钢的热处理(原理及四把火)

  • 格式:doc
  • 大小:231.50 KB
  • 文档页数:12

下载文档原格式

  / 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢的热处理

钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。

第一节钢的热处理原理

热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。

热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)

1、整体热处理:包括退火、正火、淬火、回火和调质;

2、表面热处理:包括表面淬火、物理和化学气相沉积等;

3、化学热处理:渗碳、渗氮、碳氮共渗等。

热处理的三阶段:加热、保温、冷却

一、钢在加热时的转变

加热的目的:使钢奥氏体化

(一)奥氏体( A)的形成

奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。在铁素体和渗碳体的相界面上形成。有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。

1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。

2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。(F比Fe 3 C先消失)

3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。

(二)奥氏体晶粒的长大

奥氏体大小用奥氏体晶粒度来表示。分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。影响 A晶粒粗大因素

1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。因此,合理选择加热和保温时间。以保证获得细小均匀的奥氏体组织。(930~950℃以下加热,晶粒长大的倾向小,便于热处理)

2、A中C含量上升则晶粒长大的倾向大。

二、钢在冷却时的转变

生产中采用的冷却方式有:等温冷却和连续冷却

(一)过冷奥氏体的等温转变

A在相变点A 1 以上是稳定相,冷却至A 1 以下就成了不稳定相,必然要发生转变。

1、奥氏体等温转变图:表示奥氏体过冷在不同温度下的等温过程中,转变温度、转变时间与转变产物量的关系曲线图。曲线形状与“C”字相似,所以又称C曲线。

2、共析碳钢奥氏体等温转变产物的组织和性能

1)高温珠光体型转变: A 1 ~550℃

( 1)珠光体(P) A 1 ~650℃粗层状约0.3 μ m < 25HRC

( 2)索氏体(S) 650~600℃细层状 0.1~0.3 μ m 25~35HRC

( 3)托氏体(T) 600~550℃极细层状约0.1 μ m 35~40HRC

2)中温贝氏体型转变: 550~Ms

( 1)上贝氏体(B 上) 550~350 ℃羽毛状 40~45HRC 脆性大,无使用价值

(2)下贝氏体(B 下) 350~M S 黑色针状 45~55HRC 韧性好,综合力学性能好

3)低温马氏体型转变: M s ~M f 当 A被迅速过冷至M S 以下时,则发生马氏体(M)转变,主要形态是板条状和片状。(当 W C < 0.2%时,呈板条状,当 W C > 1.0%呈针片状,当 W C = 0.2%~1.0%时,呈针片状和板条状的混合物)

(二)过冷奥氏体的连续冷却转变

1.奥氏体连续冷却转变图(共析钢的连续冷却转变如图)连冷却转变图是表示钢经A后,在不同冷却速度的连冷却条件下,过冷A转变开始及转变终了

时间与转变温度之间的关系曲线图。

2.共析碳钢过冷奥氏体连续冷却转变产物的组织和性能

(1)随炉冷 P 170~220HBS (700~650℃)

(2)空冷 S 25~35HRC (650~600℃)

(3)油冷 T+M 45~55HRC 550℃

(4)水冷 M+A ′ 55~65HRC

3.马氏体转变

当冷速 > V K 时,奥氏体发生M转变,即碳溶于α— F e 中的过饱和固溶体,称为 M(马氏体)。( V K ——马氏体临界冷却速度)

1)转变特点: M 转变是在一定温度范围内进行(M s ~M f ) ,M 转变是在一个非扩散型转变(碳、铁原子不能扩散) ,M 转变速度极快(大于V k ) ,M 转变具有不完全性(少量的残A) ,M转变只有α- Fe、γ-Fe的晶格转变 .

(2) M 的组织形态

(3) M 的力学性能

① M的强度与硬度 C的上升M的硬度、强度上升

② M的塑性与韧性低碳板条状M良好板条状 M 具有较高的强度、硬度和较好塑性和韧性相配合的综合力学性能。针片状 M 比板条 M具有更高硬度,但脆性较大,塑、韧性较差。

钢的退火与正火

常用的热处理工艺分为两大类:

预备热处理目的:消除坯料、半成品中的某些缺陷,为后续冷加工,最终热处理作组织准备。

最终热处理目的:使工件获得所要求的性能。

退火与正火的目的 : 消除钢材经热加工所引起的某些缺陷,或为以后的切削加工及最终热处理做好组织准备。一、钢的退火

1、概念:将钢件加热到适当温度 (Ac 1 以上或以下),保持一定时间,然后缓慢冷却以获得近于平衡状态组织的热处理工艺称为退火。

2、目的:

( 1)降低硬度,提高塑性,

( 2)细化晶粒,消除组织缺陷

( 3)消除内应力

( 4)为淬火作好组织准备

3、类型:(根据加热温度可分为在临界温度(Ac 1 或Ac 3 )以上或以下的退火,前者又称相变重结晶退火,包括完全退火、扩散退火均匀化退火、不完全退火、球化退火;后者包括再结晶退火及去应力退火。)

(1)完全退火:

1)概念:将亚共析钢( Wc=0.3%~0.6%)加热到AC 3 +(30~50)℃,完全奥氏体化后,保温缓冷(随炉、埋入砂、石灰中),以获得接近平衡状态的组织的热处理工艺称为完全退火。

2)目的:细化晶粒、均匀组织、消除内应力、降低硬度、改善切削加工性能。

3)工艺:完全退火采用随炉缓冷可以保证先共析铁素体的析出和过冷奥氏体在 Ar1以下较主温度范围内转变为珠光体。工件在退火温度下的保温时间不仅要使工件烧透,即工件心部达到要求的加热温度,而且要保证全部看到均匀化的奥氏体,达到完全重结晶。完全退火保温时间与钢材成分、工件厚度、装炉量和装炉方式等因素有关。实际生产时,为了提高生产率,退火冷却至 600℃