2015新人教版数学五年级下册总复习知识点
- 格式:doc
- 大小:80.59 KB
- 文档页数:7
五年级下册数学知识点第一单元观察物体(三)1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。
2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。
由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。
3、从一个方向看到的图形摆立体图形,有多种摆法。
4、从多个角度观察立体图形先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。
第二单元因数和倍数1、因数和倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数.又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
2、自然数按能不能被2整除分为:奇数偶数偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
2、3、5倍数的特征:个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。
最小的两位数是30,最大的两位数是90,最小的三位数是120,最大三位数是990。
3、自然数按因数的个数来分:质数、合数、1.数。
如4,6,8,9都是合数。
合数至少有三个因数,1、它本身、别的因数1:只有1个因数。
“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)4、100以内的质数(共 25 个):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、975、奇数+奇数=偶数(如:5+7=12 3+5=8 ……)奇数+偶数=奇数(如:1+4=5 7+2=9 ……)偶数+偶数=偶数(如:2+4=6 8+6=14 ……)奇数×奇数=奇数(如:5×7=35 7×9=63 ……)奇数×偶数=偶数(如:5×8=40 7×8=56 ……)偶数×偶数=偶数(如: 8×12=96 14×24=336 ……)第三单元长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
人教版五年级数学下册第一、二单元知识点复习【人教版五年级数学下册第一、二单元知识点复习】五年级数学下册的第一、二单元主要包含了一些基础的数学知识点,包括整数的加减法运算、算式的变形、相反数的概念以及简单的分数概念等。
通过对这些知识点的复习,可以提高学生对数学的理解和运用能力。
本文将对这些知识点进行全面的回顾和总结。
1. 整数的加法与减法在整数的加法和减法运算中,我们需要掌握以下几个要点:1.1 同号两数相加(或相减)为同号当两个整数的符号相同时,我们只需要将绝对值相加(或相减),并保持符号不变即可。
例如:“(+3) + (+5) = +8”、“(-7) - (-2) = -5”。
1.2 反号两数相加(或相减)为异号当两个整数的符号不同时,我们需要计算它们的绝对值相减,并将符号赋予绝对值较大的数。
例如:“(+4) + (-6) = -2”、“(+2) - (-3) = +5”。
2. 算式的变形在运算中,我们有时需要通过变形使得问题更容易计算。
具体的变形方式包括:2.1 同分母分数的加法与减法当我们需要计算同分母的两个分数时,我们只需要把它们的分子相加(或相减),分母保持不变。
例如:“1/4 + 3/4 = 4/4 = 1”、“5/6 - 2/6 = 3/6 = 1/2”。
2.2 分数与整数的加法与减法当我们需要计算一个分数和一个整数的和(或差)时,我们可以将整数视为分母为1的分数,然后按照同分母的加法(或减法)运算法则进行计算。
例如:“2/3 + 5 = 2/3 + 5/1 = (2 + 15)/3 = 17/3”。
3. 相反数的概念在数轴上,一个数的相反数与它距离原点的距离相等,方向相反。
例如,数轴上点A对应的数是-5,那么点B对应的数就是5,它们互为相反数。
4. 简单分数的概念分数由一个整数的分子和分母组成,分子表示被分割的单位数量,分母表示每个单位的份数。
例如,1/2表示一个单位被分成两份,其中的1表示的就是被分割的单位数量。
五年级(下)各单元重点知识归纳第二单元:因数与倍数一、因数和倍数(1).因数和倍数的意义:如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
(2).因数与倍数的关系:因数和倍数是两个不同的概念,但又是一对相互依存的概念,不能单独存在。
(3).找一个数的因数的方法:A.列乘法算式:根据因数的意义,有序地写出两个数的乘积是此数的所有乘法算式,乘法算式中每个因数就是该数的因数。
B.列除法算式:用此数除以大于(1)等于(1)而小于等于它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。
(4).找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与非零自然数相乘,所得之数就是这个数的倍数。
二、(2)、((3))、(5)的倍数的特征(1). 2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。
(2).奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,0也是偶数;不是2的倍数的数叫做奇数。
(3).奇数、偶数的运算性质:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
(4).5的倍数的特征:个位上是0或5的数都是5的倍数.(5).3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
三、质数和合数(1).质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(2).质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
(3).分解质因数:把一个合数用质数相乘的形式表示出来,就是分解质因数。
(4).分解质因数的方法:A:“树枝”图式分解法;B:短除法分解。
第三单元:长方体和正方体一、长方体(正方体)的特征(1).长方体的特征:有6个面,相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点(2).正方体的特征:正方体的6个面完全相同;12条棱的长度全相等;有8个顶点。
一、整数
1.整数的概念
2.整数的比较和大小关系
3.整数的加法和减法运算
4.整数的乘法和除法运算
5.整数的绝对值
二、分数和小数
1.分数的概念和表示方法
2.分数的大小比较
3.分数的加法和减法运算
4.分数的乘法和除法运算
5.分数和整数的关系
6.小数的概念和表示方法
7.小数和分数的相互转换
三、图形的认识
1.直线和曲线
2.线段和射线
3.角的概念和分类
4.三角形的分类
5.矩形和正方形
6.平行四边形的性质
7.四边形的分类
8.圆的概念和性质
9.弧和扇形
四、面积和周长
1.长方形的面积和周长
2.正方形的面积和周长
3.三角形的面积和周长
4.平行四边形的面积和周长
5.圆的面积和周长
五、日期和时间
1.平年和闰年的判断
2.日期的多少和星期的判断
3.时间的读法和表示方法
4.时间的加减运算
六、图形的运动和变换
1.图形的翻转和旋转
2.图形的平移和对称
七、单位换算
1.长度的换算
2.时间的换算
3.质量的换算
4.容量的换算
八、数据的收集整理和表示
1.数据的整理和绘制
2.条形图和折线图的绘制
3.数据的分析和解释
九、数字的认识和计算
1.十进制的认识和表示
2.十进制的读法和写法
3.十进制数的比较和大小关系
4.十进制数的加法和减法运算
5.十进制数的乘法和除法运算
以上就是五年级数学下册的总复习知识点归纳,希望能对你的学习有所帮助。
一图形的变换1、轴对称:把一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。
(考点,判断一个图形是否是轴对称图形)2、轴对称图形的特点:①对应点在对称轴的两边②对应点到对称轴的距离相等(考点:画对称轴,注意用尺画虚线;画一个图形的轴对称图形,注意根据对应点到对称轴的距离相等,先找对应点,再连线。
例题见书本P4 例2)3、旋转:在平面内,一个图形绕着一个顶点或轴的运动叫做旋转。
(考点:钟面上指针的旋转;画一个图形的旋转后的图形。
注意,找到中心点,看清题意要求顺时针还是逆时针,钟面上一大格是30度,画图时找3、6、9、12时四个时刻的指针方向的边。
例题见书本P5 例3 例4)4、平移:一个图形沿着一条直线的运动称为平移。
二因数和倍数1、3×7=21,3和7是21的因数,21是3和7的倍数,不能说谁是倍数,谁是因数.2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
4、自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
最小的奇数是1,最小的偶数是0。
任何一个自然数,不是奇数,就是偶数。
5、个位上是0,2,4,6,8的数都是2的倍数.6、个位上是0或5的数,是5的倍数。
7、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
8、个位上是0的数既是2的倍数,又是5的倍数。
9、能同时被2、3、5整除(同时有因数2、3、5)的最小数是30,最大的两位数是90,最小的三位数是120.10、100以内的质数:二三五七和十一,(2、3、5、7、11)十三后面是十七,(13、17)还有十九别忘记,(19)二三九, 三一七,(23、29、31、四一,四三,四十七,(41、43、47)五三九, 六一七, (53、59、61、67)七一,七三,七十九, (71、73、79)八三,八九,九十七。
第四单元分数的意义和性质1、分数的意义:一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1” :一个整体可以用自然数1 来表示,通常把它叫做单位“1” 。
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
4、分数与除法的关系被除数÷除数= 被除数/ 除数A÷B= A /B (B≠0,因为除数不能为0,分母也不能够为0)除法计算:没有单位用“1”除,有单位用数除。
5、真分数:分子比分母小的分数叫真分数。
真分数小于1。
6、假分数:分子比分母大或分子和分母相等的分数叫假分数。
假分数大于或等于1。
7、带分数:带分数由整数和真分数组成的分数。
带分数大于1。
8、假分数与整数、带分数的互化(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子。
(2)整数化为假分数,用整数乘以分母得分子。
(3)带分数化为假分数,用整数乘分母加分子,得数就是假分数的分子,分母不变。
(4)1 等于任何分子和分母相同的分数。
9、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0 除外),分数的大小不变。
10、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
两个数的公因数是最大公因数的因数。
11、几个数的公因数只有1,就说这几个数互质。
12、两数互质的特殊情况:①1和任何自然数互质;②相邻两个自然数互质;③两个质数一定互质;④2和所有奇数互质;⑤质数与比它小的合数互质;13、用短除法求两个数或三个数的最大公因数,除到互质为止,把所有的除数连乘起来,积就是这两个数或三个数的最大公因数。
14、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
15、用短除法求两个数的最小公倍数,除到互质为止,把所有的除数和商连乘起来,积就是这两个数的最小公倍数。
人教版五年级数学下册知识点总复习《时间的计算、换算及应用》时间的计算、换算及应用是人教版五年级数学下册中的重要知识点。
本文将对该知识点进行总复。
时间的计算在数学中,我们经常需要进行时间的计算。
时间的计算涉及到时、分、秒的转换和运算。
常见的计算包括:1.时、分、秒的换算:时转换为分,分转换为秒。
例如,2小时等于120分钟,1分钟等于60秒。
2.时间的加减运算:将不同时间段进行相加或相减。
例如,10点30分加上1小时20分钟,等于11点50分。
3.时间的进退位运算:同样的时间在不同的单位下进行进位或退位。
例如,70分钟等于1小时10分钟。
时间的换算时间单位的换算主要涉及到小时、分钟和秒之间的转换。
常见的换算关系如下:1.1小时等于60分钟,1分钟等于60秒。
2.1分钟等于1/60小时,1秒等于1/60分钟。
在实际应用中,我们可以根据具体问题的需求,进行时间单位的换算,以方便计算和理解。
时间的应用时间的应用广泛存在于我们的生活中。
以下是一些常见的时间应用场景:1.日常生活中的计时:例如上学、上班、睡觉等。
2.运动比赛的计时:例如田径比赛、游泳比赛等。
3.列车、飞机等交通工具的时刻表查询和乘坐时间安排。
4.日历和倒计时的使用:例如倒数日、重要节日等。
在应用时间的过程中,我们需要掌握时间的计算和换算,以便更好地解决实际问题。
总结时间的计算、换算及应用是人教版五年级数学下册中的重要知识点。
通过对时间的计算,我们可以更好地理解和应用时间,解决实际问题。
希望本文的总复习可以帮助大家加深对时间知识的理解和掌握。
五年级下册数学复习资料(人教版)每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 ……个中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那末较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1小数的意义把整数1均匀分成10份、100份、1000份……获得的非常之几、百分之几、千分之几……能够用小数表示。
一位小数表示非常之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
1观察物体(三)一、能用小正方体摆出从某一方向观察看到指定图形的几何体。
1.从同一方向观察不同的几何体,看到的图形可能相同。
2.观察由小正方体搭成的几何体时,由于前面的小正方体遮挡..了后面的小正方体、左面的小正方体遮挡..了右面的小正方体、右面的小正方体遮挡..了左面的小正方体或者是上面的小正方体遮挡..了下面的小正方体,常会漏数被遮挡的小正方体............。
例如:图1是由5个小正方体搭成的,而不是由4个小正方体搭成的;图2是由4个小正方体搭成的,而不是由3个小正方体搭成的。
解决此类问题时,一定要具体问题具体分析。
3.在观察物体时,从正面看可以确定所摆的几何体有几层和几...................列.;.从上面看可以确定所摆的几何体有几行和几列....................;.从左面看可以......确定所摆的几何体有几行和几层..............。
二、能根据从不同方向看到的图形搭出几何体。
1.从正面、左面和上面看到的图形确定了,这个几何体也就确......定了..。
2.根据从三个不同方向观察到的图形还原几何体,先从上面观察到的图形分析确定基本形状,推测可能出现的各种情况,然后根据从其他两个方向看到的图形综合分析,确定层数和每层小正方体的个数。
3.数组合成几何体的小正方体的个数时,可以先把这个几何体分层、分行或分列统计,然后把每一部分的小正方体的个数相加。
温馨提示:从不同的方向观察几何体,所看到的图形可能相同,也可能不同。
温馨提示:根据从三个不同的方向观察到的图形搭成几何体时,先从上面确定基本形状,然后从正面和左面确定层数和每层的个数。
易错点:仅根据从某一方向观察到的平面图形,是无法判断几何体的摆法的,更无法确定组成这个几何体的小正方体的个数。
2因数与倍数..、.............温馨提示:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数...(一般不包括.....0.).。
一、观察物体(三)1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,建议同学们先多观察物体,多画观察到的图形,有意识的训练想象能力,逐渐就会观察立体图形了4、观察物体,先要确定观察的方向(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来摆立体图形时,可根据从上面看到的平面图形摆出底层,再根据从正面看到的摆出前排图形,然后根据从左面看对后排进行修正,最后从不同方向观察所摆图形是否符合原题要求5、摆立体图形时,可根据从上面看到的平面图形摆出底层,再根据从正面看到的摆出前排图形,然后根据从左面看对后排进行修正,最后从不同方向观察所摆图形是否符合原题要求。
6、数正方体的个数时,为了既不遗漏又不重复,可分层数;观察露在外面的面,应弄清从哪几个方向看到的是什么图形,再计算7、构建空间想象力:(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。
8、动手操作,思维拓展用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。
(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体第二单元因数和倍数知识点复习1、在整数除法中如果商是整数而没有余数,我们就说被除数是除数的倍数;除数是被除数的因数。
2、如果12÷3=4。
那么12是3和4的倍数,3和4是12的因数。
(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。
只能说谁是谁的倍数,谁是谁的因数。
)3、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
人教版五年级下册数学第二单元知识点总结第一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
【×】改正:6是3和2的倍数,3和2是6的因数。
练习:【1】8×5=40,【】和【】是【】的因数,【】是【】和【】的倍数。
【2】因为36÷9=4,所以【】是【】和【】的倍数,【】和【】是【】的因数。
【3】在18÷6=3中,18是6的【】,3和6是【】的【】。
【4】在14÷7=2中,【】能被【】整除,【】能整除【】,【】是【】的倍数,【】是【】的因数。
【5】若A÷B=C【A、B、C都是非零自然数】,则A是B的【】数,B是A的【】数。
【6】如果A、B是两个整数【B≠0】,且A÷B=2,那么A是B的,B是A的。
【7】判断并改正:因为7×6=42,所以42是倍数,7是因数。
【】因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。
【】5是因数,15是倍数。
【】甲数除以乙数,商是15,那么甲数一定是乙数的倍数。
【】【8】甲数×3=乙数,乙数是甲数的【】。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:【1】有5÷2=2.5可知【】A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数【2】36÷5=7……1可知【】A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数【3】属于因数和倍数关系的等式是【】A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有【】。
新人教五年上册总复习知识点单位换算一、方法:大单位到小单位,乘进率。
小单位到大单位,除以进率。
换算单位主要注意;(1)想清楚进率(2)判断清楚是“大到小”,还是“小到大”。
记忆进率的巧办法:首先记住长度单位间的进率,面积单位间的进率就是长度单位间进率的平方。
如果你忘记了面积单位间的进率,可以用这种方法找到正确的进率。
二、具体方法介绍:(1) 37厘米=()米小到大,除以进率 37÷100=0.37(2) 0.035千克=()克大到小,乘进率 0.035×1000=35(3) 求6千克50克=()千克时,可以这样想:把千克数()写在整数部分,把()克改写成()千克,合起来就是( 6.05 )千克。
(4)求2.15小时=()小时()分,可以这样想:整数部分的2就表示()小时,把0.15时改写成()分三、练习:3千克150克=()千克 10千米700米=()千米13元4角8分=()元 6米5厘米=()米=()厘米3吨700千克=()千克 65米7厘米=()米8平方米65平方分米=()平方米 2.06千克=()克210分=()小时()分35.9公顷=()公顷()平方米4平方千米=()公顷 1800公顷=()平方千米9平方厘米=()平方分米 32000000平方米=()公顷0.86千克=()克 4公顷500平方米=( )公顷4.5平方分米 =( )平方分米( )平方厘米9000平方米 =( )公顷 1吨20千克=()吨7.2平方千米 =( )公顷=( )平方米13.5米=()分米=()厘米1.25吨=()吨()千克图形面积计算一、基本知识点:1、基本公式长方形的周长:(长+宽)×2 C=2(a+b)正方形的周长:边长×4 C=4 a长方形的面积:长×宽 S=ab正方形的面积:边长×边长 S=a2平行四边形的面积:底×高 S=ah三角形的面积:底×高÷2 S=ah÷2梯形的面积:(上底+下底)×高÷2 S=(a+b)h÷2平行四边形的底:面积÷高平行四边形的高:面积÷底三角形的底:面积×2÷高三角形的高:面积×2÷底梯形的高:面积×2÷(上底+下底)梯形的上底:面积×2÷高-下底梯形的下底:面积×2÷高-上底2、面积公式的推导过程(1)将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。
人教版数学五年级下册:全册知识点第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
五年级下册第一单元《观察物体三》1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。
2、不可能一次看到长方体或正方体相对的面。
第二单元因数和倍数一、因数和倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的余数.又如整数a能被b整除(a÷b=c),那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找,或用除法找。
倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
二、自然数按能不能被2整除分为:奇数偶数奇数:不是2的倍数的数叫做奇数。
偶数:是2的倍数的数叫做偶数。
最小的奇数是1,最小的偶数是0。
2、3、5倍数的特征:个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。
最大的两位数是90,最小的两位数是30,最小的三位数是120。
三、自然数按因数的个数来分:质数、合数、1.质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7,11,13,17,19……都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
如4,6,8,9,10,12,14,15,16,18,20,22,26,49……都是合数。
合数至少有三个因数,1、它本身、别的因数1:只有1个因数。
“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)(1)所有的奇数都是质数。
不对,因为9是奇数,但不是质数,而是合数。
(2)所有的偶数都是合数。
不对,因为2是偶数,但不是合数,是质数。
(3)在1,2,3,4,5,…中,除了质数以外都是合数。
不对,因为1既不是质数也不是合数。
(4)两个质数的和是偶数。
不对,因为2是质数也是偶数,而其他的质数都是奇数,偶数+奇数=奇数。
四、100以内的质数(共 25 个):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97五,奇数+奇数=偶数(如:5+7=12 3+5=8 ……)奇数+偶数=奇数(如:1+4=5 7+2=9 ……)偶数+偶数=偶数(如:2+4=6 8+6=14 ……)奇数×奇数=奇数(如:5×7=35 7×9=63 ……)奇数×偶数=偶数(如:5×8=40 7×8=56 ……)偶数×偶数=偶数(如: 8×12=96 14×24=336 ……)六、公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个因数就叫它们的最大公因数。
用短除法分解质因数(一个合数写成几个质数相乘的形式)例:12=2×2×3用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来).几个数的公因数只有1,就说这几个数互质。
两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
七、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
第三单元长方体和正方体1、长方体和正方体都是立体图形。
正方体也叫立方体。
2、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(长、宽、高都各有4条,分别平行并且相等)3、长方体的特征:①面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。
相对的面完全相同。
②棱:有12条棱。
相对的棱长度相等。
③顶点:有8个顶点。
4、正方体的特征:①面:有6个面都是正方形,6个面完全相同。
②棱:有12条棱。
12条棱的长度相等。
③顶点:有8个顶点。
5、正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
至少要8个小正方体才能拼成一个稍大的正方体。
长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷126、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)正方体的表面积=棱长×棱长×6 S=a×a×67、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V ÷b ÷h宽=体积÷长÷高 b=V ÷a ÷h高=体积÷长÷宽 h= V ÷a ÷b正方体的体积=棱长×棱长×棱长 V=a ×a ×a=a 3底面积: 长方体或正方体底面的面积叫做底面积。
底面积=长×宽长方体和正方体的体积统一公式:长、正方体的体积都=底面积×高 V=s ×h V=sh8、箱子、油桶、仓库等容器所能容纳物体的体积,通常叫做他们的容积。
长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
(所以物体的体积大于它的容积)。
常用的容积单位有升和毫升也可以写成L 和ml 。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升9、a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a )【体积单位换算】 高级单位 低级单位 低级单位 高级单位体积单位进率: 1立方米=1000立方分米=1000000立方厘米1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米 1平方千米=100公顷=1000000平方米10、长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
11、排水法:(计算不规则物体的体积)12、把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
第四单元 分数的意义和性质1、单位“1”表示:一个物体、一个计量单位或是一些物体都可以看成一个整体。
这个整体可以用自然数1来表示,我们通常把它叫做单位“1”2、把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
3、把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
4、分数与除法的关系:除法中的被除数相当于分数的分子,除数相当于分母. 分数后不带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。
×进率÷进率5、分数大小的比较:分母相同的两个分数,分子大的分数较大。
分子相同的两个分数,分母小的分数较大。
异分母分数,先化成同分母分数(分数单位相同),再进行比较。
6、真分数和假分数:真分数分子比分母小的分数叫做真分数。
真分数比1小。
假分数分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于1或等于1。
把假分数化成整数或带分数:用分子÷分母。
能整除的,所得的商就是整数;不能整除的,所得的商就是带分数的整数部分,余数是就是分数部分的分子,分母不变。
7、分数的基本性质——分数的分子和分母同时乘上或除以相同的数(0除外),分数的大不变。
8、约分——把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(方法就是分子和分母同时除以它们的公因数。
)分子、分母是互质数的分数,叫做最简分数。
9、 通分——把异分母分数化成和原来分数相等的同分母的分数,叫做通分。
方法:先求出原来几个分母的最小公倍数,再根据分数的基本性质把各个分数化成用这个最小公倍数作公分母的分数。
10、 分数和小数的互化。
小数化成分数:原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子;化成分数后,能约分的要约分。
分数化小数:用分子除以分母,除不尽的按要求保留几位小数。
(一般保留两位小数。
) 判断分数是否能化成有限小数的方法:① 判断分数是否是最简分数;如果不是最简分数,先把它化成最简分数;② 把分数的分母分解质因数:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数; 如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
11、牢记:21=0.5 41=0.25 43=0.75 51=0.2 52=0.4 53=0.6 54=0.881=0.125 83=0.375 85=0.625 87=0.875 201=0.05 251=0.04。
第五单元 分数的加法和减法同分母分数加、减法 (分母不变,分子相加减 )分数数的加法和减法 异分母分数加、减法 (通分后再加减)分数加减混合运算(分数加减混合运算的运算顺序与整数加减混合运算的顺序相同在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算)带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
第六单元 统计与数学广角1、 众数:一组数据中出现次数最多的数,就是这组数据的众数。