第22章《二次函数》思维导图
- 格式:pdf
- 大小:829.92 KB
- 文档页数:1
1.一次函数:在某个变化过程中,设有变量x和y,将其写成y=kx+b(k是一
次项系数,且不等于零,b是常数),则y是x的一次函数,并且x是自变量,y是因变量。
2.二次函数:二次函数的基本形式是:y=ax²+bx+c,二次函数的图像是一条
对称轴平行或者是重合于y轴的抛物线。
3.指数函数:形如y=a^x(a>0且a≠1)(x∈R)的函数称为指数函数。
4.对数函数:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数。
5.幂函数:形如y=xa(a为常数)的函数。
6.三角函数:三角函数是以角度为自变量,角度对应任意两边的比值为因变
量的函数叫三角函数,常见的三角函数包括正弦函数、余弦函数和正切函数。
九年级上册数学二次函数思维导图对于九年级上册数学的二次函数,运用图形更容易掌握。
下面小编精心整理了九年级上册数学二次函数思维导图,供大家参考,希望你们喜欢!九年级上册数学二次函数思维导图欣赏九年级上册数学二次函数:顶点式y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。
九上数学二次函数思维导图二次函数是九年级学数学的一个重要知识点,对于这个知识点的学习,我们可以通过一些思维导图来进行。
下面小编精心整理了九上数学二次函数思维导图,供大家参考,希望你们喜欢!九上数学二次函数思维导图欣赏九上数学二次函数:对称关系对于一般式:①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称③y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。
(即绕原点旋转180度后得到的图形)对于顶点式:①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。
②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。
③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。
④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。
(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)九上数学二次函数:位置决定因素一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b 要同号当a>0,与b异号时(即ab<0),对称轴在y轴右。
因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。
九年级上册数学二次函数思维导图对于九年级上册数学的二次函数,运用图形更容易掌握。
下面小编精心整理了九年级上册数学二次函数思维导图,供大家参考,希望你们喜欢!九年级上册数学二次函数思维导图欣赏九年级上册数学二次函数:顶点式y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k) ,对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最大(小)值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)²+2,把(3,10)代入上式,解得y=2(x-1)²+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:当h>0时,y=a(x-h)²的图像可由抛物线y=ax²向右平行移动h个单位得到;当h<0时,y=a(x-h)²的图像可由抛物线y=ax²向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象;当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;当h<0,k>0时,将抛物线y=ax²向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;当h<0,k<0时,将抛物线y=ax²向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。