SPSS教程 CHAP12 非参数检验
- 格式:pdf
- 大小:1.91 MB
- 文档页数:77
SPSS应⽤之⾮参数检验统计学的假设检验可以分为参数检验和⾮参数检验,参数检验是根据⼀些假设条件推算⽽来,当这些假设条件⽆法满⾜的时候,参数检验的效能会⼤打折扣,甚⾄出现错误的结果,⽽⾮参数检验通常是没有假设条件的,因此应⽤范围⽐参数检验要⼴。
⾮参数检验在不做任何假设的情况下,最⼤限度的使⽤样本信息,利⽤统计学、数学的⽅法和技巧构造统计量并加以检验,在某些情况下,⾮参数检验⽐参数检验拥有更⾼的效能,尽管如此,我们也不能⼀味的使⽤⾮参数检验,毕竟参数检验更加严谨,通常都是在数据不符合参数检验的条件是,才使⽤⾮参数检验,因此,对于数据的前期观察是⾮常重要的。
⾮参数检验⽅法⾮常多,但是绝⼤部分⾮参数检验⽅法都是基于秩和结来构造统计量的,中⾮参数检验是⼀个独⽴的过程,也保留了旧对话框,新对话框按照样本情况分类,根据样本情况来选择⽅法,并且更倾向于⾃动化分析,旧对话框的分类则不是很明确,分我们按照新对话框来进⾏介绍分析—⾮参数检验—单样本⼀、单样本1.⼆项式检验⼆项式检验也称为⼆项分布检验,⽤来检验样本是否来⾃⼆项分布,也就是检查样本的观测值的频数与某⼀特定⼆项分布下的期望频数是否⼀致。
不仅可以针对于⼆分类变量,对于连续变量也可以当做⼆分类变量来处理,例如成绩的及格与否,产品的合格与否等。
本例中是想检验三门学科的及格率是否都在95%以上2.卡⽅检验卡⽅检验是最常⽤的多分类⾮参数检验,卡⽅统计量也⼴泛被其他检验所引⽤,卡⽅检验依据卡⽅分布,主要包括适应性检验和独⽴性检验,适应性检验⽤于检验实际观察频数与期望频数是否⼀致,独⽴性检验⽤于检验两组或多组计数资料是否相互独⽴。
3.K-S检验全称为Kolmogorov-Smirnow检验,在探索性中,也曾出现过⽤它来检验是否服从正态分布。
该检验属于⾮参数检验,⽤来检验某⼀单样本是否服从某⼀理论分布。
4.Wilcoxon符号秩检验该检验将符号和秩相结合,效能⽐单纯的符号检验和秩和检验都⾼,因此⽐较常⽤5.游程检验我们知道样本的随机性很重要,⽽游程检验就是⽤来检验样本数据是否是随机抽取的。
非参数检验-SPSS什么是非参数检验?非参数检验是一种统计假设检验方法,它不依赖于总体的任何假设条件,如总体分布的正态性、方差的同一性等。
与参数检验相比,非参数检验更加灵活,能够适应更多的数据情况。
为什么需要非参数检验?当我们的数据不满足正态分布等假设条件时,就需要使用非参数检验。
此外,非参数检验还有以下优点:1.不需要知道总体分布的具体形态,从而更加适用于实际情况2.对于离群值和极端值并不敏感3.数据缺失并不会影响检验结果SPSS中的非参数检验现在我们来介绍SPSS中的非参数检验。
1. Wilcoxon符号秩检验Wilcoxon符号秩检验旨在检验两组配对样本的中位数差异是否为零。
它的原假设是两组样本中位数相同。
首先,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“数据”-“配对样本T检验”-“Wilcoxon符号秩检验”。
接下来,我们需要在弹出的对话框中选择配对变量,然后点击“OK”即可得到检验结果。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于检验两组独立样本的中位数是否相同。
它的原假设是两组样本中位数相同。
要进行Mann-Whitney U检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“2独立样本”。
接着,在弹出的对话框中选择两组样本的变量,并设置分析的方法为“Mann-Whitney U检验”。
最后点击“OK”即可得到检验结果。
3. Kruskal-Wallis检验Kruskal-Wallis检验是一种非参数检验方法,用于检验多个独立样本的中位数是否相同。
它的原假设是多组样本中位数相同。
要进行Kruskal-Wallis检验,我们需要打开SPSS,导入数据集,然后点击菜单栏中的“分析”-“非参数检验”-“Kruskal-Wallis检验”。
接着,在弹出的对话框中选择多组样本的变量,并点击“OK”即可得到检验结果。
使用SPSS软件进行非参数检验非参数检验是数理统计学中对样本数据进行检验的一种重要检验方法,文章具体讲述了SPSS统计软件对3个班级中21个学生的成绩样本进行非参数检验分析,得出总体成绩存在显著性差异,说明了SPSS统计软件应用于概率论与数理统计教学的可行性。
标签:SPSS软件;非参数检验;显著性差异;可行性非参数检验是数理统计学的一个分支,它与参数检验相对应。
参数检验是一种适应于在特定环境下的检验,对总体分布参数的均值或方差等进行推断的方法。
非参数检验是假定总体分布的具体形式未知,从样本的数据获得需要的信息,对总体分布的类型和位置进行检验。
1 非参数检验方法的特点和分类非参数检验适用性很广,不要求有精确的观测值,SPSS软件是一种易学易操作的软件,软件中包括8种非参数检验的分析方法,这8种方法被分为了两大类:分布类型检验方法和分布位置检验方法,在第二大类中包括以下4中检验:两个独立样本显著性差异、多个独立性样本显著性差异、两个相关样本差异的显著性检验和多个相关样本差异的显著性检验。
文章主要研究多个独立性样本的显著性差异。
2 应用实例随机抽取3个班级的学生,得到21个学生的成绩样本,成绩如表1所示,问总体成绩是否存在显著差异?(1)假设H0:總体成绩没有显著差异(2)操作步骤:a.在SPSS软件的数据编辑窗口中输入数据,两个变量(banji,chengji),21个样本,即输入2列21行;b.单击分析→非参数检验→K个独立样本命令,打开多个独立样本对话框;c.将变量chengji移入到检验变量列表,将banji移入分组变量列表,在分组变量定义框内定义分组变量的范围,最小值为1,最大值为3,选择检验类型中的前两个,第三种方法不适合本题目;如图1所示。
d.单击OK按钮,即在输出窗口显示Kruskal-Wallis检验和中值检验的计算结果。
3 结果分析在输出窗口中显示了Kruskal-Wallis检验和中值检验的计算结果,见表2、表3。
spss教程第十二章第十二章非参数检验――Nonparametric Tests菜单详解(医学统计之星:张文彤)最后一次更新时间:12.1 概论12.2 One-Sample Kolmogorov-Smirnov Test12.3 Two-Independent-Samples Tests§12.1概论作为二十一世纪统计理论的三大发展方向之一,非参数统计是统计分析的重要组成部分。
可是与之很不相称的是他针对一般性统计分析的理论发展远远不及参数检验完善,因而比较完善的可供使用的方法也不多。
比如多组均数间的两两比较,虽然已有好几种方法可资利用,但由于在理论上仍存在争议,几种权威的统计软件(如SAS和SPSS)均没有提供这方面的方法。
虽然这些洋统计软件没有提供两两比较的非参数方法,但国产的统计软件大都是提供了的(国情不同嘛),因此建议大家:如果真的要做这方面的非参数分析,不如直接用PEMS、SPLMWIN、NOSA等国产软件,免得用SPSS等只能做一半。
在SPSS中,几乎所有的非参数分析方法都被放入了Nonparametric Tests 菜单中,具体来讲有以下几种:Chi-square test:用卡方检验来检验变量的几个取值所占百分比是否和我们期望的比例没有统计学差异。
比如我们在人群中抽取了一个样本,可以用该方法来分析四种血型所占的比例是否相同(都是25%),或者是否符合我们所给出的一个比例(如分别为10%、30%、40%和20%,我随便写的)。
请注意该检验和我们一般所用的卡方不太一样,我们一般左的卡方要用crosstable菜单来完成,而不是这里。
Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一刀两断。
Runs Test:用于检验某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。
利用SPSS进行非参数检验(卡方检验)
一、启动SPSS
二、建立数据文件
1、定义两个数值型变量:组限L和频数f(先确定变量名称,
变量类型的默认值为数值型)。
2、输入组限L和频数f的实际数据。
3、用Data菜单中的Weight cases将f变成Frequency(频率)。
三、单击Analyze s菜单,选择Nonparametric Test中的
Chi-Square选项,打开相应的对话框。
选择要进行检验的变量L。
四、根据需要选择相应的选择项:
1、在Expected Range中选择Get from data或Use specified
range,后者需指定Lower(下限)和Upper(上限)。
2、在Expected Values指定期望值:如检验总体是否服从均匀分
布,只需选定All categories equal项;如检验总体是否服从某
个给定的分布,需选定Values,并键入相应各组所对应的由
给定分布计算而得的期望值。
五、选定所需的各项后,单击Ok即可得所需结果。
SPSS⾮参数检验实验⽬的:学会使⽤SPSS的简单操作,掌握⾮参数检验。
实验内容: 1.中位数符号检验,检验总体中位数是否等于某个假定的值。
设⼀个随机样本有n个数据,总体中位数的实际值为M,假设的总体中位数值为。
当样本中的数据⼤于假设的中位数时,⽤“+”号表⽰,⼩于假设的中位数时,⽤“-”表⽰;对于恰好等于假设的中位数的数据予以剔出。
若关⼼实际的M与假设的是否有差别,应建⽴假设:;计算检验统计量S+和S-。
S+表⽰每个样本数据与与差值符号为正的个数;S-表⽰每个样本数据与差值符号为负的个数。
计算P值并作出决策。
若P<,拒绝原假设。
2.Wilcoxon符号秩检验,检验总体参数(如中位数)是否等于某个假定的值。
它是对符号检验的⼀种改进,弥补了符号检验的不⾜,要⽐单纯的符号检验更准确⼀些(对应的参数检验—单样本均值检验)。
检验步骤:①计算各样本观察值与假定的中位数的差值,并取绝对值;②将差值的绝对值排序,并找出它们的秩;③计算检验统计量和P值,并作出决策。
3.独⽴样本的检验,Mann-Whitney检验不需要诸如总体服从正态分布且⽅差相同等之类的假设,但要求是两个独⽴随机样本的数据⾄少是顺序数据;Kruskal-Wallis检验不需要总体服从正态分布且⽅差相等这些假设。
该检验可⽤于顺序数据,也可⽤于数值型数据。
要检验k个总体是否相同,提出如下假设。
:所有总体都相同,:并⾮所有总体都相同或等价于,不全相同。
4.秩相关检验,对两个顺序变量之间相关程度的⼀种度量。
Spearman秩相关系数也称等级相关系数,记为,计算公式为,的取值范围为[-1,1];,两种排序之间完全相关;若,两种排序之间为负相关;若,两种排序之间为正相关;若,两种排序之间不相关;越趋于1,相关程度越⾼;越趋于0,相关程度越低。
实验步骤: 1.中位数符号检验SPSS操作,点击【分析】→【⾮参数检验】→【相关样本】,打开【⾮参数检验、两个或更多相关样本】对话框。
SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。
当天的比例近似为2.8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。
通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果。
非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS操作方法。
一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-SampleTests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。