小升初数学应用题专题(带答案)
- 格式:doc
- 大小:1.99 MB
- 文档页数:11
小升初数学应用题大全100例附答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:1 桶水可灌3/4 壶水,1 壶水冲2 杯水,所以1 桶水可以冲3/4 ×2 = 3/2 = 1.5 杯水。
2. 小明看一本120 页的故事书,已经看了全书的5/6,还剩多少页没看?答案:全书120 页,已经看了全书的5/6,即看了120×5/6 = 100 页,还剩120 - 100 = 20 页。
3. 一个长方形的长是8 厘米,宽是长的1/4,这个长方形的面积是多少?答案:宽是长的1/4,所以宽为8×1/4 = 2 厘米,面积= 长×宽= 8×2 = 16 平方厘米。
4. 一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达。
若要4 小时到达,则每小时需要多行多少千米?答案:甲乙两地的距离为60×5 = 300 千米。
若4 小时到达,速度应为300÷4 = 75 千米/小时,每小时需要多行75 - 60 = 15 千米。
5. 某工厂有男职工120 人,女职工人数是男职工人数的4/5,这个工厂共有职工多少人?答案:女职工人数为120×4/5 = 96 人,全厂职工人数为120 + 96 = 216 人。
6. 学校买来180 本图书,按4:5 分给五年级和六年级,五年级分得多少本?答案:一共分成4 + 5 = 9 份,每份180÷9 = 20 本,五年级分得4 份,即20×4 = 80 本。
7. 果园里有苹果树240 棵,梨树的棵数比苹果树少1/4,梨树有多少棵?答案:梨树比苹果树少1/4,所以梨树的棵数为240×(1 - 1/4) = 180 棵。
8. 修一条路,已经修了全长的3/7 ,还剩360 米没修,这条路全长多少米?答案:没修的占全长的1 - 3/7 = 4/7 ,全长为360÷4/7 = 630 米。
40道应用题专项练习1.王爷爷家养的4头奶牛每个星期产奶896千克;平均1头奶牛每天产多少奶呢?2.4辆汽车3次运水泥960袋;平均每辆汽车每次运水泥多少袋?3.水波小学每间教室有3个窗户;每个窗户安装12块玻璃;9间教室一共安装多少块玻璃?4.小红买了2盒绿豆糕;一共重1千克.每盒装有20块;平均每块重多少克?5.一辆大巴车从张村出发;如果每小时行驶60千米;4小时就可以到达李庄.结果只用了3个小时就到达了.这辆汽车实际平均每小时行驶多少千米?6.白塔村计划修一条水渠;如果每天修16米;18天就能修完.第一天修了24米;照第一天的进度;几天能修完?7.虹光宾馆购进100条毛巾;每条6元.如果用这些钱购买8元一条的毛巾;可以买多少条?8.一包A4复印纸;每天用25张;20天正好用完.如果每天少用5张;那么可以用多少天?9.一个养蜂专业户;今年饲养蜜蜂24箱.去年5箱蜜蜂酿了375千克蜂蜜;照去年的酿蜜量计算;今年可以酿多少千克蜂蜜?10.冬冬家在15平方米的土地上共育苗135棵;照这样计算;要育苗990棵;需要多大面积的土地?11.园林工人沿公路的一侧植树;每隔6米种一棵;一共种了36棵。
从第一棵到最后一棵的距离有多远?12.在一条全长2千米的街道两旁安装路灯(两端都要装);每隔50米安一座;一共要安装多少座路灯?13.一根木头长10米;要把它平均分成5段。
每锯下一段需要8分钟;锯完一共要花多少分钟?14.48名学生在操场上做游戏。
大家围成一个正方形;每边人数相等。
四个顶点都有人;每边各有几名学生?15.要在五边形的水池边上摆上花盆;要使每一边都有4盆花;最少需要几盆花?16.为迎接六一儿童节;学校举行团体操表演。
四年级学生排成方阵;最外层每边站了15人;最外层一共有多少名学生?整个方阵一共有多少人?17.广场上的大钟5时敲5下;8秒种敲完。
12时敲12下;需要多长时间?18.从王村到李村一共设有16根高压电线杆;相邻两根的距离平均是200米。
小升初数学必考应用题练习班级考号姓名总分1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?3.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?4.甲乙两辆客车上午8点同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午两点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)5.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时走3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?6.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?7.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?8.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少?9.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?10某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还有赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?11.王老师有一盒铅笔,如果平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。
小升初数学应用题50题一.解答题(共50题,共286分)1.学校购进图书2000本,其中文学类图书占80%,将这些文学书按2:3全部分给中、高年级,高年级可以分得多少本?2.一个圆柱体的蓄水池,从里面量底面周长31.4米,深2米,在它的内壁与底面抹上水泥。
(1)抹水泥的面积是多少平方米?(2)蓄水池能蓄多少吨水?(每立方米水约重1.1吨)3.一个圆锥形沙堆,高是6米,底面直径4米。
把这些沙子铺在一个长为5米,宽为2米的长方体的沙坑里,铺的厚度是多少厘米?4.修路队修一条路,八月份修了4800米,九月份修了全长的,这两个月一共修了全长的60%,这条路全长多少米?5.王老师推荐了甲、乙两本课外读物,六年级每个同学至少买了一本。
已知有同学买了甲读物,有45%的同学买了乙读物,有14个同学两本都买了。
六年级共有多少名同学?6.希望小学有367人,请问有没有两个学生的生日是同一天?为什么?7.商场举办“迎六一”促销活动。
一种钢笔每支8.4元,活动期间是“买10支送2支”。
张老师要买40支这样的钢笔奖励给同学,只要花多少钱?张老师买的钢笔相当于打几折?8.某次会议有25人参加,每人至少认识一个人。
在这25人中至少有两人认识的人数相同。
你知道为什么吗?9.在“十一黄金周”优惠活动中,一款运动鞋现价120元,比原价降低了25%。
这款运动鞋原价多少元?10.植树造林活动中,共植柳树78棵,杨树56棵,有6棵没能成活,这次植树的成活率是多少?11.五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?12.一个口袋中有50个编有号码的相同的小球,其中标号为1,2,3,4,5的各有10个。
(1)至少要取多少个,才能保证其中至少有2个号码相同的小球?(2)至少要取多少个,才能保证其中至少有两对号码相同的小球?(3)至少要取多少个,才能保证有5个不同号码的小球?13.出租车司机小王某天下午营运是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,这天下午他的行程(单位:千米)如下:+5 -2 +8 -10 -3 -4 +7 +2 -9 +6小王最后是否能回到出发点?14.8个小朋友乘6只小船游玩,至少要有几个小朋友坐在同一只小船里?15.任意10个正整数,每一个都用9来除,其中必有两个余数相同。
小升初数学解答应用题训练20篇(经典版)带答案解析一、人教六年级下册数学应用题1.一辆压路机的前轮是圆柱形,轮宽1.5米,直径是1.2米,前轮转动100周,压路的面积是多少平方米?2.工地上有一堆圆锥形三合土,底面周长为37.68m,高为5m。
用这堆三合土在15m宽的公路上铺4cm厚的路面,可以铺多少米?3.一台压路机的前轮是圆柱形,轮宽2米,半径0.6米.前轮转动一周,轧路的面积是多少平方米?4.(1)上图中用数值比例尺表示是(),李红家在学校西偏北40°方向的800m处,请标出李红家的位置。
(2)如果从李红家修一条管道到淳南路,怎样修最短?请在图中画出来。
5.小明为了测量出一只乌龟的体积,按如下的步骤进行了一个实验:①小明找来一个圆柱形玻璃水杯,量得底面周长是25.12厘米;②在玻璃杯中装入一定量的水,量得水面的高度是10厘米;③将乌龟放入水中完全浸没,再次测量水面的高度是12厘米。
如果玻璃的厚度忽略不计,这只乌龟的体积大约是多少立方厘米?6.如图是一个饮料瓶的示意图,饮料瓶的容积是625mL,里面装有一些饮料。
将这个瓶子正放时,饮料高10cm,倒放时,空余部分的高是2.5cm,求瓶内的饮料为多少mL?7.画一画。
(1)把图中的长方形绕B点按逆时针方向旋转90°,画出旋转后的图形A'B'C'D'。
旋转后A’点的位置用数对表示是(,)。
(2)画出把图中的圆向右平移5格后的图形。
(3)在三角形的右边,按1:2画出三角形缩小后的图形。
8.(1)请你在如图的圆中画一小圆,使得大圆和小圆的面积比是4:1.(2)如果这个大圆的比例尺是1:200,请测量出所需数据并计算大圆的实际周长.(测量时保留整厘米数)9.一批零件20人去做需要15天,照这样计算,如果增加5人,几天可以做完?(用比例知识解答)10.一个圆锥形沙堆,底面积是28.26m²,高是2.5m。
小升初数学应用题40道一.解答题(共40题,共230分)1.一只股票7月份比6月份上涨了15%,8月份又比7月份下降了15%。
请问这只股票8月份的股份和6月份比是上涨了还是下降了?变化幅度是多少?2.一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨?3.哈尔滨的气温的-30℃,北京的气温比哈尔滨高19℃,请问北京的气温是多少度?4.一个圆锥体的体积是15.7立方分米,底面积是3.14平方分米,它的高有多少分米。
5.2018年2月,王阿姨把一些钱存入银行,定期三年,如果年利率是5.0%,到期后可以取出92000元。
王阿姨当时存入银行多少钱?6.一个圆柱和一个圆锥等底等高.已知圆柱和圆锥的体积相差6立方厘米,圆柱和圆锥的体积各是多少立方厘米?7.一个圆柱形水池,在水池内壁和底部都镶上瓷砖,水池内部底面周长25.12m,池深2m,镶瓷砖的面积是多少平方米?8.少年服饰专卖店换季促销,每件半袖原价50元,现在八折销售。
小林买了三件,一共花了多少钱?9.一个底面周长是3.14分米的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的,将两个同样大小的鸡蛋放入杯子中,浸没在水中,这时水面上升8厘米,刚好与杯子口相平,求玻璃杯的容积。
10.植树造林活动中,共植柳树78棵,杨树56棵,有6棵没能成活,这次植树的成活率是多少?11.2019年12月2日,中俄两国东线天然气管道正式投产通气,给我国人民生活带来极大的方便。
俄罗斯境内管道全长约3000km,中国境内新建管道3371km,利用已建管道1740km。
中国新建管道比俄罗斯境内管道全长多百分之几?12.某商场在五月份进了甲、乙两种商品共100件,甲商品进货价每件40元,乙商品进货价每件60元。
如果两种商品都按20%的利润来定零售价.这样当两种商品全部销售完后,共获利润940元。
(利润是指“销价与进货价的差”。
)(1)甲、乙两种商品每件可获利润各是多少元?(2)其中甲种商品进了多少件?13.服装店销售某款服装,每件标价是540元,若按标价的8折出售,仍可获利20%,则这款服装每件的进价是多少元?14.一个无盖的圆柱形铁皮水桶,底面直径是0.4米,高是0.8米,要在水桶里、外两面都漆防锈漆,油漆的面积大约是多少平方米?(得数保留一位小数)15.六(1)班同学植树节去公园种树,有114棵成活,6棵没成活。
(完整版)小升初数学应用题50道一.解答题(共50题,共278分)1.服装店销售某款服装,每件标价是540元,若按标价的8折出售,仍可获利20%,则这款服装每件的进价是多少元?2.右图是丁丁家4月份支出统计图,已知丁丁家4月份的教育支出是300元。
(1)这个月总支出多少元?(2)伙食支出比水电通讯支出多多少元?3.一个装满玉米的圆柱形粮囤,底面周长6.28米,高2米。
如果将这些玉米堆成一个高1米的圆锥形的玉米堆,圆锥底面积是多少平方米?4.化肥厂把生产1600 t化肥的任务按三个车间的人数比分配,一车间53人,二车间52人,三车间55人。
三个车间各应生产化肥多少吨?5.一个长方体木块长、宽、高分别是5cm、4cm、3cm。
如果用它锯成一个最大的正方体,体积要比原来减少百分之几?6.一个底面直径为20厘米的圆柱形容器里,盛有一些水。
把一个底面半径为3厘米的圆锥形铅锤完全浸没在水中,水面上升0.3厘米,这个铅锤的高是多少厘米?7.在打谷场上,有一个近似于圆锥的小麦堆,高1.2米,测得底面直径是4米,每立方米小麦约重350千克,这堆小麦大约有多少千克?8.向阳小学今年有学生540人,比去年减少了10%,估计明年学生人数比今年还要减少10%,明年将有学生多少人?9.早上的气温是零下5℃,记作-5摄氏度,下午的气温升高了15摄氏度,应该记作?10.张叔叔购买了三年期国债,当时年利率为3.14%。
到期时张叔叔除本金外,拿到942元利息款。
张叔叔购买了多少元的国债?11.把一个底面半径是4厘米,高是6分米的铁制圆锥体放入盛满水的桶里,将有多少立方厘米的水溢出?12.解答题。
(1)-1与0之间还有负数吗?-与0之间呢?如有,你能举出例子来吗?(2)写出在-1与-3之间的三个负数。
13.如果把水位上升规定为正的,说出下面记录中所表示的水位变化情况:+18厘米,-7厘米,-2.4厘米,0厘米,+2.3厘米。
14.在打谷场上,有一个近似于圆锥的小麦堆,高是1.2米,测得底面直径是4米。
小升初数学应用题50道一.解答题(共50题,共302分)1.一场音乐会的门票,55%是按全价卖出,40%是五折卖出,剩下的20张门票是免费赠送的。
(1)这场音乐会的门票一共有多少张?(2)如果门票一共卖了7200元,那么一张门票的全价是多少元?2.一个装满玉米的圆柱形粮囤,底面周长6.28米,高2米。
如果将这些玉米堆成一个高1米的圆锥形的玉米堆,圆锥底面积是多少平方米?3.一根长2米,底面半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。
表面积比原来增加了多少平方厘米?4.解答题。
(1)-1与0之间还有负数吗?-与0之间呢?如有,你能举出例子来吗?(2)写出在-1与-3之间的三个负数。
5.在“十一黄金周”优惠活动中,一款运动鞋现价120元,比原价降低了25%。
这款运动鞋原价多少元?6.某水果店新进一批水果,其中苹果占新进水果总量的30%,香蕉占40%,已知这两种水果共70kg,这批水果的总量是多少?7.一艘潜水艇所在高度为-60米,一条鲨鱼在潜水艇上方20米,请你表示出鲨鱼所在的位置。
8.请你在表格中用正、负数记录学校图书馆某一天借阅图书的情况。
9.一个底面周长是3.14分米的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的,将两个同样大小的鸡蛋放入杯子中,浸没在水中,这时水面上升8厘米,刚好与杯子口相平,求玻璃杯的容积。
10.李大爷家去年夏季收获的小麦堆成了圆锥形,高1.5m,底面周长是18.84m,这堆小麦的体积是多少?11.在温度计上画出下面这些温度。
-5℃ 20℃ 15℃ -10℃12.有一桶菜籽油重105千克,第一次取出全部的25%,第二次取出全部的,桶里还剩多少千克菜籽油?13.一个圆锥形沙堆,高是6米,底面直径4米。
把这些沙子铺在一个长为5米,宽为2米的长方体的沙坑里,铺的厚度是多少厘米?14.2018年2月,王阿姨把一些钱存入银行,定期三年,如果年利率是5.0%,到期后可以取出92000元。
小学数学小升初应用题150道及答案1. 学校图书馆有科技书320 本,比故事书少80 本,两种书一共有多少本?答案:故事书有320 + 80 = 400 本,两种书一共320 + 400 = 720 本。
2. 果园里有苹果树180 棵,梨树比苹果树多20 棵,桃树的棵数是苹果树和梨树总棵数的2 倍,桃树有多少棵?答案:梨树有180 + 20 = 200 棵,苹果树和梨树总棵数为180 + 200 = 380 棵,桃树有380×2 = 760 棵。
3. 小明家离学校1200 米,他每天步行上学,往返一次需要20 分钟,小明平均每分钟走多少米?答案:往返一次走的路程是1200×2 = 2400 米,速度= 路程÷时间,即2400÷20 = 120 米/分钟。
4. 一辆汽车4 小时行驶320 千米,照这样计算,7 小时行驶多少千米?答案:汽车的速度为320÷4 = 80 千米/小时,7 小时行驶80×7 = 560 千米。
5. 工厂要生产800 个零件,已经生产了300 个,剩下的要在5 天内完成,平均每天生产多少个?答案:还剩下800 - 300 = 500 个,平均每天生产500÷5 = 100 个。
6. 学校买了6 个篮球和8 个排球,一共用了500 元,篮球每个40 元,排球每个多少元?答案:篮球花费6×40 = 240 元,排球花费500 - 240 = 260 元,每个排球260÷8 = 32.5 元。
7. 一块长方形菜地,长30 米,宽20 米,如果每平方米种8 棵白菜,这块地一共可以种多少棵白菜?答案:面积为30×20 = 600 平方米,一共可以种600×8 = 4800 棵白菜。
8. 小明有20 元钱,买了一支钢笔用去8 元,剩下的钱买每本2 元的笔记本,可以买几本?答案:剩下20 - 8 = 12 元,能买笔记本12÷2 = 6 本。
小升初数学常出应用题100例附答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:1 桶水可灌3/4 壶水,1 壶水冲2 杯水,所以 1 桶水可以冲3/4×2 = 3/2 = 1.5 杯水。
2. 修一条公路,第一天修了全长的1/4 ,第二天修了全长的1/5 ,还剩110 米没修,这条公路全长多少米?答案:设公路全长为x 米,第一天修了1/4 x 米,第二天修了1/5 x 米,可列出方程:x - 1/4 x - 1/5 x = 110 ,解得x = 200 米。
3. 某工厂有三个车间,第一车间人数占总人数的1/4 ,第二车间人数是第三车间人数的3/4 ,已知第一车间比第二车间少40 人,三个车间共多少人?答案:设总人数为x 人,第一车间人数为1/4 x 人,第二车间人数为3/8 x 人,可列出方程:3/8 x - 1/4 x = 40 ,解得x = 320 人。
4. 果园里有苹果树和梨树共420 棵,苹果树棵数的1/3 等于梨树棵数的4/9 ,问两种树各有多少棵?答案:设苹果树有x 棵,梨树有420 - x 棵。
1/3 x = 4/9 (420 - x) ,解得x = 240 ,则梨树有180 棵。
5. 甲、乙两堆煤共300 吨,甲堆的2/5 比乙堆的1/4 多55 吨,两堆煤各多少吨?答案:设甲堆煤有x 吨,乙堆煤有300 - x 吨。
2/5 x - 1/4 (300 - x) = 55 ,解得x = 200 ,则乙堆煤有100 吨。
6. 一本书,第一天看了全书的1/4 ,第二天看了50 页,这时已看的页数与未看的页数比是11:19 ,这本书共有多少页?答案:设这本书共有x 页,第一天看了1/4 x 页,已看的页数为1/4 x + 50 ,未看的页数为x - (1/4 x + 50) = 3/4 x - 50 。
(1/4 x + 50) : (3/4 x - 50) = 11 : 19 ,解得x = 400 页。
小升初数学应用题专题(带答案)小升初数学应用题专题(带答案)(一)和差问题:已知两个数的和及两个数的差;求这两个数。
方法①:(和-差)2÷=较小数;和-较小数=较大数方法②:(和+差)2÷=较大数;和-较大数=较小数例如:两个数的和是15;差是5;求这两个数。
方法:(155)25-÷=;(155)210+÷=.(二) 和倍问题:已知两个数的和及这两个数的倍数关系;求这两个数。
方法:和÷(倍数1+)1=倍数(较小数) 1倍数(较小数)⨯倍数=几倍数(较大数)或 和1-倍数(较小数)=几倍数(较大数) 例如:两个数的和为50;大数是小数的4倍;求这两个数。
方法:50(41)10÷+= 10440⨯= (三)差倍问题:已知两个数的差及两个数的倍数关系;求这两个数。
方法:差÷(倍数1-)1=倍数(较小数) 1倍数(较小数)⨯倍数=几倍数(较大数) 或 和1-倍数(较小数)=几倍数(较大数) 例如:两个数的差为80;大数是小数的5倍;求这两个数。
方法:80(51)20÷-= 205100⨯= 二、年龄问题 年龄问题的三大规律: 1.两人的年龄差是不变的;2.两人年龄的倍数关系是变化的量;3.随着时间的推移;两人的年龄都是增加相等的量.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄;几年前年龄=小年龄-大小年龄差÷倍数差.三、植树问题(一)不封闭型(直线)植树问题1 直线两端植树: 棵数=段数1+=全长÷株距1+;全长=株距⨯(棵数1-); 株距=全长÷(棵数1-); 2 直线一端植树: 全长=株距⨯棵数; 棵数=全长÷株距;株距=全长÷棵数;3 直线两端都不植树: 棵数=段数1-=全长÷株距1-;株距=全长÷(棵数1+);(二) 封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距; 总距离=棵数⨯棵距; 棵距=总距离÷棵数. 四、方阵问题在方阵问题中;横的排叫做行;竖的排叫做列;如果行数和列数都相等;则正好排成一个正方形;就是所谓的“方阵”。
小升初小学数学应用题100例附答案(完整版)1. 一桶水,用去它的3/4,还剩8 千克,这桶水原来重多少千克?解:8÷(1 - 3/4) = 32(千克)答:这桶水原来重32 千克。
2. 一个长方形的周长是24 厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?解:长和宽的和为24÷2 = 12(厘米)长:12×2/3 = 8(厘米)宽:12×1/3 = 4(厘米)面积:8×4 = 32(平方厘米)答:这个长方形的面积是32 平方厘米。
3. 学校把植树任务按5:3 分给六年级和五年级。
六年级实际栽了108 棵,超过原分配任务的20%。
原计划五年级植树多少棵?解:六年级原计划栽树:108÷(1 + 20%) = 90(棵)五年级原计划栽树:90÷5×3 = 54(棵)答:原计划五年级植树54 棵。
4. 商店运来一些水果,梨的筐数是苹果筐数的3/4,苹果的筐数是橘子筐数的4/5,运来梨15 筐,运来橘子多少筐?解:苹果筐数:15÷3/4 = 20(筐)橘子筐数:20÷4/5 = 25(筐)答:运来橘子25 筐。
5. 某班男生人数是女生人数的5/6,女生的平均身高比男生高10%,全班的平均身高是116 厘米,求男、女生的平均身高各是多少?解:设女生有6 人,男生有 5 人。
全班总身高:116×(6 + 5) = 1276(厘米)设男生平均身高为x 厘米,则女生平均身高为1.1x 厘米。
5x + 6×1.1x = 12765x + 6.6x = 127611.6x = 1276x = 110女生平均身高:1.1×110 = 121(厘米)答:男生平均身高110 厘米,女生平均身高121 厘米。
6. 一项工程,甲单独做20 天完成,乙单独做30 天完成。
甲乙合做了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16 天。
50道小升初数学真题及答案解析附参考答案1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
小升初数学应用题集锦120例附答案(完整版)1. 一桶水可灌3 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3×2=6(杯)2. 小明买了3 个笔记本,用去12 元,小云也买了同样的6 个笔记本,小云用了多少钱?答案:12÷3×6=24(元)3. 2 只鸭子的重量等于4 只鸡的重量,1 只鸡重2 千克,1 只鸭子重多少千克?答案:4×2÷2=4(千克)4. 妈妈买了4 千克苹果用了16 元,买1 千克苹果需要多少钱?答案:16÷4=4(元)5. 一辆汽车3 小时行驶180 千米,照这样计算,5 小时行驶多少千米?答案:180÷3×5=300(千米)6. 5 箱蜜蜂一年可以酿375 千克蜂蜜,照这样计算,20 箱蜜蜂一年可以酿多少千克蜂蜜?答案:375÷5×20=1500(千克)7. 3 台织布机4 小时织布336 米,1 台织布机1 小时织布多少米?答案:336÷3÷4=28(米)8. 工厂要加工360 个零件,5 天加工了60 个,照这样计算,还需要多少天才能完成?答案:(360-60)÷(60÷5)=25(天)9. 一条裤子108 元,一件上衣比裤子贵25 元,买一套这样的衣服需要多少钱?答案:108+25+108=241(元)10. 学校图书馆有故事书360 本,比科技书少40 本,科技书有多少本?答案:360+40=400(本)11. 小明每分钟走65 米,从家到学校走了12 分钟,他家离学校有多远?答案:65×12=780(米)12. 果园里有苹果树240 棵,梨树比苹果树少40 棵,梨树有多少棵?答案:240-40=200(棵)13. 一个长方形操场,长80 米,宽50 米,这个操场的周长是多少米?答案:(80+50)×2=260(米)14. 一箱苹果重25 千克,40 箱这样的苹果重多少千克?答案:25×40=1000(千克)15. 一本书有120 页,小明每天看20 页,几天可以看完?答案:120÷20=6(天)16. 一块正方形手帕的边长是25 厘米,它的周长是多少厘米?答案:25×4=100(厘米)17. 有36 个苹果,平均分给9 个小朋友,每个小朋友分几个?答案:36÷9=4(个)18. 一只老虎的体重是250 千克,一头大象的体重是老虎的8 倍,大象的体重是多少千克?答案:250×8=2000(千克)19. 学校买了12 个足球,每个80 元,一共花了多少钱?答案:12×80=960(元)20. 小红每天写8 个大字,一个星期可以写多少个大字?答案:8×7=56(个)21. 一根绳子长24 米,对折3 次后,每段长多少米?答案:24÷(2×2×2)=3(米)22. 一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达,返回时每小时行75 千米,几小时可以返回?答案:60×5÷75=4(小时)23. 学校组织学生去春游,有360 人,每辆客车可以坐40 人,需要几辆客车?答案:360÷40=9(辆)24. 小红有120 张邮票,是小明的3 倍,小明有多少张邮票?答案:120÷3=40(张)25. 一块长方形菜地,长12 米,宽8 米,如果每平方米收菜15 千克,这块菜地一共可以收菜多少千克?答案:12×8×15=1440(千克)。
小升初数学难题应用题100例附答案(完整版)1. 小明家养了5只鸡和3只鸭,鸡比鸭多多少?答案:鸡比鸭多2只。
2. 一个长方形的长是12厘米,宽是8厘米,求它的面积。
答案:96平方厘米。
3. 一辆汽车从甲地开往乙地,每小时行驶60千米,用了4小时到达。
如果速度提高到每小时80千米,需要多少小时才能到达?答案:3小时。
4. 小红有20个苹果,小明给她一半,小红又给了小华3个,最后小红还剩多少个苹果?答案:14个。
5. 一个正方形的边长增加了10%,新的面积比原来增加了多少?答案:21%。
6. 小华买了一本书,书原价100元,书店打八折出售,小华实际支付了多少元?答案:80元。
7. 一个圆形的半径增加了50%,新的周长比原来增加了多少?答案:75%。
8. 一辆火车从A站出发,以每小时80千米的速度行驶,经过3小时到达B站。
如果火车速度提高到每小时100千米,还需要多少小时到达B站?答案:2小时。
9. 小明和小华一起买了一个篮球,小明付了60元,小华付了40元,后来小华又给小明10元,现在每人各付了多少元?答案:小明70元,小华30元。
10. 一个班级有男生25人,女生30人,全班共有多少人?答案:55人。
11. 一个长方形的长是15厘米,宽是10厘米,求它的周长。
答案:50厘米。
12. 一辆自行车以每小时15千米的速度行驶,行驶了6小时后,距离起点多少千米?答案:90千米。
13. 小明有一盒铅笔,他每天用掉3支,10天后他还剩多少支?答案:7支。
14. 一个圆的直径是14厘米,求它的面积。
答案:153.86平方厘米。
15. 一辆汽车从城市A出发,以每小时60千米的速度行驶,行驶了5小时后到达城市B。
如果汽车速度提高到每小时80千米,还需要多少小时到达城市B?答案:3.75小时。
16. 小华有50元,她买了5个苹果,每个苹果5元,她还剩多少元?答案:15元。
17. 一个长方形的长是20厘米,宽是15厘米,求它的对角线长度。
小升初数学应用题专项练习(含答案)1.王爷爷家养的4头奶牛每个星期产奶896千克,平均1头奶牛每天产多少奶呢?2.4辆汽车3次运水泥960袋,平均每辆汽车每次运水泥多少袋?3.水波小学每间教室有3个窗户,每个窗户安装12块玻璃,9间教室一共安装多少块玻璃?4.小红买了2盒绿豆糕,一共重1千克.每盒装有20块,平均每块重多少克?5.一辆大巴车从张村出发,如果每小时行驶60千米,4小时就可以到达李庄.结果只用了3个小时就到达了.这辆汽车实际平均每小时行驶多少千米?6.白塔村计划修一条水渠,如果每天修16米,18天就能修完.第一天修了24米,照第一天的进度,几天能修完?7.虹光宾馆购进100条毛巾,每条6元.如果用这些钱购买8元一条的毛巾,可以买多少条?8.一包A4复印纸,每天用25张,20天正好用完.如果每天少用5张,那么可以用多少天?9.一个养蜂专业户,今年饲养蜜蜂24箱.去年5箱蜜蜂酿了375千克蜂蜜,照去年的酿蜜量计算,今年可以酿多少千克蜂蜜?10.冬冬家在15平方米的土地上共育苗135棵,照这样计算,要育苗990棵,需要多大面积的土地?11.园林工人沿公路的一侧植树,每隔6米种一棵,一共种了36棵。
从第一棵到最后一棵的距离有多远?12.在一条全长2千米的街道两旁安装路灯(两端都要装),每隔50米安一座,一共要安装多少座路灯?13.一根木头长10米,要把它平均分成5段。
每锯下一段需要8分钟,锯完一共要花多少分钟?14.48名学生在操场上做游戏。
大家围成一个正方形,每边人数相等。
四个顶点都有人,每边各有几名学生?15.要在五边形的水池边上摆上花盆,要使每一边都有4盆花,最少需要几盆花?16.为迎接六一儿童节,学校举行团体操表演。
四年级学生排成方阵,最外层每边站了15人,最外层一共有多少名学生?整个方阵一共有多少人?17.广场上的大钟5时敲5下,8秒种敲完。
12时敲12下,需要多长时间?18.从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。
一:应用题专题一、和差倍问题(一)和差问题:已知两个数的和及两个数的差,求这两个数。
方法①:(和-差)2÷=较小数,和-较小数=较大数方法②:(和+差)2÷=较大数,和-较大数=较小数例如:两个数的和是15,差是5,求这两个数。
方法:(155)25-÷=,(155)210+÷=. (二)和倍问题:已知两个数的和及这两个数的倍数关系,求这两个数。
方法:和÷(倍数1+)1=倍数(较小数)1倍数(较小数)⨯倍数=几倍数(较大数)或和1-倍数(较小数)=几倍数(较大数)例如:两个数的和为50,大数是小数的4倍,求这两个数。
方法:50(41)10÷+=10440⨯=(三)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数。
方法:差÷(倍数1-)1=倍数(较小数)1倍数(较小数)⨯倍数=几倍数(较大数)或和1-倍数(较小数)=几倍数(较大数)例如:两个数的差为80,大数是小数的5倍,求这两个数。
方法:80(51)20÷-=205100⨯=二、年龄问题年龄问题的三大规律:1.两人的年龄差是不变的;2.两人年龄的倍数关系是变化的量;3.随着时间的推移,两人的年龄都是增加相等的量.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差.三、植树问题(一)不封闭型(直线)植树问题1直线两端植树:棵数=段数1+=全长÷株距1+;全长=株距⨯(棵数1-);株距=全长÷(棵数1-);2直线一端植树:全长=株距⨯棵数;棵数=全长÷株距;株距=全长÷棵数;3直线两端都不植树:棵数=段数1-=全长÷株距1-;株距=全长÷(棵数1+);(二)封闭型(圆、三角形、多边形等)植树问题棵数=总距离÷棵距;总距离=棵数⨯棵距;棵距=总距离÷棵数.四、方阵问题在方阵问题中,横的排叫做行,竖的排叫做列,如果行数和列数都相等,则正好排成一个正方形,就是所谓的“方阵”。
方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2,每层总数就少8.②每边人(或物)数和每层总数的关系:每层总数[=每边人(或物)数1]4⨯;每边人(或物)数=每层总数41÷+.③实心方阵:总人(或物)数=每边人(或物)数×每边人(或物)数.五、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.六、盈亏问题按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.一般地,一批物品分给一定数量的人,第一种分配方法有多余的物品(盈),第二种分配方法则不足(亏),当两种分配方法相差n个物品时,那就有:盈数+亏数=人数n⨯,这是关于盈亏问题很重要的一个关系式.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数,(盈-盈)÷两次分得之差=人数或单位数,(亏-亏)÷两次分得之差=人数或单位数.解盈亏问题的关键是要找到:什么情况下会盈,盈多少?什么情况下“亏”,“亏”多少?找到盈亏的根源和几次盈亏结果不同的原因.另外在解题后,应进行验算.七、假设问题鸡兔同笼,这是一个古老的数学问题,在现实生活中也是普遍存在的.重点掌握鸡兔同笼问题的解法——假设法,并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数八、牛吃草问题(一)牛吃草的由来在英国伟大的科学家牛顿所著的《普通算术》一书中有一道非常有名的关于牛在牧场上吃草的题目:“12头牛4周吃牧草133格尔(格尔:牧场面积单位),同样的牧草,21头牛9周吃10格尔.问24格尔牧草,多少头牛吃18周吃完?”后来人们就把这类题目称为“牛顿问题”,也称为“牛吃草”问题.(二)牛吃草的解题步骤同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.(三)牛吃草的变式题“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.(四)多块草地的牛吃草问题多块草地的“牛吃草”问题,一般要将草地面积变得统一,一般情况下可以找多块草地面积的最小公倍数,这样可以避开小数分数运算,但如果数据较大时我们一般把面积统一为“1”相对会简单些。
九、工程问题工程问题,究其本质是运用分数应用题的量率对应关系,即用对应分率表示工作总量与工作效率,这种方法可以称作是一种“工程习惯”,这一类问题称之为“工程问题”。
1.解题关键是把“一项工程”看成一个单位,运用公式:工作效率×工作时间=工作总量,表示出各个工程队(人员)或其组合在统一标准和单位下的工作效率。
2.利用常见的数学思想方法,如代换法、比例法、列表法、方程法等。
抛开“工作总量”,和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后利用先前的假设“把整个工程看成一个单位”,求得问题答案,一般情况下,工程问题求的是时间。
有的情况下,工程问题并不表现为两个工程队在“修路筑桥、开挖河渠”,甚至会表现为“行程问题”、“经济价格问题”等等,工程问题不仅指一种题型,更是一种解题方法。
十、浓度问题将糖溶于水就得到了糖水,糖水甜的程度是由糖与糖水二者重量的比值决定的.糖与糖水重量的比值叫糖水的浓度,这个比值一般我们将它写成百分数.其中糖叫溶质,水叫溶剂,糖水叫溶液.不光是糖水中存在着浓度,我们日常生活中的盐水、酒精等溶液只能够都存在着浓度的问题. ⑴浓度问题相关公式:=+溶液溶质溶剂;100%100%⨯=⨯+=溶质溶剂溶质溶质浓度溶液.⑵常用方法:①抓不变量:一般情况下在经济问题中成本是不变量,浓度问题中溶剂是不变量,我们可以用画图来分析;②方程法:对于经济浓度问题,采用方程来求解是简便、有效的方法;③十字交叉法:(甲溶液浓度大于乙溶液浓度);形象表达:④浓度三角:浓度三角在解决浓度问题时非常有用.十一、利润问题商店出售商品时,为了获得最大的利润,商家总是“低进高出”,只有这样才能赚取差价,这个差价就会产生利润.实际上,在商品贸易上的许多数学问题都会涉及到三个量:成本、利润及定价. 成本——购进商品所需的本钱,又叫进价或成本价;定价——商品出售的价格,又叫售价或卖卖价; 利润——产品定价中高于成本以上的那一部分. 为了衡量获得利润的大小,通常采用:“利润百分数”或“利润率”这个量:100%100%1100%-=+=⨯=⨯=⎛⎫-⨯ ⎪⎝⎭售价成本售价成本利润,利润率利润售价成本成本成本由上面的公式还可以引申出下面两个公式:1⨯售价=成本(+利润率),=售价成本1+利润率.二:习题1. 商店进了300支钢笔,每售出1支,可获40%的利润当这批钢笔售出芸时,共获得利润750元,求每支钢笔的进货价.2. 商场以每个3.2元的价格购进了一批文具盒,每个售价5元,还剩下80个没售出时,除了成本已经获利500元.问这批文具盒一共有多少个?3. 人民商厦运来一批彩电,按定价出售可以获利2.8万元,如果按定价的九五折出售,则仍可获利2000元.问彩电的成本价共是多少元?4. 红星商场进了一批玩具,六月一日这天以定价的八折出售,当天售出的玩具仍可获得10%的利润,问这批玩具定价时的利润是百分之几?5.一批商品,按照能获得50%的利润定价,结果只销掉了70%的商品.为尽快将剩下的商品销售出去,商店决定打折出售,这样所获得的全部利润是原来能获利润的82%.问剩下的商品打了多少折出售?6.有300克浓度为10%的盐水.现在要将这盐水的浓度变为8%,问应加入多少克水?7.要从含糖16%的20千克糖水中蒸去水分,制出含糖20%的糖水,问应当蒸去多少千克水分?8.要配制浓度为20%的硫酸溶液1000克,需要用浓度为18%和23%的硫酸溶液各多少克?9.大瓶酒精溶液是小瓶酒精溶液的2倍,大瓶酒精溶液的浓度为20%,小瓶酒精溶液的浓度为35%.将两瓶酒精溶液混合后,酒精溶液的浓度是多少? 10.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%、62.5%和23.已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,听含纯酒精的百分数将达56%,那么,丙缸中纯酒精的量是多少千克?(1997年小学数学奥林匹克预赛C卷第12题)11.甲瓶中有纯酒精11升,乙瓶中有水15升,第一次将甲瓶中的一部分酒精倒入乙瓶中,使酒精和水混合.第二次将乙瓶中的一部分混合液倒入甲瓶中.这样,甲瓶中的纯酒精含量为62.5%,乙瓶中的纯酒精含量为25%.问第二次从乙瓶倒人甲瓶的混合液是多少升?12.李明和王林在周长为400米的环形跑道上练习跑步,李明每分钟跑200米,是王林每分钟跑的98,如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?13.从360米长的环形跑道上的同一地点向相同方向跑步,甲每分钟跑305米,乙每分钟跑275米,两人起跑后,问第一次相遇在离起点多少米处?14.绕湖一周是21.1千米,小明和小华从湖边同一地点同时相背而行小明以每小时4.6千米的速度每走1小时后就休息5分钟,小华以每小时5.4千米的速度每走50分钟后就休息10分钟,问两人出发后多少小时相遇?15.12点整时,钟面上的时针、分针和秒针刚好重合.那么,再过多长时间,钟面上的时针和分针再次重合?重合时,时针、分针分别走了几圈几格?(钟面一圈分成60格)16.有一个台式钟,在3月29日零时比标准时间慢4分半,它一直走到4月5日上午7时,比标准时间快3分钟,那么这个台钟所指时间是正确的时刻在几月几日几时?17.小红和妈妈的年龄加在一起是40岁,妈妈年龄是小红年龄的4倍,小红有________岁,妈妈有 __岁. 18.甲、乙、丙、丁四个人一共做了370个零件,如果把甲做的个数加2,乙做的个数减3,丙做的个数乘2,丁做的个数除以2,四个人做的零件个数正好相等,问四个人各做多少个零件?19.叔叔比小华大20岁,明年叔叔的年龄是小华的3倍,小华今年_______岁.20.女儿今年(1994年)12岁,妈妈对女儿说:“当你有我这么大岁数时,我已经60岁喽!”问:妈妈12岁时,是哪一年?21.五位老人的年龄互不相同,其中年龄最大的比年龄最小的大6岁,已知他们的平均年龄为85岁,其中年龄最大的一位老人为________.22.今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍,儿子今年_______岁。