统计学复习(含公式)
- 格式:doc
- 大小:167.50 KB
- 文档页数:4
统计学原理公式第二章数据描述1、组距=上限―下限2、简单平均数: x=Σx/n3、加权平均数:x=Σxf/Σf4、全距: R=xmax-xmin5、方差和标准差:方差是将各个变量值和其均值离差平方的平均数。
其计算公式:22未分组的计算公式:σ=Σ(x-x)/n22分组的计算公式:σ=Σ(x-x)f/Σf 样本标准差则是方差的平方根:21/2未分组的计算公式:s=[Σ(x-x)/(n-1)]2 1/2分组的计算公式:s=[Σ(x-x)f/(Σf-1)]1/2σ=[Σ(x-x)/n] 6、离散系数:总体数据的离散系数:Vσ=σ/x 样本数据的离散系数:Vs=s/x 10、标准分数:标准分数也称标准化值或Z分数,它是变量值与其平均数的离差除以标准差后的值,用以测定某一个数据在该组数据的相对位置。
其计算公式为:Zi=(xi-x)/s标准分数的最大的用途是可以把两组数组中的两个不同均值、不同标准差的数据进行对比,以判断它们在各组中的位置。
第三章参数估计1、统计量的标准误差:(样本误差)(1)在重复抽样时;样本标准误差:σx=σ/n 或σx=s/n 样本的比例误差可表示为:1/21/2σp=[π(1-π)/n] 或σp=[p(1-p)/n] (2)不重复抽样时: 22σx=σ/n×(N-n/N-1) 2σp=p(1-p)/n×(N-n/N-1)2、估计总体均值时样本量的确定,在重复抽样的条件下:222n= Zσ/E3、估计总体比例时样本量的确定,在重复抽样的条件下:22n=Z×p(1-p)/E 4、(1)在大样本情况下,样本均值的抽样分布服从正态分布,因此采用正态分布的检验统计量,当总体方差已知时,总体均值检验统计量为:Z=(x-μ)/( σ/n)(2)当总体方差未知时,可以用样本方差来代替,此时总体均值检验的统计量为:Z=(x-μ)/( s/n) 5、小样本的检验:在小样本(n<30)情况下,检验时,首先假定总体均值服从正态分布。
《统计学原理》复习资料(计算公式)一、编制分配数列(次数分布表)统计整理公式a)组距=上限-下限b)组中值=(上限+下限)÷2 c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距二、算术平均数和调和平均数的计算加权算术平均数公式xfx f (常用)fx x f(x 代表各组标志值,f 代表各组单位数,ff 代表各组的比重)加权调和平均数公式mx mx (x 代表各组标志值,m 代表各组标志总量)三、变异系数比较稳定性、均衡性、平均指标代表性(通常用标准差系数V x 来比较)公式:标准差: 简单σ= ;加权σ=四、总体参数区间估计(总体平均数区间估计、总体成数区间估计)具体步骤:①计算样本指标x 、;p③由给定的概率保证程度()F t 推算概率度t⑤估计总体参数区间范围x x x X x ;p pp P p 抽样估计公式1.平均误差:重复抽样:n x np p p )1(不重复抽样:)1(2Nn n x2.抽样极限误差xx t 3.重复抽样条件下:平均数抽样时必要的样本数目222x t n 成数抽样时必要的样本数目22)1(p p p t n4.不重复抽样条件下:平均数抽样时必要的样本数目22222t N Ntn x 五、相关分析和回归分析相关分析公式1.相关系数2222)()(y y n x x n y x xy n2.配合回归方程y=a+bx22)(x x ny x xy nb xb y a 3.估计标准误:22n xy b y a y s y 五、指数分析计算指数分析公式一、综合指数的计算与分析(1)数量指标指数0001p q p q 此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
(01p q -00p q )此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数0111p q p q 此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
1、统计学:是收集、汇总和分析统计数据的科学和艺术。
2、统计数据的分析是统计学的核心内容,它是通过统计描述和统计推断的方法探索数据内在规律的过程。
3、普查:是为某一特定目的而专门组织的一次性全面调查,如人口普查、工业普查、农业普查等。
4、抽样调查的特点:经济性;时效性高;适应面广;准确性高。
5、调查方案:是指导整个过程的纲领性文件,其内容包括调查目的、调查对象和调查单位、调查项目和调查表等内容。
6、组距分组的几个步骤:一、确定组数二、确定组距三、确定组限和进行次数分配四、绘制统计图五、分析。
)7、为消除组距不同对频数分布的影响,需要计算频数密度,即频数密度=频数/组距,用频数密度才能准确反映频数分布的实际情况。
8、以组中值作为代表值有一个必要的假定条件,即各组数据在本组内呈均匀分布或在组距中值两侧呈对称分布。
9、描述统计的内容也包括频数分布、但主要是关于集中趋势和离中趋势的描述问题。
10、众数:是一组数据中出现次数最多的变量值。
从分布的角度看,众数是具有明显集中趋势点的数值,一组数据分布的最高峰点所对应的数值即为众数,记为M。
11、众数是一组数据中心位置的一个代表值。
当然,如果数据的分布没有明显的集中趋势或最高峰点,众数也可以不存在;如果有多个高峰点,实际上也可以认为有多个众数。
12、协方差的大小会受到计量单位和数据均值水平的影响,从而使不同相关总体之间的相关程度缺乏可比性。
13、时间系列:是反映现象随时间的变化而变化的数据系列,也称为时间数列或动态数列。
14、用报告期水平减去基期水平,就等于增长量。
其中,当基期水平为上期水平时,就称为逐期增长量,当基期水平为某个时期的固定发展水平时,就称为累计增长量。
15、报告水平与基期水平之比,称为发展速度。
其中,当基期水平为上期水平时,就称为环比发展速度;当基期水平为某个时期的固定发展水平时,就称为定基发展速度。
16、序时平均数也称为动态平均数,它反映现象在一定时期内发展水平达到的一般水平。
《统计学原理》常用公式汇总及计算题目分析第一部分常用公式第三章统计整理a)组距=上限-下限b)组中值=(上限+下限)÷2c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i.相对指标1。
结构相对指标=各组(或部分)总量/总体总量2。
比例相对指标=总体中某一部分数值/总体中另一部分数值3。
比较相对指标=甲单位某指标值/乙单位同类指标值4。
强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标1.简单算术平均数:2。
加权算术平均数或iii。
变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ= ;加权σ=3。
标准差系数:第五章抽样估计1。
平均误差:重复抽样:不重复抽样:2。
抽样极限误差3。
重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析1.相关系数2。
配合回归方程y=a+bx3.估计标准误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
(—)此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度.(—)此差额说明由于质量指标的变动对价值量指标影响的绝对额.加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:= ×绝对值变动分析:—= (—)×(—)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。
统计学公式汇总表一、组限和组中值1 当两组间的相邻组限重合时:组距=本组上限—本组下限 组中值=(上限+下限)/ 2或=下限+组距 / 2 或=上限—组距 / 22当两组间的相邻组限不重合时:组距=下组下限—本组下限或=本组上限—上组上限 组中值=(本组下限+下组下限)/ 2或=本组下限+组距 / 2 或=下组下限—组距 / 23 组距式分组中的“开口”情况:组中值=上限—邻组组距 / 2或=下限+邻组组距 / 2一、相对指标的种类和计算方法(一)计划完成相对数1计划完成相对数的基本计算公式: 计划完成相对数=计划完成数实际完成数* 100%例:某公司计划2005年销售收入500万元,实际的销售收入552万元。
则:计划完成相对数=500552* 100% = 110.4%2计划完成相对数的派生公式:(1)对于产量、产值增长百分数: 计划完成相对数=%%100%%100计划增长实际增长++ * 100%(2)对于产品成本降低百分数: 计划完成相对数=%%100%%100计划增长实际增长—— * 100%例:某企业2005年规定产值计划比上年增长8%,计划生产成本比上年降低5%,产值实际比上年提高10%,生产成本实际比上年降低6%,试求该企业产值和成本计划完成相对数。
解:产值计划完成相对数=%8%100%10%100++ * 100% = 101.85%成本计划完成相对数=%5%100%6%100—— * 100% = 98.95%(3)计划执行进度相对数的计算方法: 计划执行进度=本期计划数成数计划期内某月止累计完 * 100%例:某公司2005年计划完成商品销售额1500万元,1—9月累计实际完成1125万元。
则:1—9月计划执行进度=15001125* 100% = 75%(二)结构相对数 结构相对数=总体数值总体某部分数值* 100%例:某地区2005年国内生产总值为1841.61亿元,其中第一产业增加值为88.88亿元,则: 第一产业增加值所占比重=1.618418.888 * 100% =4.83%(三)比例相对数 比例相对数=同一总体另一部分数值总体中某一部分数值* 100%例:某地区2005年国内生产总值为2106.96亿元,其中轻工业产值为1397.31亿元,重工业产值为709.65亿元,则:轻重工业比例=1397.31:709.65=1.97:1(四)比较相对数 比较相对数=标数值乙地区(单位)同一指数值甲地区(单位)某指标 * 100%(五)动态相对数 动态相对数=基期数值报告期数值* 100%例:某地区国内生产总值2004年为2097.77亿元,2005年为2383.07亿元。
《统计学原理》复习资料(计算部分)一、 编制分配数列(次数分布表) 统计整理公式a) 组距=上限-下限 b) 组中值=(上限+下限)÷2c) 缺下限开口组组中值=上限-1/2邻组组距 d) 缺上限开口组组中值=下限+1/2邻组组距1.某班40名学生统计学考试成绩分别为:57 89 49 84 86 87 75 73 72 68 75 82 97 81 67 81 54 79 87 95 76 71 60 90 65 76 72 70 86 85 89 89 64 57 83 81 78 87 72 61要求:⑴ 根据上述资料按成绩分成以下几组:60分以下,60~70分,70~80分,80~90分,90~100分,整理编制成分配数列。
⑵ 根据整理后的分配数列,计算学生的平均成绩。
解:分配数列成绩(分) 学生人数(人) 频率(%) 60以下 4 10 60—70 6 15 70—80 12 30 80—90 15 37.5 90—100 3 7.5 合计 40 100平均成绩 55465675128515953307076.754040xf x f⨯+⨯+⨯+⨯+⨯====∑∑(分)或 5510%6515%7530%8537.5%957.5%76.75fx x f=⋅=⨯+⨯+⨯+⨯+⨯=∑∑(分)2.某生产车间40名工人日加工零件数(件)如下:30 26 42 41 36 44 40 37 43 35 37 25 45 29 43 31 36 49 34 47 33 43 38 42 32 25 30 46 29 34 38 46 43 39 35 40 48 33 27 28要求:⑴ 根据以上资料分成如下几组:25~30,30~35,35~40,40~45,45~50,整理编制次数分布表。
⑵ 根据整理后的次数分布表,计算工人的平均日产量。
(作业10P 1) 解:次数分布表日加工零件数(件) 工人数(人)频率(%)25—307 17.5 30—35 8 20 35—40 9 22.5 40—45 10 25 45—50 6 15 合计 40100平均日产量 27.5732.5837.5942.51047.56150037.54040xf x f⨯+⨯+⨯+⨯+⨯====∑∑ 件或 27.517.5%32.520%37.522.5%42.525%47.515%37.5fx x f=⋅=⨯+⨯+⨯+⨯+⨯=∑∑ 件二、 算术平均数和调和平均数的计算 加权算术平均数公式 xfx f=∑∑(常用) fx x f=⋅∑∑(x 代表各组标志值,f 代表各组单位数,ff∑代表各组的比重)加权调和平均数公式 m x m x=∑∑ (x 代表各组标志值,m 代表各组标志总量)分析: m x mx=总产量工人平均劳动生产率(结合题目)总工人人数从公式可以看出,“生产班组”这列资料不参与计算,是多余条件,将其删去。
公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。
(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。
下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。
上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。
2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。
设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。
3.均值的计算【AVERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为: 式中:G 表示几何平均数;∏表示连乘符号。
1.样本平均数:X2.总体平均数:3. 四分位差:Q D4. 方差:nXN IQR(1总体方差:(2) 样本方差:S27.标准分数分数8.样本协方差Cov9.皮尔逊相关系数XXXYYY Y i10. 加权平均数11. 分组数据样本平均数12. 分组数据样本方差13. 排列组合公式n !C mn m !2 Pm厂n m !C mn C n m n统计学重要公式5.标准差:(1总体标准差:X i~N2X i n 1X ,丫r XYY iY i(2)样本标准差:6•变异系数总体:CV样本:CVX i X"S-S XYS XYXY i22S S2100%100%标准差一100%平均数L XYL XX L YY2X iX i Y iI I1n 2Y i1nnY ii 114.事件补的概率 P(A) 1 P(A)15.加法公式 P(A B) P(A) P(B)-P(AB) 16.条件概率 P(A|B)P(A (B)B),P(A B)P(B)P(A) 17.乘法公式 P(A B) P(B) P(A|B) P(A) P(B|A)18.独立事件 P(A B)P(A)P(B)19.全概率公式P(B)nP(A i ) P(B|A i )i 120•贝叶斯公式P(A i |B)P(A)P(B|A i ).啥小叫)P(B)P(A j ) P(B|A j )j i33总体均值的区间估计21. 离散型随机变量的数学期望 E(X)22. 离散型随机变量的方差 Var(X) 223. 二项分布的概率函数 p(x) C ;p xq24.二项分布的数学期望和方差 E (X )xxe e x!x!x n xC C 25.泊松分布p(x) 27.超几何分布p(x),x xp(x) 2x p(x)0,1,2,..., n,q 1 p np,Var(X) 2n p(1 p)28.正态概率密度函数 29.标准正态分布变换 X 2f (x) ^2— e2 2Zx30. X 的数学期望和标准差32估计 时的抽样误差:X E(X)有限总体时(1大样本且方差已知:X 无限总体时Xn31比例P 的数学期望和标准差 E(p)⑵大样本且方差未知:XZ2 —,' nZ 2 S, ■■ np,有限总体时无限总体时 Pp(1 p) n(3)总体正态,小样本,方差已知X Z 2n S(4)总体正态,小样本,方差未知X t 2 SZ 2234估计 时所需的样本容量:n 一岂一XN n N 11(3)小样本,正态X 1X 2t2SX 1 X 235.总体比率 P 的区间估计 36. p 的区间估计时所需的样本容量 nnZ22 P 21P)37.大样本总体均值的检验统计量方差已知:Z X ,/ jn方差未知:Z X - s/ vn38.小样本总体均值的检验统计量 39.总体比率检验统计量:ZX :t , df n 1S M/nP 0P o (1 P o )40. 总体均值的单侧检验中所需样本容量2Z Zn ------------------------------------- 20 141. 独立样本时 ,两个总体均值之差的点估计量X 1X 2的期望值与标准差:2-,用Z 2代替Z 即为双侧检验的公式:X 1 X 2E(X 1 X 2)12,2212n ?42.两个总体均值之差的区间估计: (1)大样本(n 1, n , 30), 1, 2已知X1X2厶 2Z2 X 1 X 2X X 的点估计量为:S XX i X 2X i(2)大样本,XT X 21, 2未知 X 143. 两个总体均值之差的假设检验统计量Sd /J n44. 两个比率之差的点估计量P 2的期望值与标准差 P i45. 两个总体比率之差的区间估计 :大样本 n i P i , n i (i P i ),门2卩2, ^(i P 2)P2 Z S P i P 22(2)小样本t (1)大样本 Z S pin ii n 246. 两个总体比率之差的检验统计量 P 2 P iP 2总体比率合并估计 :Pn i P i n 2 n〔 n 2P iP 2时P i P 2的点估计量:S P i P 2P(i P)丄丄n 〔 n 2(3)相关样本2p ip2P i (i P i ) P 2(i P 2)n iP 2(i P 2)n ?(1i)p P 的点估计量 :Sp i p 22(i P 2)门 2n 1 S 247. 一个总体方差的区间估计 n 1 S 2------- 2(1 / 2)48. 一个总体方差的检验统计量49. 两个总体方差的检验统计量 50. 拟合优度检验统计量 s ; s ;2ei——,dfe i51. 独立假设条件下列联表的期望频数 第i 行之和 RT i CT j n 独立性检验统计量 eij第j 列之和 样本容量 ij e ij2ej ,df52.检验 K 个均值的相等性 第j 个处理的样本均值 n jX •• iji 1n jn j第j 个处理的样本方差 X iji 1X ij总样本均值 处理均方 :MSTRn t 1 SSTR_1处理平方和 :SSTR误差均方 :MSEjSSE误差平方和 :SSEX t )2k 个均值相等检 总平方和 :SST验统计量MSTR MSEij平方和分解 多重比较方法 :SSTi 1SSTRSSEFisher LSD 的检验统计量 :tMSE54.随机化区组设计求平方和的另一种方法55.析因试验:a b r总平方和 :SSTi 1 j 1 k 1a因子A 平方和:SSA bri 1 b 因子B 平方和:SSB arj 1交互作用平方和:SSAB误差平方和 :SSE SST57.简单线性回归模型:y °1X简单线性回归方程:Ey °1 x估计的简单线性回归方程:2 b °b 1 x最小二乘法:min y i2i 2总平方和 :SS t2 ijX ij ak,df t ak1,处理平方和 :SS b2X ij 区组平方和 :SS r 误差平方和:SS ea2 XijkSS t SS b SS r , df eX ijak2Xijakk 1,df b ,df rk 1,a 1,总平方和 :SS t____ 2X ; ,df tn t 1,处理平方和区组平方和 误差平方和SS b aj 1 X .j X t ,df b k1,SS r ak i 1X i.X t2,df ra 1, SS e SS tSS b SS r , df ek1 a 1X jkX t,df tn t1——2X i. X t,df Aa 1,2X .jX t,df Bb 1,ab2rX ij X i.X . jX t,df ABa 1b 1 i 1j 1SSA SSBSSAB, df e abr abab(r 1)b 1j 1 i 21k___ 2估计的回归方程的斜率和截距:x i y iX i y i -------------------------------------------n22X iX -------------------------------------nb°y b1 x平方和分解:SST SSR SSE 误差平方和:SSE总平方和:SST y i回归平方和:SSRy iX i Y iY iX i2判定系数(决定系数):R2样本相关系数:r xy均方误差(2的估计量估计量的标准误差X2^的估计的标准差:S b i2y ib2SSRSST2y iX i2t统计量:t 2回归均方:MSR F检验统计量:F 。
统计学常用计算公式
均值(Mean)
均值是一组数据的平均值,通过将所有数据求和并除以数据的个数来计算。
公式:$\bar{x} = \dfrac{\sum_{i=1}^{n}x_i}{n}$
其中,$\bar{x}$ 表示均值,$x_i$ 表示第 i 个数据,n 表示数据的个数。
中位数(Median)
中位数是一组数据中的中间值,即将数据按升序排列后,找到位于中间位置的数。
公式:
- 若数据个数为奇数:中位数为排序后的中间值。
- 若数据个数为偶数:中位数为排序后中间两个值的平均数。
众数(Mode)
众数是一组数据中出现次数最多的值。
标准差(___)
标准差是数据离均值的平均偏差,用来衡量数据的离散程度。
公式:$s = \sqrt{\dfrac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n}}$
其中,$s$ 表示标准差,$x_i$ 表示第 i 个数据,$\bar{x}$ 表示均值,$n$ 表示数据的个数。
方差(Variance)
方差是数据离均值的平方平均偏差,是标准差的平方。
公式:$Var(x) = s^2$
其中,$Var(x)$ 表示方差,$s$ 表示标准差。
以上是统计学常用的计算公式。
在进行统计分析时,这些公式能够帮助我们计算和理解数据的特征和变化程度。
精品文档《统计学原理》常用公式汇总及计算题目分析第一部分常用公式第三章统计整理a)组距=上限-下限b)组中值=(上限+下限)÷2c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i.相对指标1.结构相对指标=各组(或部分)总量/总体总量2.比例相对指标=总体中某一部分数值/总体中另一部分数值3.比较相对指标=甲单位某指标值/乙单位同类指标值4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标精品文档.精品文档简单算术平均数:1.2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值 = : 简单σ加权= ;σ2.标准差 :3.标准差系数抽样估计第五章1.平均误差:重复抽样:不重复抽样:抽样极限误差2.3.重复抽样条件下:平均数抽样时必要的样本数目精品文档.精品文档成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析相关系数1.y=a+bx配合回归方程2.3.估计标准误:第八章指数分数一、综合指数的计算与分析数量指标指数(1)精品文档.精品文档此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
)(-此差额说明由于数量指标的变动对价值量指标影响的绝对额。
质量指标指数(2)此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
-()此差额说明由于质量指标的变动对价值量指标影响的绝对额。
=加权算术平均数指数加权调和平均数指数=复杂现象总体总量指标变动的因素分析(3) 相对数变动分析:×= 绝对值变动分析:精品文档.精品文档)×(-)= (--第九章动态数列分析一、平均发展水平的计算方法:由总量指标动态数列计算序时平均数(1)①由时期数列计算②由时点数列计算在间断时点数列的条件下计算: a.若间断的间隔相等,则采用“首末折半法”计算。
一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=fxf x 或 ∑∑=f f x x加权调和平均数: ∑∑∑∑==f xf xm m x频数也称次数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。
再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=f xf x 或 ∑∑=f f x xx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。
加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。
比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。
依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。
加权和与所有权重之和的比等于加权算术平均数。
加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xmm x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。
《统计学原理》公式大全一、统计整理1.组距=上限 - 下限 2.组中值(1)闭口组2下限上限组中值+= (2)开口组组中值①2相邻组组距上限值缺下限的开口组的组中-= ②2相邻组组距下限值缺上限的开口组的组中+= 二、综合指标1.计划完成相对数 =计划任务数实际完成数2.计划执行进度 =计划期计划任务累计数数一时间的实际完成累计自计划执行之日起至某3.结构相对数 =总体总量总体中某部分数值4.总体中另一部分数值总体中某部分数值比例相对数=5.值另一总体的同类指标数某总体的某指标数值比较相对数=6.的总量指标数值另一性质不同但有联系某一总量指标数值强度相对数=7.基期指标数值报告期指标数值动态相对数=8.总体单位总量总体标志总量算术平均数=9.简单算术平均数 x —=nxn x x x n ∑=+++ 21 10.加权算术平均数 x —=∑∑=∑+++f xf f f x f x f x n n 2211 11.简单调和平均数 ∑=-xN x H 112.加权调和平均数 ∑∑=-mxmx H 113.极差(R )= 最大标志值 — 最小标志值14.简单平均差 D A ⋅=nx x∑-—15.加权平均差 D A ⋅=∑-fx x —16.简单标准差 nx x ∑-=)(—2σ17.加权标准差 ∑∑-=ffx x )(—2σ三、抽样推断1.重复抽样条件下的抽样平均数的抽样平均误差 nx σμ2=2.重复抽样条件下的抽样成数的抽样平均误差 nP P p )1(-=μ 3.不重复抽样条件下的抽样平均数的抽样平均误差 )1(2N nn x -=σμ4.抽样成数的抽样平均误差 )1()1(Nnn P P p --=μ 5.抽样平均数的抽样极限误差 =∆xμ-⋅x t 6.抽样成数的抽样极限误差=∆pμp t ⋅7.概率度 t =μxx ∆ t = μpp ∆8.总体均值的区间估计 x __±∆x9.总体比例的区间估计 p ±∆P四、统计指数1.个体价格指数 p pk p 01=2.个体产量指数 q q k q 01=3.个体成本指数 z z k z 01=4.数量指标综合指数 ∑∑=p q p q k q 00015.质量指标综合指数 ∑∑=p q p q k p 01116.加权算术平均数指数 ∑∑⋅=p q p q k k q q 0007.加权调和平均数指数 ∑⋅∑=p q k p q k pp 111118.可变构成指数 ∑∑∑∑⋅⋅==)()(00011101_________f x f f x x x k 可变9.固定构成指数 ∑∑∑∑⋅⋅=)()(110111___f f x f x k 固定10.结构影响指数 ∑∑∑∑⋅⋅=)()(00110___f x f f x k 结构11.指数体系相对数形式 k k k p q qp ⨯= 即∑∑⨯∑∑=∑∑p q p q p q p q p q p q 011100010011 绝对数形式:)()(011100010011∑∑-+∑∑-∑∑=-p q p q p q p q p q p q五、动态数列1.根据时期数列计算平均发展水平 n a na a a a n ∑=+++=21—2.根据间隔相等的连续时点数列计算平均发展水平n a na a a a n ∑=+++=21—3.根据间隔不等的连续时点数列计算平均发展水平∑∑=ffa a —4.根据间隔相等的间断时点数列计算平均发展水平1221222132113221—-++++=-++++++=--n n a a a a a a a a a a a a nn nn5.根据间隔不等的间断时点数列计算平均发展水平f f f f aa f a a f a a a n n n n 12111232121—222---+++++++++= 6.根据相对数动态数列或平均数动态数列计算平均发展水平ba c ———=7.增长量 = 报告期水平 一 基期水平 8.逐期增长量=报告期水平一前一期水平,用符号表示为:a a ,,a a ,a a ,a a n n 1231201----- 9.累计增长量 = 报告期水平一某一固定基期水平用符号表示为:a a ,,a a ,a a ,a a n 0030201---- 10.各期的逐期增长量之和等于最后一个时期的累计增长量,用公式表示为: a a a a a a a a a a n n n 01231201)()()()(-=-++-+-+--11.相邻两个时期的累计增长量之差等于相应时期的逐期增长量,用公式表示为: a a a a a a n n n n 1010)()(---=---12.年距增长量 = 本期发展水平 - 去年同期发展水平 13.1-==时间数列的项数累计增长量逐期增长量的个数逐期增长量之和平均增长量14.基期水平报告期水平发展速度=15.前一期水平报告期水平环比发展速度=用符号表示为:a a a a a a a a n n 1231201,,,,- 16.某一固定基期水平报告期水平定基发展速度=用符号表示为:a a a a a a a a no o 03201,,,,17.定基发展速度等于相应时期内的各环比发展速度的连乘积,用符号可表示为:a a a a a a a a n n 1231201-⨯⨯⨯⨯ =aa n 018.相邻两个定基发展速度之比等于相应时期的环比发展速度,用符号可表示为:a a a a a a n nn n 1010--=÷19.去年同期发展水平本期发展水平年距发展速度=20.11-=-=-==发展速度基期水平报告期水平基期水平基期水平报告期水平基期水平报告期增长量增长速度21.1-=-==环比发展速度前一期水平前一期水平报告期水平前一期水平逐期增长量环比增长速度 22.1-=-==定基发展速度某一固定基期水平某一固定基期水平报告期水平某一固定基期水平累计增长量定基增长速度23.()1-==年距发展速度月或季去年同期发展水平年距增长量年距增长速度24.平均发展速度的计算公式为:ninnx x x x x x ∏=⋅⋅⋅⋅= 321—由于环比发展速度的连乘积等于相应定基发展速度,因此平均发展速度的公式可写成:non a a x =—25.平均增长速度 = 平均发展速度 一1 26.100100100%1前一期水平前一期水平期增长量逐期增长量环比增长速度逐期增长量的绝对值增长=⨯=⨯=。
统计学114个公式1.组距=本组上限-本组下限(不包括上.下限的数字)2.间断式分组组距: 组距=本组上限-前组上限3.组距=本组下限-前组下限4.组距=本组上限-本组下限+15.开口组中值:组中值=(上限+下限)/2 缺下限:上限- —————— =组中值6.缺上限:下限- ————— =组中值 7.d=R/n(R 为总体全距,n 为组数,d 为组距) 8.N=1+3.322lgN N 为组数,N 为总体容量9. 简单算术平均数X = (X 1+X 2 +X 3 +…+X n )/n(可简记为X =ΣX n /n )10.加权算术平均数X=(X 1f 1+X 2f 2+…+ X k f k )/ (f 1+f 2+…+f k )=ΣX i f i /Σf i (可简记为 X=ΣX i f i /Σf i )11. 算术平均数的数学性质(1)各变量值与算术平均数的离差之和等于零,即:相邻组组距2 相邻组组距 2=0(对于简单算术平均数) 或=0(对于加权算术平均数)12.(2)各变量值与算术平均数的离差平方之和为最小值,即: Σ(x i -x)2 =最小值 或Σ(x i -x)2≤Σ(x i -x 0)2 (只有当x = x 0 时,等号成立) 13. 简单调和平均数 H =km /(m/x 1+m/x 2+…+m/x k )=k /Σ(1/x i )可简记为:H = k /Σ(1/x i )14.加权调和平均数H =(m 1+m 2+…+m k )/(m 1/x 1+m 2/x 2+…+m k /x k )=Σm i /Σ(m i /x i )(可简记为:H =Σm i /Σ(m i /x i )。
)15. 简单几何平均数 G = n √x 1.x 2.x 3…x n = n √∏x i (可简记为G = n √∏x i )16. 加权几何平均数 G = Σfi √x 1 f1.x 2 f2.x 3 f3…x n fk= Σfi √∏x fi i(可简记为G =Σfi √∏x fi i ) 17. 算术平均数、调和平均数和几何平均数的数学关系 幂平均数的定义是:x t = t √Σx t /n 当t=1时,幂平均数就是算术平均数; 当=-1时,幂平均数就是调和平均数;当趋向于0时,幂平均数的极限形式就是几何平均数。
nX 1 • X 2 ⋅ ⋅ ⋅ X n ∑( X - X )2 n - 1 f 统计学公式汇总(1) αβδμσνπρυt u F X s 2(2) 均数(mean ): X = X 1 + X 2 + ⋅⋅⋅ + X n =∑ X式中 X 表示样本均数,nnX 1,X 2,X n 为各观察值。
(3) 几何均数(geometric mean, G ):G = = lg -1 ( lg X 1 + lg X 2 + ⋅ ⋅ ⋅ + lg X n ) = lg -1 ( ∑lg X ) 式中n nG 表示几何均数,X 1,X 2,X n 为各观察值。
(4) 中位数(median, M )n 为奇数时, M = X n +1( )2n 为偶数时, M = [X( n ) 2+ X n ( 2+1) ] / 2式中 n 为观察值的总个数。
i(5) 百分位数 P x = L +(n ⋅ x % - ∑f L ) x式中L为Px 所在组段的下限,f x 为其频数,i 为其组距, ∑f L 为小于L各组段的累计频数。
(6) 四分位数(quartile, Q ) 第 25 百分位数 P 25,表示全部观察值中有 25%(四分之一)的观察值比它小,为下四分位数,记作 Q L ;第 75 百分位数 P 75,表示全部观察值 中有 25%(四分之一)的观察值比它大,为上四分位数,记作 Q U 。
(7) 四分位数间距 等于上、下四分位数之差。
2=∑( X - )2 (8) 总体方差N(9) 总体标准差=(10) 样本标准差 s = =(11) 变异系数(coefficient of variation, CV ) CV = ⨯s100%X(12) 样本均数的标准误 理论值 X估计值 s Xs式中 σ 为总体标准差,n∑( X - )2 N∑X 2 - (∑X )2 / nn - 1n = =n s / nnT - n (n +1) / 4 n (n +1)(2n +1) 24 ∑ jj(t - t ) 3-48nn n n s 为样本标准差,n 为样本含量。
极差:一组数据的最大值与最小值之差称为极差,也称全距,用R表示。
其计算公式为:R=max(xi)-min(xi)离散系数:也称为变异系数,它是一组数据的标准差与其相应的平均数之比。
其计算公式为:V=S/X。
离散系数是测量数据离散程度的相对统计量,主要是用于比较不同样本数据的离散程度。
离散系数大,说明数据的离散程度也大;离散系数小,说明数据的离散程度也小。
三大统计分布:卡方分布、T分布、F分布卡方分布(χ2)定理:设n个相互独立并且都服从正态N(0,1)分布的随机变量X1、X2,……Xn,记则随机变量χ2服从自由度为n的χ2分布。
统计变量服从卡方分布,其含义是:在给定概率α的条件下,满足或者说表达式的概率为α。
T分布定理:设随机变量x,y相互独立,X~N(0,1),Y~χ2(n)记。
则随机变量T服从自由度为n的t分布。
设T~t(n),0<α<1,对于满足下列等式的数t a(n),称为t(n)分布的上侧分位数。
对于较大的n(>45)可以同标准正态分布的上侧分位数u a作为t(n)分布的上侧分位数F分布定理:设随机变量x,y相互独立,X~χ2(n1),Y~χ2(n2)记,则随机变量F服从第一自由度为n1,第二自由度为n2的F分布,记作:F~F(n1,n2)若F~F(n1,n2),易知:,若则统计量:描述样本特征的概括性数字度量。
完全由样本决定的量,叫做统计量;或者说不含有其他未知量的样本的函数称为统计量。
统计量可以看做是对样本的一种加工,它吧样本中所包含的关于总体的其一方面的信息集中起来。
最常用的统计量是样本均值和样本方差S 2。
自由度:随机变量所包含的独立变量的个数。
参数估计:就是用样本统计量去估计总体的参数。
在参数估计中,用来估计总体参数的统计量的名称称为估计量,用符号θ表示。
样本均值、样本比例、样本方差等都可以是一个估计量。
而根据一个具体的样本计算出来的估计量的数值称为估计值。
参数估计的方法有点估计和区间估计两种。
1、统计学:是收集、汇总和分析统计数据的科学和艺术。
2、统计数据的分析是统计学的核心内容,它是通过统计描述和统计推断的方法探索数据内在规律的过程。
3、普查:是为某一特定目的而专门组织的一次性全面调查,如人口普查、工业普查、农业普查等。
4、抽样调查的特点:经济性;时效性高;适应面广;准确性高。
5、调查方案:是指导整个过程的纲领性文件,其内容包括调查目的、调查对象和调查单位、调查项目和调查表等内容。
6、组距分组的几个步骤:一、确定组数二、确定组距三、确定组限和进行次数分配四、绘制统计图五、分析。
)7、为消除组距不同对频数分布的影响,需要计算频数密度,即频数密度=频数/组距,用频数密度才能准确反映频数分布的实际情况。
8、以组中值作为代表值有一个必要的假定条件,即各组数据在本组内呈均匀分布或在组距中值两侧呈对称分布。
9、描述统计的内容也包括频数分布、但主要是关于集中趋势和离中趋势的描述问题。
10、众数:是一组数据中出现次数最多的变量值。
从分布的角度看,众数是具有明显集中趋势点的数值,一组数据分布的最高峰点所对应的数值即为众数,记为M。
11、众数是一组数据中心位置的一个代表值。
当然,如果数据的分布没有明显的集中趋势或最高峰点,众数也可以不存在;如果有多个高峰点,实际上也可以认为有多个众数。
12、协方差的大小会受到计量单位和数据均值水平的影响,从而使不同相关总体之间的相关程度缺乏可比性。
13、时间系列:是反映现象随时间的变化而变化的数据系列,也称为时间数列或动态数列。
14、用报告期水平减去基期水平,就等于增长量。
其中,当基期水平为上期水平时,就称为逐期增长量,当基期水平为某个时期的固定发展水平时,就称为累计增长量。
15、报告水平与基期水平之比,称为发展速度。
其中,当基期水平为上期水平时,就称为环比发展速度;当基期水平为某个时期的固定发展水平时,就称为定基发展速度。
16、序时平均数也称为动态平均数,它反映现象在一定时期内发展水平达到的一般水平。
由于指标形式分绝对数、相对数和平均数等,所以对其平均的方法存在差异性。
17、绝对数有时期数和时点数之分,两者的区别主要在于是否具有可加性。
18、几何平均法的应用条件是要求现象呈现均匀变动。
如果现象发生大起大落的变化,用几何平均法所计算的平均发展速度将失去代表性。
19、累计法考虑各时期的发展状况,不只是受最初和最末两个极端值的影响。
20、移动平均法是趋势变动分析的一种较简单的常用方法。
该方法的基本思想和原理是,通过扩大原时间序列的时间间隔,并按一定的间隔长度逐期移动,分别计算出一系列移动平均数,这些平均数形成的新的时间序列对原时间序列的波动起到一定的修匀作用,削弱了原序列中短期偶然因素的影响,从而呈现出现象发展的变动趋势。
该方法可以用来分析预测销售情况、库存、股价或其他趋势。
移动平均法的优点在于计算简便,运用灵活,不受现象复杂性影响。
其缺点主要有三个:一是失去首尾两头的数据;二是不能较好地进行长期趋势的预测;三是对周期性处理不好就会影响数列的趋势性。
21、我们应该先剔除趋势值的影响,再计算季节指数。
(第一步:对原数据计算移动平均数;第二步:计算具体的季节比率;第三步:计算月平均值,消除不规则波动;第四步:计算季节比率;第五步:使用季节比率进行预测。
)22、指数作为一种对比性的统计指标具有相对数的形式,通常表现为百分数。
23、统计指数在经济分析上具有十分广阔的应用领域,它可以是不同时间的现象水平的对比,也可以是不同空间(如不同国家、地区、部门、企业等)的现象水平的对比,或者,是现象的实际水平与计划(规划或目标)水平的对比。
24、统计指数可分为个体指数和总指数。
25、总指数是考察整个总体现象的数量对比关系的指数。
总指数与个体指数的区别不仅在于考察范围不同,还在于考察方法不同。
26、如果一个指数的指数化指标具有质量指标的特征,也即表现为平均数或相对数的形式,它就属于“质量指标指数”。
物价指数、股份指数和成本指数等都是质量指标指数;如果一个指数的指数化指标具有数量指标的特征,也即具有总量或绝对数的形式,它一般就属于“数量指标指数”。
销售旦指数和生产指数则是数量指标指数。
27、常规的综合评价方法有两种:一种是“简易计分法”,另一种是常规方法是“参数指标法”。
28、构建标准比值综合评价指数的步骤:1、建立综合评价指标体系;2、确定评价公式样3、确定各项指标的评价标准和权数学4、计算企业的个体指数和综合评价指数。
29、概率分布是一种数学模型,它反映变量取值与其发生的概率之间的关系。
其特点是:变量取值的精确度越高,相应的概率越小;变量取值的误差越大,相应的概率也越大。
30、二项分布主要描述只有两种结果可能出现的事件的分布。
这两种结果分别用“是”和“非”来区别。
31、泊松分布是主要描述稀有事件的分布。
例如,在单位时间内电话交换台收到电话呼叫的次数、来到公共汽车站的乘客人数、布上的疵点、啤酒中的杂质等,也称为计点分布或疵点分布。
32、完成简单随机样本的选择过程中,当我们并不想将一个管理人员多次先入时,就可以忽略已出现过的随机数,这种选择样本的方式叫做“无放回抽样”。
33、出现过的随机数仍选入样本,则我们进行的是“放回抽样”。
抽样程序中,放回抽样是一种取得简单随机样本的有效途径,然而,无放回抽样更为常用。
34、大样本:在抽样过程中,把抽样数目大于30的样本。
而把抽样数目小于30的样本称为小样本。
35、必要的抽样数目受以下因素影响:1、总体方差点;2、允许误差范围;3、置信度假4、抽样方法;5、抽样组织方式。
36、分层抽样是通过分组来提高样本样本的代表性的。
37、等距抽样最显著的优越性是能提高样本单位分布的均匀性,样本代表性较强。
38、在整群抽样过程中,划分群体的原则是:应合群间差异尽可能小,使各群体内的总体单位之间的差异尽可能大。
39、假设检验主要的两个特点:1、假设检验所采用的逻辑推理方法是反证法。
2、这里的合理与否,所依据的是“小概率事件实际不可能发生的原理”。
40、原假设和备择假设不是随意提出的,应根据所检验问题的具体背景而定。
常常是采取“不轻易拒绝原假设”的原则,即把没有充分理由不能轻易否定的命题作为原假设,而相应地把没有足够把握就不能轻易肯定的命题作为备择假设。
41、左侧检验和右侧检验统称为单侧检验。
采用哪种假设,要根据所研究的实际问题而定。
如果对所研究问题只需判断有无显著差异或要求同时注意总体参数偏大或偏小的情况,则采用双侧检验。
42、当原假设H0为真,但由于样本的随机性使样本统计量落入了拒绝区域,这时所作的判断是拒绝原假设。
这类错误称为第一类错误,亦称真错误。
43、当原假设H0不为真,但由于样本的随机性使样本统计量落入接受区域,这时的判断是接受原假设。
这类错误称为第二类错误,亦称取伪错误。
44、当N固定时,减少A必然导致B增大;反之,减少B必然增大A。
若要同时减少A和B,或给定A而使B减少,就必须增大样本容量N。
45、区间估计与假设检验的关系:1、抽样估计或称参数估计是根据样本资料估计总体参数的真值,而假设检验是根据样本资料来检验对总体参数的先验假设是否成立。
2、区间估计通常求得的是以样本估计值为中心的双侧置信区间,而假设检验不仅有双侧检验也常常采用单侧检验,视检验的具体问题而定。
3、区间估计六足于大概率,通常以较大的把握程度1-a去估计总体参数的置信区间。
而假设检验立足于小概率,通常是给定很小的显著性水平a去检验对总体参数的先验假设是否成立。
在假设检验中,人们更重视拒绝区域。
所以假设检验运用的是概率意义上的反证法,在建立假设时本着“不轻易拒绝原假设”的原则。
区间估计中的置信区间对应于假设检验中的接受区域,置信敬意之外的区域就是拒绝区域。
46、假设检验的结论是在给定的显著性水平下作出的。
因此,在不同的显著性水平下,对同一检验问题所下的结论可能完全相反。
47、相关分析:就是用一个指标来表明现象间相互依存关系的密切程度。
48、回归分析:就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
49、相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是,现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此。
在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
50、样本回归子函数与总体回归子函数的区别:1、总体回归线是未知的,它只有一条;而样本回归线则是根据样本数据拟合的,具有大量性。
2、总体回归子函数中的B1和B2是未知的参数,表现为常数,而样本回归子函数中的B1和B2是随机变量,其具体数值随所抽取的样本观测值不同而变动。
3、总体回归子函数中的误差项U1是不可直接观测的,而样本回归子函数中的残差项E1可以计算出具体数值。
51、理论意义检验主要涉及参数估计值的符号和取值区间,如果它们与实质性科学的理论以及人们的实践经验不相符,就说明能很好地解释现实的现象。
52、一级检验:又称为统计学检验,它是利用统计学中的抽样理论来检验样本回归方程的可靠性,具体双可分为拟合程度评价和显著性检验。
53、二级检验:又称为经济计量学检验,它是对标准线性回归模型的假定条件能否得到满足进行检验,具体包括序列相关检验、异方差性检验等。
54、拟合程度:是指样本观测值聚集在样本回归线周围的紧密程度。
55、可决系数是对回归模型拟合程度的综合度量,可决系数越大,模型拟合程度越高;可决系数越小,则样本拟合程度越差。
56、回归分析中的显著性检验包括两方在同的内容:一是对各回归系数的显著检验;二是对整个回归方程的显著性检验。
57、对回归系数B2进行显著性检验的基本步骤:首先,提出假设;其次,计算回归系数的t值;第三,确定显著水平a=5%和临界值;最后,作出判断。
一、某车间工人日产量资料如下 :计算该车间平均每个工人的日产量及标准差 .平均日产量标准差甲、乙两班同时对《统计学原理》课程进行测试,甲班平均成绩为70分,标准差为9.0分;乙班的成绩分组资料如下 :(计算乙班学生的平均成绩,并比较甲、乙两班哪个班的平均成绩更有代表性?)乙班学生的平均成绩乙班学生的标准差甲班学生的变异系数 乙班学生的变异系数因为0.129 〉0.120,所以乙班学生的平均成绩更具有代表性二、时间序列计算 已知某商店1997年销售额比1992年增长64%,1998年销售额比1992年增长86%,问1998年销售额比1997年增长多少?1992 1998年间,平均增长速度是多少?1998年销售额比1997年增长的百分数1992 1998年平均增长速度三、统计指数计算某农贸市场三种商品的价格和销售量资料如下:试根据上表资料计算:拉氏形式的价格指数;派氏形式的价格指数 拉氏价格指数派氏价格指数四、区间估计计算1、当总体方差已知时,求μ的置信区间 。