高考数学函数题型
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
高考数学函数题型
高考试题中的三角函数题相对比较传统,难度较低,位置靠前。因此,在复习过程中一要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质;二要对化简、求值和最值等重点内容进行复习;三要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系及三角知识的应用问题。
1、根据06年考纲将三角函数的图象和性质,由了解改为理解,提高了一个层次。因此,考生在复习中要作出相应的调整,要能比较熟练地画出三角函数图象,理解诸如周期、单调性、最值、对称中心、对称轴之间的相互联系;在解答试题时,要注意先化简三角函数式,再研究其图象和性质。化简的思路是:化为一角、一名、一次的正弦(余弦)。
2、三角函数的化简、求值与证明。主要考查公式的灵活运用、变换能力,一般运用和角与差角、倍角公式,常常采用以下一些基本策略。
(1)常值代换:特别是用1的代换,如
1=cos2+sin2=tanx?cotx=tan45等。
(2)项的分拆与角的配凑。如分拆项:
sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;
配凑角:=(+)-,=-等。
(3)降幂与升幂。
(4)化弦(切)法。
(5)引入辅助角(化一)。asin+bcos=sin(+?渍),这里辅助角?渍所在象限由a、b的符号确定,?渍角的值由tan?渍=确定。(6)公式变用:tan+tan+tan(+)tantan=tan(+)
要注意三角变换一个难点也是易错点是:符号的确定。考生既要知道在用诱导公式和开方时要确定符号;又要真正理解
确定符号如何看象限。
3、三角函数的应用,通过解三角形来考查学生三角恒等变形及对三角函数性质的综合应用能力;一要善于根据条件选
用正弦和余弦定理,二要善于联想平面几何性质和向量工具,使得视野更加开阔。
例1 已知函数=cos4x-2sinxcosx-sin4x
(1)求函数的单调区间;(2)若x0,,求最大值、最小值;(3)对图象进行适当平移,使得到的函数g(x)为奇函数,则平移的最小单位长度是多少?
答案:(1) =cos(2x+)单调递减区间是,k?仔-,k?仔+ ,单调递增区间是k?仔-,k?仔- (2)若x0,,最大值为1,最小值为-。
(3)最小向左平移个单位长度。
例2.在三角形ABC中,a、b、c分别是角A、B、C的对边,且=-,
(1)求角B的值;
(2)若b=,且a+c=4,求三角形ABC的面积。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,
还是“教授”“助教”,其今日教师应具有的基本概念都具有了。答案:(1)B=,(2)
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。