感生电动势和动生电动势要点及例题解析(答案)
- 格式:doc
- 大小:88.50 KB
- 文档页数:4
动生电动势和感生电动势同时存在的试题解题策略 张阿兵 电磁感应的条件是: 闭合回路磁通量发生变化。
即:∆Φ变化,见情况可归为3种类型:1. 通常把导体棒切割磁感线运动时所产生的电动势称为动生电动势即:B 不变,(S 变)切割类。
E BLV =。
动生电动势2. 由于磁感应强度变化引起的电动势称为感生电动势即:B 变,(S 不变)感生类。
B E n S t∆=∆。
感生电动势 3. 闭合回路或闭合回路中部分导体在磁场中做切割磁感线运动同时磁场变化,这种情况产生的感应电动势大小为:()()BS B S E nn n S B t t t t∆Φ∆∆∆===+∆∆∆∆ 其中S n B BLV t ∆=∆即:动生电动势,B n S t ∆∆即:感生电动势。
对于第3类,两者同时存在问题比较复杂,在近年的高考模拟试题中,常常出现导体棒切割磁感线的同时磁感应强度强弱也在发生变化的情况。
此类问题,如果处理方法不当,难得其果,现介绍两种常用的方法。
方法一:运用12B E E E BLV nS t ∆=+=+∆解答。
即:分别计算出动生感应电动势和感生感应电动势,然后代数和。
应用注意12,E E 的方向问题,当12,E E 方向相同时,取“+”; 当12,E E 方向相反时,取“-”所以方向相同或相反指各自产生的感应电流在回路中流动方向情况。
方法二:运用E n t∆Φ=∆直接计算 具体方法是:先任取t 时刻,写出()t Φ表达式,然后求导可得:'E =Φ。
两种方式,都应掌握,因在不同题中两种方法的繁简程度有区别。
具体见例题:例1.如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m,导轨的端点P 、Q 用电阻可以忽略的导线相连,两导轨间的距离0.20l =m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k=0.020T/s .一电阻不计的金属杆可在导轨上无摩擦的滑动,在滑动过程中保持与导轨垂直.在t=0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0s 时金属杆所受的安培力.解法一:用a 表示金属杆的加速度,在t 时刻,金属杆的位移212Lat = 回路总电阻R=2Lr 0,此时杆的速度v=at ,杆与导轨构成的回路的面积S=L l ,回路中的感应电动势 12E E E =+其中:21E BLV Kt l at Klat ==⋅⋅=设B 方向垂直纸面向里,由右手定则知:1I 的方向为逆时针2221122B E S K l at Klat t ∆==⋅⋅=∆由楞次定理知:2I 的方向为逆时针 故21232E E E KLat =+= 20031222E Kl I r at r ∴==⋅⋅ 安培力22303 1.44102K l F BIL t N r -===⨯ 解法二:(微元法)由法拉第电磁感应定律知:En t ∆Φ=∆ 在t 时刻,回路总磁通量312BLl Klat Φ==磁通量变化量:3333212121111()222Klat Klat Kla t t ∆Φ=Φ-Φ=-=- 感应电动势:2221121()2E Kla t t t t t ∆Φ==++∆ 当0t ∆→时,即:12t t t == 于是22313322E Klat Kl at KlL ==⋅= 安培力22303 1.44102E K l F BIL Kt l t N R r -==⋅⋅==⨯ 解法二:(微分法)312BLl Klat Φ==,233' 1.44102E Klat N t -∆Φ==Φ==⨯∆ 例2.如图所示,两根完全相同的光滑金属导轨OP 、OQ 固定在水平桌面上,导轨间的夹角为θ=74°,导轨单位长度的电阻为r 0=0.10Ω/m。
专题二十一感生电动势和动生电动势基本知识点一、感生电动势1.感应电场.(1)产生:如下图所示,当磁场变化时,产生的感应电场的电场线是与磁场方向垂直的曲线.如果空间存在闭合导体,导体中的自由电荷就会在电场力作用下定向移动,而产生感应电流,或者说导体中产生了感应电动势.(2)方向:闭合环形回路(可假定存在)的电流方向就表示感应电场的电场方向.感应电场是否存在仅取决于有无变化的磁场,与是否存在导体及是否存在闭合回路无关,尽管如此,我们要判定感应电场的方向还要依据实际存在的或假定存在的回路结合楞次定律来进行.2.感生电动势的产生:由感应电场使导体产生的电动势叫感生电动势.感生电动势在电路中的作用就是充当电源,其电路就是内电路,当它与外电路连接后就会对外电路供电.变化的磁场在闭合导体所在空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说导体中产生了感应电动势.由此可见,感生电场就相当于电源内部的所谓的非静电力,对电荷产生力的作用.二、动生电动势1.动生电动势原因分析:导体在磁场中做切割磁感线运动时,产生动生电动势,它是由于导体中自由电子受洛伦兹力作用而引起的.如图甲所示,一条直导线CD在匀强磁场B 中以速度v向右运动,并且导线CD与B、v的方向垂直.由于导体中的自由电子随导体一起以速度v运动,因此每个电子受到的洛伦兹力为F=evB.F 的方向竖直向下.在力F 的作用下,自由电子沿导体向下运动,使导体下端出现过剩的负电荷,导体上端出现过剩的正电荷.结果使导体上端D 的电势高于下端C 的电势,出现由D 指向C 的静电场.此电场对电子的作用力F ′是向上的,与洛伦兹力的方向相反.随着导体两端正、负电荷的积累,场强不断增强,当作用在自由电子上的静电力F ′与洛伦兹力F 互相平衡时,DC 两端便产生了一个稳定的电势差.如果用另外的导线把CD 两端连接起来,由于D 端电势比C 端高,自由电子在静电力的作用下将在导线框中沿顺时针方向流动,形成逆时针方向的感应电流如图乙所示.电荷的流动使CD 两端积累的电荷减少,洛伦兹力又不断地使电子从D 端运动到C 端,从而在CD 两端维持一个稳定的电动势.可见,运动的导体CD 就是一个电源,D 端为正极,C 端为负极,自由电子受洛伦兹力的作用,从D 端被搬运到C 端;也可以看作是正电荷受洛伦兹力的作用从C 端搬运到D 端.这里,洛伦兹力就相当于电源中的非静电力.根据电动势的定义,电动势等于单位正电荷从负极通过电源内部移动到正极非静电力所做的功.作用在单位正电荷上的洛伦兹力F =F 洛e=vB ,于是,动生电动势就是:E =Fl =Blv .三、动生电动势与感生电动势的区别与联系1.相当于电源的部分不同:由于导体运动产生感应电动势时,运动部分的导体相当于电源,而由于磁场变化产生感应电动势时,磁场穿过的线圈部分相当于电源.2.ΔΦ的含义不同:导体运动产生电动势,ΔΦ是由于导体线框本身的面积发生变化产生的.所以ΔΦ=B ΔS ;而感生电动势,ΔΦ是由于ΔB 引起的,所以ΔΦ=S ΔB .3.动生电动势和感生电动势的相对性:动生电动势和感生电动势的划分.在某些情况下只有相对意义,将条形磁铁插入线圈中,如果在相对于磁铁静止的参考系内观察.磁铁不动,空间中各点的磁场也没有发生变化.而线圈在运动,线圈中产生的是动生电动势,如果在相对线圈静止的参考系内观察,则看到磁铁在运动.引起空间磁场发生变化.因而,线圈中产生的是感生电动势.究竟把电动势看作动生电动势还是感生电动势,决定于观察者所在的参考系.4.感生电动势与动生电动势的对比感生电动势 动生电动势 产生原因磁场的变化 导体做切割磁感线运动 移动电荷的非静电力 感生电场对自由电荷的电场力 导体中自由电荷所受洛伦兹力沿导体方向的分力回路中相当于电源的部分 处于变化磁场中的线圈部分 做切割磁感线运动的导体 方向判断方法 由楞次定律判断 通常由右手定则判断,也可由楞次定律判断大小计算方法 由E =n ΔΦΔt计算 通常由E =Blvsin θ计算,也可由E =n ΔΦΔt 计算 例题分析一、感生电动势的运算例1 有一面积为S =100 cm 2的金属环,电阻为R =0.1 Ω,环中磁场变化规律如图4-5-4乙所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电荷量为多少?(对应训练)如图甲所示,水平放置的线圈匝数n =200匝,直径d 1=40 cm ,电阻r =2 Ω,线圈与阻值R =6 Ω的电阻相连.在线圈的中心有一个直径d 2=20 cm 的有界匀强磁场,磁感应强度按图乙所示规律变化.试求:(1)电压表的示数;(2)若撤去原磁场,在图中竖直虚线的右侧空间加磁感应强度B =0.5 T 的匀强磁场,方向垂直纸面向里,试证明将线圈向左拉出磁场的过程中,通过电阻R上的电荷量为定值,并求出其值.二、动生电动势的运算例2如图所示,三角形金属导轨EOF上放有一金属杆AB,在外力作用下,使AB保持与OF垂直,以速度v匀速从O点开始右移,设导轨与金属棒均为粗细相同的同种金属制成,则下列判断正确的是()A.电路中的感应电流大小不变B.电路中的感应电动势大小不变C.电路中的感应电动势逐渐增大D.电路中的感应电流逐渐减小(对应训练)如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应强度为B,方向垂直于纸面向里,一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计,导体棒与圆形导轨接触良好.求:(1)在滑动过程中通过电阻r的电流的平均值;(2)MN从左端到右端的整个过程中,通过r的电荷量;(3)MN通过圆导轨中心时通过r的电流.三、图像问题例3将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是()(对应训练)如图(a)所示,横截面积为0.2 m2的100匝圆形线圈A处在变化的磁场中,磁场方向垂直纸面,其磁感应强度B随时间t的变化规律如图(b)所示.设向里为B的正方向,线圈A上的箭头为感应电流I的正方向,R1=4 Ω,R2=6 Ω,C=30 μF,线圈内阻不计.求电容器充电时的电压和2 s后电容器放电的电荷量.四、最值问题例4如图所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间的距离为L,导轨平面与水平面的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B,在导轨的AC端连接一个阻值为R的电阻,一根质量为m、垂直于导轨放置的金属棒ab,从静止开始沿导轨下滑,求此过程中ab棒的最大速度.已知ab与导轨间的动摩擦因数为μ,导轨和金属棒的电阻都不计.(对应训练)如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的最大速度.五、动生电动势的综合运算例5如图所示,一个边长为l的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab与导线框的一条边垂直,ba的延长线平分导线框.在t=0时,使导线框从图示位置开始以恒定速度沿ab方向移动,直到整个导线框离开磁场区域.以i表示导线框中感应电流的强度,取逆时针方向为正.下列表示i—t关系的图示中,可能正确的是()(对应训练一)如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10 Ω,导轨的端点P、Q用电阻可以忽略的导线相连,两导轨间的距离l=0.20 m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020 T/s.一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0 s时金属杆所受的安培力.(对应训练二)如图所示,导体AB在做切割磁感线运动时,将产生一个电动势,因而在电路中有电流通过,下列说法中正确的是()A.因导体运动而产生的感应电动势称为动生电动势B.动生电动势的产生与洛伦兹力有关C.动生电动势的产生与电场力有关D.动生电动势和感生电动势产生的原因是一样的专题训练1.下列说法中正确的是()A.动生电动势的产生与洛伦兹力有关B.因为洛伦兹力对运动电荷始终不做功,所以动生电动势的产生与洛伦兹力无关C.动生电动势的方向可以由右手定则来判定D.导体棒切割磁感线产生感应电流,受到的安培力一定与受到的外力大小相等、方向相反2.下列说法中正确的是()A.感生电场是由变化的磁场产生B.恒定的磁场也能在周围空间产生感生电场C.感生电场的方向也同样可以用楞次定律和右手定则来判定D.感生电场的电场线是闭合曲线,其方向一定是沿逆时针方向3.某空间出现了如图所示的磁场,当磁感应强度变化时,在垂直于磁场的方向上会产生感生电场,有关磁感应强度的变化与感生电场的方向关系描述正确的是()A.当磁感应强度均匀增大时,感生电场的电场线从上向下看应为顺时针方向B.当磁感应强度均匀增大时,感生电场的电场线从上向下看应为逆时针方向C.当磁感应强度均匀减小时,感生电场的电场线从上向下看应为顺时针方向D.当磁感应强度均匀减小时,感生电场的电场线从上向下看应为逆时针方向4.如图所示,在一水平光滑绝缘塑料板上有一环形凹槽,有一带正电小球质量为m,电荷量为q,在槽内沿顺时针做匀速圆周运动,现加一竖直向上的均匀变化的匀强磁场,且B逐渐增加,则()A.小球速度变大B.小球速度变小C.小球速度不变 D. 以上三种情况都有可能5.一个面积S=4×10-2 m2、匝数n=100匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,则下列判断正确的是()A.在开始的2 s内穿过线圈的磁通量变化率等于0.08 Wb/sB.在开始的2 s内穿过线圈的磁通量的变化量等于零C.在开始的2 s内线圈中产生的感应电动势等于8 VD.在第3 s末线圈中的感应电动势等于零6.如图所示,将一个与匀强磁场垂直的正方形多匝线圈从磁场中匀速拉出的过程中,拉力做功的功率()A.与线圈匝数成正比B.与线圈边长的平方成正比C.与导线的电阻率成正比D.与导线横截面积成正比7.英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球.已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( )A .0 B.12r 2qk C .2πr 2qk D .πr 2qk8.如图甲所示,n =50匝的圆形线圈M ,它的两端点a 、b 与内阻很大的电压表相连,线圈中磁通量的变化规律如图乙所示,则a 、b 两点的电势高低与电压表的读数为( )A .φa >φb,20 VB .φa >φb,10 VC .φa <φb,20 VD .φa <φb,10 V9.在如图甲所示的电路中,螺线管匝数n =1 500匝,横截面积S =20 cm 2.螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF.在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.则下列说法中正确的是( )A .螺线管中产生的感应电动势为1 VB .闭合S ,电路中的电流稳定后,电阻R 1消耗的电功率为5×10-2 WC .电路中的电流稳定后电容器下极板带正电D .S 断开后,流过R 2的电荷量为1.8×10-5 C10.如图所示,在方向竖直向上的磁感应强度为B 的匀强磁场中有两条光滑固定的平行金属导轨MN 、PQ ,导轨足够长,间距为L ,其电阻不计,导轨平面与磁场垂直,ab 、cd 为两根垂直于导轨水平放置的金属棒,其接入回路中的电阻分别为R ,质量分别为m ,与金属导轨平行的水平细线一端固定,另一端与cd 棒的中点连接,细线能承受的最大拉力为F T ,一开始细线处于伸直状态,ab 棒在平行导轨的水平拉力F 的作用下以加速度a 向右做匀加速直线运动,两根金属棒运动时始终与导轨接触良好且与导轨相垂直.求经多长时间细线被拉断?11.如图所示,bacd为静止于水平面上宽度为L,而长度足够长的U型金属滑轨,ac 边接有电阻R,其他部分电阻不计.ef为一可在滑轨平面上滑动,质量为m的均匀导体棒.整个滑轨面处在竖直向上的匀强磁场中,磁感应强度为B,忽略所有摩擦.(1)若用恒力F沿水平方向向右拉棒,使其平动,求导体棒的最大速度.(2)若导体棒从开始运动到获得最大速度发生的位移为s,求这一过程中电阻R上产生的热量Q.12.如图所示,在水平平行放置的两根光滑长直导电轨道MN与PQ上,放着一根直导线ab,ab与导轨垂直,它在导轨间的长度为20 cm,这部分的电阻r=0.02 Ω.导轨部分处于方向竖直向下的匀强磁场中,磁感应强度B=0.20 T,电阻R=0.08 Ω,其他电阻不计,ab 的质量为0.02 kg.(1)断开开关S,ab在水平恒力F=0.01 N的作用下,由静止沿轨道滑动,经过多长时间速度才能达到10 m/s?(2)上述过程中感应电动势随时间变化的表达式是怎样的?(3)当ab的速度达到10 m/s时,闭合开关S,为了保持ab仍能以10 m/s的速度匀速运动,水平拉力应变为多少?13.如图所示,P、Q为水平面内平行放置的光滑金属长直导轨,间距为L1,处在竖直向下、磁感应强度大小为B1的匀强磁场中.一导体杆ef垂直于P、Q放在导轨上,在外力作用下向左做匀速直线运动.质量为m、每边电阻均为r、边长为L2的正方形金属框abcd 置于竖直平面内,两顶点a、b通过细导线与导轨相连,磁感应强度大小为B2的匀强磁场垂直金属框向里,金属框恰好处于静止状态.不计其余电阻和细导线对a、b点的作用力.(1)通过ab边的电流I ab是多大?(2)导体杆ef的运动速度v是多大?专题二十一感生电动势和动生电动势基本知识点一、感生电动势1.感应电场.(1)产生:如下图所示,当磁场变化时,产生的感应电场的电场线是与磁场方向垂直的曲线.如果空间存在闭合导体,导体中的自由电荷就会在电场力作用下定向移动,而产生感应电流,或者说导体中产生了感应电动势.(2)方向:闭合环形回路(可假定存在)的电流方向就表示感应电场的电场方向.感应电场是否存在仅取决于有无变化的磁场,与是否存在导体及是否存在闭合回路无关,尽管如此,我们要判定感应电场的方向还要依据实际存在的或假定存在的回路结合楞次定律来进行.2.感生电动势的产生:由感应电场使导体产生的电动势叫感生电动势.感生电动势在电路中的作用就是充当电源,其电路就是内电路,当它与外电路连接后就会对外电路供电.变化的磁场在闭合导体所在空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说导体中产生了感应电动势.由此可见,感生电场就相当于电源内部的所谓的非静电力,对电荷产生力的作用.二、动生电动势1.动生电动势原因分析:导体在磁场中做切割磁感线运动时,产生动生电动势,它是由于导体中自由电子受洛伦兹力作用而引起的.如图甲所示,一条直导线CD在匀强磁场B 中以速度v向右运动,并且导线CD与B、v的方向垂直.由于导体中的自由电子随导体一起以速度v运动,因此每个电子受到的洛伦兹力为F=evB.F 的方向竖直向下.在力F 的作用下,自由电子沿导体向下运动,使导体下端出现过剩的负电荷,导体上端出现过剩的正电荷.结果使导体上端D 的电势高于下端C 的电势,出现由D 指向C 的静电场.此电场对电子的作用力F ′是向上的,与洛伦兹力的方向相反.随着导体两端正、负电荷的积累,场强不断增强,当作用在自由电子上的静电力F ′与洛伦兹力F 互相平衡时,DC 两端便产生了一个稳定的电势差.如果用另外的导线把CD 两端连接起来,由于D 端电势比C 端高,自由电子在静电力的作用下将在导线框中沿顺时针方向流动,形成逆时针方向的感应电流如图乙所示.电荷的流动使CD 两端积累的电荷减少,洛伦兹力又不断地使电子从D 端运动到C 端,从而在CD 两端维持一个稳定的电动势.可见,运动的导体CD 就是一个电源,D 端为正极,C 端为负极,自由电子受洛伦兹力的作用,从D 端被搬运到C 端;也可以看作是正电荷受洛伦兹力的作用从C 端搬运到D 端.这里,洛伦兹力就相当于电源中的非静电力.根据电动势的定义,电动势等于单位正电荷从负极通过电源内部移动到正极非静电力所做的功.作用在单位正电荷上的洛伦兹力F =F 洛e=vB ,于是,动生电动势就是:E =Fl =Blv .三、动生电动势与感生电动势的区别与联系1.相当于电源的部分不同:由于导体运动产生感应电动势时,运动部分的导体相当于电源,而由于磁场变化产生感应电动势时,磁场穿过的线圈部分相当于电源.2.ΔΦ的含义不同:导体运动产生电动势,ΔΦ是由于导体线框本身的面积发生变化产生的.所以ΔΦ=B ΔS ;而感生电动势,ΔΦ是由于ΔB 引起的,所以ΔΦ=S ΔB .3.动生电动势和感生电动势的相对性:动生电动势和感生电动势的划分.在某些情况下只有相对意义,将条形磁铁插入线圈中,如果在相对于磁铁静止的参考系内观察.磁铁不动,空间中各点的磁场也没有发生变化.而线圈在运动,线圈中产生的是动生电动势,如果在相对线圈静止的参考系内观察,则看到磁铁在运动.引起空间磁场发生变化.因而,线圈中产生的是感生电动势.究竟把电动势看作动生电动势还是感生电动势,决定于观察者所在的参考系.4.感生电动势与动生电动势的对比方向判断方法 由楞次定律判断 通常由右手定则判断,也可由楞次定律判断 大小计算方法 由E =n ΔΦΔt 计算 通常由E =Blvsin θ计算,也可由E =n ΔΦΔt计算 例题分析一、感生电动势的运算例1 有一面积为S =100 cm 2的金属环,电阻为R =0.1 Ω,环中磁场变化规律如图4-5-4乙所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电荷量为多少?解析 (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为ΔB Δt =B 2-B 1t 2-t 1① 金属环中磁通量的变化率ΔΦΔt =ΔB Δt S =B 2-B 1t 2-t 1·S ② 环中形成的感应电流I =E R =ΔΦ/Δt R =ΔΦR Δt③ 通过金属环的电荷量Q =I Δt ④由①②③④解得Q =(B 2-B 1)S R =(0.2-0.1)×10-20.1C =0.01 C 答案 逆时针方向 0.01 C(对应训练)如图甲所示,水平放置的线圈匝数n =200匝,直径d 1=40 cm ,电阻r =2 Ω,线圈与阻值R =6 Ω的电阻相连.在线圈的中心有一个直径d 2=20 cm 的有界匀强磁场,磁感应强度按图乙所示规律变化.试求:(1)电压表的示数; (2)若撤去原磁场,在图中竖直虚线的右侧空间加磁感应强度B =0.5 T 的匀强磁场,方向垂直纸面向里,试证明将线圈向左拉出磁场的过程中,通过电阻R 上的电荷量为定值,并求出其值.解析 (1)由E =n ΔΦΔt 可得E =n πd 22ΔB 4ΔtE =I (R +r )U =IR解得U =1.5π V =4.71 V .(2)设线圈拉出磁场经历时间Δt .E =n ΔΦΔt =n πd 12B 4Δt ,I =E R +r电荷量q =I Δt解得q =n πd 12B 4(R +r ),与线圈运动的时间无关,也与运动的速度无关. 代入数据即得q =0.5π C =1.57 C.答案 (1)4.71 V (2)见解析二、动生电动势的运算例2 如图所示,三角形金属导轨EOF 上放有一金属杆AB ,在外力作用下,使AB 保持与OF 垂直,以速度v 匀速从O 点开始右移,设导轨与金属棒均为粗细相同的同种金属制成,则下列判断正确的是( )A .电路中的感应电流大小不变B .电路中的感应电动势大小不变C .电路中的感应电动势逐渐增大D .电路中的感应电流逐渐减小解析 导体棒从O 开始到如图所示位置所经历时间设为t ,∠EOF =θ,则导体棒切割磁感线的有效长度L ⊥=OB tan θ,故E =BL ⊥v ⊥=B v ·v t ·tan θ=B v 2tan θ·t ,即电路中电动势与时间成正比,C 选项正确;电路中电流强度I =E R =B v 2tan θ·t ρL /S.而L 等于△OAB 的周长,L =OB +AB +OA =v t +v t ·tan θ+v t cos θ=v t (1+tan θ+1cos θ),所以I =B v tan θ·S ρ⎝⎛⎭⎫1+tan θ+1cos θ=恒量,所以A 正确.答案 AC(对应训练)如图所示,半径为R 的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应强度为B ,方向垂直于纸面向里,一根长度略大于导轨直径的导体棒MN 以速率v 在圆导轨上从左端滑到右端,电路中的定值电阻为r ,其余电阻不计,导体棒与圆形导轨接触良好.求:(1)在滑动过程中通过电阻r 的电流的平均值;(2)MN 从左端到右端的整个过程中,通过r 的电荷量;(3)MN 通过圆导轨中心时通过r 的电流.解析 (1)整个过程磁通量的变化为ΔΦ=BS =B πR 2,所用的时间Δt =2R v ,代入得E =ΔΦΔt =B πR 2·v 2R =B πR v 2, 通过r 的平均电流I =E r =B πR v 2r. (2)通过r 的电荷量q =I Δt =B πR v 2r ·2R v =B πR 2r. (3)MN 经过圆轨中心O 时,感应电动势E =Bl v =2BR v ,通过r 的电流I =E r =2RB v r. 答案 (1)B πR v 2r (2)B πR 2r (3)2RB v r三、图像问题例3 将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab 边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是()解析分析一个周期内的情况:在前半个周期内,磁感应强度均匀变化,磁感应强度B 的变化度一定,由法拉第电磁感应定律得知,圆形线圈中产生恒定的感应电动势恒定不变,则感应电流恒定不变,ab边在磁场中所受的安培力也恒定不变,由楞次定律可知,圆形线圈中产生的感应电流方向为顺时针方向,通过ab的电流方向从b→a,由左手定则判断得知,ab所受的安培力方向水平向左,为负值;同理可知,在后半个周期内,安培力大小恒定不变,方向水平向右.故B正确.答案 B归纳总结:本题要求学生能正确理解B-t图的含义,知道B如何变化,才能准确的利用楞次定律进行判定.根据法拉第电磁感应定律分析感应电动势的变化,由欧姆定律判断感应电流的变化,进而可确定安培力大小的变化.(对应训练)如图(a)所示,横截面积为0.2 m2的100匝圆形线圈A处在变化的磁场中,磁场方向垂直纸面,其磁感应强度B随时间t的变化规律如图(b)所示.设向里为B的正方向,线圈A上的箭头为感应电流I的正方向,R1=4 Ω,R2=6 Ω,C=30 μF,线圈内阻不计.求电容器充电时的电压和2 s后电容器放电的电荷量.。
精心整理同时存在动生电动势和感生电动势问题方法例析 一、磁感应强度按B=kt 规律变化 例1:如图1所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10Ω/m ,导轨的端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20m 。
有随时间变化的匀强磁场垂直于桌面,已知磁感强度B 与时间t 的关系为B =kt ,比例系数k =0.020T/s ,一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在t =0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0s 时金属杆所受的安培力。
分析和解::以a 表示金属杆运动的加速度,在t 时刻,金属杆的位移:221at L =① 回路电阻:02Lr R =②解法一:求磁感应强度的变化率,需要将感生电动势和动生电动势叠加由图2据k tB =∆∆=,kt B (斜率) 金属杆的速度:at v =③回路的面积:Ll S =④回路的电动势等于感生电动势与动生电动势的代数和Blv tB S +∆∆=ε⑤ 感应电流:R i ε=⑥作用于杆的安培力:Bli F =⑦解以上诸式得t r l k F 022123=,代入数据为N F 31044.1-⨯= 解法二:求磁通量的变化率(勿须再求感生电动势)t 时刻的磁通量:322121klat at ktl BlL =⋅==ϕ 磁通量的变化量:)(2121213132313212t t kla klat klat -=-=-=∆ϕϕϕ 感应电动势:)(2121222*********t t t t kla t t t t kla t ++=--=∆∆=ϕε 在上式中当klL klat t t t t 323于是时0221====→∆ε 安培力:t r l k Lr klL ktl R ktl Bli F 02202323====ε. 代入数据,与解法一所得结果相同二、磁感应强度按B=k/t 规律变化例2:如图3所示,两根完全相同的光滑金属导轨OP 、OQ 固定在水平桌面上,精心整理导轨间的夹角为ο74=θ,导轨单位长度的电阻为r0=0.10Ω/m 。
第五节:感生电动势和动生电动势[高效习图解][重难点1 感生电动势高效归纳:感生电场产生的感应电动势称为感生电动势。
思维突破:(1感生电场又称涡旋电场。
它与静电场均能对电荷有作用力,但它是由变的磁场激发,而不是由电荷激发,另外描述涡旋电场的电线是闭合曲线。
(2)如图5-1A 所示,若磁场增强时,电流表会发生偏转,由此可判断电路中产生了感生电场,闭合导体中的自由电荷在感生电场的作用下定向移动,产生感应电流。
(3)变的磁场周围产生电场,是一种普遍存在的现象,跟闭合电路是否存在无关,如图5-1B 所示,是磁场增强时,变的磁场产生电场的示意图。
(4)感生电场方向的判断:感应电流方向(由楞次定律与右手螺旋定则)。
题型一、感生电场的特点例1.如图5-2所示的是一个水平放置的玻璃圆环形小槽,槽内光滑,槽宽度和深度处处相同,现将一直径略小于槽宽的带正电的绝缘小球放在槽中,它的初速为V 0,磁感应强度的大小随时间均匀增大,(已知均匀变的磁场将产生恒定的感应电场)则:( )A 小球受到的向心力大小不变B 小球受到的向心力大小不断增大图5-1 A 图5-1 B 图5-2 感应电流感应电场 感应电流 洛伦兹力磁场力对小球做了功 D 小球受到的磁场力大小与时间成正比 思路分析:由楞次定律,此电场与小球初速度方向相同,由于小球带正电,电场力对小球做正功,小球的速度应该逐渐增大,向心力也会随着增大。
另外洛仑兹力永远对运动电荷不做功,故错。
带电小球所受洛仑兹力F=qvB,随着速率的增大而增大,同时,B 也正比于时间,则F 于不成正比,故D 错误。
答案:B规律技巧总结:本题的关键是要判断出磁感应强度的方向,感应电场对小球做正功,使带电小球的动能不断增大,带电小球既受到电场力又受到磁场力的作用。
题型一、求感生电荷量例2.有一面积为S=100c 2的金属环,电阻R=01Ω,环中磁场变规律如图5-3所示,磁场方向垂直环面向里,从1至2过程中,通过金属环的电荷量为多少?思路分析:因为B-图象为一直线,故△ф也是均匀变,△ф=△BS=(B 2-B 1)·S[。
第五节 感生电动势、动生电动势(1)【知能准备】1、区分:(1)磁通量: ;磁通量变化量: ;磁通量变化率: 。
2、磁通量的便化三种情况:(1) ;(2);(3) 。
3、法拉第电磁感应定律: 公式: 。
4、 叫感生电动势,公式 ;叫动生电动势,公式 ;【同步导学】1、疑难分析:(1)电动势与电路分析例:将均匀电阻丝做成的边长为l 的正方形线圈abcd 从匀强磁场中向右匀速拉出过程,仅ab 边上有感应电动势E =Blv ,ab 边相当于电源,另3边相当于外电路。
ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。
v将均匀电阻丝做成的边长为l 的正方形线圈abcd 放在匀强磁场中,当磁感应强度均匀减小时,回路中有感应电动势产生,大小为E =l 2(ΔB /Δt ),这种情况下,每条边两端的电压U =E /4-I r = 0均为零。
(2)矩形线圈在匀强磁场中转动,转动轴与磁感线垂直,当B ‖S 时,E =BS ω证明:分析:在图示时刻只有ab∴E 线圈=E ab =BL ab v ab其中v ab =ω·L 1 ∴E=BL 2·ω·L 1=BS ω(3)感生电动势的说明:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即t kE ∆∆Φ=,在国际单位制中可以证明其中的k =1,所以有tE ∆∆Φ=。
对于n 匝线圈有tn E ∆∆Φ=。
(平均值) 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.即:设时刻t 1时穿过闭合电路的磁通量为ΔΦ,设时刻t 2时穿过闭合电路的磁通量为Φ2 ,则在时间Δt=t 1-t 2内磁通量的变化量为ΔΦ=Φ1-Φ2 ,则感应电动势为: E=ΔΦ/Δt说明:(1)若穿过线圈的磁能通量变化,且线圈的砸数为n,则电动势的表示式为E=nΔΦ/Δt(2)计算电动势E 时,有以下几种情况BE=nΔB/Δt×S----面积S 不变, 磁感应强度B 变化E=nΔS/Δt×B----磁感应强度B 不变, 面积S 变化(3)E 的单位是伏特(v),且1v=1wb/s(4)注意课本中给出的法拉第电磁感应定律公式中的磁通量变化率取绝对值,感应电动势也取绝对值,它表示的是感应电动势的大小,不涉及方向.(5)E 是Δt时间内的平均电动势,一般不等于初态和末态感应电动势瞬时值的平均值,即:E 平均=(E 1+E 2)/22、方法点拨:在处理电磁感应问题时,首先要弄清那一部分是电源,那一部分是外电路。
动生电动势和感生电动势法拉第电磁感应定律:只要穿过回路的磁通量发生了变化,在回路中就会有感应电动势产生;而实际上,引起磁通量变化的原因不外乎两条:其一是回路相对于磁场有运动;其二是回路在磁场中虽无相对运动,但是磁场在空间的分布是随时间变化的,我们将前一原因产生的感应电动势称为动生电动势,而后一原因产生的感应电动势称为感生电动势;注意:动生电动势和感生电动势的名称也是一个相对的概念,因为在不同的惯性系中,对同一个电磁感应过程的理解不同:1设观察者甲随磁铁一起向左运动:线圈中的自由电子相对磁铁运动,受洛仑兹力作用,作为线圈中产生感应电流和感应电动势的原因;-动生电动势;2设观察者乙相对线圈静止:线圈中的自由电子静止不动,不受磁场力作用;产生感应电流和感应电动势的原因是运动磁铁变化磁场在空间产生一个感应涡旋电场,电场力驱动使线圈中电荷定向运动形成电流;-感生电动势 一、动生电动势导体或导体回路在磁场中运动而产生的电动势称为动生电动势; 动生电动势的来源:如图,运动导体内每个电子受到方向向上的洛仑兹力为:;正负电荷积累在导体内建立电场;当时达到动态平衡,不再有宏观定向运动,则导体 ab 相当一个电源,a 为负极低电势,b 为正极高电势,洛仑兹力就是非静电力;可以使用法拉第定律计算动生电动势:对于整体或局部在恒定磁场中运动的闭合回路,先求出该回路的磁通F 与t的关系,再将对t 求导,即可求出动生电动势的大小;2动生电动势的方向可由楞次定律确定; 二、感生电动势处在磁场中的静止导体回路,仅仅由磁场随时间变化而产生的感应电动势,称为感生电动势;感生电场:变化的磁场在其周围空间激发一种电场,称之为感生电场;而产生感生电动势的非静电场正是感生电场;感生电动势: 回路中磁通量的变化仅由磁场变化引起,则电动势为感生电动势 .若闭合回路是静止的,它所围的面积S 也不随时间变化; 感生电场与变化磁场之间的关系:1变化的磁场将在其周围激发涡旋状的感生电场,电场线是一系列的闭合线; 2感生电场的性质不同于静电场;静电场 感生电场 场源 正负电荷 变化的磁场力线 起源于正电荷,终止于负电荷不闭合曲线作用力法拉第电磁感应定律一、1、关于表达式tnE∆∆=φ公式在应用时容易漏掉匝数n,变化过程中磁场方向改变的情况容易出错,并且感应电动势E 与φ、φ∆、t∆∆φ的关系容易混淆不清;2、应用法拉第电磁感应定律的三种特殊情况:1E=Blv, 2ω221Bl E =,3E=nBs ωsin θ或E=nBs ωcos θ 二、1、φ、φ∆、t∆∆φ同v 、△v 、tv∆∆一样都是容易混淆的物理量磁通量φ磁通量变化量φ∆磁通量变化率t∆∆φ物理 意义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量计算⊥=BS φ,12φφφ-=∆,S B ∆=∆φ或B S ∆=∆φtSB t ∆∆=∆∆φ或tBSt ∆∆=∆∆φ 注 意若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方向的磁通量相互抵消以后所剩余的磁通量开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,△φ=2 BS,而不是零既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算;将有效分量代入公式E=Blv 求解;此公式也可计算平均感应电动势,只要将v 代入平均速度即可; ⑵导体棒以端点为轴在垂直于磁感线的匀强磁场中匀速转动,各点的线速度不同,用平均速度中点线速度计算,ω221Bl E=; ⑶矩形线圈在匀强磁场中,绕垂直于磁场的任意轴匀速转动产生的感应电动势何时用E=nBs ωsin θ或E=nBs ωcos θ计算;其实这两个公式的区别是计时起点不同;当线圈转至中性面即线圈平面与磁场垂直的位置时E=0,当线圈转至垂直中性面的位置即线圈平面与磁场平行时E=nBs ω;这样,线圈从中性面开始计时感应电动势按E=nBs ωsin θ规律变化,线圈从垂直中性面的位置开始计时感应电动势按E=nBs ωcos θ规律变化;用这两个公式可以求某时刻线圈的磁通量变化率△φ/△t,; 另外,tnE∆∆=φ求的是整个闭合回路的平均感应电动势,△t →0的极限值才等于瞬时感应电动势;当△φ均匀变化时,平均感应电动势等于瞬时感应电动势;但三种特殊情况中的公式通常用来求感应电动势的瞬时值; 典例例1: 关于感应电动势,下列说法正确的是 答CD A .穿过回路的磁通量越大,回路中的感应电动势就越大B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率大,回路中的感应电动势就大D .单位时间内穿过回路的磁通量变化量大,回路中感应电动势就大 总结感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关;例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s,线圈中产生的感应电动势E= V;审题磁通量的变化率t∆∆φ与匝数N 无关;而感应电动势除与t∆∆φ有关外还与匝数N 有关;解析根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V总结计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N,但在求感应电动势时必须考虑匝数N,即E=N △φ/△t;求安培力时也要考虑匝数N,即F=NBIL,因为通电导线越多,它们在磁场中所受安培力就越大;例3:如图7-1所示,两条平行且足够长的金属导轨置于磁感应强度为B 的匀强磁场中,B 的方向垂直导轨平面;两导轨间距为L,左端接一电阻R,其余电阻不计;长为2L 的导体棒ab 如图所示放置, 开始时ab 棒与导轨垂直,在ab 棒绕a 点紧贴导轨滑倒的过程中,通过电阻R 的电荷量是 ;解析tBL t L L L B t S B t E ∆=∆-•=∆∆=∆∆=23421222φ,tR 2BL 3R E I 2∆==∴RBL t I q232=∆=答案:RBL 232总结用E=N △φ/△t 求的是平均感应电动势,由平均感应电动势求闭合回路的平均电流;而电路中通过的电荷量等于平均电流与时间的乘积,即RNt tR Nt I qφφ∆=∆∆∆=∆=,注意这个式子在不同情况下的应用; 例4:如图7-2所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度V 0抛出,设整个过程中,棒的取向不变,不计空气阻力,则金属棒运动过程中产生的感应电动势的大小变化情况应是A .越来越大B .越来越小C .保持不变D .无法判断解导体切割磁感线产生的感应电动势E=Blv,金属棒运动过程中B 、l 和v 的有效分量均不变,所以感应电动势E 不变,选C;例5:如图7-3所示,长为L 的金属棒ab,绕b 端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B,求ab 两端的电势差; 审题用棒的中点的速率作为平均切割速率代入公式E=Blv;也可以设△t 时间ab 棒扫过的扇形面积为△S,根据E=n △φ/△t; 解析解法一:E=Blv=BL ωL/2=BL 2ω/2,解法二:E=n △φ/△t= B △S/△t=t t L B ∆∆•/212ω= BL 2ω/2 ∴22ωBL E U ab==总结若用E=Blv 求E,则必须先求出平均切割速率;若用E=n △φ/△t 求E,则必须先求出金属棒ab 在△t 时间扫过的扇形面积,从而求出磁通量的变化率;例6:如图7-4所示,矩形线圈abcd 共有n 匝,总电阻为R,部分置于有理想边界的匀强磁场中,线圈平面与磁场垂直,磁感应强度大小为B;让线圈从图示位置开始以ab 边为轴匀速转动,角速度为ω;若线圈ab 边长为L 1,ad 边长为L 2,在磁场外部分为2L 52,则⑴线圈从图示位置转过530时的感应电动势的大小为 ; ⑵线圈从图示位置转过1800的过程中,线圈中的平均感应电流为 ;⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势的大小为 ,磁通量的变化率为 ;审题磁场有边界时,线圈abcd 从图示位置转过530的过程中,穿过线圈的磁通量始终没有变化,所以此过程感应电动势始终为零;在线圈abcd 从图示位置转过1800的过程中,初末状态磁通量大小不变,但方向改变,所以2121L BL 56L 53BL 2=•=φ∆;磁场没有边界时,线圈abcd 从图示位置转动产生的感应电动势按E=nBs ωsin θ规律变化;解析⑴线圈从图示位置转过530时的感应电动势的大小为零;⑵线圈从图示位置转过1800的过程中,πωωπφ56562121L nBL L BL n t nE ==∆∆=∴RL nBL R E I πω5621==⑶若磁场没有边界,线圈从图示位置转过450时的感应电动势图图图图E=nBL 1L 2ωsin ωt=ω21L nBL 22,此时磁通量的变化率2221ωφL BL n Et ==∆∆总结磁通量的变化量的求法,开始和转过1800时平面都与磁场垂直,△φ=2 BS,而不是零;例7:一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图7-5甲所示;设垂直纸面向里的磁感应强度方向为正,垂直纸面向外的磁感应强度方向为负;线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负;已知圆形线圈中感应电流i 随时间变化的图象如图7-5乙所示,则线圈所在处的磁场的磁感应强度随时间变化的图象可能是 总结若给出的是φ—t 图象,情况是一样的;答案:CD例8:如图7-6所示,金属导轨间距为d,左端接一电阻R,匀强磁场的磁感应强度为B,方向垂直于平行金属导轨所在的平面,一根长金属棒与导轨成θ角放置,金属棒与导轨电阻不计;当金属棒沿垂直于棒的方向,以恒定速度v 在金属导轨上滑行时,通过电阻的电流强度为 ;电阻R 上的发热功率为 ;拉力的机械功率为 ;审题导体棒做切割磁感线运动,导体棒两端产生的感应电动势相当于闭合回路的电源,所以题中R 是外电阻,金属棒为电源且电源内阻不计;由于金属棒切割磁感线时,B 、L 、v 两两垂直,则感应电动势可直接用E=Blv 求解,从而求出感应电流和发热功率,又因为金属棒匀速运动,所以拉力的机械功率等于电阻R 上的发热功率,也可以用P=Fv=BILv 求拉力的机械功率;解析⑴θsin BdvBLV E ==∴θsin R Bdv R E I ==⑵θ22222sin R v d B R I P ==热⑶θ2222sin R v d B P P ==热机械或者θθθ2222sin sin sin R v d B v d R Bdv B BILv Fv P ====机械例9:如图7-7所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L;M 、P 两点间接有电阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直;整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下;导轨和金属杆的电阻可忽略;让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦;求:⑴在加速下滑过程中,当ab 杆的速度大小为v 时杆中的电流及杆的加速度大小; ⑵在下滑过程中,ab 杆可以达到的速度最大值;审题根据受力情况还可以判断ab 杆的运动情况,ab 杆下滑过程中速度越来越大,安培力F 越来越大,其合外力越来越小,加速度越来越小,当加速度为零时速度最大,所以ab 杆做的是加速度逐渐减小的加速运动,最后以最大速度匀速运动;根据ab 杆达最大速度时合外力为零可求其最大速度;解析⑴ab 杆的速度为v 时,感应电动势E=BLv ∴RvL B L R BLv B BIL F 22===根据牛顿第二定律,有ma=mgsin θ-F 图图图图∴mR vL B g a 22sin -=θ⑵当F=mgsin θ时,ab 杆达最大速度v max ,所以22max LB sin mgR v θ=感生电动势与动生电动势同时存在的情况例1江苏如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r 0=0.10 Ω/m,导轨的端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B = kt ,比例系数k =0.020 T/s.一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t =0时刻,金属杆紧靠在P 、Q 端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力.解1以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离 L =221at 此时杆的速度 v =at 这时,杆与导轨构成的回路的面积S =Ll,回路的感应电动势ε=StB ∆∆+Blv,而 B =ktttB ∆∆=tBtt t B ∆-∆+)(=k, 回路的总电阻R =2Lr 0 ,回路中的感应电流 i =Rε 作用于杆的安培力 F =Bli解得F =22032k l t r代入数据为 F =1.44×10-3N解2 分析法: F 安=BIL ①kt B= ② RE I =③tBSBLv E ∆∆+= ④at v = ⑤a 为金属杆的加速度 221at L x L S ⋅=⋅= ⑥x 为t 时刻金属棒离开PQ 的距离k t B =∆∆ ⑦ 2002122at v x v R ⋅=⋅= ⑧以上为分析法,从“要求”到“应求”到“已知”,要求F 安,应求B 和I,要求I,应求E 和R,逐步推导,直到应求的全部已知确实不可求的,如a ,可用字母表示,运算中可能约去; 求解过程是:将②、⑤、⑥、⑦代入④求出E,223kLat E = ⑨将⑨与⑧代入③求出I 023v kLI = ⑩已将a 约掉,且I 与t 无关;将⑩与②代入①得F安=02202323v tL k L v kL kt =⋅⋅ 最后将已知数据代入得F 安=1.44×10-3N本题的创新处也是易错处在式④式,即产生感应电动势的因素有两个,一个是导体切割磁感线运动产生BIv E =1叫动生电动势,另一个是磁场变化引起磁通量变化产生tBE ∆∆=2叫感生电动势,这是以前的高考试题中未出现过的;因为感生电动势与动生电动势在回路中方向相同,所以总电动势等于二者之和;例2广东如图所示,光滑的平行水平金属导轨MN 、PQ 相距l ,在M 点和P 点间连接一个阻值为R 的电阻,在两导轨间cdfe 矩形区域内有垂直导轨平面竖直向上、宽为d 的匀强磁场,磁感应强度为B ;一质量为m 、电阻为r 、长度也刚好为l 的导体棒ab 垂直搁在导轨上,与磁场左边界相距d 0;现用一个水平向右的力F 拉棒ab,使它由静止开始运动,棒ab 离开磁场前已做匀速直线运动,棒ab 与导轨始终保持良好接触,导轨电阻不计,F 随ab 与初始位置的距离x 变化的情况如图,F 0已知;求:1棒ab 离开磁场右边界时的速度2棒ab 通过磁场区域的过程中整个回路所消耗的电能3d 0满足什么条件时,棒ab 进入磁场后一直做匀速运动RM NPQ abcd e fd 0dBF OxF OxF 0 2F 0d 0d 0+d解1设离开右边界时棒ab 速度为υ,则有 υεBI =,rR I +=ε,对棒有:020=-BIl F ,得:220)(2lB r R F +=υ (2)在ab 棒运动的整个过程中,根据动能定理:02122000-=-+υm W d F d F 安 由功能关系: 安电W E =解得:4422000)(2)2(l B r R mF d d F E +-+=电3设棒刚进入磁场时的速度为0υ,则有0212000-=υm d F 当υυ=0,即44200)(2l B r R m F d +=时,进入磁场后一直匀速运动;归纳:在同时存在感生电动势与动生电动势的情况下,总电动势等于二者的代数和,二者方向相同时相加,方向相反时相减;需要注意的是,所谓方向相同或相反,是指感应电流在回路中的方向;2010年高考题 电磁感应1. 2010·全国卷Ⅱ如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平;在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平;线圈从水平面a 开始下落;已知磁场上下边界之间的距离大于水平面a 、b 之间的距离;若线圈下边刚通过水平面b 、c 位于磁场中和d 时,线圈所受到的磁场力的大小分别为b F 、c F 和d F ,则 A .d F >c F >b F B. c F <d F <b F C. c F >b F >d F D. c F <b F <d F2. 2010·江苏物理一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为 A12B1 C2 D4 答案:B 4.2010·新课标如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为1E ,下落距离为0.8R 时电动势大小为2E ,忽略涡流损耗和边缘效应.关于1E 、2E 的大小和铜棒离开磁场前两端的极性,下列判断正确的是A 、1E >2E ,a 端为正B 、1E >2E ,b 端为正C 、1E <2E ,a 端为正D 、1E <2E ,b 端为正5. 2010·上海如右图,一有界区域内,存在着磁感应强度大小均为B ,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L ,边长为L 的正方形框abcd 的bc 边紧靠磁场边缘置于桌面上,使线框从静止开始沿x 轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图解析在0-1t ,电流均匀增大,排除CD.2t ,在1t -2t ,两边感应电流方向相同,大小相加,故电流大;在32~t t ,因右边离开磁场,只有一边产生感应电流,故电流小,所以选A;6.2010·海南一金属圆环水平固定放置;现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环A .始终相互吸引B .始终相互排斥C .先相互吸引,后相互排斥D .先相互排斥,后相互吸引答案D解析由楞次定律可知,当条形磁铁靠近圆环时,感应电流阻碍其靠近,是排斥力;当磁铁穿过圆环远离圆环时,感应电流阻碍其远离,是吸引力,D 正确;8.2010·天津如图所示,质量m 1=0.1kg,电阻R 1=0.3Ω,长度l=0.4m 的导体棒ab 横放在U 型金属框架上;框架质量m 2=0.2kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m 的MM ’、NN ’相互平行,电阻不计且足够长;电阻R 2=0.1Ω的MN 垂直于MM ’;整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T;垂直于ab 施加F=2N 的水平恒力,ab 从静止开始无摩擦地运动,始终与MM ’、NN ’保持良好接触,当ab 运动到某处时,框架开始运动;设框架与水平面间最大静摩擦力等于滑动摩擦力,g 取10m/s 2.1求框架开始运动时ab 速度v 的大小;2从ab 开始运动到框架开始运动的过程中,MN 上产生的热量Q=0.1J,求该过程ab 位移x 的大小; 解析:1ab 对框架的压力11F m g =①框架受水平面的支持力21N F m g F =+ ②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力2N F F μ=③ab 中的感应电动势E Blv =④MN 中电流12EIR R =+ ⑤MN 受到的安培力F IlB=安⑥框架开始运动时2F F =安⑦由上述各式代入数据解得6/v m s =⑧2闭合回路中产生的总热量122R R Q Q R +=总⑨由能量守恒定律,得2112Fx m v Q =+总⑩代入数据解得 1.1x m =⑾ 9.2010·江苏如图所示,两足够长的光滑金属导轨竖直放置,相距为L, 一理想电流表与两导轨相连,匀强磁场与导轨平面垂直;一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放;导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I;整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻;求:(1) 磁感应强度的大小B ;2电流稳定后, 导体棒运动速度的大小v ;3流经电流表电流的最大值m I10.2010·福建如图所示,两条平行的光滑金属导轨固定在倾角为 的绝缘斜面上,导轨上端连接一个定值电阻;导体棒a和b放在导轨上,与导轨垂直并良好接触;斜面上水平虚线PQ以下区域内,存在着垂直穿过斜面向上的匀强磁场;现对a棒施以平行导轨斜向上的拉力,使它沿导轨匀速向上运动,此时放在导轨下端的b棒恰好静止;当a棒运动到磁场的上边界PQ处时,撤去拉力,a棒将继续沿导轨向上运动一小段距离后再向下滑动,此时b棒已滑离导轨;当a棒再次滑回到磁场边界PQ处时,又恰能沿导轨匀速向下运动;已知a棒、b棒和定值电阻的阻值均为R,b棒的质量为m,重力加速度为g,导轨电阻不计;求(1)a棒在磁场中沿导轨向上运动的过程中,a棒中的电流强度I,与定值电阻R中的电流强度I R之比;(2)a棒质量m a;3a棒在磁场中沿导轨向上运动时所受的拉力F;11. 2010·上海如图,宽度L=0.5m 的光滑金属框架MNPQ 固定板个与水平面内,并处在磁感应强度大小B=0.4T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布,将质量m=0.1kg,电阻可忽略的金属棒ab 放置在框架上,并且框架接触良好,以P 为坐标原点,PQ 方向为x 轴正方向建立坐标,金属棒从01x m =处以02/v m s =的初速度,沿x 轴负方向做22/a m s =的匀减速直线运动,运动中金属棒仅受安培力作用;求:1金属棒ab 运动0.5m,框架产生的焦耳热Q ;2框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;3为求金属棒ab 沿x 轴负方向运动0.4s 过程中通过ab 的电量q,某同学解法为:先算出金属棒的运动距离s,以及0.4s 时回路内的电阻R,然后代入q=BLs R Rϕ=2'02212222240318.85*10/MBLs R S cm p pal ml m R R q SE c N m E θθϕμμεε-=======⋅求解;指出该同学解法的错误之处,并用正确的方法解出结果; 解析:1F a m=,0.2F ma N==因为运动中金属棒仅受安培力作用,所以F=BIL,又E BLv I R R==,所以0.4BLv BLatR t I I===,且212S at =,得212S t s a ==,所以2220.40.2Q I Rt I t J ==•= 2221112xat t =-=-,得1t x =-,所以0.41R x =-;3错误之处:因框架的电阻非均匀分布,所求R 是0.4s 时回路内的电阻R,不是平均值;正确解法:因电流不变,所以c c It q4.04.01=⨯==;12. 2010·北京·19在如图所示的电路中,两个相同的小灯泡L 1 和L 2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R ;闭合开关S 后,调整R ,使L 1 和L 2发光的亮度一样,此时流过两个灯泡的电流均为I ;然后,断开S ;若t '时刻再闭合S,则在t '前后的一小段时间内,正确反映流过L 1的电流 i 1、流过L 2的电流 i 2 随时间t 变化的图像是A .B .C .D . 答案;B13. 2010·江苏如图所示的电路中,电源的电动势为E,内阻为r,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在t=0时刻闭合开关S,经过一段时间后,在t=t 1时刻断开S,下列表示A 、B 两点间电压U AB 随时间t 变化的图像中,正确的是答案;B14.2010·全国某地的地磁场磁感应强度的竖直分量方向向下,大小为 4.5×10-5T;一灵敏电压表连接在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水视为导体流过;设落潮时,海水自西向东流,流速为2m/s;下列说法正确的是 A .电压表记录的电压为5mV B .电压表记录的电压为9mVC .河南岸的电势较高D .河北岸的电势较高 答案B 、D15.2010·山东如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴一导线折成边长为l 的正方形闭合加在路abcd ,回路在纸面内以恒定速度0v 向右运动,叵运动到关于OO ′对称的位置时 A .穿过回路的磁通量为零B .回路中感应电动势大小为20BlvC .回路中感应电流的方向为顺时针方向D .回路中ab 边与cd 边所受安培力方向相同答案A 、B 、D16.2010·广东如图5所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ 沿导轨从MN 处匀速运动到M'N'的过程中,棒上感应电动势E 随时间t 变化的图示,可能正确的是答案A17.2010·安徽如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强兹场,两个边长相等的单线闭合正方形线I 和Ⅱ,分别用相同材料,不同组细的导线绕制I 为细导线;两线圈在距兹场上界面h 高处由静止开始自由下落,再进入兹场,最后落到地面;运动过程中,线圈平面始终保持在整直平面内且下边缘平行于磁场上功界;设线圈I 、Ⅱ落地时的速度大小分别为y 1、y 2在磁场中运动时产生的热量分别为Q 1、Q 2,不计空气阻力则A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2 答案D18. 2010·四川如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a 、b 垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面;现用一平行于导轨的恒力F 作用在a 的中点,使其向上运动;若b 始终保持静止,则它所受摩擦力可能A .变为0B . 先减小后不变C . 等于FD .先增大再减小答案AB 解析对a 棒所受合力为Blv mg F F F f a---=θsin 说明a 做加速度减小的加速运动,当加速度为0后匀速运动,所以a 所受安培力先增大后不变;如果θsin 2mg F F f +=,则最大安培力为θsin mg ,则b 所受摩擦力最后为0,A 正确;如果θsin 2mg F F f +〈,则最大安培力小于θsin mg ,则b 所受摩擦力一直减小最后不变,B 正确;如果θθsin 2sin 3mg F F mg F f f ++〉〉,则最大安培力大于θsin mg 小于θsin 2mg ,则b 所受摩擦力先减小后增大最后不变;可以看出b 所受摩擦力先变化后不变,C D 错误;。
高中物理电磁感应现象及动生电动势感生电动势解析一、电磁感应现象1、磁通量:在匀强磁场中,磁感应强度B与垂直磁场的面积S的乘积,叫做穿过这个面的磁通量,即;一般情况下,当平面S不跟磁场方向垂直时,,为平面S在垂直于磁感线方向上的投影。
当磁感线与线圈平面平行时,磁通量为零。
2、产生感应电流的条件可归结为两点:①电路闭合;②通过回路的磁通量发生变化。
3、磁通量是双向标量。
若穿过面S的磁通量随时间变化,以、分别表示计时开始和结束时穿过面S的磁通量的大小,则当、中磁感线以同一方向穿过面S时,磁通量的改变;当、中磁感线从相反方向穿过面S时,磁通量的改变。
4、由于磁感线是闭合曲线,所以穿过任意闭合曲面的磁通量一定为零,即=0。
如穿过地球的磁通量为零。
二、感应电动势的大小1、法拉第电磁感应定律的数学表达式为,它指出感应电动势既不取决于磁通量φ的大小,也不取决于磁通量变化Δφ的大小,而是由磁通量变化的快慢等来决定的,由算出的是感应电动势的平均值,当线圈有相同的n匝时,相当于n个相同的电源串联,整个线圈的感应电动势由算出。
2、公式中涉及到的磁通量Δφ的变化情况在高中阶段一般有两种情况:①回路与磁场垂直的面积s不变,磁感应强度发生变化,则Δφ=ΔBS,此时,式中叫磁感应强度的变化率。
②磁感应强度B不变,回路与磁场垂直的面积发生变化,则Δφ=BΔS。
若遇到B和S 都发生变化的情况,则。
3、回路中一部分导体做切割磁感线运动时感应电动势的表达式为,式中v取平均速度或瞬时速度,分别对应于平均电动势或瞬时电动势。
4、在切割磁感线情况中,遇到切割导线的长度改变,或导线的各部分切割速度不等的复杂情况,感应电动势的根本算法仍是,但式中的ΔΦ要理解时间内导线切割到的磁感线的条数。
三、概念辨析1、对于法拉第电磁感应定律E=应从以下几个方面进行理解:①它是定量描述电磁感应现象的普遍规律,不管是什么原因,用什么方式所产生的电磁感应现象,其感应电动势的大小均可由它进行计算。
2022届高三物理二轮高频考点专题突破专题17 电磁感应现象中的四种电动势专练目标专练内容目标1 感生电动势(1T—4T ) 目标2 平动切割电动势(5T—8T ) 目标3 转动切割电动势(9T—12T ) 目标4 交变电动势(13T—16T )一、感生电动势1.将很多质量为m 、带电荷量为q +可视为质点的绝缘小球,均匀穿在由绝缘材料制成的半径为r 的光滑圆轨道上并处于静止状态,轨道平面水平,空间内有分布均匀的磁场,磁场方向竖直向上,如图甲所示。
磁感应强度B 随时间t 变化的规律如图乙所示,其中0B 是已知量。
已知在磁感应强度增大或减小的过程中,将产生涡旋电场,其电场线是在水平面内一系列沿顺时针或逆时针方向的同心圆,同一条电场线上各点的场强大小相等。
关于绝缘小球的运动情况,下列说法正确的是( )。
A .在0=t 到0t T =时间内,绝缘小球均做匀速圆周运动B .在0t T =到02t T =时间内,绝缘小球均沿顺时针方向做速率均匀增加的圆周运动C .在02t T =到03t T =时间内,绝缘小球均沿顺时针方向做加速圆周运动D .在03t T =到05t T =时间内涡旋电场沿顺时针方向 【答案】B【详解】A .在0=t 到0t T =时间内,磁感应强度不变,没有涡旋电场产生,绝缘小球保持静止,故A 错误;B .在0t T =到02t T =时间内,根据法拉第电磁感应定律可得沿轨道一周的感应电动势为2200ππB B r r t T ε==△△由于同一条电场线上各点电场强度大小相等,所以2πE rε=解得002rB E T =涡旋电场沿顺时针方向,根据牛顿第二定律可得,在0t T =到02t T =时间内,小球沿切线方向的加速度大小恒为1qEa m=所以绝缘小球均沿顺时针方向做速率均匀增加的圆周运动,故B 正确;C .在02t T =到03t T =时间内,磁感应强度不变,没有涡旋电场产生,绝缘小球均沿顺时针方向做匀速圆周运动,故C 错误;D .根据法拉第电磁感应定律可知在03t T =到05t T =时间内涡旋电场沿逆时针方向,故D 错误。
[典型例题]
例1 如图1所示,在竖直向下的磁感应强度为B 的
匀强磁场中,有两根水平放置且足够长的平行金属导轨
AB 、CD ,在导轨的AC 端连接一阻值为R 的电阻,一根质
量为m 的金属棒ab ,垂直导轨放置,导轨和金属棒的电
阻不计。
金属棒与导轨间的动摩擦因数为μ,若用恒力
F 沿水平向右拉导体棒运动,求金属棒的最大速度。
分析:金属棒向右运动切割磁感线,产生动生电动势,由右手定则知,棒中有ab 方向的电流;再由左手定则,安培力向左,导体棒受到的合力减小,向右做加速度逐渐减小的加速运动;当安培力与摩擦力的合力增大到大小等于拉力F 时,加速度减小到零,速度达到
最大,此后匀速运动,所以, m g BIL F μ+=, R BLV
I = 22)(L B R mg F V μ-=
例2 如图2所示,线圈内有理想的磁场边界,当磁感应强度均
匀增加时,有一带电量为q ,质量为m 的粒子静止于水平放置的平
行板电容器中间,则此粒子带 ,若线圈的匝数为n ,线圈
面积为S ,平行板电容器的板间距离为d ,则磁感应强度的变化率为 。
分析:线圈所在处的磁感应强度增加,发生变化,线圈中有感生电动势;由法拉第电
磁感应定律得,
t B t nS n E ∆∆∆∆==φ ,再由楞次定律线圈中感应电流沿逆时针方向,所以,板间的电场强度方向向上。
带电粒子在两板间平衡,电场力与重力大小相等方向相反,电场力竖直向上,所以粒子带正电。
B qns E q mg ∆== q n s m g d t B =∆∆
[针对训练]
1.通电直导线与闭合线框彼此绝缘,它们处在同一平面内,导线位
置与线框对称轴重合,为了使线框中产生如图3所示的感应电流,可采取
的措施是:
(A)减小直导线中的电流
(B)线框以直导线为轴逆时针转动(从上往下看)
(C)线框向右平动 (D)线框向左平动
2.一导体棒长l=40cm,在磁感强度B=0.1T的匀强磁场中做切割磁感线运动,运动的速度v=5.0m/s,导体棒与磁场垂直,若速度方向与磁感线方向夹角β=30°,则导体棒中感应电动势的大小为V,此导体棒在做切割磁感线运动时,若速度大小不变,可能产生的最大感应电动势为 V
3.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是:
(A)将线圈匝数增加一倍 (B)将线圈面积增加一倍
(C)将线圈半径增加一倍 (D)适当改变线圈的取向
4.如图4所示,四边完全相同的正方形线圈置于一有界匀强磁场
中,磁场垂直线圈平面,磁场边界与对应的线圈边平行,今在线圈
平面内分别以大小相等,方向与正方形各边垂直的速度,沿四个不
同的方向把线圈拉出场区,则能使a、b两点电势差的值最大的是:
(A)向上拉(B)向下拉
(C)向左拉(D)向右拉
5.如图5所示,导线MN可无摩擦地沿竖直的长直导轨滑
动,导线位于水平方向的匀强磁场中,回路电阻R,将MN由静
止开始释放后的一小段时间内,MN运动的加速度可能是:
(A).保持不变(B)逐渐减小(C)逐渐增大(D)无法确定
6.在水平面上有一固定的U形金属框架,框架上置一金属杆ab,
如图所示(纸面即水平面),在垂直纸面方向有一匀强磁场,则:
(A)若磁场方向垂直纸面向外并增长时,杆ab将向右移动
(B)若磁场方向垂直纸面向外并减少时,杆ab将向左移动
(C)若磁场方向垂直纸面向里并增长时,杆ab将向右移动
(D)若磁场方向垂直纸面向里并减少时,杆ab将向右移
7.如图7所示,圆形线圈开口处接有一个平行板电容器,圆形线圈垂直放在随时间均匀变化的匀强磁场中,要使电容器所带电量增加一倍,正确的做法是:
(A)使电容器两极板间距离变为原来的一半
(B)使线圈半径增加一倍
(C)使磁感强度的变化率增加一倍
(D)改变线圈平面与磁场方向的夹角
[能力训练]
1.有一铜块,重量为G,密度为D,电阻率为ρ,把它拉制成截面半径为r的长导线,再用它做成一半径为R的圆形回路(R>>r).现加一个方向垂直回路平面的匀强磁场,磁感强度B的大小变化均匀,则
(A)感应电流大小与导线粗细成正比
(B)感应电流大小与回路半径R 成正比
(C)感应电流大小与回路半径R 的平方成正比
(D)感应电流大小和R 、r 都无关
2.在图8中,闭合矩形线框abcd ,电阻为R ,位于磁感应强度
为B 的匀强磁场中,ad 边位于磁场边缘,线框平面与磁场垂直,ab 、
ad 边长分别用L 1、L 2表示,若把线圈沿v 方向匀速拉出磁场所用时
间为△t ,则通过线框导线截面的电量是:
(A )t R L BL ∆2
1(B ) R L BL 2
1(C ) t L BL ∆2
1 (D )BL 1L 2
3.如图9所示,矩形线框abcd 的ad 和bc 的中点M 、N 之间连接一
电压表,整个装置处于匀强磁场中,磁场的方向与线框平面垂直,
当线框向右匀速平动时,以下说法正确的是( )
(A )穿过线框的磁通量不变化,MN 间无电势差
(B )MN 这段导体做切割磁感线运动,MN 间有电势差
(C )MN 间有电势差,所以电压表有读数
(D )因为无电流通过电压表,所以电压表无读数
4.在磁感应强度为B ,方向如图10所示的匀强磁场中,金
属杆PQ 在宽为L 的平行金属导轨上以速度v 向右匀速滑动,PQ 中
产生的感应电动势为E 1;若磁感应强度增为2B ,其它条件不变,
所产生的感应电动势大小变为E 2,则E 1与E 2之比及通过电阻R 的
感应电流方向为:
(A )2:1,b →a (B )1:2,b →a
(C )2:1,a →b (D )1:2,a →b
5.如图11所示,一个有弹性的金属圆环被一根橡皮绳吊于通
电直导线的下方,当通电直导线中电流I增大时,圆环的面积S
和橡皮绳的长度L 将
(A)S减小,L 变长 (B)S减小,L 变短
(C)S增大,L 变长 (D)S增大,L 变短
6.A 、B 两个闭合电路,穿过A 电路的磁通量由O 增加到3×103Wb ,穿过B 电路的磁通量由5×103Wb 增加到6×103Wb 。
则两个电路中产生的感应电动势E A 和E B 的关系是:
(A )E A >E B (B)E A =E B (C) E A <E B (D) 无法确定
7.如图12所示。
在有明显边界PQ 的匀强磁场外有一个与磁
场垂直的正方形闭合线框。
一个平行线框的力将此线框匀速地
拉进磁场。
设第一次速度为v ,第二次速度为2 v ,则两次拉力大
小之比为F 1:F 2=____,拉力做的功之比为W 1:W 2=____,拉力
功率之比为P 1:P 2=____,流过导线横截面的电量之比为
Q 1:Q 2=____
8.如图13所示,水平桌面上固定一个无电阻的光滑导轨,导轨
左端有一个R=0.08欧的电阻相连,轨距d=50厘米。
金属杆ab 的质量
m=0.1千克,电阻r=0.02欧,横跨导轨。
磁感应强度B=0.2特的匀强
磁场垂直穿过导轨平面。
现用水平力F=0.1牛拉ab 向右运动,杆ab 匀速前进时速度大小为________米/秒;此时电路中消耗的电功率为________瓦,突然撤消外力F 后,电阻R 上还能产生的热量为____焦。
9.如图14所示,M 与N 为两块正对的平行金属板,匀强磁场垂直纸面向里,磁感应强度为B 。
ab 是可以紧贴平板边缘滑动的金属棒,能以v 1速度匀
速向左或向右滑动。
现有一个电子以v 2速度自左向右飞入两块
板中间,方向与板平行与磁场垂直。
为使电子在两板间做匀速
直线运动,则
v 1的方向应如何?v 1、v 2的关系如何?
10.如图15所示,矩形线圈abcd 共有n 匝,ab 边长为L 1,bc 边长为L 2,置于垂直穿过它的均匀变化的匀强磁场中。
平行正对放置的两块金属板M 和N ,长为L ,间距为h 。
今有一束带电量为q 、质量为m 的离子流从两板中央平行于板的方向以初速v 0飞入板间,要使这些离子恰好能从两板边缘射出,求:①线圈abcd 中磁感应强度的变化率如何?②两板间的电场
对每一个离子做多少功?
[学后反思]_______________________________________________________ __________________________________________________ 。
参考答案
自主学习 1.感生电场 感生电动势 2.动生电动势
针对训练 1.D 2.0.1 0.2 3.D 4.B 5.B 6.D 7.AC
能力训练 1.D 2.B 3.BD 4.D 5.A 6.D 7.1:2 1:2 4:1 1:1 8.1m/s 0.1W 0.04J 9.12V V =右
10.22
220022122mV h mV h B t nqL L L L ∆
∆=。