscanning of large statues.Int.Conference on Comp.Graphics and Inter.Techniques 2000,pp.131-144[22]Mencl R.A graph based approach to surface p.Graph.forum14(3),EUROGRAPHICS1995,pp.445-456[23]Mencl R.,M¨u ller H.Interpolation and approximation of surfaces from three-dimensionalscattered data points.EUROGRAPHICS1998,pp.223-233.[24]Mencl R.,M¨u ller H.Graph based surface reconstruction using structures in scattered pointsets.Proc.CGI,1998,pp.298-312[25]M¨u ller J.V.,Breen D.E.,Lorenzem W.E.,O’Bara R.M.,Wozny M.J.Geometricallydeformed models:A Method for extracting closed geometric models from volume data.Proc.SIGGRAPH,1991,pp.217-226[26]Szeliski R.,Tonnesen D.Surface modeling with oriented particle p.Graphics26,1992,pp.185-194[27]V arnuˇs ka M.,Kolingerov´a I.Manifold extraction in surface reconstruction.ICCS2004,Krakow,Poland,pp.147-155[28]V arnuˇs ka M.,Kolingerov´a I.Boundaryfiltering in surface reconstruction.ICCSA2004,Assissi,Italy,pp.682-691。