不等式组的应用题及答案
- 格式:docx
- 大小:36.58 KB
- 文档页数:2
不等式组的应用题及答案
题目:某工厂生产两种产品A和B。
已知生产产品A每小时需要3个工人,生产产品B每小时需要2个工人。
工厂每天最多可以提供40个工人小时的劳动力。
同时,生产A每小时可以带来20元的利润,生产B每小时可以带来30元的利润。
工厂希望每天的利润不低于500元。
请确定工厂每天生产产品A和B的最大可能利润。
解答:
设工厂每天生产产品A的小时数为x,生产产品B的小时数为y。
根据题意,我们可以得到以下不等式组:
1. 3x + 2y ≤ 40 (劳动力限制)
2. 20x + 30y ≥ 500 (利润要求)
我们需要找到满足以上不等式组的x和y的最大可能利润。
首先,我们解第一个不等式,得到y的表达式:
y ≤ (40 - 3x) / 2
将y的表达式代入第二个不等式:
20x + 30 * ((40 - 3x) / 2) ≥ 500
化简得:
20x + 600 - 45x ≥ 500
整理得:
-25x ≥ -100
x ≤ 4
因为x和y都代表生产小时数,所以它们都必须是非负数,即:
x ≥ 0
y ≥ 0
结合y ≤ (40 - 3x) / 2,我们可以得到x和y的取值范围。
当x = 4时,y = (40 - 3 * 4) / 2 = 14。
所以,工厂每天生产产品A 4小时,生产产品B 14小时。
此时,最大可能利润为:
20 * 4 + 30 * 14 = 80 + 420 = 500元
答案:工厂每天生产产品A 4小时,生产产品B 14小时,最大可能利润为500元。